1
|
Liu S, Schlagowski S, Großkopf AK, Khizanishvili N, Yang X, Wong SW, Guzmán EM, Backovic M, Scribano S, Cordsmeier A, Ensser A, Hahn AS. Kaposi's sarcoma-associated herpesvirus (KSHV) gB dictates a low-pH endocytotic entry pathway as revealed by a dual-fluorescent virus system and a rhesus monkey rhadinovirus expressing KSHV gB. PLoS Pathog 2025; 21:e1012846. [PMID: 39820197 PMCID: PMC11801733 DOI: 10.1371/journal.ppat.1012846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 02/06/2025] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
Interaction with host cell receptors initiates internalization of Kaposi's sarcoma-associated herpesvirus (KSHV) particles. Fusion of viral and host cell membranes, which is followed by release of the viral capsid into the cytoplasm, is executed by the core fusion machinery composed of glycoproteins H (gH), L (gL), and B (gB), that is common to all herpesviruses. KSHV infection has been shown to be sensitive to inhibitors of vacuolar acidification, suggestive of low pH as a fusion trigger. To analyze KSHV entry at the single particle level we developed dual-fluorescent recombinant KSHV strains that incorporate fluorescent protein-tagged glycoproteins and capsid proteins. In addition, we generated a hybrid rhesus monkey rhadinovirus (RRV) that expresses KSHV gB in place of RRV gB to analyze gB-dependent differences in infection pathways. We demonstrated lytic reactivation and infectivity of dual-fluorescent KSHV. Confocal microscopy was used to quantify co-localization of fluorescently-tagged glycoproteins and capsid proteins. Using the ratio of dual-positive KSHV particles to single-positive capsids as an indicator of fusion events we established KSHV fusion kinetics upon infection of different target cells with marked differences in the "time-to-fusion" between cell types. Inhibition of vesicle acidification prevented KSHV particle-cell fusion, implicating low vesicle pH as a requirement. These findings were corroborated by comparison of RRV-YFP wildtype reporter virus and RRV-YFP encoding KSHV gB in place of RRV gB. While RRV wt infection of receptor-overexpressing cells was unaffected by inhibition of vesicle acidification, RRV-YFP expressing KSHV gB was sensitive to Bafilomycin A1, an inhibitor of vacuolar acidification. Single- and dual-fluorescent KSHV strains eliminate the need for virus-specific antibodies and enable the tracking of single viral particles during entry and fusion. Together with a hybrid RRV expressing KSHV gB and classical fusion assays, these novel tools identify low vesicle pH as an endocytotic trigger for KSHV membrane fusion.
Collapse
Affiliation(s)
- Shanchuan Liu
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sarah Schlagowski
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Anna K. Großkopf
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Natalia Khizanishvili
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Xiaoliang Yang
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States of America
| | - Elina M. Guzmán
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Stefano Scribano
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Arne Cordsmeier
- Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Armin Ensser
- Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander S. Hahn
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
2
|
Zhen J, Chen J, Huang H, Liao S, Liu S, Yuan Y, Sun R, Longnecker R, Wu TT, Zhou ZH. Structures of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features. J Virol 2024; 98:e0119424. [PMID: 39470208 PMCID: PMC11575322 DOI: 10.1128/jvi.01194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are classified into the gammaherpesvirus subfamily of Herpesviridae, which stands out from its alpha- and betaherpesvirus relatives due to the tumorigenicity of its members. Although structures of human alpha- and betaherpesviruses by cryogenic electron tomography (cryoET) have been reported, reconstructions of intact human gammaherpesvirus virions remain elusive. Here, we structurally characterize extracellular virions of EBV and KSHV by deep learning-enhanced cryoET, resolving both previously known monomorphic capsid structures and previously unknown pleomorphic features beyond the capsid. Through subtomogram averaging and subsequent tomogram-guided sub-particle reconstruction, we determined the orientation of KSHV nucleocapsids from mature virions with respect to the portal to provide spatial context for the tegument within the virion. Both EBV and KSHV have an eccentric capsid position and polarized distribution of tegument. Tegument species span from the capsid to the envelope and may serve as scaffolds for tegumentation and envelopment. The envelopes of EBV and KSHV are less densely populated with glycoproteins than those of herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), representative members of alpha- and