1
|
Schwarzmüller M, Lozano C, Schanz M, Abela IA, Grosse-Holz S, Epp S, Curcio M, Greshake J, Rusert P, Huber M, Kouyos RD, Günthard HF, Trkola A. Decoupling HIV-1 antiretroviral drug inhibition from plasma antibody activity to evaluate broadly neutralizing antibody therapeutics and vaccines. Cell Rep Med 2024; 5:101702. [PMID: 39216479 PMCID: PMC11524982 DOI: 10.1016/j.xcrm.2024.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The development of broadly neutralizing antibody (bnAb)-based therapeutic HIV-1 vaccines and cure concepts depends on monitoring bnAb plasma activity in people with HIV (PWH) on suppressive antiretroviral therapy (ART). To enable this, analytical strategies must be defined to reliably distinguish antibody-based neutralization from drug inhibition. Here, we explore strategies that either utilize drug-resistant viruses or remove drugs from plasma. We develop ART-DEX (ART dissociation and size exclusion), an approach which quantitatively separates drugs from plasma proteins following pH-triggered release allowing accurate definition of antibody-based neutralization. We demonstrate that ART-DEX, alone or combined with ART-resistant viruses, provides a highly effective and scalable means of assessing antibody neutralization during ART. Implementation of ART-DEX in standard neutralization protocols should be considered to enhance the analytical capabilities of studies evaluating bnAb therapeutics and therapeutic vaccines, furthering the development of advanced ART and HIV-1 cure strategies.
Collapse
Affiliation(s)
| | - Cristina Lozano
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Silvan Grosse-Holz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Martina Curcio
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Jule Greshake
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
2
|
Hogan V, Johnson WE. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023; 15:v15020274. [PMID: 36851488 PMCID: PMC9967133 DOI: 10.3390/v15020274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.
Collapse
|
3
|
Russell CJ. Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology. Curr Top Microbiol Immunol 2015; 385:93-116. [PMID: 25007844 PMCID: PMC7122338 DOI: 10.1007/82_2014_393] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Membrane fusion is not spontaneous. Therefore, enveloped viruses have evolved membrane-fusion mediating glycoproteins that, once activated, refold, and release energy that fuses viral and cellular membranes. The influenza A virus hemagglutinin (HA) protein is a prototypic structural class I viral fusion glycoprotein that, once primed by proteolytic cleavage, is activated by endosomal low pH to form a fusogenic "leash-in-grooves" hairpin structure. Low-pH induced HA protein refolding is an irreversible process, so acid exposure in the absence of a target membrane leads to virus inactivation. The HA proteins of diverse influenza virus subtypes isolated from a variety of species differ in their acid stabilities, or pH values at which irreversible HA protein conformational changes are triggered. Recently, efficient replication of highly pathogenic avian influenza (HPAI) viruses such as H5N1 in avian species has been associated with a relatively high HA activation pH. In contrast, a decrease in H5N1 HA activation pH has been shown to enhance replication and airborne transmission in mammals. Mutations that alter the acid stabilities of H1 and H3 HA proteins have also been discovered that influence the amantadine susceptibilities, replication rates, and pathogenicities of human influenza viruses. An understanding of the role of HA acid stability in influenza virus biology is expected to aid in identifying emerging viruses with increased pandemic potential and assist in developing live attenuated virus vaccines. Acid-induced HA protein activation, which has provided a paradigm for protein-mediated membrane fusion, is now identified as a novel determinant of influenza virus biology.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, MS 330, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA,
| |
Collapse
|
4
|
Steckbeck JD, Kuhlmann AS, Montelaro RC. Structural and functional comparisons of retroviral envelope protein C-terminal domains: still much to learn. Viruses 2014; 6:284-300. [PMID: 24441863 PMCID: PMC3917443 DOI: 10.3390/v6010284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/06/2014] [Indexed: 01/24/2023] Open
Abstract
Retroviruses are a family of viruses that cause a broad range of pathologies in animals and humans, from the apparently harmless, long-term genomic insertion of endogenous retroviruses, to tumors induced by the oncogenic retroviruses and acquired immunodeficiency syndrome (AIDS) resulting from human immunodeficiency virus infection. Disease can be the result of diverse mechanisms, including tumorigenesis induced by viral oncogenes or immune destruction, leading to the gradual loss of CD4 T-cells. Of the virally encoded proteins common to all retroviruses, the envelope (Env) displays perhaps the most diverse functionality. Env is primarily responsible for binding the cellular receptor and for effecting the fusion process, with these functions mediated by protein domains localized to the exterior of the virus. The remaining C-terminal domain may have the most variable functionality of all retroviral proteins. The C-terminal domains from three prototypical retroviruses are discussed, focusing on the different structures and functions, which include fusion activation, tumorigenesis and viral assembly and lifecycle influences. Despite these genetic and functional differences, however, the C-terminal domains of these viruses share a common feature in the modulation of Env ectodomain conformation. Despite their differences, perhaps each system still has information to share with the others.
