1
|
Stins MF, Mtaja A, Mulendele E, Mwimbe D, Pinilla-Monsalve GD, Mutengo M, Pardo CA, Chipeta J. Inflammation and Elevated Osteopontin in Plasma and CSF in Cerebral Malaria Compared to Plasmodium-Negative Neurological Infections. Int J Mol Sci 2024; 25:9620. [PMID: 39273566 PMCID: PMC11394774 DOI: 10.3390/ijms25179620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Cerebral malaria in young African children is associated with high mortality, and persisting neurological deficits often remain in survivors. Sequestered Plasmodium-infected red blood cells lead to cerebrovascular inflammation and subsequent neuroinflammation. Brain inflammation can play a role in the pathogenesis of neurologic sequelae. Therefore, we assessed a select set of proinflammatory analytes (IP10, IL23, MIP3α, GRO, MCP-1, and osteopontin in both the plasma and cerebrospinal fluid(CSF) of Zambian children with cerebral malaria and compared this with children with neurological symptoms that were negative for Plasmodium falciparum (non-cerebral malaria). Several similarities in plasma and CSF levels were found, as were some striking differences. We confirmed that IP10 levels were higher in the plasma of cerebral malaria patients, but this was not found in CSF. Levels of osteopontin were elevated in both the plasma and CSF of CM patients compared to the non-CM patients. These results show again a highly inflammatory environment in both groups but a different profile for CM when compared to non-cerebral malaria. Osteopontin may play an important role in neurological inflammation in CM and the resulting sequelae. Therefore, osteopontin could be a valid target for further biomarker research and potentially for therapeutic interventions in neuroinflammatory infections.
Collapse
Affiliation(s)
- Monique F. Stins
- Malaria Research Institute, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
- Biomedical Research Institute of Southern California, Oceanside, CA 92046, USA
| | - Agnes Mtaja
- University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Department of Pediatrics and Child Health, University of Zambia School of Medicine, Lusaka P.O. Box 50110, Zambia
| | - Evans Mulendele
- University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Department of Pediatrics and Child Health, University of Zambia School of Medicine, Lusaka P.O. Box 50110, Zambia
| | - Daniel Mwimbe
- University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Department of Pediatrics and Child Health, University of Zambia School of Medicine, Lusaka P.O. Box 50110, Zambia
| | - Gabriel D. Pinilla-Monsalve
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins School of Medicine, 600 N Wolfe Street, Baltimore, MD 21285, USA; (G.D.P.-M.); (C.A.P.)
- Department of Radiology, Faculty of Medicine, University of Montreal, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada
| | - Mable Mutengo
- University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Department of Pediatrics and Child Health, University of Zambia School of Medicine, Lusaka P.O. Box 50110, Zambia
- Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka P.O. Box 33991, Zambia
| | - Carlos A. Pardo
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins School of Medicine, 600 N Wolfe Street, Baltimore, MD 21285, USA; (G.D.P.-M.); (C.A.P.)
| | - James Chipeta
- University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Department of Pediatrics and Child Health, University of Zambia School of Medicine, Lusaka P.O. Box 50110, Zambia
| |
Collapse
|
2
|
Boreland AJ, Stillitano AC, Lin HC, Abbo Y, Hart RP, Jiang P, Pang ZP, Rabson AB. Sustained type I interferon signaling after human immunodeficiency virus type 1 infection of human iPSC derived microglia and cerebral organoids. iScience 2024; 27:109628. [PMID: 38628961 PMCID: PMC11019286 DOI: 10.1016/j.isci.2024.109628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1)-associated neurocognitive disorder (HAND) affects up to half of people living with HIV-1 and causes long term neurological consequences. The pathophysiology of HIV-1-induced glial and neuronal functional deficits in humans remains enigmatic. To bridge this gap, we established a model simulating HIV-1 infection in the central nervous system using human induced pluripotent stem cell (iPSC)-derived microglia combined with sliced neocortical organoids. Incubation of microglia with two replication-competent macrophage-tropic HIV-1 strains (JRFL and YU2) elicited productive infection and inflammatory activation. RNA sequencing revealed significant and sustained activation of type I interferon signaling pathways. Incorporating microglia into sliced neocortical organoids extended the effects of aberrant type I interferon signaling in a human neural context. Collectively, our results illuminate a role for persistent type I interferon signaling in HIV-1-infected microglia in a human neural model, suggesting its potential significance in the pathogenesis of HAND.
Collapse
Affiliation(s)
- Andrew J. Boreland
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Alessandro C. Stillitano
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Hsin-Ching Lin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yara Abbo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Arnold B. Rabson
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Departments of Pharmacology, Pathology & Laboratory Medicine, and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Meyhöfer S, Steffen A, Plötze-Martin K, Marquardt JU, Meyhöfer SM, Bruchhage KL, Pries R. Obesity-related Plasma CXCL10 Drives CX3CR1-dependent Monocytic Secretion of Macrophage Migration Inhibitory Factor. Immunohorizons 2024; 8:19-28. [PMID: 38175171 PMCID: PMC10835669 DOI: 10.4049/immunohorizons.2300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity is characterized by excessive body fat accumulation and comorbidities such as diabetes mellitus, cardiovascular disease, and obstructive sleep apnea syndrome (OSAS). Both obesity and OSAS are associated with immune disturbance, alterations of systemic inflammatory mediators, and immune cell recruitment to metabolic tissues. Chemokine CXCL10 is an important regulator of proinflammatory immune responses and is significantly increased in patients with severe obesity. This research project aims to investigate the impact of CXCL10 on human monocytes in patients with obesity. We studied the distribution of the CD14/CD16 monocyte subsets as well as their CX3CR1 expression patterns in whole-blood measurements from 92 patients with obesity and/or OSAS with regard to plasma CXCL10 values and individual clinical parameters. Furthermore, cytokine secretion by THP-1 monocytes in response to CXCL10 was analyzed. Data revealed significantly elevated plasma CXCL10 in patients with obesity with an additive effect of OSAS. CXCL10 was found to drive monocytic secretion of macrophage migration inhibitory factor via receptor protein CX3CR1, which significantly correlated with the individual body mass index. Our data show, for the first time, to our knowledge, that CX3CR1 is involved in alternative CXCL10 signaling in human monocytes in obesity-related inflammation. Obesity is a multifactorial disease, and further investigations regarding the complex interplay between obesity-related inflammatory mediators and systemic immune balances will help to better understand and improve the individual situation of our patients.
Collapse
Affiliation(s)
- Svenja Meyhöfer
- Department of Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
- Institute for Endocrinology & Diabetes, Department of Internal Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Armin Steffen
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Kirstin Plötze-Martin
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Jens-Uwe Marquardt
- Department of Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Sebastian M. Meyhöfer
- Institute for Endocrinology & Diabetes, Department of Internal Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
4
|
Boreland AJ, Stillitano AC, Lin HC, Abbo Y, Hart RP, Jiang P, Pang ZP, Rabson AB. Dysregulated neuroimmune interactions and sustained type I interferon signaling after human immunodeficiency virus type 1 infection of human iPSC derived microglia and cerebral organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563950. [PMID: 37961371 PMCID: PMC10634901 DOI: 10.1101/2023.10.25.563950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) associated neurocognitive disorder (HAND) affects up to half of HIV-1 positive patients with long term neurological consequences, including dementia. There are no effective therapeutics for HAND because the pathophysiology of HIV-1 induced glial and neuronal functional deficits in humans remains enigmatic. To bridge this knowledge gap, we established a model simulating HIV-1 infection in the central nervous system using human induced pluripotent stem cell (iPSC) derived microglia combined with sliced neocortical organoids. Upon incubation with two replication-competent macrophage-tropic HIV-1 strains (JRFL and YU2), we observed that microglia not only became productively infected but also exhibited inflammatory activation. RNA sequencing revealed a significant and sustained activation of type I interferon signaling pathways. Incorporating microglia into sliced neocortical organoids extended the effects of aberrant type I interferon signaling in a human neural context. Collectively, our results illuminate the role of persistent type I interferon signaling in HIV-1 infected microglial in a human neural model, suggesting its potential significance in the pathogenesis of HAND.
Collapse
Affiliation(s)
- Andrew J. Boreland
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Department of Neuroscience, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Alessandro C. Stillitano
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Hsin-Ching Lin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Yara Abbo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ
| | - Zhiping P. Pang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Department of Neuroscience, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Arnold B. Rabson
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Department of Pharmacology, Pathology & Laboratory Medicine, and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
5
|
Canonico D, Casale S, Look T, Cao L. Effects of Morphine on Gp120-induced Neuroinflammation Under Immunocompetent Vs. Immunodeficient Conditions. J Neuroimmune Pharmacol 2023; 18:24-40. [PMID: 35059975 DOI: 10.1007/s11481-021-10040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is a common complication of HIV infection, whose development is known to be facilitated by inflammation and exacerbated by morphine. Previously, using the gp120 transgenic (tg) mouse model in combination with LP-BM5 (a murine retrovirus that can cause systemic immunodeficiency in susceptible mouse strains) we demonstrated differential gp120-associated central nervous system (CNS) neuroinflammatory responses under immunocompetent (-LP-BM5) vs. immunocompromised (+LP-BM5) conditions. Here, we further investigated the effects of morphine on gp120-associated neuroinflammatory response within the hippocampus under differential immune status. First, we confirmed that morphine treatment (2 × 25 mg pellets) did not significantly affect the development of immunodeficiency induced by LP-BM5 and all brain regions examined (hippocampus, striatum, and frontal lobe) had detectable LP-BM5 viral gag genes. Morphine notably reduced the performance of gp120tg+ mice in the alteration T-maze assay when 2-minute retention was used, regardless of LP-BM5 treatment. Morphine further enhanced GFAP expression in gp120tg+ mice regardless of host immune status, while promoted CD11b expression only in immunocompetent mice, regardless of gp120tg expression. In immunocompetent gp120tg+ mice, morphine increased the RNA expression of CCL2, CCL5, CXCL10, IL-12p40, and IFNβ; while under the immunodeficient condition, morphine downregulated the expression of CCL2, CCL5, CXCL10, IL-12p40, and IL-1β. Further, expression of TNFα and IFNγ were enhanced by morphine regardless of host immune status. Altogether, our results suggest that the effects of morphine are complex and dependent on the immune status of the host, and host immune status-specific, targeted anti-neuroinflammatory strategies are required for effective treatment of HAND.