betaherpesviruses, respectively. Also, we observed fusion protein gB trimers exist within triplet arrangements in addition to standalone complexes, which is relevant to understanding dynamic processes such as fusion pore formation. Taken together, this study reveals nuanced yet important differences in the tegument and envelope architectures among human herpesviruses and provides insights into their varied cell tropism and infection. IMPORTANCE Discovered in 1964, Epstein-Barr virus (EBV) is the first identified human oncogenic virus and the founding member of the gammaherpesvirus subfamily. In 1994, another cancer-causing virus was discovered in lesions of AIDS patients and later named Kaposi's sarcoma-associated herpesvirus (KSHV), the second human gammaherpesvirus. Despite the historical importance of EBV and KSHV, technical difficulties with isolating large quantities of these viruses and the pleiomorphic nature of their envelope and tegument layers have limited structural characterization of their virions. In this study, we employed the latest technologies in cryogenic electron microscopy (cryoEM) and tomography (cryoET) supplemented with an artificial intelligence-powered data processing software package to reconstruct 3D structures of the EBV and KSHV virions. We uncovered unique properties of the envelope glycoproteins and tegument layers of both EBV and KSHV. Comparison of these features with their non-tumorigenic counterparts provides insights into their relevance during infection.
Collapse
Affiliation(s)
- James Zhen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Haigen Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Shiqing Liao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - Yan Yuan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Zhen J, Chen J, Huang H, Liao S, Liu S, Yuan Y, Sun R, Longnecker R, Wu TT, Zhou ZH. Structures of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602672. [PMID: 39026862 PMCID: PMC11257568 DOI: 10.1101/2024.07.09.602672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are classified into the gammaherpesvirus subfamily of Herpesviridae , which stands out from its alpha- and betaherpesvirus relatives due to the tumorigenicity of its members. Although structures of human alpha- and betaherpesviruses by cryogenic electron tomography (cryoET) have been reported, reconstructions of intact human gammaherpesvirus virions remain elusive. Here, we structurally characterize extracellular virions of EBV and KSHV by deep learning-enhanced cryoET, resolving both previously known monomorphic capsid structures and previously unknown pleomorphic features beyond the capsid. Through subtomogram averaging and subsequent tomogram-guided sub-particle reconstruction, we determined the orientation of KSHV nucleocapsids from mature virions with respect to the portal to provide spatial context for the tegument within the virion. Both EBV and KSHV have an eccentric capsid position and polarized distribution of tegument. Tegument species span from the capsid to the envelope and may serve as scaffolds for tegumentation and envelopment. The envelopes of EBV and KSHV are less densely populated with glycoproteins than those of herpes simplex virus 1 and human cytomegalovirus, representative members of alpha- and betaherpesviruses, respectively. This population density of glycoproteins correlates with their relative infectivity against HEK293T cells. Also, we observed fusion protein gB trimers exist within triplet arrangements in addition to standalone complexes, which is relevant to understanding dynamic processes such as fusion pore formation. Taken together, this study reveals nuanced yet important differences in the tegument and envelope architectures among human herpesviruses and provides insights into their varied cell tropism and infection. Importance Discovered in 1964, Epstein-Barr virus (EBV) is the first identified human oncogenic virus and the founding member of the gammaherpesvirus subfamily. In 1994, another cancer-causing virus was discovered in lesions of AIDS patients and later named Kaposi's sarcoma-associated herpesvirus (KSHV), the second human gammaherpesvirus. Despite the historical importance of EBV and KSHV, technical difficulties with isolating large quantities of these viruses and the pleiomorphic nature of their envelope and tegument layers have limited structural characterization of their virions. In this study, we employed the latest technologies in cryogenic electron microscopy (cryoEM) and tomography (cryoET) supplemented with an artificial intelligence-powered data processing software package to reconstruct 3D structures of the EBV and KSHV virions. We uncovered unique properties of the envelope glycoproteins and tegument layers of both EBV and KSHV. Comparison of these features with their non-tumorigenic counterparts provides insights into their relevance during infection.