Collapse
Affiliation(s)
- Jonathan D Steckbeck
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Anne-Sophie Kuhlmann
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Ronald C Montelaro
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
5
|
Multifaceted sequence-dependent and -independent roles for reovirus FAST protein cytoplasmic tails in fusion pore formation and syncytiogenesis. J Virol 2009; 83:12185-95. [PMID: 19759162 DOI: 10.1128/jvi.01667-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusogenic reoviruses utilize the FAST proteins, a novel family of nonstructural viral membrane fusion proteins, to induce cell-cell fusion and syncytium formation. Unlike the paradigmatic enveloped virus fusion proteins, the FAST proteins position the majority of their mass within and internal to the membrane in which they reside, resulting in extended C-terminal cytoplasmic tails (CTs). Using tail truncations, we demonstrate that the last 8 residues of the 36-residue CT of the avian reovirus p10 FAST protein and the last 20 residues of the 68-residue CT of the reptilian reovirus p14 FAST protein enhance, but are not required for, pore expansion and syncytium formation. Further truncations indicate that the membrane-distal 12 residues of the p10 and 47 residues of the p14 CTs are essential for pore formation and that a residual tail of 21 to 24 residues that includes a conserved, membrane-proximal polybasic region present in all FAST proteins is insufficient to maintain FAST protein fusion activity. Unexpectedly, a reextension of the tail-truncated, nonfusogenic p10 and p14 constructs with scrambled versions of the deleted sequences restored pore formation and syncytiogenesis, while reextensions with heterologous sequences partially restored pore formation but failed to rescue syncytiogenesis. The membrane-distal regions of the FAST protein CTs therefore exert multiple effects on the membrane fusion reaction, serving in both sequence-dependent and sequence-independent manners as positive effectors of pore formation, pore expansion, and syncytiogenesis.
Collapse
|
6
|
R-Peptide cleavage potentiates fusion-controlling isomerization of the intersubunit disulfide in Moloney murine leukemia virus Env. J Virol 2007; 82:2594-7. [PMID: 18094170 DOI: 10.1128/jvi.02039-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusion of the membrane of the Moloney murine leukemia virus (Mo-MLV) Env protein is facilitated by cleavage of the R peptide from the cytoplasmic tail of its TM subunit, but the mechanism for this effect has remained obscure. The fusion is also controlled by the isomerization of the intersubunit disulfide of the Env SU-TM complex. In the present study, we used several R-peptide-cleavage-inhibited virus mutants to show that the R peptide suppresses the isomerization reaction in both in vitro and in vivo assays. Thus, the R peptide affects early steps in the activation pathway of murine leukemia virus Env.