Collapse
Affiliation(s)
- Dalton Canonico
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Sadie Casale
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Tristan Look
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Ling Cao
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, United States, ME.
- , 11 Hills Beach Road, 04005, Biddeford, United States, ME.
| |
Collapse
|
6
|
Kim BH, Hadas E, Kelschenbach J, Chao W, Gu CJ, Potash MJ, Volsky DJ. CCL2 is required for initiation but not persistence of HIV infection mediated neurocognitive disease in mice. Sci Rep 2023; 13:6577. [PMID: 37085605 PMCID: PMC10121554 DOI: 10.1038/s41598-023-33491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
HIV enters the brain within days of infection causing neurocognitive impairment (NCI) in up to half of infected people despite suppressive antiretroviral therapy. The virus is believed to enter the brain in infected monocytes through chemotaxis to the major monocyte chemokine, CCL2, but the roles of CCL2 in established NCI are not fully defined. We addressed this question during infection of conventional and CCL2 knockout mice with EcoHIV in which NCI can be verified in behavioral tests. EcoHIV enters mouse brain within 5 days of infection, but NCI develops gradually with established cognitive disease starting 25 days after infection. CCL2 knockout mice infected by intraperitoneal injection of virus failed to develop brain infection and NCI. However, when EcoHIV was directly injected into the brain, CCL2 knockout mice developed NCI. Knockout of CCL2 or its principal receptor, CCR2, slightly reduced macrophage infection in culture. Treatment of mice prior to and during EcoHIV infection with the CCL2 transcriptional inhibitor, bindarit, prevented brain infection and NCI and reduced macrophage infection. In contrast, bindarit treatment of mice 4 weeks after infection affected neither brain virus burden nor NCI. Based on these findings we propose that HIV enters the brain mainly through infected monocytes but that resident brain cells are sufficient to maintain NCI. These findings suggest that NCI therapy must act within the brain.
Collapse
Affiliation(s)
- Boe-Hyun Kim
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Eran Hadas
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Jennifer Kelschenbach
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Wei Chao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Chao-Jiang Gu
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Mary Jane Potash
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - David J Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Abstract
OBJECTIVE Recent cannabis exposure has been associated with lower rates of neurocognitive impairment in people with HIV (PWH). Cannabis's anti-inflammatory properties may underlie this relationship by reducing chronic neuroinflammation in PWH. This study examined relations between cannabis use and inflammatory biomarkers in cerebrospinal fluid (CSF) and plasma, and cognitive correlates of these biomarkers within a community-based sample of PWH. METHODS 263 individuals were categorized into four groups: HIV- non-cannabis users (n = 65), HIV+ non-cannabis users (n = 105), HIV+ moderate cannabis users (n = 62), and HIV+ daily cannabis users (n = 31). Differences in pro-inflammatory biomarkers (IL-6, MCP-1/CCL2, IP-10/CXCL10, sCD14, sTNFR-II, TNF-α) by study group were determined by Kruskal-Wallis tests. Multivariable linear regressions examined relationships between biomarkers and seven cognitive domains, adjusting for age, sex/gender, race, education, and current CD4 count. RESULTS HIV+ daily cannabis users showed lower MCP-1 and IP-10 levels in CSF compared to HIV+ non-cannabis users (p = .015; p = .039) and were similar to HIV- non-cannabis users. Plasma biomarkers showed no differences by cannabis use. Among PWH, lower CSF MCP-1 and lower CSF IP-10 were associated with better learning performance (all ps < .05). CONCLUSIONS Current daily cannabis use was associated with lower levels of pro-inflammatory chemokines implicated in HIV pathogenesis and these chemokines were linked to the cognitive domain of learning which is commonly impaired in PWH. Cannabinoid-related reductions of MCP-1 and IP-10, if confirmed, suggest a role for medicinal cannabis in the mitigation of persistent inflammation and cognitive impacts of HIV.
Collapse
|
8
|
Arabatzis TJ, Wakley AA, McLane VD, Canonico D, Cao L. Effects of HIV gp120 on Neuroinflammation in Immunodeficient vs. Immunocompetent States. J Neuroimmune Pharmacol 2021; 16:437-453. [PMID: 32627098 PMCID: PMC7785647 DOI: 10.1007/s11481-020-09936-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/17/2020] [Indexed: 11/30/2022]
Abstract
HIV affects 37 million people worldwide, 25-69% of which develop HIV-associated neurocognitive disorders (HAND) regardless of antiviral treatment. HIV infection of the brain decreases cognitive function, disrupts/impairs learning and memory, and reduces quality of life for those affected. HIV-induced neuroinflammation has been associated with viral proteins such as gp120 and Tat, which remain elevated in the CNS even in patients with low peripheral viremia counts. In this study, we examined the effects of gp120 on neuroinflammation in immunodeficient vs. immunocompetent states by examining neuroinflammatory markers in gp120tg mice with or without systemic immunodeficiency caused by murine retroviral administration (LP-BM5 murine AIDS). Changes in inflammatory cytokine/chemokine mRNA expression was complex and dependent upon expression of gp120 protein, immunodeficiency status, brain region (hippocampus, frontal lobe, or striatum), and age. Gp120 expression reduced hippocampal synaptophysin expression but did not affect animals' learning/memory on the spontaneous T-maze test in our experimental conditions. Our results emphasize the critical role of the neuroinflammatory micro-environment and the peripheral immune system context in which gp120 acts. Multiple factors, particularly system-level differences in the immune response of different brain regions, need to be considered when developing treatment for HAND. Graphical Abstract.
Collapse
Affiliation(s)
- Taxiarhia J Arabatzis
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, ME, USA
| | - Alexa A Wakley
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Virginia D McLane
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980613, Richmond, VA, 23298-0613, USA
| | - Dalton Canonico
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, ME, USA
| | - Ling Cao
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
9
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Michi AN, Love ME, Proud D. Rhinovirus-Induced Modulation of Epithelial Phenotype: Role in Asthma. Viruses 2020; 12:v12111328. [PMID: 33227953 PMCID: PMC7699223 DOI: 10.3390/v12111328] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Human rhinoviruses have been linked both to the susceptibility of asthma development and to the triggering of acute exacerbations. Given that the human airway epithelial cell is the primary site of human rhinovirus (HRV) infection and replication, the current review focuses on how HRV-induced modulation of several aspects of epithelial cell phenotype could contribute to the development of asthma or to the induction of exacerbations. Modification of epithelial proinflammatory and antiviral responses are considered, as are alterations in an epithelial barrier function and cell phenotype. The contributions of the epithelium to airway remodeling and to the potential modulation of immune responses are also considered. The potential interactions of each type of HRV-induced epithelial phenotypic changes with allergic sensitization and allergic phenotype are also considered in the context of asthma development and of acute exacerbations.
Collapse
|
11
|
IFN-I Independent Antiviral Immune Response to Vesicular Stomatitis Virus Challenge in Mouse Brain. Vaccines (Basel) 2020; 8:vaccines8020326. [PMID: 32575459 PMCID: PMC7350232 DOI: 10.3390/vaccines8020326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferon (IFN-I) plays a pivotal role during viral infection response in the central nervous system (CNS). The IFN-I can orchestrate and regulate most of the innate immune gene expression and myeloid cell dynamics following a noncytopathic virus infection. However, the role of IFN-I in the CNS against viral encephalitis is not entirely clear. Here we have implemented the combination of global differential gene expression profiling followed by bioinformatics analysis to decipher the CNS immune response in the presence and absence of the IFN-I signaling. We observed that vesicular stomatitis virus (VSV) infection induced 281 gene changes in wild-type (WT) mice primarily associated with IFN-I signaling. This was accompanied by an increase in antiviral response through leukocyte vascular patrolling and leukocyte influx along with the expression of potent antiviral factors. Surprisingly, in the absence of the IFN-I signaling (IFNAR−/− mice), a significantly higher (1357) number of genes showed differential expression compared to the WT mice. Critical candidates such as IFN-γ, CCL5, CXCL10, and IRF1, which are responsible for the recruitment of the patrolling leukocytes, are also upregulated in the absence of IFN-I signaling. The computational network analysis suggests the presence of the IFN-I independent pathway that compensates for the lack of IFN-I signaling in the brain. The analysis shows that TNF-α is connected maximally to the networked candidates, thus emerging as a key regulator of gene expression and recruitment of myeloid cells to mount antiviral action. This pathway could potentiate IFN-γ release; thereby, synergistically activating IRF1-dependent ISG expression and antiviral response.