Collapse
|
4
|
The Portal Vertex of KSHV Promotes Docking of Capsids at the Nuclear Pores. Viruses 2021; 13:v13040597. [PMID: 33807444 PMCID: PMC8065994 DOI: 10.3390/v13040597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-related herpesvirus. Like other herpesviruses, the KSHV icosahedral capsid includes a portal vertex, composed of 12 protein subunits encoded by open reading frame (ORF) 43, which enables packaging and release of the viral genome into the nucleus through the nuclear pore complex (NPC). Capsid vertex-specific component (CVSC) tegument proteins, which directly mediate docking at the NPCs, are organized on the capsid vertices and are enriched on the portal vertex. Whether and how the portal vertex is selected for docking at the NPC is unknown. Here, we investigated the docking of incoming ORF43-null KSHV capsids at the NPCs, and describe a significantly lower fraction of capsids attached to the nuclear envelope compared to wild-type (WT) capsids. Like WT capsids, nuclear envelope-associated ORF43-null capsids co-localized with different nucleoporins (Nups) and did not detach upon salt treatment. Inhibition of nuclear export did not alter WT capsid docking. As ORF43-null capsids exhibit lower extent of association with the NPCs, we conclude that although not essential, the portal has a role in mediating the interaction of the CVSC proteins with Nups, and suggest a model whereby WT capsids can dock at the nuclear envelope through a non-portal penton vertex, resulting in an infection 'dead end'.
Collapse
|
5
|
McNamara RP, Dittmer DP. Modern Techniques for the Isolation of Extracellular Vesicles and Viruses. J Neuroimmune Pharmacol 2020. [PMID: 31512168 DOI: 10.1007/s11481-%20019-09874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracellular signaling is pivotal to maintain organismal homeostasis. A quickly emerging field of interest within extracellular signaling is the study of extracellular vesicles (EV), which act as messaging vehicles for nucleic acids, proteins, metabolites, lipids, etc. from donor cells to recipient cells. This transfer of biologically active material within a vesicular body is similar to the infection of a cell through a virus particle, which transfers genetic material from one cell to another to preserve an infection state, and viruses are known to modulate EV. Although considerable heterogeneity exists within EV and viruses, this review focuses on those that are small (< 200 nm in diameter) and of relatively low density (< 1.3 g/mL). A multitude of isolation methods for EV and virus particles exist. In this review, we present an update on methods for their isolation, purification, and phenotypic characterization. We hope that the information we provide will be of use to basic science and clinical investigators, as well as biotechnologists in this emerging field. Graphical Abstract.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Oktafiani D, Megasari NL, Fitriana E, Nasronudin, Lusida MI, Soetjipto. Human herpes virus 8 antibodies in HIV-positive patients in Surabaya, Indonesia. Infect Dis Rep 2020; 12:8746. [PMID: 32874472 PMCID: PMC7447943 DOI: 10.4081/idr.2020.8746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Background Human herpesvirus 8 (HHV-8) infection is etiologically related to Kaposi’s sarcoma. Antibodies directed against HHV-8 can be detected in 80-95% of HIV-seropositive patients with KS. HHV-8 serological tests have been done in several countries in Southeast Asia such as Malaysia, and Thailand however no serological data is available in Indonesia. This study was to examine the presence of HHV- 8 antibodies in HIV-positive patients in Surabaya, Indonesia. Material and methods Ninety-one serum samples were collected from HIVpositive patients in Surabaya, Indonesia. Human immunodeficiency virus-positive serum samples were collected from 10 homosexual men, 25 intravenous drug users (IVDUs) and 56 heterosexuals. Serums were then tested for the presence of HHV-8 antibody by using sandwich ELISA (Abbexa Ltd, Cambridge, UK). Results The total of 91 HIV-infected were testing with antibodies to HHV-8 using enzyme-linked immunosorbent assay. Antibodies of HHV-8 were detected in 7/91 (7.7%) of the samples. According to a gender, six men (85.7%) and a women (14.3%) were positive of HHV-8 antibodies. No correlation regarding the gender and age from this study. The antibodies of HHV-8 was detected among intravenous drug users (IVDUs) men 5/7 (42.8%) and 2/7 (28.6%) from homosexual and heterosexual, respectively. Conclusion This study found the presence of HHV-8 antibodies in 7.7% of patients in Surabaya, Indonesia. This finding was higher more than Southeast Asian countries. The patients with a positive result could suggest measures to prevent HHV-8 infection.