Collapse
|
7
|
Li M, Li ZN, Yao Q, Yang C, Steinhauer DA, Compans RW. Murine leukemia virus R Peptide inhibits influenza virus hemagglutinin-induced membrane fusion. J Virol 2006; 80:6106-14. [PMID: 16731949 PMCID: PMC1472558 DOI: 10.1128/jvi.02665-05] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic tail of the murine leukemia virus (MuLV) envelope (Env) protein is known to play an important role in regulating viral fusion activity. Upon removal of the C-terminal 16 amino acids, designated as the R peptide, the fusion activity of the Env protein is activated. To extend our understanding of the inhibitory effect of the R peptide and investigate the specificity of inhibition, we constructed chimeric influenza virus-MuLV hemagglutinin (HA) genes. The influenza virus HA protein is the best-studied membrane fusion model, and we investigated the fusion activities of the chimeric HA proteins. We compared constructs in which the coding sequence for the cytoplasmic tail of the influenza virus HA protein was replaced by that of the wild-type or mutant MuLV Env protein or in which the cytoplasmic tail sequence of the MuLV Env protein was added to the HA cytoplasmic domain. Enzyme-linked immunosorbent assays and Western blot analysis showed that all chimeric HA proteins were effectively expressed on the cell surface and cleaved by trypsin. In BHK21 cells, the wild-type HA protein had a significant ability after trypsin cleavage to induce syncytium formation at pH 5.1; however, neither the chimeric HA protein with the full-length cytoplasmic tail of MuLV Env nor the full-length HA protein followed by the R peptide showed any syncytium formation. When the R peptide was truncated or mutated, the fusion activity was partially recovered in the chimeric HA proteins. A low-pH conformational-change assay showed that similar conformational changes occurred for the wild-type and chimeric HA proteins. All chimeric HA proteins were capable of promoting hemifusion and small fusion pore formation, as shown by a dye redistribution assay. These results indicate that the R peptide of the MuLV Env protein has a sequence-dependent inhibitory effect on influenza virus HA protein-induced membrane fusion and that the inhibitory effect occurs at a late stage in fusion pore enlargement.
Collapse
Affiliation(s)
- Min Li
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
8
|
Merten CA, Stitz J, Braun G, Medvedovska J, Cichutek K, Buchholz CJ. Fusoselect: cell-cell fusion activity engineered by directed evolution of a retroviral glycoprotein. Nucleic Acids Res 2006; 34:e41. [PMID: 16540592 PMCID: PMC1408311 DOI: 10.1093/nar/gkl053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Membrane fusion plays a key role in many biological processes including vesicle trafficking, synaptic transmission, fertilization or cell entry of enveloped viruses. As a common feature the fusion process is mediated by distinct membrane proteins. We describe here 'Fusoselect', a universal procedure allowing the identification and engineering of molecular determinants for cell-cell fusion-activity by directed evolution. The system couples cell-cell fusion with the release of retroviral particles, but can principally be applied to membrane proteins of non-viral origin as well. As a model system, we chose a gamma-retroviral envelope protein, which naturally becomes fusion-active through proteolytic processing by the viral protease. The selection process evolved variants that, in contrast to the parental protein, mediated cell-cell fusion in absence of the viral protease. Detailed analysis of the variants revealed molecular determinants for fusion competence in the cytoplasmic tail (CT) of retroviral Env proteins and demonstrated the power of Fusoselect.