Collapse
|
12
|
Fischer L, Lucendo-Villarin B, Hay DC, O’Farrelly C. Human PSC-Derived Hepatocytes Express Low Levels of Viral Pathogen Recognition Receptors, but Are Capable of Mounting an Effective Innate Immune Response. Int J Mol Sci 2020; 21:ijms21113831. [PMID: 32481600 PMCID: PMC7312201 DOI: 10.3390/ijms21113831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 01/19/2023] Open
Abstract
Hepatocytes are key players in the innate immune response to liver pathogens but are challenging to study because of inaccessibility and a short half-life. Recent advances in in vitro differentiation of hepatocyte-like cells (HLCs) facilitated studies of hepatocyte-pathogen interactions. Here, we aimed to define the anti-viral innate immune potential of human HLCs with a focus on toll-like receptor (TLR)-expression and the presence of a metabolic switch. We analysed cytoplasmic pattern recognition receptor (PRR)- and endosomal TLR-expression and activity and adaptation of HLCs to an inflammatory environment. We found that transcript levels of retinoic acid inducible gene I (RIG-I), melanoma differentiation antigen 5 (MDA5), and TLR3 became downregulated during differentiation, indicating the acquisition of a more tolerogenic phenotype, as expected in healthy hepatocytes. HLCs responded to activation of RIG-I by producing interferons (IFNs) and IFN-stimulated genes. Despite low-level expression of TLR3, receptor expression was upregulated in an inflammatory environment. TLR3 signalling induced expression of proinflammatory cytokines at the gene level, indicating that several PRRs need to interact for successful innate immune activation. The inflammatory responsiveness of HLCs was accompanied by the downregulation of cytochrome P450 3A and 1A2 activity and decreased serum protein production, showing that the metabolic switch seen in primary hepatocytes during anti-viral responses is also present in HLCs.
Collapse
Affiliation(s)
- Lena Fischer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
| | | | - David C. Hay
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK;
- Correspondence: (D.C.H.); (C.O.)
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
- School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
- Correspondence: (D.C.H.); (C.O.)
| |
Collapse
|
13
|
CD14 + monocytes are the main leucocytic sources of CXCL10 in response to Plasmodium falciparum. Parasitology 2019; 147:465-470. [PMID: 31831089 DOI: 10.1017/s0031182019001744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The CXCR3 chemokine CXCL10 or IFN-γ inducible protein 10 (IP-10) has been identified as an important biomarker of cerebral malaria (CM) mortality in children. Studies in mouse malaria infection models have shown that CXCL10 blockade alleviates brain intravascular inflammation and protects infected mice from CM. Despite the key role that CXCL10 plays in the development of CM, the leucocytic sources of CXCL10 in response to human malaria are not known. Here we investigated CXCL10 responses to Plasmodium falciparum in peripheral blood mononuclear cells (PBMCs). We found that PBMCs from malaria-unexposed donors produce CXCL10 in response to P. falciparum and that this response is IFN-γ-dependent. Moreover, CD14+ monocytes were identified as the main leucocytic sources of CXCL10 in peripheral blood, suggesting an important role for innate immune responses in the activation of this pathway involved in the development of symptomatic malaria.
Collapse
|
14
|
Lima MC, de Mendonça LR, Rezende AM, Carrera RM, Aníbal-Silva CE, Demers M, D'Aiuto L, Wood J, Chowdari KV, Griffiths M, Lucena-Araujo AR, Barral-Netto M, Azevedo EAN, Alves RW, Farias PCS, Marques ETA, Castanha PMS, Donald CL, Kohl A, Nimgaonkar VL, Franca RFO. The Transcriptional and Protein Profile From Human Infected Neuroprogenitor Cells Is Strongly Correlated to Zika Virus Microcephaly Cytokines Phenotype Evidencing a Persistent Inflammation in the CNS. Front Immunol 2019; 10:1928. [PMID: 31474994 PMCID: PMC6707094 DOI: 10.3389/fimmu.2019.01928] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy is associated with microcephaly, a congenital malformation resulting from neuroinflammation and direct effects of virus replication on the developing central nervous system (CNS). However, the exact changes in the affected CNS remain unknown. Here, we show by transcriptome analysis (at 48 h post-infection) and multiplex immune profiling that human induced-neuroprogenitor stem cells (hiNPCs) respond to ZIKV infection with a strong induction of type-I interferons (IFNs) and several type-I IFNs stimulated genes (ISGs), notably cytokines and the pro-apoptotic chemokines CXCL9 and CXCL10. By comparing the inflammatory profile induced by a ZIKV Brazilian strain with an ancestral strain isolated from Cambodia in 2010, we observed that the response magnitude differs among them. Compared to ZIKV/Cambodia, the experimental infection of hiNPCs with ZIKV/Brazil resulted in a diminished induction of ISGs and lower induction of several cytokines (IFN-α, IL-1α/β, IL-6, IL-8, and IL-15), consequently favoring virus replication. From ZIKV-confirmed infant microcephaly cases, we detected a similar profile characterized by the presence of IFN-α, CXCL10, and CXCL9 in cerebrospinal fluid (CSF) samples collected after birth, evidencing a sustained CNS inflammation. Altogether, our data suggest that the CNS may be directly affected due to an unbalanced and chronic local inflammatory response, elicited by ZIKV infection, which contributes to damage to the fetal brain.
Collapse
Affiliation(s)
- Morganna C Lima
- Oswaldo Cruz Foundation/Fiocruz, Institute Aggeu Magalhães, Recife, Brazil
| | | | - Antonio M Rezende
- Oswaldo Cruz Foundation/Fiocruz, Institute Aggeu Magalhães, Recife, Brazil
| | - Raquel M Carrera
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | | | - Matthew Demers
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kodavali V Chowdari
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Michael Griffiths
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Elisa A N Azevedo
- Oswaldo Cruz Foundation/Fiocruz, Institute Aggeu Magalhães, Recife, Brazil
| | - Renan W Alves
- Oswaldo Cruz Foundation/Fiocruz, Institute Aggeu Magalhães, Recife, Brazil
| | - Pablo C S Farias
- Oswaldo Cruz Foundation/Fiocruz, Institute Aggeu Magalhães, Recife, Brazil
| | - Ernesto T A Marques
- Oswaldo Cruz Foundation/Fiocruz, Institute Aggeu Magalhães, Recife, Brazil.,Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Priscila M S Castanha
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rafael F O Franca
- Oswaldo Cruz Foundation/Fiocruz, Institute Aggeu Magalhães, Recife, Brazil
| |
Collapse
|
15
|
IP-10 is highly involved in HIV infection. Cytokine 2018; 115:97-103. [PMID: 30472104 DOI: 10.1016/j.cyto.2018.11.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Interferon-γ (IFN-γ)-induced protein 10 (IP-10 or CXCL-10) is a chemokine involved in trafficking immune cells to inflammatory sites. Numerous studies have reported abnormally high plasma IP-10 levels in the context of human immunodeficiency virus (HIV) infection, and IP-10 is considered an important pro-inflammatory factor in the HIV disease process. The data regarding the roles of IP-10 in HIV infection required collation; this review summarizes the biological characteristics of IP-10, the positive association between plasma IP-10 levels and HIV disease progression, the effect of IP-10 on human immune cells, and potential related mechanisms. This review provides important insights into the role of IP-10 in HIV monitoring and treatment.
Collapse
|
16
|
Mechanisms of neuropathogenesis in HIV and HCV: similarities, differences, and unknowns. J Neurovirol 2018; 24:670-678. [PMID: 30291565 DOI: 10.1007/s13365-018-0678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022]
Abstract
HIV and hepatitis C virus (HCV) have both been associated with cognitive impairment. Combination antiretroviral therapy (cART) has dramatically changed the nature of cognitive impairment in HIV-infected persons, while the role of direct-acting antivirals (DAA) in neurocognition of HCV-infected individuals remains unclear. Also, whether HIV and HCV interact to promote neurocognitive decline or whether they each contribute an individual effect continues to be an open question. In this work, we review the virally mediated mechanisms of HIV- and HCV-mediated neuropathogenesis, with an emphasis on the role of dual infection, and discuss observed changes with HIV viral suppression and HCV functional cure on neurocognitive impairments.
Collapse
|
17
|
Thaney VE, Sanchez AB, Fields JA, Minassian A, Young JW, Maung R, Kaul M. Transgenic mice expressing HIV-1 envelope protein gp120 in the brain as an animal model in neuroAIDS research. J Neurovirol 2017; 24:156-167. [PMID: 29075998 DOI: 10.1007/s13365-017-0584-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/03/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023]
Abstract
HIV-1 infection causes injury to the central nervous system (CNS) and is often associated with neurocognitive disorders. One model for brain damage seen in AIDS patients is the transgenic (tg) mouse expressing a soluble envelope protein gp120 of HIV-1 LAV in the brain in astrocytes under the control of the promoter of glial fibrillary acidic protein. These GFAP-gp120tg mice manifest several key neuropathological features observed in AIDS brains, such as decreased synaptic and dendritic density, increased numbers of activated microglia, and pronounced astrocytosis. Several recent studies show that brains of GFAP-gp120tg mice and neurocognitively impaired HIV patients share also a significant number of differentially regulated genes, activation of innate immunity and other cellular signaling pathways, disturbed neurogenesis, and learning deficits. These findings support the continued relevance of the GFAP-gp120tg mouse as a useful model to investigate neurodegenerative mechanisms and develop therapeutic strategies to mitigate the consequences associated with HIV infection of the CNS, neuroAIDS, and HAND.