Collapse
Affiliation(s)
- Devi Oktafiani
- Doctoral of Medicine Program, Faculty of Medicine, Universitas Airlangga
| | - Ni LuhAyu Megasari
- Doctoral of Medicine Program, Faculty of Medicine, Universitas Airlangga.,Institute of Tropical Disease
| | - Elsa Fitriana
- Doctoral of Medicine Program, Faculty of Medicine, Universitas Airlangga
| | - Nasronudin
- Universitas Airlangga Hospital, Surabaya, Indonesia.,Institute of Tropical Disease
| | | | - Soetjipto
- Universitas Airlangga Hospital, Surabaya, Indonesia.,Institute of Tropical Disease.,Department of Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
7
|
McNamara RP, Dittmer DP. Modern Techniques for the Isolation of Extracellular Vesicles and Viruses. J Neuroimmune Pharmacol 2019; 15:459-472. [PMID: 31512168 DOI: 10.1007/s11481-019-09874-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
Extracellular signaling is pivotal to maintain organismal homeostasis. A quickly emerging field of interest within extracellular signaling is the study of extracellular vesicles (EV), which act as messaging vehicles for nucleic acids, proteins, metabolites, lipids, etc. from donor cells to recipient cells. This transfer of biologically active material within a vesicular body is similar to the infection of a cell through a virus particle, which transfers genetic material from one cell to another to preserve an infection state, and viruses are known to modulate EV. Although considerable heterogeneity exists within EV and viruses, this review focuses on those that are small (< 200 nm in diameter) and of relatively low density (< 1.3 g/mL). A multitude of isolation methods for EV and virus particles exist. In this review, we present an update on methods for their isolation, purification, and phenotypic characterization. We hope that the information we provide will be of use to basic science and clinical investigators, as well as biotechnologists in this emerging field. Graphical Abstract.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
8
|
Gong D, Dai X, Jih J, Liu YT, Bi GQ, Sun R, Zhou ZH. DNA-Packing Portal and Capsid-Associated Tegument Complexes in the Tumor Herpesvirus KSHV. Cell 2019; 178:1329-1343.e12. [PMID: 31447177 PMCID: PMC6753055 DOI: 10.1016/j.cell.2019.07.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/16/2019] [Accepted: 07/17/2019] [Indexed: 01/07/2023]
Abstract
Assembly of Kaposi's sarcoma-associated herpesvirus (KSHV) begins at a bacteriophage-like portal complex that nucleates formation of an icosahedral capsid with capsid-associated tegument complexes (CATCs) and facilitates translocation of an ∼150-kb dsDNA genome, followed by acquisition of a pleomorphic tegument and envelope. Because of deviation from icosahedral symmetry, KSHV portal and tegument structures have largely been obscured in previous studies. Using symmetry-relaxed cryo-EM, we determined the in situ structure of the KSHV portal and its interactions with surrounding capsid proteins, CATCs, and the terminal end of KSHV's dsDNA genome. Our atomic models of the portal and capsid/CATC, together with visualization of CATCs' variable occupancy and alternate orientation of CATC-interacting vertex triplexes, suggest a mechanism whereby the portal orchestrates procapsid formation and asymmetric long-range determination of CATC attachment during DNA packaging prior to pleomorphic tegumentation/envelopment. Structure-based mutageneses confirm that a triplex deep binding groove for CATCs is a hotspot that holds promise for antiviral development.