Collapse
Affiliation(s)
| | - Jörn Stitz
- Biotechnology and Bioengineering Group, Institute for Chemical and Bio-Engineering, Swiss Federal Institute of TechnologyCH-8093 Zurich, Switzerland
| | | | | | | | - Christian J. Buchholz
- To whom correspondence should be addressed. Tel: ++49 6103 77 4011; Fax: ++49 6103 771255;
| |
Collapse
|
9
|
Song C, Micoli K, Hunter E. Activity of the Mason-Pfizer monkey virus fusion protein is modulated by single amino acids in the cytoplasmic tail. J Virol 2005; 79:11569-79. [PMID: 16140734 PMCID: PMC1212599 DOI: 10.1128/jvi.79.18.11569-11579.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mason-Pfizer monkey virus (M-PMV) encodes a transmembrane glycoprotein with a 38-amino-acid-long cytoplasmic tail. After the release of the immature virus, a viral protease-mediated cleavage of the cytoplasmic tail (CT) results in the loss of 17 amino acids from the carboxy terminus and renders the envelope protein fusion competent. To investigate the role of individual amino acid residues in the CT in fusion, a series of mutations was introduced, and the effects of these mutations on glycoprotein biosynthesis and fusion were examined. Most of the alanine-scanning mutations in the CT had little effect on fusion activity. However, four amino acid substitutions (threonine 4, lysine 7, glutamine 9, and isoleucine 10) resulted in substantially increased fusogenicity, while six (leucine 2, phenylalanine 5, isoleucine 13, lysine 16, proline 17, and glycine 31) resulted in much-reduced fusion. Interestingly, the bulk of these mutations are located upstream of the CT cleavage site in a region that has the potential to form a coiled-coil in the Env trimer. Substitutions at glutamine 9 and isoleucine 10 with alanine had the most dramatic positive effect and resulted in the formation of large syncytia. Taken together, these data demonstrate that individual residues within the cytoplasmic domain of M-PMV Env can modulate, in both a positive and negative manner, biological functions that are associated with the extracellular domains of the glycoprotein complex.
Collapse
Affiliation(s)
- Chisu Song
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
10
|
Abstract
Every enveloped virus fuses its membrane with a host cell membrane, thereby releasing its genome into the cytoplasm and initiating the viral replication cycle. In each case, one or a small set of viral surface transmembrane glycoproteins mediates fusion. Viral fusion proteins vary in their mode of activation and in structural class. These features combine to yield many different fusion mechanisms. Despite their differences, common principles for how fusion proteins function are emerging: In response to an activating trigger, the metastable fusion protein converts to an extended, in some cases rodlike structure, which inserts into the target membrane via its fusion peptide. A subsequent conformational change causes the fusion protein to fold back upon itself, thereby bringing its fusion peptide and its transmembrane domain-and their attached target and viral membranes-into intimate contact. Fusion ensues as the initial lipid stalk progresses through local hemifusion, and then opening and enlargement of a fusion pore. Here we review recent advances in our understanding of how fusion proteins are activated, how fusion proteins change conformation during fusion, and what is happening to the lipids during fusion. We also briefly discuss the therapeutic potential of fusion inhibitors in treating viral infections.
Collapse
Affiliation(s)
- Mark Marsh
- Cell Biology Unit, MRC-LMCB, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
11
|
Matsuyama S, Delos SE, White JM. Sequential roles of receptor binding and low pH in forming prehairpin and hairpin conformations of a retroviral envelope glycoprotein. J Virol 2004; 78:8201-9. [PMID: 15254191 PMCID: PMC446138 DOI: 10.1128/jvi.78.15.8201-8209.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 03/23/2004] [Indexed: 11/20/2022] Open
Abstract
A general model has been proposed for the fusion mechanisms of class I viral fusion proteins. According to this model a metastable trimer, anchored in the viral membrane through its transmembrane domain, transits to a trimeric prehairpin intermediate, anchored at its opposite end in the target membrane through its fusion peptide. A subsequent refolding event creates a trimer of hairpins (often termed a six-helix bundle) in which the previously well-separated transmembrane domain and fusion peptide (and their attached membranes) are brought together, thereby driving membrane fusion. While there is ample biochemical and structural information on the trimer-of-hairpins conformation of class I viral fusion proteins, less is known about intermediate states between native metastable trimers and the final trimer of hairpins. In this study we analyzed conformational states of the transmembrane subunit (TM), the fusion subunit, of the Env glycoprotein of the subtype A avian sarcoma and leukosis virus (ASLV-A). By analyzing forms of EnvA TM on mildly denaturing sodium dodecyl sulfate gels we identified five conformational states of EnvA TM. Following interaction of virions with a soluble form of the ASLV-A receptor at 37 degrees C, the metastable form of EnvA TM (which migrates at 37 kDa) transits to a 70-kDa and then to a 150-kDa species. Following subsequent exposure to a low pH (or an elevated temperature or the fusion promoting agent chlorpromazine), an additional set of bands at >150 kDa, and then a final band at 100 kDa, forms. Both an EnvA C-helix peptide (which inhibits virus fusion and infectivity) and the fusion-inhibitory agent lysophosphatidylcholine inhibit the formation of the >150- and 100-kDa bands. Our data are consistent with the 70- and 150-kDa bands representing precursor and fully formed prehairpin conformations of EnvA TM. Our data are also consistent with the >150-kDa bands representing higher-order oligomers of EnvA TM and with the 100-kDa band representing the fully formed six-helix bundle. In addition to resolving fusion-relevant conformational intermediates of EnvA TM, our data are compatible with a model in which the EnvA protein is activated by its receptor (at neutral pH and a temperature greater than or equal to room temperature) to form prehairpin conformations of EnvA TM, and in which subsequent exposure to a low pH is required to stabilize the final six-helix bundle, which drives a later stage of fusion.