Collapse
Affiliation(s)
- Victoria E Thaney
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jerel A Fields
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jared W Young
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
18
|
Jiang Q, Wang F, Shi L, Zhao X, Gong M, Liu W, Song C, Li Q, Chen Y, Wu H, Han D. C-X-C motif chemokine ligand 10 produced by mouse Sertoli cells in response to mumps virus infection induces male germ cell apoptosis. Cell Death Dis 2017; 8:e3146. [PMID: 29072682 PMCID: PMC5680925 DOI: 10.1038/cddis.2017.560] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022]
Abstract
Mumps virus (MuV) infection usually results in germ cell degeneration in the testis, which is an etiological factor for male infertility. However, the mechanisms by which MuV infection damages male germ cells remain unclear. The present study showed that C-X-C motif chemokine ligand 10 (CXCL10) is produced by mouse Sertoli cells in response to MuV infection, which induces germ cell apoptosis through the activation of caspase-3. CXC chemokine receptor 3 (CXCR3), a functional receptor of CXCL10, is constitutively expressed in male germ cells. Neutralizing antibodies against CXCR3 and an inhibitor of caspase-3 activation significantly inhibited CXCL10-induced male germ cell apoptosis. Furthermore, the tumor necrosis factor-α (TNF-α) upregulated CXCL10 production in Sertoli cells after MuV infection. The knockout of either CXCL10 or TNF-α reduced germ cell apoptosis in the co-cultures of germ cells and Sertoli cells in response to MuV infection. Local injection of MuV into the testes of mice confirmed the involvement of CXCL10 in germ cell apoptosis in vivo. These results provide novel insights into MuV-induced germ cell apoptosis in the testis.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fei Wang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lili Shi
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiang Zhao
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Maolei Gong
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Weihua Liu
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chengyi Song
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, China
| | - Yongmei Chen
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Han Wu
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety, Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Daishu Han
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Rodriguez-Smith J, Lin YC, Tsai WL, Kim H, Montealegre-Sanchez G, Chapelle D, Huang Y, Sibley CH, Gadina M, Wesley R, Bielekova B, Goldbach-Mansky R. Cerebrospinal Fluid Cytokines Correlate With Aseptic Meningitis and Blood-Brain Barrier Function in Neonatal-Onset Multisystem Inflammatory Disease: Central Nervous System Biomarkers in Neonatal-Onset Multisystem Inflammatory Disease Correlate With Central Nervous System Inflammation. Arthritis Rheumatol 2017; 69:1325-1336. [PMID: 28118536 PMCID: PMC5449229 DOI: 10.1002/art.40055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 01/17/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate proinflammatory cytokines and leukocyte subpopulations in the cerebrospinal fluid (CSF) and blood of patients with neonatal-onset multisystem inflammatory disease (NOMID) after treatment, and to compare inflammatory cytokines in the CSF and blood in 6 patients treated with 2 interleukin-1 (IL-1) blockers-anakinra and canakinumab. METHODS During routine follow-up visits between December 2011 and October 2013, we immunophenotyped the CSF of 17 pediatric NOMID patients who were treated with anakinra, and analyzed CSF cytokine levels in samples obtained at baseline and at 3-5-year follow-up visits and compared them to samples from healthy controls. RESULTS CSF levels of IL-6, interferon-γ-inducible 10-kd protein (IP-10/CXCL10), and IL-18 and monocyte and granulocyte counts significantly decreased with anakinra treatment but did not normalize to levels in the controls, even in patients fulfilling criteria for clinical remission. CSF IL-6 and IL-18 levels significantly correlated with measures of blood-brain barrier function, specifically CSF protein (r = 0.75 and r = 0.81, respectively) and albumin quotient (r = 0.79 and r = 0.68, respectively). When patients were treated with canakinumab versus anakinra, median CSF white blood cell counts and IL-6 levels were significantly higher with canakinumab treatment (10.2 cells/mm3 versus 3.7 cells/mm3 and 150.7 pg/ml versus 28.5 pg/ml, respectively) despite similar serum cytokine levels. CONCLUSION CSF leukocyte subpopulations and cytokine levels significantly improve with optimized IL-1 blocking treatment, but do not normalize. The correlation of CSF IL-6, IP-10/CXCL10, and IL-18 levels with clinical laboratory measures of inflammation and blood-brain barrier function suggests that they may have a role as biomarkers in central nervous system (CNS) inflammation. The difference in inhibition of CSF biomarkers between 2 IL-1 blocking agents, anakinra and canakinumab, suggests differences in efficacy in the intrathecal compartment, with anakinra being more effective. Our data indicate that intrathecal immune responses shape CNS inflammation and should be assessed in addition to blood markers.
Collapse
Affiliation(s)
- Jackeline Rodriguez-Smith
- Translational Autoinflammatory Disease Studies, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Yen-Chih Lin
- Neuroimmunological Diseases Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Wanxia Li Tsai
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hanna Kim
- Scholar’s Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gina Montealegre-Sanchez
- Translational Autoinflammatory Disease Studies, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Dawn Chapelle
- Translational Autoinflammatory Disease Studies, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Yan Huang
- Translational Autoinflammatory Disease Studies, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Cailin H. Sibley
- Translational Autoinflammatory Disease Studies, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
- Oregon Health & Science University, Portland, OR, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert Wesley
- Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Bibiana Bielekova
- Neuroimmunological Diseases Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Disease Studies, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Malmo J, Moe N, Krokstad S, Ryan L, Loevenich S, Johnsen IB, Espevik T, Nordbø SA, Døllner H, Anthonsen MW. Cytokine Profiles in Human Metapneumovirus Infected Children: Identification of Genes Involved in the Antiviral Response and Pathogenesis. PLoS One 2016; 11:e0155484. [PMID: 27171557 PMCID: PMC4865088 DOI: 10.1371/journal.pone.0155484] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022] Open
Abstract
Human metapneumovirus (hMPV) causes severe airway infection in children that may be caused by an unfavorable immune response. The nature of the innate immune response to hMPV in naturally occurring infections in children is largely undescribed, and it is unknown if inflammasome activation is implicated in disease pathogenesis. We examined nasopharynx aspirates and blood samples from hMPV-infected children without detectable co-infections. The expression of inflammatory and antiviral genes were measured in nasal airway secretions by relative mRNA quantification while blood plasma proteins were determined by a multiplex immunoassay. Several genes were significantly up-regulated at mRNA and protein level in the hMPV infected children. Most apparent was the expression of the chemokine IP-10, the pro-inflammatory cytokine IL-18 in addition to the interferon inducible gene ISG54. Interestingly, children experiencing more severe disease, as indicated by a severity index, had significantly more often up-regulation of the inflammasome-associated genes IL-1β and NLRP3. Overall, our data point to cytokines, particularly inflammasome-associated, that might be important in hMPV mediated lung disease and the antiviral response in children with severe infection. Our study is the first to demonstrate that inflammasome components are associated with increased illness severity in hMPV-infected children.
Collapse
Affiliation(s)
- Jostein Malmo
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- * E-mail:
| | - Nina Moe
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Childhood Airway Infections Research Group, Children’s Clinic, St. Olav’s Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Sidsel Krokstad
- Childhood Airway Infections Research Group, Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Simon Loevenich
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ingvild B. Johnsen
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Svein Arne Nordbø
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Childhood Airway Infections Research Group, Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Henrik Døllner
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Childhood Airway Infections Research Group, Children’s Clinic, St. Olav’s Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Marit W. Anthonsen
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
21
|
Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets. BMC Immunol 2016; 17:7. [PMID: 27107567 PMCID: PMC4841970 DOI: 10.1186/s12865-016-0145-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. RESULTS We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. CONCLUSIONS Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.
Collapse
|
22
|
Zegenhagen L, Kurhade C, Koniszewski N, Överby AK, Kröger A. Brain heterogeneity leads to differential innate immune responses and modulates pathogenesis of viral infections. Cytokine Growth Factor Rev 2016; 30:95-101. [PMID: 27009077 DOI: 10.1016/j.cytogfr.2016.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/28/2023]
Abstract
The central nervous system (CNS) is a highly complex organ with highly specialized cell subtypes. Viral infections often target specific structures of the brain and replicate in certain regions. Studies in mice deficient in type I Interferon (IFN) receptor or IFN-β have highlighted the importance of the type I IFN system against viral infections and non-viral autoimmune disorders in the CNS. Direct antiviral effects of type I IFNs appear to be crucial in limiting early spread of a number of viruses in CNS tissues. Increased efforts have been made to characterize IFN expression and responses in the brain. In this context, it is important to identify cells that produce IFN, decipher pathways leading to type I IFN expression and to characterize responding cells. In this review we give an overview about region specific aspects that influence local innate immune responses. The route of entry is critical, but also the susceptibility of different cell types, heterogeneity in subpopulations and micro-environmental cues play an important role in antiviral responses. Recent work has outlined the tremendous importance of type I IFNs, particularly in the limitation of viral spread within the CNS. This review will address recent advances in understanding the mechanisms of local type I IFN production and response, in the particular context of the CNS.
Collapse
Affiliation(s)
- Loreen Zegenhagen
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Chaitanya Kurhade
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Nikolaus Koniszewski
- Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Andrea Kröger
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
23
|
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6:1143. [PMID: 26579077 PMCID: PMC4621459 DOI: 10.3389/fmicb.2015.01143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| |
Collapse
|
24
|
Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev 2015; 26:311-27. [DOI: 10.1016/j.cytogfr.2014.11.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
|
25
|
The relationship of CSF and plasma cytokine levels in HIV infected patients with neurocognitive impairment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:506872. [PMID: 25821806 PMCID: PMC4363531 DOI: 10.1155/2015/506872] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 11/25/2022]
Abstract
Although HAD is now rare due to HAART, the milder forms of HAND persist in HIV-infected patients. HIV-induced systemic and localized inflammation is considered to be one of the mechanisms of HAND. The levels of cytokines in CSF were associated with neurocognitive impairment in HIV infection. However, the changes of cytokines involved in cognition impairment in plasma have not been shown, and their relationships between CSF and plasma require to be addressed. We compared cytokine levels in paired CSF and plasma samples from HIV-infected individuals with or without neurocognitive impairment. Cytokine concentrations were measured by Luminex xMAP. In comparing the expression levels of cytokines in plasma and CSF, IFN-α2, IL-8, IP-10, and MCP-1 were significantly higher in CSF. Eotaxin was significantly higher in plasma, whereas G-CSF showed no difference between plasma and CSF. G-CSF (P = 0.0079), IL-8 (P = 0.0223), IP-10 (P = 0.0109), and MCP-1 (P = 0.0497) in CSF showed significant difference between HIV-CI and HIV-NC group, which may indicate their relationship to HIV associated neurocognitive impairment. In addition, G-CSF (P = 0.0191) and IP-10 (P = 0.0377) in plasma were significantly higher in HIV-CI than HIV-NC. The consistent changes of G-CSF and IP-10 in paired plasma and CSF samples might enhance their potential for predicting HAND.