Collapse
Affiliation(s)
- Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinghong Dai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan Jih
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yun-Tao Liu
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China (USTC), Hefei, Anhui 230026, China
| | - Guo-Qiang Bi
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China (USTC), Hefei, Anhui 230026, China
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Dünn-Kittenplon DD, Kalt I, Lellouche JPM, Sarid R. The KSHV portal protein ORF43 is essential for the production of infectious viral particles. Virology 2019; 529:205-215. [PMID: 30735904 DOI: 10.1016/j.virol.2019.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 02/09/2023]
Abstract
Herpesvirus capsid assembly involves cleavage and packaging of the viral genome. The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 43 (orf43) encodes a putative portal protein. The portal complex functions as a gate through which DNA is packaged into the preformed procapsids, and is injected into the cell nucleus upon infection. The amino acid sequence of the portal proteins is conserved among herpesviruses. Here, we generated an antiserum to ORF43 and determined late expression kinetics of ORF43 along with its nuclear localization. We generated a recombinant KSHV mutant, which fails to express ORF43 (BAC16-ORF43-null). Assembled capsids were observed upon lytic induction of this virus; however, the released virions lacked viral DNA and thus could not establish infection. Ectopic expression of ORF43 rescued the ability to produce infectious particles. ORF43 antiserum and the recombinant ORF43-null virus can provide an experimental system for further studies of the portal functions and its interactions.
Collapse
Affiliation(s)
- Daniela Dana Dünn-Kittenplon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Jean-Paul Moshe Lellouche
- Department of Chemistry, Bar Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
10
|
Novel Role of vBcl2 in the Virion Assembly of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2018; 92:JVI.00914-17. [PMID: 29167347 DOI: 10.1128/jvi.00914-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022] Open
Abstract
The viral Bcl-2 homolog (vBcl2) of Kaposi's sarcoma-associated herpesvirus (KSHV) displays efficient antiapoptotic and antiautophagic activity through its central BH3 domain, which functions to prolong the life span of virus-infected cells and ultimately enhances virus replication and latency. Independent of its antiapoptotic and antiautophagic activity, vBcl2 also plays an essential role in KSHV lytic replication through its amino-terminal amino acids (aa) 11 to 20. Here, we report a novel molecular mechanism of vBcl2-mediated regulation of KSHV lytic replication. vBcl2 specifically bound the tegument protein open reading frame 55 (ORF55) through its amino-terminal aa 11 to 20, allowing their association with virions. Consequently, the vBcl2 peptide derived from vBcl2 aa 11 to 20 effectively disrupted the interaction between vBcl2 and ORF55, inhibiting the incorporation of the ORF55 tegument protein into virions. This study provides new insight into vBcl2's function in KSHV virion assembly that is separable from its inhibitory role in host apoptosis and autophagy.IMPORTANCE KSHV, an important human pathogen accounting for a large percentage of virally caused cancers worldwide, has evolved a variety of stratagems for evading host immune responses to establish lifelong persistent infection. Upon viral infection, infected cells can go through programmed cell death, including apoptosis and autophagy, which plays an effective role in antiviral responses. To counter the host response, KSHV vBcl2 efficiently blocks apoptosis and autophagy to persist for the life span of virus-infected cells. Besides its anti-programmed-cell-death activity, vBcl2 also interacts with the ORF55 tegument protein for virion assembly in infected cells. Interestingly, the vBcl2 peptide disrupts the vBcl2-ORF55 interaction and effectively inhibits KSHV virion assembly. This study indicates that KSHV vBcl2 harbors at least three genetically separable functions to modulate both host cell death signaling and virion production and that the vBcl2 peptide can be developed as an anti-KSHV therapeutic application.
