1
|
Ahmad F, Keshri V, Singh SK. ORF3a of SARS-CoV-2 modulates PI3K/AKT signaling in human lung epithelial cells via hsa-miR-155-5p. Int J Biol Macromol 2024; 268:131734. [PMID: 38653431 DOI: 10.1016/j.ijbiomac.2024.131734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
SARS-CoV-2 infection results in cytokine burst, leading to proinflammatory responses in lungs of COVID-19 patients. SARS-CoV-2 ORF3a triggers the generation of proinflammatory cytokines. However, the underlying mechanism of dysregulation of proinflammatory responses is not well understood. We studied the role of microRNA in the generation of proinflammatory responses as a bystander effect of SARS-CoV-2 ORF3a in human lung epithelial cells. We observed upregulation of hsa-miR-155-5p in SARS-CoV-2 ORF3a transfected human lung epithelial cells, which led to the reduced expression of SHIP1. This resulted in phosphorylation of AKT and NF-κB, which further led to the increased expression of the proinflammatory cytokines IL-6 and TNF-α. Additionally, overexpression and knockdown studies of hsa-miR-155-5p were performed to confirm the role of hsa-miR-155-5p in the regulation of the SHIP1. We demonstrated that hsa-miR-155-5p modulates the proinflammatory response by activating the PI3K/AKT pathway through the inhibition of SHIP1 in SARS-CoV-2 ORF3a transfected human lung epithelial cells.
Collapse
Affiliation(s)
- Faiyaz Ahmad
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Vishal Keshri
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India; Dr. B R Ambedkar Center for Biomedical Research (ACBR), University of Delhi, New Delhi 110007, India.
| |
Collapse
|
2
|
Wu CC, Chen MS, Lee TY, Huang TS, Cho DY, Chen JY. Epstein-Barr Virus BRLF1 Induces PD-L1 Expression in Nasopharyngeal Carcinoma Cells. Viral Immunol 2024; 37:115-123. [PMID: 38498796 DOI: 10.1089/vim.2023.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a specific human malignancy with unique geographic distribution and genetic backgrounds. Although early treatment with radio-chemotherapy has been proven effective for NPC therapy, its therapeutic efficacy substantially diminishes in the late stages of this malignancy. In the tumor microenvironment of NPC, PD-L1 has been demonstrated as a critical factor in impairing T cell activation. As an etiological role for NPC development, it is found that Epstein-Barr virus (EBV) latent proteins upregulated PD-L1 expression. However, whether EBV lytic protein affects PD-L1 expression remains unclear. In this study, through monitoring the mRNA expression pattern of lytic genes and PD-L1 in EBV-positive NPC cell line NA, EBV immediately-early gene BRLF1(Rta) was found to have the potential for PD-L1 activation. Furthermore, we identified that Rta expression enhanced PD-L1 expression in mRNA and protein levels through quantitative real-time polymerase chain reaction and western blotting analysis. The luciferase reporter assay revealed that Rta expression enhanced PD-L1 promoter activity. We also demonstrated that Rta-induced PD-L1 expressions could impair interleukin 2 secretion of T cells, and this mechanism may be through ERK activation. These results displayed the importance of EBV Rta in PD-L1 expression in NPC and may give an alternative target for NPC therapy.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung City, Taiwan
| | - Mei-Shu Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Ting-Ying Lee
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung City, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Der-Yang Cho
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung City, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
3
|
Looi CK, Foong LC, Chung FFL, Khoo ASB, Loo EM, Leong CO, Mai CW. Targeting the crosstalk of epigenetic modifications and immune evasion in nasopharyngeal cancer. Cell Biol Toxicol 2023; 39:2501-2526. [PMID: 37755585 DOI: 10.1007/s10565-023-09830-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer that is highly associated with Epstein-Barr virus (EBV) infection. EBV acts as an epigenetic driver in NPC tumorigenesis, reprogramming the viral and host epigenomes to regulate viral latent gene expression, and creating an environment conducive to the malignant transformation of nasopharyngeal epithelial cells. Targeting epigenetic mechanisms in pre-clinical studies has been shown promise in eradicating tumours and overcoming immune resistance in some solid tumours. However, its efficacy in NPC remains inclusive due to the complex nature of this cancer. In this review, we provide an updated understanding of the roles of epigenetic factors in regulating EBV latent gene expression and promoting NPC progression. We also explore the crosstalk between epigenetic mechanisms and immune evasion in NPC. Particularly, we discuss the potential roles of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors in reversing immune suppression and augmenting antitumour immunity. Furthermore, we highlight the advantages of combining epigenetic therapy and immune checkpoint inhibitor to reverse immune resistance and improve clinical outcomes. Epigenetic drugs have the potential to modulate both epigenetic mediators and immune factors involved in NPC. However, further research is needed to fully comprehend the diverse range of epigenetic modifications in NPC. A deeper understanding of the crosstalk between epigenetic mechanisms and immune evasion during NPC progression is crucial for the development of more effective treatments for this challenging disease.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Alan Soo-Beng Khoo
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Pennsylvania, PA, 19107, USA
| | - Ee-Mun Loo
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Development, and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China.
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Tan H, Gong Y, Liu Y, Long J, Luo Q, Faleti OD, Lyu X. Advancing therapeutic strategies for Epstein-Barr virus-associated malignancies through lytic reactivation. Biomed Pharmacother 2023; 164:114916. [PMID: 37229802 DOI: 10.1016/j.biopha.2023.114916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a widespread human herpes virus associated with lymphomas and epithelial cell cancers. It establishes two separate infection phases, latent and lytic, in the host. Upon infection of a new host cell, the virus activates several pathways, to induce the expression of lytic EBV antigens and the production of infectious virus particles. Although the carcinogenic role of latent EBV infection has been established, recent research suggests that lytic reactivation also plays a significant role in carcinogenesis. In this review, we summarize the mechanism of EBV reactivation and recent findings about the role of viral lytic antigens in tumor formation. In addition, we discuss the treatment of EBV-associated tumors with lytic activators and the targets that may be therapeutically effective in the future.
Collapse
Affiliation(s)
- Haiqi Tan
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Yibing Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Yi Liu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Qingshuang Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Oluwasijibomi Damola Faleti
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999000, Hong Kong Special Administrative Region of China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
5
|
Ali A, Ohashi M, Casco A, Djavadian R, Eichelberg M, Kenney SC, Johannsen E. Rta is the principal activator of Epstein-Barr virus epithelial lytic transcription. PLoS Pathog 2022; 18:e1010886. [PMID: 36174106 PMCID: PMC9553042 DOI: 10.1371/journal.ppat.1010886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/11/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
The transition from latent Epstein-Barr virus (EBV) infection to lytic viral replication is mediated by the viral transcription factors Rta and Zta. Although both are required for virion production, dissecting the specific roles played by Rta and Zta is challenging because they induce each other's expression. To circumvent this, we constructed an EBV mutant deleted for the genes encoding Rta and Zta (BRLF1 and BZLF1, respectively) in the Akata strain BACmid. This mutant, termed EBVΔRZ, was used to infect several epithelial cell lines, including telomerase-immortalized normal oral keratinocytes, a highly physiologic model of EBV epithelial cell infection. Using RNA-seq, we determined the gene expression induced by each viral transactivator. Surprisingly, Zta alone only induced expression of the lytic origin transcripts BHLF1 and LF3. In contrast, Rta activated the majority of EBV early gene transcripts. As expected, Zta and Rta were both required for expression of late gene transcripts. Zta also cooperated with Rta to enhance a subset of early gene transcripts (Rtasynergy transcripts) that Zta was unable to activate when expressed alone. Interestingly, Rta and Zta each cooperatively enhanced the other's binding to EBV early gene promoters, but this effect was not restricted to promoters where synergy was observed. We demonstrate that Zta did not affect Rtasynergy transcript stability, but increased Rtasynergy gene transcription despite having no effect on their transcription when expressed alone. Our results suggest that, at least in epithelial cells, Rta is the dominant transactivator and that Zta functions primarily to support DNA replication and co-activate a subset of early promoters with Rta. This closely parallels the arrangement in KSHV where ORF50 (Rta homolog) is the principal activator of lytic transcription and K8 (Zta homolog) is required for DNA replication at oriLyt.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- National Center for Research, Khartoum, Sudan
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Reza Djavadian
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Mark Eichelberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
6
|
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: Current therapeutics and emerging technologies. Front Immunol 2022; 13:1059133. [PMID: 36389670 PMCID: PMC9647127 DOI: 10.3389/fimmu.2022.1059133] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
EBV is a prevalent virus, infecting >90% of the world's population. This is an oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in addition, a significant contributor to the burden of autoimmune diseases. Thus, EBV represents a significant public health burden. Upon infection, EBV remains dormant in host cells for long periods of time. However, the presence or episodic reactivation of the virus increases the risk of transforming healthy cells to malignant cells that routinely escape host immune surveillance or of producing pathogenic autoantibodies. Cancers caused by EBV display distinct molecular behaviors compared to those of the same tissue type that are not caused by EBV, presenting opportunities for targeted treatments. Despite some encouraging results from exploration of vaccines, antiviral agents and immune- and cell-based treatments, the efficacy and safety of most therapeutics remain unclear. Here, we provide an up-to-date review focusing on underlying immune and environmental mechanisms, current therapeutics and vaccines, animal models and emerging technologies to study EBV-associated diseases that may help provide insights for the development of novel effective treatments.
Collapse
Affiliation(s)
- Srishti Chakravorty
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette IN, United States
| |
Collapse
|
7
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
8
|
Pandey N, Rastogi M, Singh SK. Chandipura virus dysregulates the expression of hsa-miR-21-5p to activate NF-κB in human microglial cells. J Biomed Sci 2021; 28:52. [PMID: 34233673 PMCID: PMC8265105 DOI: 10.1186/s12929-021-00748-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Background Chandipura virus (CHPV) is a negative single-stranded RNA virus of the Rhabdoviridae family. CHPV infection has been reported in Central and Western India. CHPV causes acute encephalitis with a case fatality rate of 70 % and mostly affects children below 15 years of age. CHPV infection in brain leads to neuronal apoptosis and activation of the microglial cells. The microRNAs (miRNAs) are small endogenous non-coding RNA that regulate the gene expression. Viral infections perturb the expression pattern of cellular miRNAs, which may in turn affect the expression pattern of downstream genes. This study aims to investigate hsa-miR-21-5p mediated regulation of PTEN, AKT, NF-ĸBp65, IL-6, TNF-α, and IL-1β, in human microglial cells during CHPV infection. Methods To understand the role of hsa-miR-21-5p in CHPV infection, the human microglial cells were infected with CHPV (MOI-0.1). Real-time PCR, western blotting, Luciferase assay, over-expression and knockdown techniques were used to understand the role of hsa-miR-21-5p in the regulation of PTEN, AKT and, NF-ĸBp65, IL-6, TNF-α, and IL-1β in this study. Results The hsa-miR-21-5p was found to be upregulated during CHPV infection in human microglial cells. This led to the downregulation of PTEN which promoted the phosphorylation of AKT and NF-ĸBp65. Over-expression of hsa-miR-21-5p led to the decreased expression of PTEN and promoted further phosphorylation of AKT and NF-ĸBp65 in human microglial cells. However, the inhibition of hsa-miR-21-5p using hsa-miR-21-5p inhibitor restored the expression. Conclusions This study supports the role of hsa-miR-21-5p in the regulation of pro-inflammatory genes in CHPV infected human microglial cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00748-0.