Collapse
Affiliation(s)
- Shutoku Matsuyama
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908-0732, USA
| | | | | |
Collapse
|
12
|
Danis C, Deschambeault J, Do Carmo S, Cohen EA, Rassart E, Lemay G. The tyrosine-based YXXØ targeting motif of murine leukemia virus envelope glycoprotein affects pathogenesis. Virology 2004; 324:173-83. [PMID: 15183064 DOI: 10.1016/j.virol.2004.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 01/29/2004] [Accepted: 03/12/2004] [Indexed: 11/25/2022]
Abstract
Retroviruses, such as human and simian immunodeficiency viruses (HIV and SIV), and murine leukemia viruses (MuLV), harbor a tyrosine-based motif in the intracytoplasmic domain of their envelope glycoprotein. This motif can act as an endocytosis signal or as a targeting signal, restricting viral budding at specific cell surface membrane domains. In the present study, proviral DNA of the ecotropic Cas-Br-E strain of MuLV was modified by substitution or deletion of the critical tyrosine residue. Mutant viruses lost basolateral targeting in polarized MDCK epithelial cells while expression level of the glycoprotein at the cell surface was not affected. This suggests that the tyrosine-based motif in MuLV does not act as an endocytosis signal. Only a small delay in the appearance of disease was observed in inoculated mice. In contrast, a striking change in the pathology was observed with enlarged thymus and lymph nodes in animals inoculated with mutant viruses.
Collapse
Affiliation(s)
- Carole Danis
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Sandrin V, Muriaux D, Darlix JL, Cosset FL. Intracellular trafficking of Gag and Env proteins and their interactions modulate pseudotyping of retroviruses. J Virol 2004; 78:7153-64. [PMID: 15194792 PMCID: PMC421692 DOI: 10.1128/jvi.78.13.7153-7164.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoproteins derived from most retroviruses and from several families of enveloped viruses can form infectious pseudotypes with murine leukemia virus (MLV) and lentiviral core particles, like the MLV envelope glycoproteins (Env) that are incorporated on either virus type. However, coexpression of a given glycoprotein with heterologous core proteins does not always give rise to highly infectious viral particles, and restrictions on pseudotype formation have been reported. To understand the mechanisms that control the recruitment of viral surface glycoproteins on lentiviral and retroviral cores, we exploited the fact that the feline endogenous retrovirus RD114 glycoprotein does not efficiently pseudotype lentiviral cores derived from simian immunodeficiency virus, whereas it is readily incorporated onto MLV particles. Our results indicate that recruitment of glycoproteins by the MLV and lentiviral core proteins occurs in intracellular compartments and not at the cell surface. We found that Env and core protein colocalization in intracytoplasmic vesicles is required for pseudotype formation. By investigating MLV/RD114 Env chimeras, we show that signals in the cytoplasmic tail of either glycoprotein differentially influenced their intracellular localization; that of MLV allows endosomal localization and hence recruitment by both lentiviral and MLV cores. Furthermore, we found that upon membrane binding, MLV core proteins could relocalize Env glycoproteins in late endosomes and allow their incorporation on viral particles. Thus, intracellular colocalization, as well as interactions between Env and core proteins, may influence the recruitment of the glycoprotein onto viral particles and generate infectious pseudotyped viruses.