Collapse
|
11
|
Heymann JB. Guidelines for using Bsoft for high resolution reconstruction and validation of biomolecular structures from electron micrographs. Protein Sci 2017; 27:159-171. [PMID: 28891250 DOI: 10.1002/pro.3293] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Cryo-electron microscopy (cryoEM) is becoming popular as a tool to solve biomolecular structures with the recent availability of direct electron detectors allowing automated acquisition of high resolution data. The Bsoft software package, developed over 20 years for analyzing electron micrographs, offers a full workflow for validated single particle analysis with extensive functionality, enabling customization for specific cases. With the increasing use of cryoEM and its automation, proper validation of the results is a bigger concern. The three major validation approaches, independent data sets, resolution-limited processing, and coherence testing, can be incorporated into any Bsoft workflow. Here, the main workflow is divided into four phases: (i) micrograph preprocessing, (ii) particle picking, (iii) particle alignment and reconstruction, and (iv) interpretation. Each of these phases represents a conceptual unit that can be automated, followed by a check point to assess the results. The aim in the first three phases is to reconstruct one or more validated maps at the best resolution possible. Map interpretation then involves identification of components, segmentation, quantification, and modeling. The algorithms in Bsoft are well established, with future plans focused on ease of use, automation and institutionalizing validation.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory for Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, 20892
| |
Collapse
|
12
|
Grzesik P, MacMath D, Henson B, Prasad S, Joshi P, Desai PJ. Incorporation of the Kaposi's sarcoma-associated herpesvirus capsid vertex-specific component (CVSC) into self-assembled capsids. Virus Res 2017; 236:9-13. [PMID: 28456575 DOI: 10.1016/j.virusres.2017.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/30/2017] [Accepted: 04/21/2017] [Indexed: 11/18/2022]
Abstract
Self-assembly of herpesvirus capsids can be accomplished in heterologous expression systems provided all six capsid proteins are present. We have demonstrated the assembly of icosahedral Kaposi's sarcoma-associated herpesvirus (KSHV) capsids in insect cells using the baculovirus expression system. Using this self-assembly system we investigated whether we could add additional capsid associated proteins and determine their incorporation into the assembled capsid. We chose the capsid vertex-specific component (CVSC) proteins encoded by open reading frames (ORFs) 19 and 32 to test this. This complex sits on the capsid vertex and is important for capsid maturation in herpesvirus-infected cells. Co-immunoprecipitation assays were used to initially confirm a bi-molecular interaction between ORF19 and ORF32. Both proteins also precipitated the triplex proteins of the capsid shell (ORF26 and ORF62) as well as the major capsid protein (ORF25). Capsid immunoprecipitation assays revealed the incorporation of ORF19 as well as ORF32 into assembled capsids. Similar experiments also showed that the incorporation of each protein occurred independent of the other. These studies reveal biochemically how the KSHV CVSC interacts with the capsid shell.
Collapse
Affiliation(s)
- Peter Grzesik
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD, USA
| | - Derek MacMath
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD, USA
| | - Brandon Henson
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD, USA
| | - Sanjana Prasad
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD, USA
| | - Poorval Joshi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD, USA
| | - Prashant J Desai
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Aneja KK, Yuan Y. Reactivation and Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus: An Update. Front Microbiol 2017; 8:613. [PMID: 28473805 PMCID: PMC5397509 DOI: 10.3389/fmicb.2017.00613] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/27/2017] [Indexed: 12/30/2022] Open
Abstract
The life cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) consists of two phases, latent and lytic. The virus establishes latency as a strategy for avoiding host immune surveillance and fusing symbiotically with the host for lifetime persistent infection. However, latency can be disrupted and KSHV is reactivated for entry into the lytic replication. Viral lytic replication is crucial for efficient dissemination from its long-term reservoir to the sites of disease and for the spread of the virus to new hosts. The balance of these two phases in the KSHV life cycle is important for both the virus and the host and control of the switch between these two phases is extremely complex. Various environmental factors such as oxidative stress, hypoxia, and certain chemicals have been shown to switch KSHV from latency to lytic reactivation. Immunosuppression, unbalanced inflammatory cytokines, and other viral co-infections also lead to the reactivation of KSHV. This review article summarizes the current understanding of the initiation and regulation of KSHV reactivation and the mechanisms underlying the process of viral lytic replication. In particular, the central role of an immediate-early gene product RTA in KSHV reactivation has been extensively investigated. These studies revealed multiple layers of regulation in activation of RTA as well as the multifunctional roles of RTA in the lytic replication cascade. Epigenetic regulation is known as a critical layer of control for the switch of KSHV between latency and lytic replication. The viral non-coding RNA, PAN, was demonstrated to play a central role in the epigenetic regulation by serving as a guide RNA that brought chromatin remodeling enzymes to the promoters of RTA and other lytic genes. In addition, a novel dimension of regulation by microPeptides emerged and has been shown to regulate RTA expression at the protein level. Overall, extensive investigation of KSHV reactivation and lytic replication has revealed a sophisticated regulation network that controls the important events in KSHV life cycle.