Collapse
Affiliation(s)
- Neha Pandey
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Meghana Rastogi
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
9
|
Deng XM, Zhao LZ, Liang XY, Li D, Yu L, Zhang FC, Zhang H, Liu ZY, Xu P. In vitro Studies and Clinical Observations Imply a Synergistic Effect Between Epstein-Barr Virus and Dengue Virus Infection. Front Microbiol 2021; 12:691008. [PMID: 34220783 PMCID: PMC8249608 DOI: 10.3389/fmicb.2021.691008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Dengue virus (DENV) infection can lead to a complex spectrum of clinical outcomes, ranging from asymptomatic infection to life-threatening severe dengue. The reasons for thus drastically varying manifestations of the disease remain an enigma. Herein, we reported an original discovery of the synergistic effect between preexisting Epstein-Barr virus (EBV) infection and DENV superinfection in vitro and of a strong correlation of these two viruses in the clinical samples from dengue patients. We showed that (I) DENV-2 infection of an EBV-positive cell line (EBV + Akata cell) reactivated EBV, and it could be blocked by wortmannin treatment. (II) Examination of human peripheral blood mononuclear cell (PBMC) samples from dengue patients revealed significantly elevated cell-associated EBV DNA copy number at the time of hospitalization vs. at the time of disease recovery in most individuals. (III) EBV infection promoted DENV propagation in both EBV-hosting B cells and indirectly in THP-1 cells, supported by the following evidence: (A) EBV + Akata cells were more permissive to DENV-2 infection compared with Akata cells harboring no EBV virus (EBV- Akata cells). (B) Low-molecular weight fraction secreted from EBV + Akata cells could enhance DENV-2 propagation in monocytic THP-1 cells. (C) While reactivation of EBV in EBV + Akata cells further increased DENV-2 yield from this cell line, pharmacological inhibition of EBV replication by acyclovir had the opposite effect. To our knowledge, this is the first investigation demonstrating a positive correlation between EBV and DENV in vitro and in human biospecimens.
Collapse
Affiliation(s)
- Xiao-Mei Deng
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ling-Zhai Zhao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xue-Ying Liang
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dan Li
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fu-Chun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hua Zhang
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Yu Liu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pei Xu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Cirone M. Cancer cells dysregulate PI3K/AKT/mTOR pathway activation to ensure their survival and proliferation: mimicking them is a smart strategy of gammaherpesviruses. Crit Rev Biochem Mol Biol 2021; 56:500-509. [PMID: 34130564 DOI: 10.1080/10409238.2021.1934811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The serine/threonine kinase mammalian target of rapamycin (mTOR) is the catalytic subunit of two complexes, mTORC1 and mTORC2, which have common and distinct subunits that mediate separate and overlapping functions. mTORC1 is activated by plenty of nutrients, and the two complexes can be activated by PI3K signaling. mTORC2 acts as an upstream regulator of AKT, and mTORC1 acts as a downstream effector. mTOR signaling integrates both intracellular and extracellular signals, acting as a key regulator of cellular metabolism, growth, and survival. A dysregulated activation of mTOR, as result of PI3K pathway or mTOR regulatory protein mutations or even due to the presence of cellular or viral oncogenes, is a common finding in cancer and represents a central mechanism in cancerogenesis. In the final part of this review, we will focus on the PI3K/AKT/mTOR activation by the human gammaherpesviruses EBV and KSHV that hijack this pathway to promote their-mediated oncogenic transformation and pathologies.
Collapse
Affiliation(s)
- Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
11
|
Rüeger S, Hammer C, Loetscher A, McLaren PJ, Lawless D, Naret O, Khanna N, Bernasconi E, Cavassini M, Günthard HF, Kahlert CR, Rauch A, Depledge DP, Morfopoulou S, Breuer J, Zdobnov E, Fellay J. The influence of human genetic variation on Epstein-Barr virus sequence diversity. Sci Rep 2021; 11:4586. [PMID: 33633271 PMCID: PMC7907281 DOI: 10.1038/s41598-021-84070-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is one of the most common viruses latently infecting humans. Little is known about the impact of human genetic variation on the large inter-individual differences observed in response to EBV infection. To search for a potential imprint of host genomic variation on the EBV sequence, we jointly analyzed paired viral and human genomic data from 268 HIV-coinfected individuals with CD4 + T cell count < 200/mm3 and elevated EBV viremia. We hypothesized that the reactivated virus circulating in these patients could carry sequence variants acquired during primary EBV infection, thereby providing a snapshot of early adaptation to the pressure exerted on EBV by the individual immune response. We searched for associations between host and pathogen genetic variants, taking into account human and EBV population structure. Our analyses revealed significant associations between human and EBV sequence variation. Three polymorphic regions in the human genome were found to be associated with EBV variation: one at the amino acid level (BRLF1:p.Lys316Glu); and two at the gene level (burden testing of rare variants in BALF5 and BBRF1). Our findings confirm that jointly analyzing host and pathogen genomes can identify sites of genomic interactions, which could help dissect pathogenic mechanisms and suggest new therapeutic avenues.
Collapse
Affiliation(s)
- Sina Rüeger
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Alexis Loetscher
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Paul J McLaren
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Dylan Lawless
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Olivier Naret
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
- Childrens Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel P Depledge
- Division of Infection and Immunity, University College London, London, UK
| | - Sofia Morfopoulou
- Division of Infection and Immunity, University College London, London, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | - Evgeny Zdobnov
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jacques Fellay
- School of Life Sciences, EPFL, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Yiu SPT, Dorothea M, Hui KF, Chiang AKS. Lytic Induction Therapy against Epstein-Barr Virus-Associated Malignancies: Past, Present, and Future. Cancers (Basel) 2020; 12:cancers12082142. [PMID: 32748879 PMCID: PMC7465660 DOI: 10.3390/cancers12082142] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) lytic induction therapy is an emerging virus-targeted therapeutic approach that exploits the presence of EBV in tumor cells to confer specific killing effects against EBV-associated malignancies. Efforts have been made in the past years to uncover the mechanisms of EBV latent-lytic switch and discover different classes of chemical compounds that can reactivate the EBV lytic cycle. Despite the growing list of compounds showing potential to be used in the lytic induction therapy, only a few are being tested in clinical trials, with varying degrees of success. This review will summarize the current knowledge on EBV lytic reactivation, the major hurdles of translating the lytic induction therapy into clinical settings, and highlight some potential strategies in the future development of this therapy for EBV-related lymphoid and epithelial malignancies.
Collapse
|
13
|
Huang HH, Wang WH, Feng TH, Chang LK. Rta is an Epstein-Barr virus tegument protein that improves the stability of capsid protein BORF1. Biochem Biophys Res Commun 2020; 523:773-779. [PMID: 31948747 DOI: 10.1016/j.bbrc.2020.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/05/2020] [Indexed: 11/30/2022]
Abstract
Rta, a key transcription factor expressed by Epstein-Barr virus (EBV), primarily acts to induce activation of the EBV lytic cycle. Interestingly, we observed from an immunogold assay that Rta is also present on the EBV capsid in the host cell nucleus, and a centrifugation study further revealed that Rta cofractionates with EBV virions. Importantly, cofractionated Rta showed similar properties as the EBV tegument protein, BGLF4. Glutathione S-transferase (GST)-pulldown and coimmunoprecipitation assays subsequently demonstrated that Rta directly interacts with the EBV capsid protein, BORF1. Rta was observed to colocalize with BORF1 in the nucleus during EBV lytic induction, and this interaction appears to influence BORF1 stability. Moreover, we found that BORF1 is modified by ubiquitin, and Rta reduces this ubiquitination. These results indicate that Rta may act as an inner tegument protein to improve EBV capsid stability and critical to viral infection.
Collapse
Affiliation(s)
- Hsiang-Hung Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Hui Feng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
14
|
Gao L, Han H, Wang H, Cao L, Feng WH. IL-10 knockdown with siRNA enhances the efficacy of Doxorubicin chemotherapy in EBV-positive tumors by inducing lytic cycle via PI3K/p38 MAPK/NF-kB pathway. Cancer Lett 2019; 462:12-22. [PMID: 31352079 DOI: 10.1016/j.canlet.2019.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
High levels of IL-10 expression in Epstein-Barr virus (EBV) associated tumors have been reported and it is likely to be important for maintaining EBV latency and EBV-associated tumors. The switch from the latent form of EBV to the lytic form in tumor cells can lead to tumor cell lysis. Here, we found that knockdown of IL-10 induced EBV lytic replication. Subsequently, we demonstrated that IL-10 knockdown activated BZLF1 promoter through PI3K-p38 MAPK-NF-κB signaling pathway. Interestingly, we verified that VEGF-A was required for IL-10 knockdown to activate PI3K signaling and the accompanying EBV lytic induction. Exogenous recombinant human VEGF-A induced PI3K activation and EBV lytic infection, and inhibition of VEGF-A signaling prevented the PI3K/AKT phosphorylation and EBV reactivation responded to IL-10 knockdown. Most importantly, IL-10 knockdown synergized with chemotherapeutic agent Doxorubicin to kill EBV associated tumor cells in vitro and repress EBV-positive tumor growth in vivo. Our results suggest that inhibition of IL-10 has the potential to serve as a new supplemental strategy for the treatment of EBV-associated tumors.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; China Academy of Medicine Sciences, Peking Union Medical College, Institute of Medicinal Plant Development, Beijing, 100193, China
| | - Haige Han
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Honglei Wang
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Cao
- China Academy of Medicine Sciences, Peking Union Medical College, Institute of Medicinal Plant Development, Beijing, 100193, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Pong LY, Parkkinen S, Dhanoa A, Gan HM, Wickremesinghe IAC, Syed Hassan S. MicroRNA profiling of mouse liver in response to DENV-1 infection by deep sequencing. PeerJ 2019; 7:e6697. [PMID: 31065454 PMCID: PMC6482938 DOI: 10.7717/peerj.6697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/28/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Dengue caused by dengue virus (DENV) serotypes -1 to -4 is the most important mosquito-borne viral disease in the tropical and sub-tropical countries worldwide. Yet many of the pathophysiological mechanisms of host responses during DENV infection remain largely unknown and incompletely understood. METHODS Using a mouse model, the miRNA expressions in liver during DENV-1 infection was investigated using high throughput miRNA sequencing. The differential expressions of miRNAs were then validated by qPCR, followed by target genes prediction. The identified miRNA targets were subjected to gene ontology (GO) annotation and pathway enrichment analysis to elucidate the potential biological pathways and molecular mechanisms associated with DENV-1 infection. RESULTS A total of 224 and 372 miRNAs out of 433 known mouse miRNAs were detected in the livers of DENV-1-infected and uninfected mice, respectively; of these, 207 miRNAs were present in both libraries. The miR-148a-3p and miR-122-5p were the two most abundant miRNAs in both groups. Thirty-one miRNAs were found to have at least 2-fold change in upregulation or downregulation, in which seven miRNAs were upregulated and 24 miRNAs were downregulated in the DENV-1-infected mouse livers. The miR-1a-3p was found to be the most downregulated miRNA in the DENV-1-infected mouse livers, with a significant fold change of 0.10. To validate the miRNA sequencing result, the expression pattern of 12 miRNAs, which were highly differentially expressed or most abundant, were assessed by qPCR and nine of them correlated positively with the one observed in deep sequencing. In silico functional analysis revealed that the adaptive immune responses involving TGF-beta, MAPK, PI3K-Akt, Rap1, Wnt and Ras signalling pathways were modulated collectively by 23 highly differentially expressed miRNAs during DENV-1 infection. CONCLUSION This study provides the first insight into the global miRNA expressions of mouse livers in response to DENV-1 infection in vivo and the possible roles of miRNAs in modulating the adaptive immune responses during DENV-1 infection.