Collapse
|
26
|
Cerebrospinal fluid (CSF) CD8+ T-cells that express interferon-gamma contribute to HIV associated neurocognitive disorders (HAND). PLoS One 2015; 10:e0116526. [PMID: 25719800 PMCID: PMC4342256 DOI: 10.1371/journal.pone.0116526] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/09/2014] [Indexed: 11/19/2022] Open
Abstract
Background HIV associated neurocognitive disorders (HAND) continue to affect cognition and everyday functioning despite anti-retroviral treatment (ART). Previous studies focused on mechanisms related to monocyte/macrophage mediated inflammation. However, in the ART era, there is increasing evidence for the involvement of CD8+ T-cells in CNS pathogenesis. Methods To investigate the relationship between T-cell responses and neurocognitive impairment (NCI), cerebrospinal fluid (CSF) and peripheral blood CD4+ and CD8+ T-cell intracellular cytokine (IFNγ, IL-2, TNFα) and lytic marker (CD107a) expression were assessed in HIV infected subjects who underwent comprehensive neurocognitive (NC) evaluation and either initiated or changed ART. Results Data were collected from 31 participants at 70 visits. The frequency of cytokine expressing T-cells in CSF was significantly higher than in peripheral blood for CD4+T-cells: TNFα, IL-2, IFNγ and CD8+T-cells: IL-2 and IFNγ. Analysis of T-cell activity and NCI as a function of CSF HIV RNA levels suggested a general association between NCI, high CSF CD8+ (but not CD4+T-cell) cytokine expression and CSF HIV RNA <103 copies/ml (p<0.0001). Specifically, CSF CD8+ T-cell IFNγ expression correlated with severity of NCI (r = 0.57, p = 0.004). Multivariable analyses indicated that CSF CD8+T-cell IFNγ and myeloid activation (CD163) contributed equally and independently to cognitive status and a composite variable produced the strongest correlation with NCI (r = 0.83, p = 0.0001). In contrast, CD8+ cytolytic activity (CD107a expression) was negatively correlated with NCI (p = 0.05) but was dependent on CD4 levels >400/μl and low CSF HIV RNA levels (<103 copies/ml). In our longitudinal analysis of 16 subjects, higher CSF CD8+IFNγ expression at baseline predicted NC decline at follow-up (p = 0.02). Severity of NCI at follow-up correlated with level of residual HIV RNA in CSF. Conclusions Presence of IFNγ expressing CD8+ T-cells, absence of cytolytic CD8+ T-cells, high myeloid activation, and failure of ART to suppress HIV replication in CSF contribute to increased risk of HAND.
Collapse
|
27
|
Chai Q, She R, Huang Y, Fu ZF. Expression of neuronal CXCL10 induced by rabies virus infection initiates infiltration of inflammatory cells, production of chemokines and cytokines, and enhancement of blood-brain barrier permeability. J Virol 2015; 89:870-6. [PMID: 25339777 PMCID: PMC4301165 DOI: 10.1128/jvi.02154-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/14/2014] [Indexed: 12/25/2022] Open
Abstract
It has been shown that enhancement of blood-brain barrier (BBB) permeability is modulated by the expression of chemokines/cytokines and reduction of tight junction (TJ) proteins in the brains of mice infected with rabies virus (RABV). Since CXCL10 was found to be the most highly expressed chemokine, its temporal and spatial expression were determined in the present study. The expression of the chemokine CXCL10 was initially detected in neurons as early as 3 days postinfection (p.i.) in the brains of RABV-infected mice, after which it was detected in microglia (6 days p.i.) and astrocytes (9 days p.i.). Neutralization of CXCL10 by treatment with anti-CXCL10 antibodies reduced gamma interferon (IFN-γ) production and Th17 cell infiltration, as well as restoring TJ protein expression and BBB integrity. Together, these data suggest that it is the neuronal CXCL10 that initiates the cascade that leads to the activation of microglia/astrocytes, infiltration of inflammatory cells, expression of chemokines/cytokines, reduction of TJ protein expression, and enhancement of the BBB permeability.
Collapse
Affiliation(s)
- Qingqing Chai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ruiping She
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Huang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
28
|
Liu C, Cui G, Zhu M, Kang X, Guo H. Neuroinflammation in Alzheimer's disease: chemokines produced by astrocytes and chemokine receptors. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8342-8355. [PMID: 25674199 PMCID: PMC4314046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Chemokines secreted by astrocytes play multiple roles in the pathology of Alzheimer's disease, a chronic inflammation disorder of central nervous system. The level of chemokines in serum, cerebrospinal fluid and brain tissue and their receptors both significantly changed in patients with Alzheimer's disease. In this review, we briefly summarized the involvement of astrocytes and chemokines in Alzheimer's disease, and the role of chemokine/chemokine receptors in the occurrence and development of Alzheimer's disease. Clarification of the involvement of chemokines and their receptors, such as MCP-1/CCR2, fractalkine/CX3CR1, SDF-1α/CXCR4, MIP-1α/CCR5, IP-10/CXCR3, IL-8/CXCR1, CXCR2, and RANTES/CCR1, CCR3, CCR5, will provide a new strategy and more specific targets for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Chang Liu
- School of Basic Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Guohong Cui
- Department of Neurology, Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Meiping Zhu
- Department of Gastroenterology, Shanghai Shuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Xiangping Kang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Haidong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| |
Collapse
|
29
|
|
30
|
Abstract
Human immunodeficiency virus (HIV) invades the brain early during infection and generates a chronic inflammatory microenvironment that can eventually result in neurological disease, even in the absence of significant viral replication. Thus, HIV-1 infection of the brain has been characterized both as a neuroimmunological and neurodegenerative disorder. While the brain and central nervous system (CNS) have historically been regarded as immune privileged or immunologically quiescent, newer concepts of CNS immunity suggest an important if not defining role for innate immune responses generated by glial cells. Innate immunity may be the first line of defense against HIV infection of the brain and CNS, with multiple cellular elements providing responses that can be anti-viral and neuroprotective, but also potentially neurotoxic, impairing neurogenesis and promoting neuronal apoptosis. To investigate the effects of HIV exposure on neurogenesis and neuronal survival, we have studied the responses of human neuroepithelial progenitor (NEP) cells, which undergo directed differentiation into astrocytes and neurons in vitro. We identified a group of genes that were differentially expressed in NEP-derived cells during virus exposure. This included genes that are strongly related to interferon-induced responses and antigen presentation. Moreover, we observed that the host factor apolipoprotein E influences the innate immune response expressed by these cells, with a more robust response in the apolipoprotein E3/E3 genotype cultures compared to the apolipoprotein E3/E4 counterparts. Thus, neuroepithelial progenitors and their differentiated progeny recognize HIV and respond to it by mounting an innate immune response with a vigor that is influenced by the host factor apolipoprotein E.
Collapse
|
31
|
Rubio N, Arevalo MA, Cerciat M, Sanz-Rodriguez F, Unkila M, Garcia-Segura LM. Theiler's virus infection provokes the overexpression of genes coding for the chemokine Ip10 (CXCL10) in SJL/J murine astrocytes, which can be inhibited by modulators of estrogen receptors. J Neurovirol 2014; 20:485-95. [PMID: 25052192 DOI: 10.1007/s13365-014-0273-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/09/2014] [Accepted: 06/30/2014] [Indexed: 12/11/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces demyelination in susceptible strains of mice (SJL/J) through an immunopathological process that is mediated by CD4(+) Th1 T cell. These T cells are chemoattracted to the central nervous system by chemokines. Hence, in this study, we focused on the production of the chemokine "interferon-gamma-inducible protein 10 kDa," or IP-10/CXCL10, by cultured SJL/J mouse astrocytes infected with the BeAn strain of TMEV and its capacity to attract activated T cells. The analysis of the whole murine genome by DNA hybridization with cRNAs from mock- and TMEV-infected cultures revealed the upregulation of six sequences that potentially encode for CXCL10. This increased CXCL10 expression was validated by PCR and qPCR. The presence of this chemokine was further demonstrated by enzyme-linked immunoassay (ELISA). Significantly, astrocytes from BALB/c mice, a strain resistant to demyelination, did not produce CXCL10. The secreted CXCL10 was biologically active, inducing chemoattraction of activated lymphocytes. The inflammatory cytokines, IL-1α, IFN-γ, and TNF-α, were strong inducers of CXCL10 in astrocytes. Serum from TMEV-infected SJL/J but not BALB/c mice contains CXCL10, the levels of which peak at the onset of the clinical disease. Finally, this in vitro inflammation model was fully inhibited by 17β-estradiol and four selective estrogen receptor modulators, as demonstrated by ELISA and qPCR.
Collapse
Affiliation(s)
- Nazario Rubio
- Instituto Cajal, C.S.I.C, Doctor Arce Avenue 37, 28002, Madrid, Spain,
| | | | | | | | | | | |
Collapse
|
32
|
Expression of porcine fusion protein IRF7/3(5D) efficiently controls foot-and-mouth disease virus replication. J Virol 2014; 88:11140-53. [PMID: 25031341 DOI: 10.1128/jvi.00372-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Several studies have demonstrated that the delivery of type I, II, or III interferons (IFNs) by inoculation of a replication-defective human adenovirus 5 (Ad5) vector expressing IFNs can effectively control foot-and-mouth disease (FMD) in cattle and swine during experimental infections. However, relatively high doses are required to achieve protection. In this study, we identified the functional properties of a porcine fusion protein, poIRF7/3(5D), as a biotherapeutic and enhancer of IFN activity against FMD virus (FMDV). We showed that poIRF7/3(5D) is a potent inducer of type I IFNs, including alpha IFN (IFN-α), IFN-β, and IFN-ω but not type III IFN (interleukin-28B), without inducing cytotoxicity. Expression of poIRF7/3(5D) significantly and steadily reduced FMDV titers by up to 6 log10 units in swine and bovine cell lines. Treatment with an IFN receptor inhibitor (B18R) combined with an anti-IFN-α antibody neutralized the antiviral activity in the supernatants of cells transduced with an Ad5 vector expressing poIRF7/3(5D) [Ad5-poIRF7/3(5D)]. However, several transcripts with known antiviral function, including type I IFNs, were still highly upregulated (range of increase, 8-fold to over 500-fold) by poIRF7/3(5D) in the presence of B18R. Furthermore, the sera of mice treated with Ad5-poIRF7/3(5D) showed antiviral activity that was associated with the induction of high levels of IFN-α and resulted in complete protection against FMDV challenge at 6, 24, or 48 h posttreatment. This study highlights for the first time the antiviral potential of Ad5-poIRF7/3(5D) in vitro and in vivo against FMDV. IMPORTANCE FMD remains one of the most devastating diseases that affect livestock worldwide. Effective vaccine formulations are available but are serotype specific and require approximately 7 days before they are able to elicit protective immunity. We have shown that vector-delivered IFN is an option to protect animals against many FMDV serotypes as soon as 24 h and for about 4 days postadministration. Here we demonstrate that delivery of a constitutively active transcription factor that induces the production of endogenous IFNs and potentially other antiviral genes is a viable strategy to protect against FMD.