Collapse
Affiliation(s)
- Virginie Sandrin
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, INSERM U412, IFR128 BioSciences Lyon-Gerland, Ecole Normal Supérieure de Lyon, France
| | | | | | | |
Collapse
|
14
|
Taylor GM, Sanders DA. Structural criteria for regulation of membrane fusion and virion incorporation by the murine leukemia virus TM cytoplasmic domain. Virology 2003; 312:295-305. [PMID: 12919735 DOI: 10.1016/s0042-6822(03)00297-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cytoplasmic domains of viral glycoproteins influence the trafficking and subcellular localization of the glycoproteins and their incorporation into virions. They also promote correct virus morphology and viral budding. The cytoplasmic domains of murine-leukemia-virus envelope-protein TM subunits regulate membrane fusion. During virion maturation the carboxy-terminal 16 amino acid residues of the TM protein are removed by the retroviral protease. Deletion of these residues activates envelope-protein-mediated membrane fusion. Our quantitative analysis of the effects of Moloney murine leukemia virus TM mutations on envelope-protein function support the proposition that a trimeric coiled coil in the TM cytoplasmic domain inhibits fusion. The data demonstrate that cleavage of the TM cytoplasmic domain is not required for viral entry and provide evidence for a model in which fusogenic and nonfusogenic conformations of the envelope protein exists in an equilibrium that is regulated by the cytoplasmic domain. In addition, a conserved tyrosine residue in the TM cytoplasmic domain was shown to play an important role in envelope-protein incorporation into retroviral particles.
Collapse
Affiliation(s)
- Gwen M Taylor
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | |
Collapse
|
15
|
Kubo Y, Amanuma H. Mutational analysis of the R peptide cleavage site of Moloney murine leukaemia virus envelope protein. J Gen Virol 2003; 84:2253-2257. [PMID: 12867658 DOI: 10.1099/vir.0.19126-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Moloney murine leukaemia virus (MoMLV) enters host cells by membrane fusion between the viral envelope and the host cell membrane. The cytoplasmic tail (R peptide) of the MoMLV envelope protein (Env) is cleaved by the viral protease during virion maturation. R peptide-truncated Env induces syncytia in susceptible cells but R peptide-containing Env does not, indicating that the R peptide inhibits membrane fusion. To examine the function of amino acid residues at the R peptide cleavage site in virus entry, mutant Env expression plasmids containing amino acid substitutions at these cleavage site residues were constructed. Some of these mutants induced syncytia in NIH 3T3 cells, even though they expressed the R peptide, indicating the importance of these residues for membrane fusion inhibition by the R peptide. Some mutants in which R peptide cleavage was detected had comparable transduction efficiency to wild-type Env, but mutants in which R peptide cleavage was not detected had lower transduction efficiency than wild-type Env. This result strongly supports that R peptide cleavage is required for virus entry.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Department of Preventive Medicine and AIDS Research, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Molecular Cell Science Laboratory, RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Hiroshi Amanuma
- Molecular Cell Science Laboratory, RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Song C, Dubay SR, Hunter E. A tyrosine motif in the cytoplasmic domain of mason-pfizer monkey virus is essential for the incorporation of glycoprotein into virions. J Virol 2003; 77:5192-200. [PMID: 12692221 PMCID: PMC153939 DOI: 10.1128/jvi.77.9.5192-5200.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mason-Pfizer monkey virus (M-PMV) encodes a transmembrane (TM) glycoprotein with a 38-amino-acid-long cytoplasmic domain. After the release of the immature virus, a viral protease-mediated cleavage occurs within the cytoplasmic domain, resulting in the loss of 17 amino acids from the carboxy terminus. This maturational cleavage occurs between a histidine at position 21 and a tyrosine at position 22 in the cytoplasmic domain of the TM protein. We have demonstrated previously that a truncated TM glycoprotein with a 21-amino-acid-long cytoplasmic tail showed enhanced fusogenicity but could not be incorporated into virions. These results suggest that postassembly cleavage of the cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. To investigate the contribution of tyrosine residues to the function of the glycoprotein complex and virus replication, we have introduced amino acid substitutions into two tyrosine residues found in the cytoplasmic domain. The effects of these mutations on glycoprotein biosynthesis and function, as well as on virus infectivity, have been examined. Mutation of tyrosine 34 to alanine had little effect on glycoprotein function. In contrast, substitutions at tyrosine 22 modulated fusion activity in either a positive or negative manner, depending on the substituting amino acid. Moreover, any nonaromatic substitution at this position blocked glycoprotein incorporation into virions and abolished infectivity. These results demonstrate that M-PMV employs a tyrosine signal for the selective incorporation of glycoprotein into budding virions. Antibody uptake studies show that tyrosine 22 is part of an efficient internalization signal in the cytoplasmic domain of the M-PMV glycoprotein that can also be positively and negatively influenced by changes at this site.