Collapse
Affiliation(s)
- Lian Yih Pong
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Sinikka Parkkinen
- Department of Biology, University of Eastern Finland, Joensuu, North Karelia, Finland
| | - Amreeta Dhanoa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Han Ming Gan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | | | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
16
|
Dugan JP, Coleman CB, Haverkos B. Opportunities to Target the Life Cycle of Epstein-Barr Virus (EBV) in EBV-Associated Lymphoproliferative Disorders. Front Oncol 2019; 9:127. [PMID: 30931253 PMCID: PMC6428703 DOI: 10.3389/fonc.2019.00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Many lymphoproliferative disorders (LPDs) are considered "EBV associated" based on detection of the virus in tumor tissue. EBV drives proliferation of LPDs via expression of the viral latent genes and many pre-clinical and clinical studies have shown EBV-associated LPDs can be treated by exploiting the viral life cycle. After a brief review of EBV virology and the natural life cycle within a host we will discuss the importance of the viral gene programs expressed during specific viral phases, as well as within immunocompetent vs. immunocompromised hosts and corresponding EBV-associated LPDs. We will then review established and emerging treatment approaches for EBV-associated LPDs based on EBV gene expression programs. Patients with EBV-associated LPDs can have a poor performance status, multiple comorbidities, and/or are immunocompromised from organ transplantation, autoimmune disease, or other congenital or acquired immunodeficiency making them poor candidates to receive intensive cytotoxic chemotherapy. With the emergence of EBV-directed therapy there is hope that we can devise more effective therapies that confer milder toxicity.
Collapse
Affiliation(s)
- James P. Dugan
- Division of Hematology, University of Colorado, Aurora, CO, United States
| | - Carrie B. Coleman
- Division of Immunology, University of Colorado, Aurora, CO, United States
| | - Bradley Haverkos
- Division of Hematology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
17
|
Chen LW, Hung CH, Wang SS, Yen JB, Liu AC, Hung YH, Chang PJ. Expression and regulation of the BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus. Virus Res 2018; 256:76-89. [PMID: 30096410 DOI: 10.1016/j.virusres.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/24/2022]
Abstract
The BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus (EBV) are located close together in the viral genome, which encode glycoprotein L, uracil-DNA glycosylase and a tegument protein, respectively. Here, we demonstrate that the BKRF2 gene behaves as a true-late lytic gene, whereas the BKRF3 and BKRF4 genes belong to the early lytic gene family. Our results further reveal that both BKRF3 and BKRF4 promoters are new synergistic targets of Zta and Rta, two EBV latent-to-lytic switch transactivators. Multiple Rta- and Zta-responsive elements within the BKRF3 and BKRF4 promoters were identified and characterized experimentally. Importantly, we show that DNA methylation is absolutely required for activation of the BKRF4 promoter by Zta alone or in combination with Rta. Moreover, we find that sodium butyrate, an inducing agent of EBV reactivation, is capable of activating the BKRF4 promoter through a mechanism independent of Zta and Rta. Overall, our studies highlight the complexity of transcriptional regulation of lytic genes within the BKRF2-BKRF3-BKRF4 gene locus.
Collapse
Affiliation(s)
- Lee-Wen Chen
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan; Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Ju-Bei Yen
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan; Department of Pediatrics, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ann-Chi Liu
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Ya-Hui Hung
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan; Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
18
|
Lan YY, Chang FH, Tsai JH, Chang Y. Epstein-Barr virus Rta promotes invasion of bystander tumor cells through paracrine of matrix metalloproteinase 9. Biochem Biophys Res Commun 2018; 503:2160-2166. [PMID: 30082032 DOI: 10.1016/j.bbrc.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
Clinical studies suggest a positive association between malignant progression of nasopharyngeal carcinoma (NPC) and Rta, a transcription factor of Epstein-Barr virus (EBV). However, Rta induces cellular senescence in vitro. To provide an underlying mechanism integrating these clues, we adapted a concept of senescence-associated secretory phenotype (SASP), based on which senescent cells facilitate tumor progression through paracrine. First, Rta-expressing NPC cells themselves show reduced invasiveness but promote invasion of Rta-negative tumor cells through secreted factors. Secretion of matrix metalloproteinase 9 (MMP9), an SASP protein, is increased by Rta, which requires the C-terminus of Rta and Rta-induced activation of E2F. Furthermore, the Rta-induced, paracrine-mediated pro-invasive effect is blocked upon knockdown of MMP9 expression or treatment with an MMP9 inhibitor. This study not only indicates that Rta can contribute to NPC progression through paracrine but also supports that MMP9 is a potential therapeutic target to prevent NPC metastasis.
Collapse
Affiliation(s)
- Yu-Yan Lan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, 704, Taiwan
| | - Fang-Hsin Chang
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan, 701, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, 704, Taiwan
| | - Jen-Hao Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, 704, Taiwan
| | - Yao Chang
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan, 701, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, 704, Taiwan.
| |
Collapse
|
19
|
Kim DE, Jung S, Ryu HW, Choi M, Kang M, Kang H, Yuk HJ, Jeong H, Baek J, Song JH, Kim J, Kang H, Han SB, Oh SR, Cho S. Selective oncolytic effect in Epstein-Barr virus (EBV)-associated gastric carcinoma through efficient lytic induction by Euphorbia extracts. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
20
|
Cohen JI. Herpesviruses in the Activated Phosphatidylinositol-3-Kinase-δ Syndrome. Front Immunol 2018; 9:237. [PMID: 29599765 PMCID: PMC5863522 DOI: 10.3389/fimmu.2018.00237] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/26/2018] [Indexed: 11/13/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K)/Akt pathway is important for multiple stages of herpesvirus replication including virus entry, replication, latency, and reactivation. Recently, patients with gain-of-function mutations in the p110δ-catalytic subunit of PI3K or in the p85-regulatory subunit of PI3K have been reported. These patients have constitutively active PI3K with hyperactivation of Akt. They present with lymphoproliferation and often have infections, particularly recurrent respiratory infections and/or severe virus infections. The most frequent virus infections are due to Epstein-Barr virus (EBV) and cytomegalovirus (CMV); patients often present with persistent EBV and/or CMV viremia, EBV lymphoproliferative disease, or CMV lymphadenitis. No patients have been reported with CMV pneumonia, colitis, or retinitis. Other herpesvirus infections have included herpes simplex pneumonia, recurrent zoster, and varicella after vaccination with the varicella vaccine. Additional viral infections have included adenovirus viremia, severe warts, and extensive Molluscum contagiosum virus infection. The increased susceptibility to virus infections in these patients is likely due to a reduced number of long-lived memory CD8 T cells and an increased number of terminally differentiated effector CD8 T cells.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Epstein-Barr virus BRLF1 induces genomic instability and progressive malignancy in nasopharyngeal carcinoma cells. Oncotarget 2017; 8:78948-78964. [PMID: 29108278 PMCID: PMC5668011 DOI: 10.18632/oncotarget.20695] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/23/2017] [Indexed: 02/02/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a serious health problem in China and Southeast Asia. Relapse is the major cause of mortality, but mechanisms of relapse are mysterious. Epstein-Barr virus (EBV) reactivation and host genomic instability (GI) have correlated with NPC development. Previously, we reported that lytic early genes DNase and BALF3 induce genetic alterations and progressive malignancy in NPC cells, implying lytic proteins may be required for NPC relapse. In this study, we show that immediate early gene BRLF1 induces chromosome mis-segregation and genomic instability in the NPC cells. Similar phenomenon was also demonstrated in 293 and zebrafish embryonic cells. BRLF1 nuclear localization signal (NLS) mutant still induced genomic instability and inhibitor experiments revealed that BRLF1 interferes with chromosome segregation and induces genomic instability by activating Erk signaling. Furthermore, the chromosome aberrations and tumorigenic features of NPC cells were significantly increased with the rounds of BRLF1 expression, and these cells developed into larger tumor nodules in mice. Therefore, BRLF1 may be the important factor contributing to NPC relapse and targeting BRLF1 may benefit patients.
Collapse
|
22
|
Li H, Liu S, Hu J, Luo X, Li N, M Bode A, Cao Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci 2016; 12:1309-1318. [PMID: 27877083 PMCID: PMC5118777 DOI: 10.7150/ijbs.16564] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) has been associated with several types of human cancers. In the host, EBV can establish two alternative modes of life cycle, known as latent or lytic and the switch from latency to the lytic cycle is known as EBV reactivation. Although EBV in cancer cells is found mostly in latency, a small number of lytically-infected cells promote carcinogenesis through the release of growth factors and oncogenic cytokines. This review focuses on the mechanisms by which EBV reactivation is controlled by cellular and viral factors, and discusses how EBV lytic infection contributes to human malignancies.