Collapse
Affiliation(s)
- Kawalpreet K Aneja
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, PhiladelphiaPA, USA
| | - Yan Yuan
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, PhiladelphiaPA, USA
| |
Collapse
|
14
|
Roller RJ, Baines JD. Herpesvirus Nuclear Egress. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:143-169. [PMID: 28528443 DOI: 10.1007/978-3-319-53168-7_7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herpesviruses assemble and package their genomes into capsids in the nucleus, but complete final assembly of the mature virion in the cell cytoplasm. This requires passage of the genome-containing capsid across the double-membrane nuclear envelope. Herpesviruses have evolved a mechanism that relies on a pair of conserved viral gene products to shuttle the capsids from the nucleus to the cytoplasm by way of envelopment and de-envelopment at the inner and outer nuclear membranes, respectively. This complex process requires orchestration of the activities of viral and cellular factors to alter the architecture of the nuclear membrane, select capsids at the appropriate stage for egress, and accomplish efficient membrane budding and fusion events. The last few years have seen major advances in our understanding of the membrane budding mechanism and helped clarify the roles of viral and cellular proteins in the other, more mysterious steps. Here, we summarize and place into context this recent research and, hopefully, clarify both the major advances and major gaps in our understanding.
Collapse
Affiliation(s)
- Richard J Roller
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joel D Baines
- Kenneth F. Burns Chair in Veterinary Medicine, School of Veterinary Medicine, Skip Bertman Drive, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
15
|
Wu JJ, Avey D, Li W, Gillen J, Fu B, Miley W, Whitby D, Zhu F. ORF33 and ORF38 of Kaposi's Sarcoma-Associated Herpesvirus Interact and Are Required for Optimal Production of Infectious Progeny Viruses. J Virol 2016; 90:1741-56. [PMID: 26637455 PMCID: PMC4734004 DOI: 10.1128/jvi.02738-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/23/2015] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED We recently showed that the interaction between Kaposi's sarcoma-associated herpesvirus (KSHV) tegument proteins ORF33 and ORF45 is crucial for progeny virion production, but the exact functions of KSHV ORF33 during lytic replication were unknown (J. Gillen, W. Li, Q. Liang, D. Avey, J. Wu, F. Wu, J. Myoung, and F. Zhu, J Virol 89:4918-4931, 2015, http://dx.doi.org/10.1128/JVI.02925-14). Therefore, here we investigated the relationship between ORF33 and ORF38, whose counterparts in both alpha- and betaherpesviruses interact with each other. Using specific monoclonal antibodies, we found that both proteins are expressed during the late lytic cycle with similar kinetics and that both are present in mature virions as components of the tegument. Furthermore, we confirmed that ORF33 interacts with ORF38. Interestingly, we observed that ORF33 tightly associates with the capsid, whereas ORF38 associates with the envelope. We generated ORF33-null, ORF38-null, and double-null mutants and found that these mutants apparently have identical phenotypes: the mutations caused no apparent effect on viral gene expression but reduced the yield of progeny virion by about 10-fold. The progeny virions also lack certain virion component proteins, including ORF45. During viral lytic replication, the virions associate with cytoplasmic vesicles. We also observed that ORF38 associates with the membranes of vesicles and colocalizes with the Golgi membrane or early endosome membrane. Further analyses of ORF33/ORF38 mutants revealed the reduced production of virion-containing vesicles, suggesting that ORF33 and ORF38 are involved in the transport of newly assembled viral particles into cytoplasmic vesicles, a process important for viral maturation and egress. IMPORTANCE Herpesvirus assembly is an essential step in virus propagation that leads to the generation of progeny virions. It is a complicated process that depends on the delicate regulation of interactions among virion proteins. We previously revealed an essential role of ORF45-ORF33 binding for virus assembly. Here, we report that ORF33 and its binding partner, ORF38, are required for infectious virus production due to their important role in the tegumentation process. Moreover, we found that both ORF33 and ORF38 are involved in the transportation of virions through vesicles during maturation and egress. Our results provide new insights into the important roles of ORF33 and ORF38 during viral assembly, a process critical for virus propagation that is intimately linked to KSHV pathobiology.