Collapse
Affiliation(s)
- Chisu Song
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
17
|
Aguilar HC, Anderson WF, Cannon PM. Cytoplasmic tail of Moloney murine leukemia virus envelope protein influences the conformation of the extracellular domain: implications for mechanism of action of the R Peptide. J Virol 2003; 77:1281-91. [PMID: 12502845 PMCID: PMC140788 DOI: 10.1128/jvi.77.2.1281-1291.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope (Env) protein of Moloney murine leukemia virus (MoMuLV) is a homotrimeric complex whose monomers consist of linked surface (SU) and transmembrane (TM) proteins cleaved from a precursor protein by a cellular protease. In addition, a significant fraction of virion-associated TM is further processed by the viral protease to remove the C-terminal 16 amino acids of the cytoplasmic domain, the R peptide. This cleavage greatly enhances the fusogenicity of the protein and is necessary for the formation of a fully functional Env protein complex. We have previously proposed that R peptide cleavage enhances fusogenicity by altering the conformation of the ectodomain of the protein (Y. Zhao et al., J. Virol. 72:5392-5398, 1998). Using a series of truncation and point mutants of MoMuLV Env, we now provide direct biochemical and immunological evidence that the cytoplasmic tail and the membrane-spanning region of Env can influence the overall structure of the ectodomain of the protein and alter the strength of the SU-TM interaction. The R-peptide-truncated form of the protein, in particular, exhibits a markedly different conformation than the full-length protein.
Collapse
Affiliation(s)
- Hector C Aguilar
- Gene Therapy Laboratories, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | | | | |
Collapse
|
18
|
Seth S, Vincent A, Compans RW. Mutations in the cytoplasmic domain of a paramyxovirus fusion glycoprotein rescue syncytium formation and eliminate the hemagglutinin-neuraminidase protein requirement for membrane fusion. J Virol 2003; 77:167-78. [PMID: 12477822 PMCID: PMC140627 DOI: 10.1128/jvi.77.1.167-178.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SER virus is closely related to the paramyxovirus simian virus 5 (SV5) but is defective in syncytium formation. The SER virus F protein has a long cytoplasmic tail (CT) domain that has been shown to inhibit membrane fusion, and this inhibitory effect could be eliminated by truncation of the C-terminal sequence (S. Tong, M. Li, A. Vincent, R. W. Compans, E. Fritsch, R. Beier, C. Klenk, M. Ohuchi, and H.-D. Klenk, Virology 301:322-333, 2002). To study the sequence requirements for regulation of fusion, codons for SER virus F protein residues spanning amino acids 535 to 542 and 548 were mutated singly to alanines, and the two leucine residues at positions 539 and 548 were mutated doubly to alanines. We found that leu-539 and leu-548 in the CT domain played a critical role in the inhibition of fusion, as mutation of the two leucines singly to alanines partially rescued fusion, and the double mutation L539, 548A completely rescued syncytium formation. Mutation of charged residues to alanines had little effect on the suppression of fusion activity, whereas the mutation of serine residues to alanines enhanced fusion activity significantly. The L539, 548A mutant also showed extensive syncytium formation when expressed without the SER virus HN protein. By constructing a chimeric SV5-SER virus F CT protein, we also found that the inhibitory effect of the long CT of the SER virus F protein could be partially transferred to the SV5 F protein. These results demonstrate that an elongated CT of a paramyxovirus F protein interferes with membrane fusion in a sequence-dependent manner.