Collapse
Affiliation(s)
- Hongde Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Sufang Liu
- Division of Hematology, Institute of Molecular Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Namei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| |
Collapse
|
23
|
Jones RJ, Iempridee T, Wang X, Lee HC, Mertz JE, Kenney SC, Lin HC, Baladandayuthapani V, Dawson CW, Shah JJ, Weber DM, Orlowski RZ. Lenalidomide, Thalidomide, and Pomalidomide Reactivate the Epstein-Barr Virus Lytic Cycle through Phosphoinositide 3-Kinase Signaling and Ikaros Expression. Clin Cancer Res 2016; 22:4901-4912. [PMID: 27297582 PMCID: PMC5050094 DOI: 10.1158/1078-0432.ccr-15-2242] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 05/22/2016] [Indexed: 01/05/2023]
Abstract
PURPOSE Lenalidomide, thalidomide, and pomalidomide (LTP) are immunomodulatory agents approved for use in multiple myeloma, but in some settings, especially with alkylating agents, an increase in Hodgkin lymphoma and other secondary primary malignancies (SPM) has been noted. Some of these malignancies have been linked to Epstein-Barr virus (EBV), raising the possibility that immunomodulatory drugs disrupt latent EBV infection. EXPERIMENTAL DESIGN We studied the ability of LTP to reactivate latently infected EBV-positive cell lines in vitro and in vivo, and evaluated the EBV viral load in archived serum samples from patients who received a lenalidomide, thalidomide, and dexamethasone (LTD) combination. RESULTS Treatment of EBV-infected B-cell lines with LTP at physiologically relevant concentrations induced the immediate early gene BZLF1, the early gene BMRF1, and the late proteins VCA and BCFR1. This occurred in the potency order pomalidomide > lenalidomide > thalidomide, and the nucleoside analogue ganciclovir enhanced the cytotoxic effects of lenalidomide and pomalidomide in Burkitt lymphoma cells in vitro and in vivo EBV reactivation was related to PI3K stimulation and Ikaros suppression, and blocked by the PI3Kδ inhibitor idelalisib. Combinations of lenalidomide with dexamethasone or rituximab increased EBV reactivation compared with lenalidomide alone and, importantly, lenalidomide with melphalan produced even greater reactivation. CONCLUSIONS We conclude LTP may reactivate EBV-positive resting memory B cells thereby enhancing EBV lytic cycle and host immune suppression. Clin Cancer Res; 22(19); 4901-12. ©2016 AACR.
Collapse
Affiliation(s)
- Richard J Jones
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Tawin Iempridee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Xiaobin Wang
- Urology Department, ShengJing Hospital, China Medical University, ShenYang, China
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Janet E Mertz
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Shannon C Kenney
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Heather C Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Christopher W Dawson
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jatin J Shah
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Donna M Weber
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Yamamoto T, Hirai Y, Miyake T, Hamada T, Yamasaki O, Morizane S, Fujimoto W, Iwatsuki K. Epstein-Barr virus reactivation is induced, but abortive, in cutaneous lesions of systemic hydroa vacciniforme and hypersensitivity to mosquito bites. J Dermatol Sci 2016; 82:153-9. [PMID: 27039668 DOI: 10.1016/j.jdermsci.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV)-associated T/natural killer (NK)-lymphoproliferative disorders (LPDs) include hydroa vacciniforme (HV) and hypersensitivity to mosquito bites (HMB). The pathomechanisms of these diseases are still unclear. OBJECTIVE To understand the inflammatory process, we examined EBV reactivation markers, BZLF1 and BDRF1 mRNA in the tissue and blood from patients with EBV-associated T/NK-LPDs. METHODS Sixty-four patients with EBV-associated LPDs and epithelial neoplasms, and EBV+ cell line cells were studied. DNase-treated and resistant EBV DNA load in blood and cell culture supernatants were calculated. An EBV reactivation signal was analyzed in the tissue, blood and cell line cells. RESULTS In the tissue, BZLF1 mRNA was detected in 5 of 6 (83%) samples of EBV+ epithelial neoplasms, 16 of 21 (76%) of EBV+ lymphomas, and 5 of 15 (33%) of systemic HV and/or HMB, but negative in all 15 patients with classical HV. In the blood, BZLF1 mRNA was detected in only one of 19 (5.3%) samples of EBV-associated T/NK-LPDs. A down-stream reactivation signal, BDRF1 mRNA was expressed in all 6 samples of EBV+ epithelial neoplasms, but it was positive in only one of 15 (6.7%) samples from systemic HV and HMB in the tissue. EBV+ T/NK-cell line cells treated with phorbol 12-myristate 13-acetate produced BZLF1 and BDRF1 mRNA, and encapsidated EBV DNA was detected in the culture supernatants of cell line cells. CONCLUSION Stimulation-induced EBV reactivation occurred both in vivo and in vitro, but it was almost abortive in vivo. Reactivation-related EBV antigens might be responsible for induction of systemic HV and HMB.
Collapse
Affiliation(s)
- Takenobu Yamamoto
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of Dermatology, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan
| | - Yoji Hirai
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Tomoko Miyake
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshihisa Hamada
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Osamu Yamasaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Wataru Fujimoto
- Department of Dermatology, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
25
|
Zhang W, Zhang ZZ, Tang LY, Lin Y, Su FX, Xie XM, Su XF, Ren ZF. Genetic variants in EBV reactivation-related genes and the risk and survival of breast cancer. Tumour Biol 2016; 37:8337-47. [PMID: 26729199 DOI: 10.1007/s13277-015-4562-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/01/2015] [Indexed: 12/27/2022] Open
Abstract
Tumor susceptibility gene 101 (TSG101) and activating transcription factor 2 (ATF2) have been suggested to involve in the reactivation of EBV which has implications in the development and progression of breast cancer. Therefore, the polymorphisms of TSG101 and ATF2 may associate with breast cancer risk and prognosis. A case-control study with 1551 breast cancer cases and 1605 age-matched controls were conducted in Guangzhou, China. We have also successfully followed up 1168 cases until December 31, 2014. The variant allele of TSG101 rs2292179 was associated with a non-significant reduced risk of breast cancer, particularly among women with BMI < 24 (kg/m(2)) (P for interaction <0.05). For ATF2 rs3845744, the variant allele was also associated with a significantly reduced breast cancer risk [odds ratio (OR) (95 % confidence interval (CI)) 0.86 (0.74∼1.00)], and the association occurred among only postmenopausal women [OR (95 % CI) 0.69 (0.54∼0.88)] (P for interaction <0.05). Breast cancer risk was further reduced with the increasing numbers of the variant G alleles of the two polymorphisms (P for trend <0.05). We did not find an overall association of the two loci with breast cancer prognosis, while the hazard ratios of the two loci (AG/GG vs. AA) were significantly higher among postmenopausal women than premenopausal women (P = 0.046, 0.016 for TSG101 rs2292179 and ATF2 rs3845744, respectively). In summary, the variant alleles of TSG101 rs2292179 and ATF2 rs3845744 were associated with a reduced risk of breast cancer, particularly for subjects with BMI <24 (kg/m(2)) and postmenopausal women, respectively. The two SNPs and menopausal status may have a significant interaction on breast cancer progression.
Collapse
Affiliation(s)
- Wei Zhang
- The School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zheng-Zheng Zhang
- The School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Aviation Hygiene Management Division, China Southern Airlines Company Limited, 9/F, Kangda Building, 278 Airport Road, Guangzhou, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ying Lin
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Feng-Xi Su
- The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiao-Ming Xie
- The Sun Yat-Sen University Cancer Center, Guangzhou, 510080, China
| | - Xue-Fen Su
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ze-Fang Ren
- The School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China.
| |
Collapse
|
26
|
Epstein-Barr Virus (EBV) Tegument Protein BGLF2 Promotes EBV Reactivation through Activation of the p38 Mitogen-Activated Protein Kinase. J Virol 2015; 90:1129-38. [PMID: 26559845 DOI: 10.1128/jvi.01410-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus associated with both B cell and epithelial cell malignancies. EBV infection of B cells triggers activation of several signaling pathways that are critical for cell survival, virus latency, and growth transformation. To identify EBV proteins important for regulating cell signaling, we used a proteomic approach to screen viral proteins for AP-1 and NF-κB promoter activity in AP-1- and NF-κB-luciferase reporter assays. We found that EBV BGLF2 activated AP-1 but not NF-κB reporter activity. Expression of EBV BGLF2 in cells activated p38 and c-Jun N-terminal kinase (JNK), both of which are important for mitogen-activated protein kinase (MAPK) signaling. Deletion of the carboxyl-terminal 66 amino acids of BGLF2 reduced the ability of BGLF2 to activate JNK and p38. Expression of BGLF2 enhanced BZLF1 expression in latently EBV-infected lymphoblastoid cell lines, and knockdown of BGLF2 reduced EBV reactivation induced by IgG cross-linking. Expression of BGLF2 induced BZLF1 expression and virus production in EBV-infected gastric carcinoma cells. BGLF2 enhanced BZLF1 expression and EBV production by activating p38; chemical inhibition of p38 and MAPK/ERK kinases 1 and 2 (MEK1/2) reduced expression of BZLF1 and virus production induced by BGLF2. In summary, the EBV tegument protein BGLF2, which is delivered to the cell at the onset of virus infection, activates the AP-1 pathway and enhances EBV reactivation and virus production. IMPORTANCE Epstein-Barr virus (EBV) is associated with both B cell and epithelial cell malignancies, and the virus activates multiple signaling pathways important for its persistence in latently infected cells. We identified a viral tegument protein, BGLF2, which activates members of the mitogen-activated protein kinase signaling pathway. Expression of BGLF2 increased expression of EBV BZLF1, which activates a switch from latent to lytic virus infection, and increased production of EBV. Inhibition of BGFL2 expression or inhibition of p38/MAPK, which is activated by BGLF2, reduced virus reactivation from latency. These results indicate that a viral tegument protein which is delivered to cells upon infection activates signaling pathways to enhance virus production and facilitate virus reactivation from latency.
Collapse
|
27
|
Accardi R, Gruffat H, Sirand C, Fusil F, Gheit T, Hernandez-Vargas H, Le Calvez-Kelm F, Traverse-Glehen A, Cosset FL, Manet E, Wild CP, Tommasino M. The mycotoxin aflatoxin B1 stimulates Epstein-Barr virus-induced B-cell transformation in in vitro and in vivo experimental models. Carcinogenesis 2015; 36:1440-51. [PMID: 26424750 DOI: 10.1093/carcin/bgv142] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/20/2015] [Indexed: 01/09/2023] Open
Abstract
Although Epstein-Barr virus (EBV) infection is widely distributed, certain EBV-driven malignancies are geographically restricted. EBV-associated Burkitt's lymphoma (eBL) is endemic in children living in sub-Saharan Africa. This population is heavily exposed to food contaminated with the mycotoxin aflatoxin B1 (AFB1). Here, we show that exposure to AFB1 in in vitro and in vivo models induces activation of the EBV lytic cycle and increases EBV load, two events that are associated with an increased risk of eBL in vivo. AFB1 treatment leads to the alteration of cellular gene expression, with consequent activations of signaling pathways, e.g. PI3K, that in turn mediate reactivation of the EBV life cycle. Finally, we show that AFB1 triggers EBV-driven cellular transformation both in primary human B cells and in a humanized animal model. In summary, our data provide evidence for a role of AFB1 as a cofactor in EBV-mediated carcinogenesis.