Collapse
|
33
|
Glutamate metabolism and HIV-associated neurocognitive disorders. J Neurovirol 2014; 20:315-31. [PMID: 24867611 DOI: 10.1007/s13365-014-0258-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/14/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
HIV-1 infection can lead to neurocognitive impairment collectively known as HIV-associated neurocognitive disorders (HAND). Although combined antiretroviral treatment (cART) has significantly ameliorated HIV's morbidity and mortality, persistent neuroinflammation and neurocognitive dysfunction continue. This review focuses on the current clinical and molecular evidence of the viral and host factors that influence glutamate-mediated neurotoxicity and neuropathogenesis as an important underlying mechanism during the course of HAND development. In addition, discusses potential pharmacological strategies targeting the glutamatergic system that may help prevent and improve neurological outcomes in HIV-1-infected subjects.
Collapse
|
34
|
Elevated IP10 levels are associated with immune activation and low CD4⁺ T-cell counts in HIV controller patients. AIDS 2014; 28:467-76. [PMID: 24378753 DOI: 10.1097/qad.0000000000000174] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although HIV controllers (HICs) achieve long-term control of viremia in the absence of antiretroviral therapy (ART), they display marked immune activation. The levels of inflammatory biomarkers in HICs and the biomarkers' relationships with immunologic and virologic status have yet to be fully characterized. DESIGN A cohort study. METHODS Plasma levels of seven biomarkers [tumor necrosis factor (TNF)α, interleukin (IL)6, IL10, interferon gamma-induced protein 10 (IP10), monocyte chemoattractant protein-1 (MCP1), soluble CD14 (sCD14), soluble CD163 (sCD163)] were compared in 70 HICs, 33 HIV-1-infected, treatment-naive noncontrollers (viremic patients), 30 ART-treated patients and 40 healthy donors. In HICs, we investigated the interplay between biomarkers, cell activation and the CD4⁺ T-cell count. RESULTS HICs had higher levels of IP10, TNFα and sCD14 than healthy donors did (P < 0.01 for each). Also, TNFα and sCD14 levels of the HICs were similar to those measured in viremic and ART-treated patients. However, the levels of IL6 and IL10 were significantly lower in HICs than in viremic or ART-treated patients. In HICs, only IP10 levels differed significantly from those in both healthy donors and viremic patients, and were positively correlated with the expression of CD8⁺ and CD4⁺ T-cell activation markers. The IP10 levels of HICs were still elevated 12 and 24 months after the initial assay. Lastly, IP10 levels at enrollment were negatively correlated with the CD4⁺ T-cell count at enrollment and 12 months later. CONCLUSION HICs display a number of inflammatory features associated with persistent T-cell immune activation.
Collapse
|
35
|
Wilson NO, Solomon W, Anderson L, Patrickson J, Pitts S, Bond V, Liu M, Stiles JK. Pharmacologic inhibition of CXCL10 in combination with anti-malarial therapy eliminates mortality associated with murine model of cerebral malaria. PLoS One 2013; 8:e60898. [PMID: 23630573 PMCID: PMC3618178 DOI: 10.1371/journal.pone.0060898] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/04/2013] [Indexed: 02/05/2023] Open
Abstract
Despite appropriate anti-malarial treatment, cerebral malaria (CM)-associated mortalities remain as high as 30%. Thus, adjunctive therapies are urgently needed to prevent or reduce such mortalities. Overproduction of CXCL10 in a subset of CM patients has been shown to be tightly associated with fatal human CM. Mice with deleted CXCL10 gene are partially protected against experimental cerebral malaria (ECM) mortality indicating the importance of CXCL10 in the pathogenesis of CM. However, the direct effect of increased CXCL10 production on brain cells is unknown. We assessed apoptotic effects of CXCL10 on human brain microvascular endothelial cells (HBVECs) and neuroglia cells in vitro. We tested the hypothesis that reducing overexpression of CXCL10 with a synthetic drug during CM pathogenesis will increase survival and reduce mortality. We utilized atorvastatin, a widely used synthetic blood cholesterol-lowering drug that specifically targets and reduces plasma CXCL10 levels in humans, to determine the effects of atorvastatin and artemether combination therapy on murine ECM outcome. We assessed effects of atorvastatin treatment on immune determinants of severity, survival, and parasitemia in ECM mice receiving a combination therapy from onset of ECM (day 6 through 9 post-infection) and compared results with controls. The results indicate that CXCL10 induces apoptosis in HBVECs and neuroglia cells in a dose-dependent manner suggesting that increased levels of CXCL10 in CM patients may play a role in vasculopathy, neuropathogenesis, and brain injury during CM pathogenesis. Treatment of ECM in mice with atorvastatin significantly reduced systemic and brain inflammation by reducing the levels of the anti-angiogenic and apoptotic factor (CXCL10) and increasing angiogenic factor (VEGF) production. Treatment with a combination of atorvastatin and artemether improved survival (100%) when compared with artemether monotherapy (70%), p<0.05. Thus, adjunctively reducing CXCL10 levels and inflammation by atorvastatin treatment during anti-malarial therapy may represent a novel approach to treating CM patients.
Collapse
Affiliation(s)
- Nana O. Wilson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Wesley Solomon
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Leonard Anderson
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - John Patrickson
- Department of Pathology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Sidney Pitts
- Department of Pathology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Vincent Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Mingli Liu
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
36
|
Li W, Hofer MJ, Noçon AL, Manders P, Campbell IL. Interferon regulatory factor 7 (IRF7) is required for the optimal initial control but not subsequent clearance of lymphocytic choriomeningitis virus infection in mice. Virology 2013; 439:152-62. [PMID: 23490048 DOI: 10.1016/j.virol.2013.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 10/29/2012] [Accepted: 02/19/2013] [Indexed: 01/02/2023]
Abstract
The role of IRF7 in the host response to lymphocytic choriomeningitis virus (LCMV) Armstrong 53b infection of mice was investigated. Intracranial infection of IRF7 KO mice was associated with delayed onset of LCM, increased survival and significantly reduced expression of the Ifng gene in the brain but not in the periphery. IRF7 KO mice showed impaired control of LCMV replication and delayed clearance of LCMV. Similar numbers of activated anti-LCMV-GP(33-41) CD8+ T cells were present in the brain and spleens of infected WT and IRF7 KO mice. While plasma IFN-β was increased to similar levels, IFN-α was markedly reduced in IRF7 KO compared with WT mice. Compared with IFN-β, IFN-α was a less potent inhibitor of LCMV infection in vitro. In conclusion, IRF7 (1) is required for the early innate control of LCMV infection, likely through the regulation of the appropriate type I IFN response, and (2) is not required for the antiviral CD8+ T cell-dependent clearance of LCMV from infected tissues.
Collapse
Affiliation(s)
- Wen Li
- School of Molecular Bioscience and the Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
37
|
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.
Collapse
|
38
|
Mehla R, Bivalkar-Mehla S, Nagarkatti M, Chauhan A. Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator. J Neuroinflammation 2012; 9:239. [PMID: 23078780 PMCID: PMC3533742 DOI: 10.1186/1742-2094-9-239] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 10/08/2012] [Indexed: 01/09/2023] Open
Abstract
Background More than 50% of patients undergoing lifelong suppressive antiviral treatment for HIV-1 infection develop minor HIV-1-associated neurocognitive disorders. Neurological complications during HIV-1 infection are the result of direct neuronal damage by proinflammatory products released from HIV-1-infected or -uninfected activated lymphocytes, monocytes, macrophages, microglia and astrocytes. The specific pro-inflammatory products and their roles in neurotoxicity are far from clear. We investigated proinflammatory cytokines and chemokines in the cerebrospinal fluid (CSF) of HIV-demented (HIV-D) and HIV-nondemented (HIV-ND) patients and studied their affect on neuroglial toxicity. Methods and results Bioplex array showed elevated levels of signatory chemokines or cytokines (IL-6, IFN-γ, CXCL10, MCP-1 and PDGF) in the CSF of HIV-D patients (n = 7) but not in that of HIV-ND patients (n = 7). Among the signatory cytokines and chemokines, CXCL10 was distinctly upregulated in-vitro in HIV-1 (NLENG1)-activated human fetal astrocytes, HIV-1 (Ba-L)-infected macrophages, and HIV-1 (NLENG1)-infected lymphocytes. Virus-infected macrophages also had increased levels of TNF-α. Consistently, human fetal astrocytes treated with HIV-1 and TNF-α induced the signatory molecules. CXCL10 in combination with HIV-1 synergistically enhanced neuronal toxicity and showed chemotactic activity (~ 40 fold) for activated peripheral blood mononuclear cells (PBMC), suggesting the intersection of signaling events imparted by HIV-1 and CXCL10 after binding to their respective surface receptors, CXCR4 and CXCR3, on neurons. Blocking CXCR3 and its downstream MAP kinase (MAPK) signaling pathway suppressed combined CXCL10 and HIV-1-induced neurotoxicity. Bryostatin, a PKC modulator and suppressor of CXCR4, conferred neuroprotection against combined insult with HIV-1 and CXCL10. Bryostatin also suppressed HIV-1 and CXCL10-induced PBMC chemotaxis. Although, therapeutic targeting of chemokines in brain may have adverse consequences on the host, current findings and earlier evidence suggest that CXCL10 could strongly impede neuroinflammation. Conclusion We have demonstrated induction of CXCL10 and other chemokines/cytokines during HIV-1 infection in the brain, as well as synergism of CXCL10 with HIV-1 in neuronal toxicity, which was dampened by bryostatin.