Collapse
Affiliation(s)
- Shaguna Seth
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
19
|
Li M, Yang C, Tong S, Weidmann A, Compans RW. Palmitoylation of the murine leukemia virus envelope protein is critical for lipid raft association and surface expression. J Virol 2002; 76:11845-52. [PMID: 12414927 PMCID: PMC136891 DOI: 10.1128/jvi.76.23.11845-11852.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate the association of the murine leukemia virus (MuLV) Env protein with lipid rafts, we compared wild-type and palmitoylation-deficient mutant Env proteins by using extraction with the mild detergent Triton X-100 (TX-100) followed by a sucrose gradient flotation assay. We found that the wild-type MuLV Env protein was resistant to ice-cold TX-100 treatment and floated to the top of the gradients. In contrast, we observed that the palmitoylation-deficient mutant Env protein was mostly soluble when extracted by ice-cold TX-100 and stayed at the bottom of the gradients. Both the wild-type and mutant Env proteins were found to be soluble when treated with methyl-beta-cyclodextrin before extraction with ice-cold TX-100 or when treated with ice-cold octyl-beta-glucoside instead of TX-100. These results indicate that the MuLV Env protein is associated with lipid rafts and that palmitoylation of the Env protein is critical for lipid raft association. Although the palmitoylation-deficient Env mutant was synthesized at a level similar to that of the wild-type Env, it was found to be expressed at reduced levels on the cell surface. We observed syncytium formation activity with both the wild-type and mutant Env proteins, indicating that palmitoylation or raft association is not required for MuLV viral fusion activity.
Collapse
Affiliation(s)
- Min Li
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
20
|
Tong S, Li M, Vincent A, Compans RW, Fritsch E, Beier R, Klenk C, Ohuchi M, Klenk HD. Regulation of fusion activity by the cytoplasmic domain of a paramyxovirus F protein. Virology 2002; 301:322-333. [PMID: 12359434 DOI: 10.1006/viro.2002.1594] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SER virus is a member of the family Paramyxoviridae, genus Rubulavirus, which has been isolated from pigs. It is very closely related to SV5 virus serologically, in protein profile, and in nucleotide sequence. However, unlike SV5, SER induces minimal syncytium formation in infected CV-1 or BHK cells. Fluorescence transfer experiments between labeled erythrocytes and infected MDBK cells revealed that SER also induces hemifusion and pore formation with reduced efficiency. The virion polypeptide profiles of SER and SV5 are very similar, except that the SER F1 subunit shows an apparent molecular weight that is about 2 kDa higher than that of SV5. Comparison of the deduced amino acid sequences revealed the SER F (551 aa) to be longer than SV5 F (529 aa) by 22 residues in the cytoplasmic tail (CT) domain. The HN and M gene sequences of the viruses were found to be very similar. The SER F showed minimal fusion activity when coexpressed with either SV5 or SER HN. In contrast, SV5 F was highly fusogenic when coexpressed with either HN protein, indicating that the restricted fusion capacity of SER virus is a property of its F protein. Truncation in the CT of SER F by 22 residues completely rescued its ability to cause syncytium formation, whereas other truncations rescued syncytium formation partially. These results demonstrate that an elongated CT of a paramyxovirus F protein suppresses its membrane fusion activity.
Collapse
Affiliation(s)
- S Tong
- Department of Microbiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|