Collapse
Affiliation(s)
- Rosita Accardi
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon 69372, France,
| | - Henri Gruffat
- EVIR and Oncogenic Herpesviruses Teams, International Center for Infectiology Research, Université de Lyon, Lyon 69007, France, INSERM, U1111, Lyon 69007, France, Human Virology, Ecole Normale Supérieure de Lyon, Lyon 69007, France, Centre International de Recherche en Infectiologie, Université Lyon 1, Lyon 69007, France and
| | - Cécilia Sirand
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon 69372, France
| | - Floriane Fusil
- EVIR and Oncogenic Herpesviruses Teams, International Center for Infectiology Research, Université de Lyon, Lyon 69007, France, INSERM, U1111, Lyon 69007, France, Human Virology, Ecole Normale Supérieure de Lyon, Lyon 69007, France, Centre International de Recherche en Infectiologie, Université Lyon 1, Lyon 69007, France and
| | - Tarik Gheit
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon 69372, France
| | - Hector Hernandez-Vargas
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon 69372, France
| | - Florence Le Calvez-Kelm
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon 69372, France
| | | | - François-Loïc Cosset
- EVIR and Oncogenic Herpesviruses Teams, International Center for Infectiology Research, Université de Lyon, Lyon 69007, France, INSERM, U1111, Lyon 69007, France, Human Virology, Ecole Normale Supérieure de Lyon, Lyon 69007, France, Centre International de Recherche en Infectiologie, Université Lyon 1, Lyon 69007, France and
| | - Evelyne Manet
- EVIR and Oncogenic Herpesviruses Teams, International Center for Infectiology Research, Université de Lyon, Lyon 69007, France, INSERM, U1111, Lyon 69007, France, Human Virology, Ecole Normale Supérieure de Lyon, Lyon 69007, France, Centre International de Recherche en Infectiologie, Université Lyon 1, Lyon 69007, France and
| | - Christopher P Wild
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon 69372, France
| | - Massimo Tommasino
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon 69372, France
| |
Collapse
|
28
|
De Leo A, Colavita F, Ciccosanti F, Fimia GM, Lieberman PM, Mattia E. Inhibition of autophagy in EBV-positive Burkitt's lymphoma cells enhances EBV lytic genes expression and replication. Cell Death Dis 2015; 6:e1876. [PMID: 26335716 PMCID: PMC4650432 DOI: 10.1038/cddis.2015.156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/26/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
Abstract
Autophagy, an important degradation system involved in maintaining cellular homeostasis, serves also to eliminate pathogens and process their fragments for presentation to the immune system. Several viruses have been shown to interact with the host autophagic machinery to suppress or make use of this cellular catabolic pathway to enhance their survival and replication. Epstein Barr virus (EBV) is a γ-herpes virus associated with a number of malignancies of epithelial and lymphoid origin in which establishes a predominantly latent infection. Latent EBV can periodically reactivate to produce infectious particles that allow the virus to spread and can lead to the death of the infected cell. In this study, we analyzed the relationship between autophagy and EBV reactivation in Burkitt's lymphoma cells. By monitoring autophagy markers and EBV lytic genes expression, we demonstrate that autophagy is enhanced in the early phases of EBV lytic activation but decreases thereafter concomitantly with increased levels of EBV lytic proteins. In a cell line defective for late antigens expression, we found an inverse correlation between EBV early antigens expression and autophagosomes formation, suggesting that early after activation, the virus is able to suppress autophagy. We report here for the first time that inhibition of autophagy by Bafilomycin A1 or shRNA knockdown of Beclin1 gene, highly incremented EBV lytic genes expression as well as intracellular viral DNA and viral progeny yield. Taken together, these findings indicate that EBV activation induces the autophagic response, which is soon inhibited by the expression of EBV early lytic products. Moreover, our findings open the possibility that pharmacological inhibitors of autophagy may be used to enhance oncolytic viral therapy of EBV-related lymphomas.
Collapse
Affiliation(s)
- A De Leo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - F Colavita
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - F Ciccosanti
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - G M Fimia
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | | | - E Mattia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
29
|
Ni C, Chen Y, Zeng M, Pei R, Du Y, Tang L, Wang M, Hu Y, Zhu H, He M, Wei X, Wang S, Ning X, Wang M, Wang J, Ma L, Chen X, Sun Q, Tang H, Wang Y, Wang X. In-cell infection: a novel pathway for Epstein-Barr virus infection mediated by cell-in-cell structures. Cell Res 2015; 25:785-800. [PMID: 25916549 PMCID: PMC4493273 DOI: 10.1038/cr.2015.50] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/14/2015] [Accepted: 03/10/2015] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) can infect both susceptible B lymphocytes and non-susceptible epithelial cells (ECs). Viral tropism analyses have revealed two intriguing means of EBV infection, either by a receptor-mediated infection of B cells or by a cell-to-cell contact-mediated infection of non-susceptible ECs. Herein, we report a novel "in-cell infection" mechanism for EBV infection of non-susceptible ECs through the formation of cell-in-cell structures. Epithelial CNE-2 cells were invaded by EBV-infected Akata B cells to form cell-in-cell structures in vitro. Such unique cellular structures could be readily observed in the specimens of nasopharyngeal carcinoma. Importantly, the formation of cell-in-cell structures led to the autonomous activation of EBV within Akata cells and subsequent viral transmission to CNE-2 cells, as evidenced by the expression of viral genes and the presence of virion particles in CNE-2 cells. Significantly, EBV generated from in-cell infected ECs displayed altered tropism with higher infection efficacy to both B cells and ECs. In addition to CNE-2 tumor cells, cell-in-cell structure formation could also mediate EBV infection of NPEC1-Bmi1 cells, an immortalized nasopharyngeal epithelial cell line. Furthermore, efficient infection by this mechanism involved the activation of the PI3K/AKT signaling pathway. Thus, our study identified "in-cell infection" as a novel mechanism for EBV infection. Given the diversity of virus-infected cells and the prevalence of cell-in-cell structures during chronic infection, we speculate that "in-cell infection" is likely a general mechanism for EBV and other viruses to infect non-susceptible ECs.
Collapse
Affiliation(s)
- Chao Ni
- Institute of Life Sciences, Chinese PLA General Hospital and School of Bioscience and Bioengineering, South China University of Technology, Key Laboratory of Normal aging and Geriatric & the State Key Laboratory of Kidney, Beijing 100853 & the Provincial Key Laboratory of Biotechnology, Guangdong 510006, China
| | - Yuhui Chen
- Institute of Life Sciences, Chinese PLA General Hospital and School of Bioscience and Bioengineering, South China University of Technology, Key Laboratory of Normal aging and Geriatric & the State Key Laboratory of Kidney, Beijing 100853 & the Provincial Key Laboratory of Biotechnology, Guangdong 510006, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Rongjuan Pei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yong Du
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Linquan Tang
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Mengyi Wang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yazhuo Hu
- Institute of Life Sciences, Chinese PLA General Hospital and School of Bioscience and Bioengineering, South China University of Technology, Key Laboratory of Normal aging and Geriatric & the State Key Laboratory of Kidney, Beijing 100853 & the Provincial Key Laboratory of Biotechnology, Guangdong 510006, China
| | - Hanyu Zhu
- Institute of Life Sciences, Chinese PLA General Hospital and School of Bioscience and Bioengineering, South China University of Technology, Key Laboratory of Normal aging and Geriatric & the State Key Laboratory of Kidney, Beijing 100853 & the Provincial Key Laboratory of Biotechnology, Guangdong 510006, China
| | - Meifang He
- Institute of Life Sciences, Chinese PLA General Hospital and School of Bioscience and Bioengineering, South China University of Technology, Key Laboratory of Normal aging and Geriatric & the State Key Laboratory of Kidney, Beijing 100853 & the Provincial Key Laboratory of Biotechnology, Guangdong 510006, China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shan Wang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Xiangkai Ning
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing 100071, China
| | - Manna Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing 100071, China
| | - Jufang Wang
- Institute of Life Sciences, Chinese PLA General Hospital and School of Bioscience and Bioengineering, South China University of Technology, Key Laboratory of Normal aging and Geriatric & the State Key Laboratory of Kidney, Beijing 100853 & the Provincial Key Laboratory of Biotechnology, Guangdong 510006, China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinwen Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing 100071, China
| | - Hong Tang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ying Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xiaoning Wang
- Institute of Life Sciences, Chinese PLA General Hospital and School of Bioscience and Bioengineering, South China University of Technology, Key Laboratory of Normal aging and Geriatric & the State Key Laboratory of Kidney, Beijing 100853 & the Provincial Key Laboratory of Biotechnology, Guangdong 510006, China
| |
Collapse
|
30
|
Hung CC, Kuo CW, Wang WH, Chang TH, Chang PJ, Chang LK, Liu ST. Transcriptional activation of Epstein-Barr virus BRLF1 by USF1 and Rta. J Gen Virol 2015; 96:2855-2866. [PMID: 26297580 DOI: 10.1099/jgv.0.000230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During its lytic cycle, Epstein-Barr virus (EBV) expresses Rta, a factor encoded by BRLF1 that activates the transcription of viral lytic genes. We found that upstream stimulating factor (USF) binds to E1, one of the five E boxes located at - 79 in the BRLF1 promoter (Rp), to activate BRLF1 transcription. Furthermore, Rta was shown to interact with USF1 in coimmunoprecipitation and glutathione S-transferase (GST)-pulldown assays, and confocal laser-scanning microscopy further confirmed that these two proteins colocalize in the nucleus. Rta was also found to bind with the E1 sequence in a biotin-labelled E1 probe, but only in the presence of USF1, suggesting that these two proteins likely form a complex on E1. We subsequently constructed p188mSZ, a reporter plasmid that contained the sequence from - 188 to +5 in Rp, within which the Sp1 site and Zta response element were mutated. In EBV-negative Akata cells cotransfected with p188mSZ and plasmids expressing USF1 and Rta, synergistic activation of Rp transcription was observed. However, after mutating the E1 sequence in p188mSZ, USF1 and Rta were no longer able to transactivate Rp, indicating that Rta autoregulates BRLF1 transcription via its interaction with USF1 on E1. This study showed that pUSF1 transfection after EBV lytic induction in P3HR1 cells increases Rta expression, indicating that USF1 activates Rta expression after the virus enters the lytic cycle. Together, these results reveal a novel mechanism by which USF interacts with Rta to promote viral lytic development, and provide additional insight into the viral-host interactions of EBV.