Collapse
Affiliation(s)
- Rajeev Mehla
- Department of Pathology, Microbiology & Immunology, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
| | | | | | | |
Collapse
|
39
|
Mathieu C, Guillaume V, Sabine A, Ong KC, Wong KT, Legras-Lachuer C, Horvat B. Lethal Nipah virus infection induces rapid overexpression of CXCL10. PLoS One 2012; 7:e32157. [PMID: 22393386 PMCID: PMC3290546 DOI: 10.1371/journal.pone.0032157] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/19/2012] [Indexed: 12/15/2022] Open
Abstract
Nipah virus (NiV) is a recently emerged zoonotic Paramyxovirus that causes regular outbreaks in East Asia with mortality rate exceeding 75%. Major cellular targets of NiV infection are endothelial cells and neurons. To better understand virus-host interaction, we analyzed the transcriptome profile of NiV infection in primary human umbilical vein endothelial cells. We further assessed some of the obtained results by in vitro and in vivo methods in a hamster model and in brain samples from NiV-infected patients. We found that NiV infection strongly induces genes involved in interferon response in endothelial cells. Among the top ten upregulated genes, we identified the chemokine CXCL10 (interferon-induced protein 10, IP-10), an important chemoattractant involved in the generation of inflammatory immune response and neurotoxicity. In NiV-infected hamsters, which develop pathology similar to what is seen in humans, expression of CXCL10 mRNA was induced in different organs with kinetics that followed NiV replication. Finally, we showed intense staining for CXCL10 in the brain of patients who succumbed to lethal NiV infection during the outbreak in Malaysia, confirming induction of this chemokine in fatal human infections. This study sheds new light on NiV pathogenesis, indicating the role of CXCL10 during the course of infection and suggests that this chemokine may serve as a potential new marker for lethal NiV encephalitis.
Collapse
Affiliation(s)
- Cyrille Mathieu
- Inserm U758, Human Virology, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Lyon-Gerland Lyon-Sud, University of Lyon 1, Lyon, France
| | - Vanessa Guillaume
- Inserm U758, Human Virology, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Lyon-Gerland Lyon-Sud, University of Lyon 1, Lyon, France
| | - Amélie Sabine
- Inserm U758, Human Virology, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Lyon-Gerland Lyon-Sud, University of Lyon 1, Lyon, France
| | | | | | | | - Branka Horvat
- Inserm U758, Human Virology, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Lyon-Gerland Lyon-Sud, University of Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
40
|
Abstract
Despite the availability of effective combination antiretroviral therapy (cART), liver disease is one of the leading causes of morbidity and mortality in Human Immunodeficiency Virus (HIV)-infected individuals, specifically, in the presence of viral hepatitis coinfection. HIV, a single stranded RNA virus, can bind to and activate both Toll-like receptor (TLR)7 and TLR8 in circulating blood mononuclear cells, but little is known about the effect of HIV on TLRs expressed in the liver. HIV can directly infect cells of the liver and HIV-mediated depletion of CD4+ T-cells in the gastrointestinal tract (GI tract) results in increased circulating lipopolysaccharide (LPS), both of which may impact on TLR signaling in the liver and subsequent liver disease progression. The potential direct and indirect effects of HIV on TLR signaling in the liver will be explored in this paper.
Collapse
|
41
|
Gorantla S, Poluektova L, Gendelman HE. Rodent models for HIV-associated neurocognitive disorders. Trends Neurosci 2012; 35:197-208. [PMID: 22305769 DOI: 10.1016/j.tins.2011.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) reflect the spectrum of neural impairments seen during chronic viral infection. Current research efforts focus on improving antiretroviral and adjunctive therapies, defining disease onset and progression, facilitating drug delivery, and halting neurodegeneration and viral resistance. Because HIV is species-specific, generating disease in small-animal models has proved challenging. After two decades of research, rodent HAND models now include those containing a human immune system. Antiviral responses, neuroinflammation and immunocyte blood-brain barrier (BBB) trafficking follow HIV infection in these rodent models. We review these and other rodent models of HAND and discuss their unmet potential in reflecting human pathobiology and in facilitating disease monitoring and therapeutic discoveries.
Collapse
Affiliation(s)
- Santhi Gorantla
- Center for Neurodegenerative Disorders and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
42
|
Mitogen-activated protein kinase p38 in HIV infection and associated brain injury. J Neuroimmune Pharmacol 2011; 6:202-15. [PMID: 21286833 DOI: 10.1007/s11481-011-9260-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/23/2011] [Indexed: 02/05/2023]
Abstract
Infection with human immunodeficiency virus-1 (HIV-1) often leads to HIV-associated neurocognitive disorders (HAND) prior to the progression to acquired immunodeficiency syndrome (AIDS). At the cellular level, mitogen-activated protein kinases (MAPK) provide a family of signal transducers that regulate many processes in response to extracellular stimuli and environmental stress, such as viral infection. Recently, evidence has accumulated suggesting that p38 MAPK plays crucial roles in various pathological processes associated with HIV infection, ranging from macrophage activation to neurotoxicity and impairment of neurogenesis to lymphocyte apoptosis. Thus, p38 MAPK, which has generally been linked to stress-related signal transduction, may be an important mediator in the development of AIDS and HAND.
Collapse
|
43
|
Letendre SL, Zheng JC, Kaul M, Yiannoutsos CT, Ellis RJ, Taylor MJ, Marquie-Beck J, Navia B. Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals. J Neurovirol 2011; 17:63-9. [PMID: 21246320 PMCID: PMC3032187 DOI: 10.1007/s13365-010-0013-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/14/2010] [Accepted: 11/24/2010] [Indexed: 12/01/2022]
Abstract
Chemokines influence HIV neuropathogenesis by affecting the HIV life cycle, trafficking of macrophages into the nervous system, glial activation, and neuronal signaling and repair processes; however, knowledge of their relationship to in vivo measures of cerebral injury is limited. The primary objective of this study was to determine the relationship between a panel of chemokines in cerebrospinal fluid (CSF) and cerebral metabolites measured by proton magnetic resonance spectroscopy (MRS) in a cohort of HIV-infected individuals. One hundred seventy-one stored CSF specimens were assayed from HIV-infected individuals who were enrolled in two ACTG studies that evaluated the relationship between neuropsychological performance and cerebral metabolites. Concentrations of six chemokines (fractalkine, IL-8, IP-10, MCP-1, MIP-1β, and SDF-1) were measured and compared with cerebral metabolites individually and as composite neuronal, basal ganglia, and inflammatory patterns. IP-10 and MCP-1 were the chemokines most strongly associated with individual cerebral metabolites. Specifically, (1) higher IP-10 levels correlated with lower N-acetyl aspartate (NAA)/creatine (Cr) ratios in the frontal white matter and higher MI/Cr ratios in all three brain regions considered and (2) higher MCP-1 levels correlated with lower NAA/Cr ratios in frontal white matter and the parietal cortex. IP-10, MCP-1, and IL-8 had the strongest associations with patterns of cerebral metabolites. In particular, higher levels of IP-10 correlated with lower neuronal pattern scores and higher basal ganglia and inflammatory pattern scores, the same pattern which has been associated with HIV-associated neurocognitive disorders (HAND). Subgroup analysis indicated that the effects of IP-10 and IL-8 were influenced by effective antiretroviral therapy and that memantine treatment may mitigate the neuronal effects of IP-10. This study supports the role of chemokines in HAND and the validity of MRS as an assessment tool. In particular, the findings identify relationships between the immune response—particularly an interferon-inducible chemokine, IP-10—and cerebral metabolites and suggest that antiretroviral therapy and memantine modify the impact of the immune response on neurons.
Collapse
Affiliation(s)
- Scott L Letendre
- University of California, San Diego, 220 Dickinson Street, Suite A, San Diego, CA 92103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yao H, Bethel-Brown C, Li CZ, Buch SJ. HIV neuropathogenesis: a tight rope walk of innate immunity. J Neuroimmune Pharmacol 2010; 5:489-95. [PMID: 20354805 PMCID: PMC3121574 DOI: 10.1007/s11481-010-9211-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/11/2010] [Indexed: 12/12/2022]
Abstract
During the course of HIV-1 disease, virus neuroinvasion occurs as an early event, within weeks following infection. Intriguingly, subsequent central nervous system (CNS) complications manifest only decades after the initial virus exposure. Although CNS is commonly regarded as an immune-privileged site, emerging evidence indicates that innate immunity elicited by the CNS glial cells is a critical determinant for the establishment of protective immunity. Sustained expression of these protective immune responses, however, can be a double-edged sword. As protective immune mediators, cytokines have the ability to function in networks and co-operate with other host/viral mediators to tip the balance from a protective to toxic state in the CNS. Herein, we present an overview of some of the essential elements of the cerebral innate immunity in HIV neuropathogenesis including the key immune cell types of the CNS with their respective soluble immune mediators: (1) cooperative interaction of IFN-γ with the host/virus factor (platelet-derived host factor (PDGF)/viral Tat) in the induction of neurotoxic chemokine CXCL10 by macrophages, (2) response of astrocytes to viral infection, and (3) protective role of PDGF and MCP-1 in neuronal survival against HIV Tat toxicity. These components of the cerebral innate immunity do not act separately from each other but form a functional immunity network. The ultimate outcome of HIV infection in the CNS will thus be dependent on the regulation of the net balance of cell-specific protective versus detrimental responses.