Collapse
Affiliation(s)
- Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Chung-Wen Kuo
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Wen-Hung Wang
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Tzu-Hsuan Chang
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC.,Department of Medical Research, Chang-Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan, ROC
| |
Collapse
|
31
|
Luo X, Yu X, Liu S, Deng Q, Liu X, Peng S, Li H, Liu J, Cao Y. The role of targeting kinase activity by natural products in cancer chemoprevention and chemotherapy (Review). Oncol Rep 2015; 34:547-54. [PMID: 26044950 DOI: 10.3892/or.2015.4029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/18/2015] [Indexed: 11/05/2022] Open
Abstract
The WHO clearly identifies tumors as a curable or a chronic disease. The use of natural agents in cancer prevention and therapy is currently playing an important role. Our laboratory has been investigating various natural phenolic compounds, including grifolin, neoalbaconol and epigallocatechin-3-gallate (EGCG). In the present review, we focus on the anticancer activities and the molecular mechanisms of these compounds. Grifolin, a secondary metabolite isolated from the mushroom Albatrellus confluens, has been shown to inhibit cell growth and induce cell cycle arrest in multiple cancer cell lines by targeting extracellular signal-regulated kinase 1 or by upregulating death-associated protein kinase 1 (DAPK1) via p53. We also demonstrated that neoalbaconol, a novel small-molecular compound with a drimane-type sesquiterpenoid structure obtained from Albatrellus confluens, regulates cell metabolism by targeting 3-phosphoinositide-dependent protein kinase 1 (PDK1) and inhibits cancer cell growth. EGCG, a well known catechin found in tea, has gained much attention for its anticancer effects. Previously, we found that it regulates EBV lytic infection through the phosphoinositide-3 kinase/Akt (PI3K/Akt) and mitogen-activated protein kinase (MAPK) pathways in EBV-positive cancer cells. Therefore, these natural agents could be used as potential leading compounds in the prevention of tumor progression and/or EBV-related cancer.
Collapse
Affiliation(s)
- Xiangjian Luo
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Xinfang Yu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Sufang Liu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Qipan Deng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Xiaolan Liu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Songling Peng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Hongde Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Jikai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, P.R. China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
32
|
Liu X, Cohen JI. The role of PI3K/Akt in human herpesvirus infection: From the bench to the bedside. Virology 2015; 479-480:568-77. [PMID: 25798530 PMCID: PMC4424147 DOI: 10.1016/j.virol.2015.02.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/25/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections.
Collapse
Affiliation(s)
- XueQiao Liu
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Abstract
Epstein-Barr virus, which mainly infects B cells and epithelial cells, has two modes of infection: latent and lytic. Epstein-Barr virus infection is predominantly latent; however, lytic infection is detected in healthy seropositive individuals and becomes more prominent in certain pathological conditions. Lytic infection is divided into several stages: early gene expression, DNA replication, late gene expression, assembly, and egress. This chapter summarizes the most recent progress made toward understanding the molecular mechanisms that regulate the different lytic stages leading to production of viral progeny. In addition, the chapter highlights the potential role of lytic infection in disease development and current attempts to purposely induce lytic infection as a therapeutic approach.
Collapse
Affiliation(s)
- Jessica McKenzie
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ayman El-Guindy
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
34
|
Hung CH, Chen LW, Wang WH, Chang PJ, Chiu YF, Hung CC, Lin YJ, Liou JY, Tsai WJ, Hung CL, Liu ST. Regulation of autophagic activation by Rta of Epstein-Barr virus via the extracellular signal-regulated kinase pathway. J Virol 2014; 88:12133-45. [PMID: 25122800 PMCID: PMC4178756 DOI: 10.1128/jvi.02033-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/04/2014] [Indexed: 12/14/2022] Open
Abstract
Autophagy is an intracellular degradation pathway that provides a host defense mechanism against intracellular pathogens. However, many viruses exploit this mechanism to promote their replication. This study shows that lytic induction of Epstein-Barr virus (EBV) increases the membrane-bound form of LC3 (LC3-II) and LC3-containing punctate structures in EBV-positive cells. Transfecting 293T cells with a plasmid that expresses Rta also induces autophagy, revealing that Rta is responsible for autophagic activation. The activation involves Atg5, a key component of autophagy, but not the mTOR pathway. The expression of Rta also activates the transcription of the genes that participate in the formation of autophagosomes, including LC3A, LC3B, and ATG9B genes, as well as those that are involved in the regulation of autophagy, including the genes TNF, IRGM, and TRAIL. Additionally, treatment with U0126 inhibits the Rta-induced autophagy and the expression of autophagy genes, indicating that the autophagic activation is caused by the activation of extracellular signal-regulated kinase (ERK) signaling by Rta. Finally, the inhibition of autophagic activity by an autophagy inhibitor, 3-methyladenine, or Atg5 small interfering RNA, reduces the expression of EBV lytic proteins and the production of viral particles, revealing that autophagy is critical to EBV lytic progression. This investigation reveals how an EBV-encoded transcription factor promotes autophagy to affect viral lytic development.
Collapse
Affiliation(s)
- Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chung-Gung University of Science and Technology, Chiayi, Taiwan
| | - Wen-Hung Wang
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Ya-Fang Chiu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ying-Ju Lin
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Jieh-Yuan Liou
- Department of Medical Research, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | - Wan-Ju Tsai
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Chia-Ling Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
35
|
Kenney SC, Mertz JE. Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol 2014; 26:60-8. [PMID: 24457012 PMCID: PMC4048781 DOI: 10.1016/j.semcancer.2014.01.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/17/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) infection contributes to the development of several different types of human malignancy, including Burkitt lymphoma, Hodgkin lymphoma, and nasopharyngeal carcinoma. As a herpesvirus, EBV can establish latent or lytic infection in cells. EBV-positive tumors are composed almost exclusively of cells with latent EBV infection. Strategies for inducing the lytic form of EBV infection in tumor cells are being investigated as a potential therapy for EBV-positive tumors. In this article, we review how cellular and viral proteins regulate the latent-lytic EBV switch in infected B cells and epithelial cells, and discuss how harnessing lytic viral reactivation might be used therapeutically.
Collapse
Affiliation(s)
- Shannon C Kenney
- McArdle Laboratory for Cancer Research, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA; Department of Oncology, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA; Department of Medicine, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA.
| | - Janet E Mertz
- McArdle Laboratory for Cancer Research, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA; Department of Oncology, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| |
Collapse
|
36
|
Huang SY, Fang CY, Wu CC, Tsai CH, Lin SF, Chen JY. Reactive oxygen species mediate Epstein-Barr virus reactivation by N-methyl-N'-nitro-N-nitrosoguanidine. PLoS One 2013; 8:e84919. [PMID: 24376853 PMCID: PMC3869928 DOI: 10.1371/journal.pone.0084919] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 12/15/2022] Open
Abstract
N-nitroso compounds (NOCs) and Epstein-Barr virus (EBV) reactivation have been suggested to play a role in the development of nasopharyngeal carcinoma (NPC). Although chemicals have been shown to be a risk factor contributing to the carcinogenesis of NPC, the underlying mechanism is not fully understood. We demonstrated recently that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) enhances the genomic instability and tumorigenicity of NPC cells via induction of EBV reactivation. However, the mechanisms that trigger EBV reactivation from latency remain unclear. Here, we address the role of ROS in induction of EBV reactivation under MNNG treatment. EBV reactivation was induced in over 70% of EBV-positive NA cells and the promoter of Rta (Rp) was activated after MNNG treatment. Inhibitor experiments revealed ATM, p38 MAPK and JNK were activated by ROS and involved in MNNG-induced EBV reactivation. Significantly, ROS scavengers N-acetyl-L-cysteine (NAC), catalase and reduced glutathione inhibited EBV reactivation under MNNG and H₂O₂ treatment, suggesting ROS mediate EBV reactivation. The p53 was essential for EBV reactivation and the Rp activation by MNNG. Moreover, the p53 was phosphorylated, translocated into nucleus, and bound to Rp following ROS stimulation. The results suggest ROS play an important role in initiation of EBV reactivation by MNNG through a p53-dependent mechanism. Our findings demonstrate novel signaling mechanisms used by NOCs to induce EBV reactivation and provide a novel insight into NOCs link the EBV reactivation in the contribution to the development of NPC. Notably, this study indicates that antioxidants might be effective for inhibiting N-nitroso compound-induced EBV reactivation and therefore could be promising preventive and therapeutic agents for EBV reactivation-associated malignancies.
Collapse
Affiliation(s)
- Sheng-Yen Huang
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, Hsinchu, Taiwan
- Institute of Biotechnology, Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Jen-Yang Chen
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, Hsinchu, Taiwan
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| |
Collapse
|
37
|
Diehl N, Schaal H. Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses 2013; 5:3192-212. [PMID: 24351799 PMCID: PMC3967167 DOI: 10.3390/v5123192] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 01/04/2023] Open
Abstract
As viruses do not possess genes encoding for proteins required for translation, energy metabolism or membrane biosynthesis, they are classified as obligatory intracellular parasites that depend on a host cell to replicate. This genome limitation forces them to gain control over cellular processes to ensure their successful propagation. A diverse spectrum of virally encoded proteins tackling a broad spectrum of cellular pathways during most steps of the viral life cycle ranging from the host cell entry to viral protein translation has evolved. Since the host cell PI3K/Akt signaling pathway plays a critical regulatory role in many cellular processes including RNA processing, translation, autophagy and apoptosis, many viruses, in widely varying ways, target it. This review focuses on a number of remarkable examples of viral strategies, which exploit the PI3K/Akt signaling pathway for effective viral replication.
Collapse
Affiliation(s)
| | - Heiner Schaal
- Universitätsklinikum Düsseldorf, Institut für Virologie, Universitätsstraße 1, Düsseldorf 40225, Germany.
| |
Collapse
|
38
|
The B-cell-specific transcription factor and master regulator Pax5 promotes Epstein-Barr virus latency by negatively regulating the viral immediate early protein BZLF1. J Virol 2013; 87:8053-63. [PMID: 23678172 DOI: 10.1128/jvi.00546-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The latent-to-lytic switch of Epstein-Barr virus (EBV) is mediated by the immediate early protein BZLF1 (Z). However, the cellular factors regulating this process remain incompletely characterized. In this report, we show that the B-cell-specific transcription factor Pax5 helps to promote viral latency in B cells by blocking Z function. Although Z was previously shown to directly interact with Pax5 and inhibit its activity, the effect of Pax5 on Z function has not been investigated. Here, we demonstrate that Pax5 inhibits Z-mediated lytic viral gene expression and the release of infectious viral particles in latently infected epithelial cell lines. Conversely, we found that shRNA-mediated knockdown of endogenous Pax5 in a Burkitt lymphoma B-cell line leads to viral reactivation. Furthermore, we show that Pax5 reduces Z activation of early lytic viral promoters in reporter gene assays and inhibits Z binding to lytic viral promoters in vivo. We confirm that Pax5 and Z directly interact and show that this interaction requires the carboxy-terminal DNA-binding/dimerization domain of Z and the amino-terminal DNA-binding domain of Pax5. A Pax5 DNA-binding mutant (V26G/P80R) that interacts with Z retains the ability to inhibit Z function, whereas a Pax5 mutant (Δ106-110) that is deficient for interaction with Z does not inhibit Z-mediated lytic viral reactivation. Since the B-cell-specific transcription factor Oct-2 also directly interacts with Z and inhibits its function, these results suggest that EBV uses multiple redundant mechanisms to establish and maintain viral latency in B cells.
Collapse
|
39
|
Hagemeier SR, Barlow EA, Meng Q, Kenney SC. The cellular ataxia telangiectasia-mutated kinase promotes epstein-barr virus lytic reactivation in response to multiple different types of lytic reactivation-inducing stimuli. J Virol 2012; 86:13360-70. [PMID: 23015717 PMCID: PMC3503132 DOI: 10.1128/jvi.01850-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022] Open
Abstract
The Epstein-Barr virus (EBV) latent-to-lytic switch is mediated by the viral proteins BZLF1 (Z), BRLF1 (R), and BRRF1 (Na). Since we previously showed that DNA-damaging agents (including chemotherapy and irradiation) can induce EBV lytic reactivation and recently demonstrated that wild-type p53 contributes to lytic reactivation, we investigated the role of the ATM kinase during EBV reactivation. ATM phosphorylates and activates p53, as well as numerous other substrates involved in the cellular DNA damage response. Using an ATM inhibitor (KU55933), we found that ATM activity is required for efficient induction of EBV lytic gene expression by a variety of different stimuli, including a histone deacetylase (HDAC) inhibitor, the transforming growth factor β (TGF-β) cytokine, a demethylating agent (5-azacytidine), B cell receptor engagement with anti-IgG antibody, hydrogen peroxide, and the proteosome inhibitor bortezomib. In EBV-infected AGS (gastric) cells, knockdown of ATM, or p53, expression inhibits EBV reactivation. Conversely, treatment of these cells with nutlin-3 (which activates p53 and ATM) robustly induces lytic reactivation in a p53- and ATM-dependent manner. The ability of the EBV R and Na proteins to induce lytic reactivation in EBV-infected AGS cells is ATM dependent. However, overexpression of Z induces lytic gene expression in the presence or absence of ATM activity. Our results suggest that ATM enhances Z promoter activity in the context of the intact EBV genome and that p53 contributes to the ATM effect. Nevertheless, since we found that ATM inhibitors also reduce lytic reactivation in Burkitt lymphoma cells that have no p53, additional ATM substrates must also contribute to the ATM effect.
Collapse
Affiliation(s)
| | | | - Qiao Meng
- McArdle Laboratory for Cancer Research, Department of Oncology
| | - Shannon C. Kenney
- McArdle Laboratory for Cancer Research, Department of Oncology
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Liu S, Li H, Chen L, Yang L, Li L, Tao Y, Li W, Li Z, Liu H, Tang M, Bode AM, Dong Z, Cao Y. (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves ERK1/2 and PI3-K/Akt signaling in EBV-positive cells. Carcinogenesis 2012. [PMID: 23180656 DOI: 10.1093/carcin/bgs364] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Epstein-Barr virus (EBV) reactivation into the lytic cycle plays certain roles in the development of EBV-associated diseases, including nasopharyngeal carcinoma and lymphoma. In this study, we investigated the effects of the tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) on EBV spontaneous lytic infection and the mechanism(s) involved in EBV-positive cells. We found that EGCG could effectively inhibit the constitutive lytic infection of EBV at the DNA, gene transcription and protein levels by decreasing the phosphorylation and activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt. By using cellular signaling pathway-specific inhibitors, we also explored the signaling mechanisms underlying the inhibitory effects of EGCG on EBV spontaneous lytic infection in cell models. Results show that specific inhibitors of Mitogen-Activated Protein Kinase Kinase (MEK) (PD98059) and phosphatidylinositol 3-kinase [PI3-K (LY294002)] markedly downregulated gene transcription and expression of BZLF1 and BMRF1 indicating that the MEK/ERK1/2 and PI3-K/Akt pathways are involved in the EBV spontaneous lytic cycle cascade. Therefore, one of the mechanisms by which EGCG inhibits EBV spontaneous lytic infection appears to involve the suppression of the activation of MEK/ERK1/2 and PI3-K/Akt signaling.
Collapse
Affiliation(s)
- Sufang Liu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Key Laboratory for Cancer and Invasion of Ministry of Education, Changsha, Hunan 410078, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Viral genome methylation differentially affects the ability of BZLF1 versus BRLF1 to activate Epstein-Barr virus lytic gene expression and viral replication. J Virol 2012; 87:935-50. [PMID: 23135711 DOI: 10.1128/jvi.01790-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) immediate-early proteins BZLF1 and BRLF1 can both induce lytic EBV reactivation when overexpressed in latently infected cells. Although EBV genome methylation is required for BZLF1-mediated activation of lytic gene expression, the effect of viral genome methylation on BRLF1-mediated viral reactivation has not been well studied. Here, we have compared the effect of viral DNA methylation on BZLF1- versus BRLF1-mediated activation of lytic EBV gene transcription and viral genome replication. We show that most early lytic viral promoters are preferentially activated by BZLF1 in the methylated form, while methylation decreases the ability of BRLF1 to activate most early lytic promoters, as well as the BLRF2 late viral promoter. Moreover, methylation of bacmid constructs containing the EBV genome enhances BZLF1-mediated, but decreases BRLF1-mediated, early lytic gene expression. Methylation of viral promoter DNA does not affect BRLF1 binding to a variety of different CpG-containing BRLF1 binding motifs (RREs) in vitro or in vivo. However, BRLF1 preferentially induces H3K9 histone acetylation of unmethylated promoters in vivo. The methylated and unmethylated forms of an oriLyt-containing plasmid replicate with similar efficiency when transfected into EBV-positive cells that express the essential viral replication proteins in trans. Most importantly, we demonstrate that lytic viral gene expression and replication can be induced by BRLF1, but not BZLF1, expression in an EBV-positive telomerase-immortalized epithelial cell line (NOKs-Akata) in which lytic viral gene promoters remain largely unmethylated. These results suggest that the unmethylated form of the EBV genome can undergo viral reactivation and replication in a BRLF1-dependent manner.
Collapse
|
42
|
Protein kinase inhibitors that inhibit induction of lytic program and replication of Epstein-Barr virus. Antiviral Res 2012; 96:296-304. [PMID: 23058855 DOI: 10.1016/j.antiviral.2012.09.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 01/20/2023]
Abstract
Signaling pathways mediating Epstein-Barr virus (EBV) reactivation by Ag-bound B-cell receptor (BCR) were analyzed using a panel of 80 protein kinase inhibitors. Broad range protein kinase inhibitors Staurosporine, K252A, and PKC-412 significantly reduced the EBV genome copy numbers measured 48 h after reactivation perhaps due to their higher toxicity. In addition, selected inhibitors of the phosphatidylinositol-3-kinase (PI3K), protein kinase C (PKC), mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways, glycogen synthase kinase 3β (GSK-3β), platelet-derived growth factor receptor-associated tyrosine kinase (PDGFRK), and epidermal growth factor receptor-associated tyrosine kinase (EGFRK) significantly reduced the EBV genome copy numbers. Of those, only U0126 and Erbstatin analog, which inhibit MAPK pathway and EGFRK, respectively, did not inhibit viral reactivation assessed by expression of the EBV early protein, EA-D. None of the tested compounds, except for K252A, affected the activity of the EBV-encoded protein kinase in vitro. These results show that EBV reactivation induced by BCR signaling is mainly mediated through PI3K and PKC, whereas MAPK might be involved in later stages of viral replication.
Collapse
|
43
|
Abstract
The Epstein-Barr virus (EBV) lytic transactivator Rta activates promoters through direct binding to cognate DNA sites termed Rta response elements (RREs). Rta also activates promoters that apparently lack Rta binding sites, notably Zp and Rp. Chromatin immunoprecipitation (ChIP) of endogenous Rta expressed during early replication in B95-8 cells was performed to identify Rta binding sites in the EBV genome. Quantitative PCR (qPCR) analysis showed strong enrichment for known RREs but little or no enrichment for Rp or Zp, suggesting that the Rta ChIP approach enriches for direct Rta binding sites. Rta ChIP combined with deep sequencing (ChIP-seq) identified most known RREs and several novel Rta binding sites. Rta ChIP-seq peaks were frequently upstream of Rta-responsive genes, indicating that these Rta binding sites are likely functioning as RREs. Unexpectedly, the BALF5 promoter contained an Rta binding peak. To assess whether BALF5 might be activated by an RRE-dependent mechanism, an Rta mutant (Rta K156A), deficient for DNA binding and RRE activation but competent for Zp/Rp activation, was used. Rta K156A failed to activate BALF5p, suggesting this promoter can be activated by an RRE-dependent mechanism. Rta binding to late gene promoters was not seen at early time points but was specifically detected at later times within the Rta-responsive BLRF2 and BFRF3 promoters, even when DNA replication was inhibited. Our results represent the first characterization of Rta binding to the EBV genome during replication, identify previously unknown RREs, such as one in BALF5p, and highlight the complexity of EBV late gene promoter activation by Rta.
Collapse
|
44
|
Dunn EF, Connor JH. HijAkt: The PI3K/Akt pathway in virus replication and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:223-50. [PMID: 22340720 PMCID: PMC7149925 DOI: 10.1016/b978-0-12-396456-4.00002-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As obligate parasites of cellular processes, viruses must take over cellular macromolecular machinery. It is also becoming clear that viruses routinely control intracellular signaling pathways through the direct or indirect control of kinases and phosphatases. This control of cellular phosphoproteins is important to promote a variety of viral processes, from control of entry to nuclear function to the stimulation of viral protein synthesis. This review focuses on the takeover of the cellular phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway by a variety of retroviruses, DNA viruses, and RNA viruses, highlighting the functions ascribed to virus activation of PI3K and Akt activity. This review also describes the role that the PI3K/Akt pathway plays in the host response, noting that it that can trigger anti- as well as proviral functions.