Collapse
Affiliation(s)
- Honghong Yao
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Crystal Bethel-Brown
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Cicy Zidong Li
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Shilpa J. Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
45
|
Müller M, Carter S, Hofer MJ, Campbell IL. Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity - a tale of conflict and conundrum. Neuropathol Appl Neurobiol 2010; 36:368-87. [DOI: 10.1111/j.1365-2990.2010.01089.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Williams R, Yao H, Peng F, Yang Y, Bethel-Brown C, Buch S. Cooperative induction of CXCL10 involves NADPH oxidase: Implications for HIV dementia. Glia 2010; 58:611-21. [PMID: 19941336 DOI: 10.1002/glia.20949] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the increasing prevalence of HIV-associated neurocognititve disorders (HAND), understanding the mechanisms by which HIV-1 induces neuro-inflammation and subsequent neuronal damage is important. The hallmark features of HIV-encephalitis, the pathological correlate of HIV-associated Dementia (HAD), are gliosis, oxidative stress, chemokine dysregulation, and neuronal damage/death. Since neurons are not infected by HIV-1, the current thinking is that these cells are damaged indirectly by pro-inflammatory chemokines released by activated glial cells. CXCL10 is a neurotoxic chemokine that is upregulated in astroglia activated by HIV-1 Tat, IFN-gamma, and TNF-alpha. In this study we have demonstrated that HIV-1 Tat increases CXCL10 expression in IFN-gamma and TNF-alpha stimulated human astrocytes via NADPH oxidase. We have shown that the treatment of astrocytes with a mixture of Tat and cytokines leads to a respiratory burst that is abrogated by apocynin, an NADPH oxidase inhibitor. Pretreatment of Tat, IFN-gamma, and TNF-alpha stimulated astrocytes with apocynin also resulted in concomitant inhibition of CXCL10 expression. Additionally, apocynin was also able to reduce Tat and cytokine-mediated activation of the corresponding signaling molecules Erk1/2, Jnk, and Akt with a decrease in activation and nuclear translocation of NF-kappaB, important regulators of CXCL10 induction. Understanding the mechanisms involved in reducing both oxidative stress and the release of pro-inflammatory agents could lead to the development of therapeutics aimed at decreasing neuro-inflammation in patients suffering from HAD.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | | |
Collapse
|
47
|
Zhou Y, Wang S, Ma JW, Lei Z, Zhu HF, Lei P, Yang ZS, Zhang B, Yao XX, Shi C, Sun LF, Wu XW, Ning Q, Shen GX, Huang B. Hepatitis B virus protein X-induced expression of the CXC chemokine IP-10 is mediated through activation of NF-kappaB and increases migration of leukocytes. J Biol Chem 2010; 285:12159-68. [PMID: 20164184 PMCID: PMC2852955 DOI: 10.1074/jbc.m109.067629] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 01/14/2010] [Indexed: 12/23/2022] Open
Abstract
Interferon-gamma inducible protein 10 (IP-10) involves inflammatory cell recruitment and cellular immune damage during virus infection. Although an increase of the peripheral IP-10 level is known in HBV-infected patients, the molecular basis of HBV infection inducing IP-10 expression has remained elusive. In the present study, we demonstrate that hepatitis B virus protein X (HBx) increases IP-10 expression in a dose-dependent manner. Transfection of the HBx-expressing vector into HepG2 cells results in nuclear translocation of NF-kappaB, which directly binds the promoter of IP-10 at positions from -122 to -113, thus facilitating transcription. The addition of the NF-kappaB inhibitor blocks the effect of HBx on IP-10 induction. In parallel, increase of NF-kappaB subunits p65 and p50 in HepG2 cells also augments IP-10 expression. Furthermore, we show that HBx induces activation of NF-kappaB through the TRAF2/TAK1 signaling pathway, leading to up-regulation of IP-10 expression. As a consequence, up-regulation of IP-10 may mediate the migration of peripheral blood leukocytes in a NF-kappaB-dependent manner. In conclusion, we report a novel molecular mechanism of HBV infection inducing IP-10 expression, which involves viral protein HBx affecting NF-kappaB pathway, leading to transactivation of the IP-10 promoter. Our study provides insight into the migration of leukocytes in response to HBV infection, thus causing immune pathological injury of liver.
Collapse
Affiliation(s)
- Yu Zhou
- From the Departments of Immunology
| | - Shuo Wang
- the Lady Davis Institute, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | - Zhang Lei
- Biochemistry and Molecular Biology, and
| | | | - Ping Lei
- From the Departments of Immunology
| | | | | | | | | | | | | | - Qin Ning
- Infectious Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China and
| | | | - Bo Huang
- Biochemistry and Molecular Biology, and
| |
Collapse
|
48
|
The type I interferon-alpha mediates a more severe neurological disease in the absence of the canonical signaling molecule interferon regulatory factor 9. J Neurosci 2010; 30:1149-57. [PMID: 20089923 DOI: 10.1523/jneurosci.3711-09.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Type I interferons (IFN) are crucial in host defense but also are implicated as causative factors for neurological disease. Interferon regulatory factor (IRF9) is involved in type I IFN-regulated gene expression where it associates with STAT1:STAT2 heterodimers to form the transcriptional complex ISGF3. The role of IRF9 in cellular responses to type I IFN is poorly defined in vivo and hence was examined here. While transgenic mice (termed GIFN) with chronic production of low levels of IFN-alpha in the CNS were relatively unaffected, the same animals lacking IRF9 [GIFNxIRF9 knock-out (KO)] had cataracts, became moribund, and died prematurely. The brain of GIFNxIRF9 KO mice showed calcification with pronounced inflammation and neurodegeneration whereas inflammation and retinal degeneration affected the eyes. In addition, IFN-gamma-like gene expression in the CNS in association with IFN-gamma mRNA and increased phosphotyrosine-STAT1 suggested a role for IFN-gamma. However, GIFNxIRF9 KO mice deficient for IFN-gamma signaling developed an even more severe and accelerated disease, indicating that IFN-gamma was protective. In IRF9-deficient cultured mixed glial cells, IFN-alpha induced prolonged activation of STAT1 and STAT2 and induced the expression of IFN-gamma-like genes. We conclude that (1) type I IFN signaling and cellular responses can occur in vivo in the absence of IRF9, (2) IRF9 protects against the pathophysiological actions of type I IFN in the CNS, and (3) STAT1 and possibly STAT2 participate in alternative IRF9-independent signaling pathways activated by IFN-alpha in glial cells resulting in enhanced IFN-gamma-like responses.
Collapse
|
49
|
Kraft-Terry SD, Stothert AR, Buch S, Gendelman HE. HIV-1 neuroimmunity in the era of antiretroviral therapy. Neurobiol Dis 2010; 37:542-8. [PMID: 20044002 DOI: 10.1016/j.nbd.2009.12.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/13/2009] [Accepted: 12/17/2009] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders (HAND) can affect up to 50% of infected people during the disease course. While antiretroviral therapies have substantively increased the quality of life and reduced HIV-1-associated dementia, less severe minor cognitive and motor deficits continue. Trafficking of HIV-1 into the central nervous system (CNS), peripheral immune activation, dysregulated glial immunity, and diminished homeostatic responses are the disease-linked pathobiologic events. Monocyte-macrophage passage into the CNS remains an underlying force for disease severity. Monocyte phenotypes may change at an early stage of cell maturation and immune activation of hematopoietic stem cells. Activated monocytes are pulled into the brain in response to chemokines made as a result of glial inflammatory processes, which in turn, cause secondary functional deficits in neurons. Current therapeutic approaches are focused on adjunctive and brain-penetrating antiretroviral therapies. These may attenuate virus-associated neuroinflammatory activities thereby decreasing the severity and frequency of HAND.
Collapse
Affiliation(s)
- Stephanie D Kraft-Terry
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | |
Collapse
|
50
|
Yadav A, Collman RG. CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol 2009; 4:430-47. [PMID: 19768553 PMCID: PMC5935112 DOI: 10.1007/s11481-009-9174-2] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) can result in neurological dysfunction with devastating consequences in a significant proportion of individuals with acquired immune deficiency syndrome. HIV-1 does not infect neurons directly but induces damage indirectly through the accumulation of activated macrophage/microglia (M/M) cells, some of which are infected, that release neurotoxic mediators including both cellular activation products and viral proteins. One mechanism for the accumulation of activated M/M involves the development in infected individuals of an activated peripheral blood monocyte population that traffics through the blood-brain barrier, a process that also serves to carry virus into CNS and establish local infection. A second mechanism involves the release by infected and activated M/M in the CNS of chemotactic mediators that recruit additional monocytes from the periphery. These activated M/M, some of which are infected, release a number of cytokines and small molecule mediators as well as viral proteins that act on bystander cells and in turn activate them, thus amplifying the cascade. These viral proteins and cellular products have neurotoxic properties as well, both directly and through induction of astrocyte dysfunction, which ultimately lead to neuronal injury and death. In patients effectively treated with antiretroviral therapy, frank dementia is now uncommon and has been replaced by milder forms of neurocognitive impairment, with less frequent and more focal neuropathology. This review summarizes key findings that support the critical role and mechanisms of monocyte/macrophage activation and inflammation as a major component for HIV-1 encephalitis or HIV-1 associated dementia.
Collapse
Affiliation(s)
- Anjana Yadav
- Department of Medicine and Center for AIDS Research, University of Pennsylvania School of Medicine, 522 Johnson Pavilion, 36th & Hamilton Walk, Philadelphia, PA 19104, USA
| | | |
Collapse
|