Collapse
Affiliation(s)
- Ewan F Dunn
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
45
|
Huang SY, Hsieh MJ, Chen CY, Chen YJ, Chen JY, Chen MR, Tsai CH, Lin SF, Hsu TY. Epstein-Barr virus Rta-mediated transactivation of p21 and 14-3-3σ arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity. J Gen Virol 2011; 93:139-149. [PMID: 21918011 DOI: 10.1099/vir.0.034405-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many herpesviral immediate-early proteins promote their robust lytic phase replications by hijacking the cell cycle machinery. Previously, lytic replication of Epstein-Barr virus (EBV) was found to be concurrent with host cell cycle arrest. In this study, we showed that ectopic expression of EBV immediate-early protein Rta in HEp-2 cells resulted in increased G1/S population, hypophosphorylation of pRb and decreased incorporation of 5-bromo-2'-deoxyuridine. In addition, EBV Rta transcriptionally upregulates the expressions of p21 and 14-3-3σ in HEp-2 cells, 293 cells and nasopharyngeal carcinoma TW01 cells. Although p21 and 14-3-3σ are known targets for p53, Rta-mediated p21 and 14-3-3σ transactivation can be detected in the absence of p53. In addition, results from luciferase reporter assays indicated that direct binding of Rta to either promoter sequences is not required for activation. On the other hand, a special class of Sp1-responsive elements was involved in Rta-mediated transcriptional activation on both promoters. Finally, Rta-induced p21 expression diminished the activity of CDK2/cyclin E complex, and, Rta-induced 14-3-3σ expression sequestered CDK1 and CDK2 in the cytoplasm. Based on these results, we hypothesize that through the disruption of CDK1 and CDK2 activities, EBV Rta might contribute to cell cycle arrest in EBV-infected epithelial cells during viral reactivation.
Collapse
Affiliation(s)
- Sheng-Yen Huang
- Institute of Biotechnology, Department of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan, ROC.,National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC.,Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC.,Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Hsinchu 300, Taiwan, ROC
| | - Min-Jie Hsieh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chu-Ying Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yen-Ju Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC.,Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Hsinchu 300, Taiwan, ROC.,Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Mei-Ru Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Tsuey-Ying Hsu
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| |
Collapse
|
46
|
Cellular transcription factor Oct-1 interacts with the Epstein-Barr virus BRLF1 protein to promote disruption of viral latency. J Virol 2011; 85:8940-53. [PMID: 21697476 DOI: 10.1128/jvi.00569-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Epstein-Barr virus (EBV) latent-to-lytic switch is an essential part of the viral life cycle, but the cellular factors that promote viral reactivation are not well defined. In this report, we demonstrate that the cellular transcription factor Oct-1 cooperates with the EBV immediate-early protein BRLF1 (R, Rta) to induce lytic viral reactivation. We show that cotransfected Oct-1 enhances the ability of BRLF1 to activate lytic gene expression in 293 cells stably infected with a BRLF1-defective EBV mutant (BRLF1-stop) and that Oct-1 increases BRLF1-mediated activation of lytic EBV promoters in reporter gene assays. We find that Oct-1 interacts directly with BRLF1 in vitro and that a mutant BRLF1 protein (the M140A mutant) attenuated for the ability to interact with Oct-1 in vitro is also resistant to Oct-1-mediated transcriptional enhancement in 293 BRLF1-stop cells. Furthermore, we show that cotransfected Oct-1 augments BRLF1 binding to a variety of lytic EBV promoters in chromatin immunoprecipitation (ChIP) assays (including the BZLF1, BMRF1, and SM promoters) and that BRLF1 tethers Oct-1 to lytic EBV promoters. In addition, we demonstrate that an Oct-1 mutant defective in DNA binding (the S335D mutant) still retains the ability to enhance BRLF1 transcriptional effects. Finally, we show that knockdown of endogenous Oct-1 expression reduces the level of constitutive lytic EBV gene expression in both EBV-positive B-cell and EBV-positive epithelial cell lines. These results suggest that Oct-1 acts as a positive regulator of EBV lytic gene expression and that this effect is at least partially mediated through its interaction with the viral protein BRLF1.
Collapse
|
47
|
The Epstein-Barr virus BRRF1 protein, Na, induces lytic infection in a TRAF2- and p53-dependent manner. J Virol 2011; 85:4318-29. [PMID: 21325409 DOI: 10.1128/jvi.01856-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) BRRF1 lytic gene product (Na) is encoded within the same immediate-early region as the BZLF1 (Z) and BRLF1(R) gene products, but its role during EBV infection has not been well defined. We previously showed that Na cooperates with the R protein to induce lytic gene expression in latently infected EBV-positive 293 cells, and in some EBV-negative cell lines it can activate the Z promoter in reporter gene assays. Here we show that overexpression of Na alone is sufficient to induce lytic gene expression in several different latently infected epithelial cell lines (Hone-Akata, CNE2-Akata, and AGS-Akata), while knockdown of endogenous Na expression reduces lytic gene expression. Consistent with its ability to interact with tumor necrosis factor receptor-associated factor 2 (TRAF2) in a yeast two-hybrid assay, we demonstrate that Na interacts with TRAF2 in cells. Furthermore, we show that TRAF2 is required for Na induction of lytic gene expression, that Na induces Jun N-terminal protein kinase (JNK) activation in a TRAF2-dependent manner, and that a JNK inhibitor abolishes the ability of Na to disrupt viral latency. Additionally, we show that Na and the tumor suppressor protein p53 cooperate to induce lytic gene expression in epithelial cells (including the C666-1 nasopharyngeal carcinoma cell line), although Na does not appear to affect p53 function. Together these data suggest that Na plays an important role in regulating the switch between latent and lytic infection in epithelial cells and that this effect requires both the TRAF2 and p53 cellular proteins.
Collapse
|
48
|
Herpes simplex virus requires VP11/12 to activate Src family kinase-phosphoinositide 3-kinase-Akt signaling. J Virol 2011; 85:2803-12. [PMID: 21228233 DOI: 10.1128/jvi.01877-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We previously showed that the herpes simplex virus 1 (HSV-1) tegument protein VP11/12 activates the lymphocyte-specific Src family kinase (SFK) Lck and is tyrosine phosphorylated in an Lck-dependent manner during T cell infection. We now extend these findings to show that ectopic expression of Lck induces robust tyrosine phosphorylation of VP11/12 in Vero cells, strongly suggesting that VP11/12 participates in an Lck-mediated signaling pathway as a substrate of Lck or a kinase activated by Lck. We sought to elucidate signaling events downstream of VP11/12-SFK interactions. SFKs lie upstream of the canonical phosphoinositide 3-kinase (PI3K)-Akt pathway in signaling emanating from immune receptors, growth factor receptors, and polyomavirus middle T antigen. Here, we show that VP11/12 is required for virus-induced activation of PI3K-Akt signaling in HSV-infected Jurkat T cells and primary fibroblasts. VP11/12 interacts with PI3K or PI3K signaling complexes during infection, suggesting that VP11/12 activates PI3K directly. SFK activity is required for tyrosine phosphorylation of VP11/12, VP11/12-PI3K interactions, and Akt activation in infected fibroblasts, suggesting that SFK-dependent phosphorylation of VP11/12 is required for interactions with downstream signaling effectors. Akt controls many biological functions, including cell survival, cell motility, and translation, but it is currently unclear which Akt targets are modulated by VP11/12 during infection. Although the Akt target mTORC1 is activated during HSV-1 infection, VP11/12 is not required for this effect, implying that one or more additional viral proteins regulate this pathway. Further studies are therefore required to determine which Akt targets and associated biological functions are uniquely modulated by VP11/12.
Collapse
|
49
|
Jia Y, Wang Y, Chao Y, Jing Y, Sun Z, Luo B. Sequence analysis of the Epstein-Barr virus (EBV) BRLF1 gene in nasopharyngeal and gastric carcinomas. Virol J 2010; 7:341. [PMID: 21106109 PMCID: PMC3002924 DOI: 10.1186/1743-422x-7-341] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/25/2010] [Indexed: 12/15/2022] Open
Abstract
Background Epstein-Barr virus (EBV) has a biphasic infection cycle consisting of a latent and a lytic replicative phase. The product of immediate-early gene BRLF1, Rta, is able to disrupt the latency phase in epithelial cells and certain B-cell lines. The protein Rta is a frequent target of the EBV-induced cytotoxic T cell response. In spite of our good understanding of this protein, little is known for the gene polymorphism of BRLF1. Results BRLF1 gene was successfully amplified in 34 EBV-associated gastric carcinomas (EBVaGCs), 57 nasopharyngeal carcinomas (NPCs) and 28 throat washings (TWs) samples from healthy donors followed by PCR-direct sequencing. Fourteen loci were found to be affected by amino acid changes, 17 loci by silent nucleotide changes. According to the phylogenetic tree, 5 distinct subtypes of BRLF1 were identified, and 2 subtypes BR1-A and BR1-C were detected in 42.9% (51/119), 42.0% (50/119) of samples, respectively. The distribution of these 2 subtypes among 3 types of specimens was significantly different. The subtype BR1-A preferentially existed in healthy donors, while BR1-C was seen more in biopsies of NPC. A silent mutation A/G was detected in all the isolates. Among 3 functional domains, the dimerization domain of Rta showed a stably conserved sequence, while DNA binding and transactivation domains were detected to have multiple mutations. Three of 16 CTL epitopes, NAA, QKE and ERP, were affected by amino acid changes. Epitope ERP was relatively conserved; epitopes NAA and QKE harbored more mutations. Conclusions This first detailed investigation of sequence variations in BRLF1 gene has identified 5 distinct subtypes. Two subtypes BR1-A and BR1-C are the dominant genotypes of BRLF1. The subtype BR1-C is more frequent in NPCs, while BR1-A preferentially presents in healthy donors. BR1-C may be associated with the tumorigenesis of NPC.
Collapse
Affiliation(s)
- Yuping Jia
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, PR China
| | | | | | | | | | | |
Collapse
|
50
|
Epstein-Barr virus LF2 protein regulates viral replication by altering Rta subcellular localization. J Virol 2010; 84:9920-31. [PMID: 20631124 DOI: 10.1128/jvi.00573-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The switch from Epstein-Barr virus (EBV) latent infection to lytic replication is governed by two viral transactivators, Zta and Rta. We previously reported that the EBV protein LF2 binds Rta, inhibits Rta promoter activation, and blocks EBV replication in cells. In addition, LF2 induces SUMO2/3 modification of Rta. We now show that this modification occurs at four lysines within the Rta activation domain (426, 446, 517, and 530) and that sumoylation of Rta is not essential for its repression. Coexpression studies demonstrated that Rta is sequestered to the extranuclear cytoskeleton in the presence of LF2. We mapped the LF2 binding site to Rta amino acids (aa) 476 to 519 and showed that LF2 binding is critical for Rta relocalization and repression. The core of this binding site, Rta aa 500 to 526, confers LF2-mediated relocalization and repression onto the artificial transcription factor GAL4-VP16. Mutational analysis of LF2 provided further evidence that Rta redistribution is essential for repression. Rta localization changes during replication of the LF2-positive P3HR1 genome, but not during replication of the LF2-negative B95-8 genome. BLRF2 protein expression was decreased and delayed in P3HR1 cells compared with B95-8 cells, consistent with reduced Rta activity. By contrast, BMRF1 expression, regulated primarily by Zta, did not differ significantly between the two cell lines. Our results support a model in which LF2 regulates EBV replication by binding to Rta and redistributing it out of the nucleus.
Collapse
|