Collapse
Affiliation(s)
- Jian-Jun Wu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Denis Avey
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Wenwei Li
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Joseph Gillen
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Bishi Fu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
16
|
Bartley K, Deane D, Percival A, Dry IR, Grant DM, Inglis NF, Mclean K, Manson EDT, Imrie LHJ, Haig DM, Lankester F, Russell GC. Identification of immuno-reactive capsid proteins of malignant catarrhal fever viruses. Vet Microbiol 2014; 173:17-26. [PMID: 25091530 DOI: 10.1016/j.vetmic.2014.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 11/30/2022]
Abstract
Malignant catarrhal fever (MCF) is a fatal disease of cattle and other ungulates caused by certain gamma-herpesviruses including alcelaphine herpesvirus-1 (AlHV-1) and ovine herpesvirus-2 (OvHV-2). An attenuated virus vaccine based on AlHV-1 has been shown to induce virus-neutralising antibodies in plasma and nasal secretions of protected cattle but the targets of virus-specific antibodies are unknown. Proteomic analysis and western blotting of virus extracts allowed the identification of eight candidate AlHV-1 virion antigens. Recombinant expression of selected candidates and their OvHV-2 orthologues confirmed that two polypeptides, the products of the ORF17.5 and ORF65 genes, were antigens recognised by antibodies from natural MCF cases or from AlHV-1 vaccinated cattle. These proteins have potential as diagnostic and/or vaccine antigens.
Collapse
Affiliation(s)
- Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - David Deane
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Ann Percival
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Inga R Dry
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Dawn M Grant
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Neil F Inglis
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Kevin Mclean
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Erin D T Manson
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Lisa H J Imrie
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - David M Haig
- School of Veterinary Medicine and Science, Nottingham University, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Felix Lankester
- Institute for Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Paul G. Allen School of Global Animal Health, Washington State University, USA
| | - George C Russell
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK.
| |
Collapse
|
17
|
Recovery of an HMWP/hmwBP (pUL48/pUL47) complex from virions of human cytomegalovirus: subunit interactions, oligomer composition, and deubiquitylase activity. J Virol 2014; 88:8256-67. [PMID: 24829352 DOI: 10.1128/jvi.00971-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED We report that the human cytomegalovirus (HCMV) high-molecular-weight tegument protein (HMWP, pUL48; 253 kDa) and the HMWP-binding protein (hmwBP, pUL47; 110 kDa) can be recovered as a complex from virions disrupted by treatment with 50 mM Tris (pH 7.5), 0.5 M NaCl, 0.5% NP-40, and 10 mM dithiothreitol [DTT]. The subunit ratio of the complex approximates 1:1, with a shape and structure consistent with an elongated heterodimer. The HMWP/hmwBP complex was corroborated by reciprocal coimmunoprecipitation experiments using antipeptide antibodies and lysates from both infected cells and disrupted virus particles. An interaction of the amino end of pUL48 (amino acids [aa] 322 to 754) with the carboxyl end of pUL47 (aa 693 to 982) was identified by fragment coimmunoprecipitation experiments, and a head-to-tail self-interaction of hmwBP was also observed. The deubiquitylating activity of pUL48 is retained in the isolated complex, which cleaves K11, K48, and K63 ubiquitin isopeptide linkages. IMPORTANCE Human cytomegalovirus (HCMV, or human herpesvirus 5 [HHV-5]) is a large DNA-containing virus that belongs to the betaherpesvirus subfamily and is a clinically important pathogen. Defining the constituent elements of its mature form, their organization within the particle, and the assembly process by which it is produced are fundamental to understanding the mechanisms of herpesvirus infection and developing drugs and vaccines against them. In this study, we report isolating a complex of two large proteins encoded by HCMV open reading frames (ORFs) UL47 and UL48 and identifying the binding domains responsible for their interaction with each other and of pUL47 with itself. Our calculations indicate that the complex is a rod-shaped heterodimer. Additionally, we determined that the ubiquitin-specific protease activity of the ORF UL48 protein was functional in the complex, cleaving K11-, K48-, and K63-linked ubiquitin dimers. This information builds on and extends our understanding of the HCMV tegument protein network that is required to interface the HCMV envelope and capsid.
Collapse
|
18
|
Capuano CM, Grzesik P, Kreitler D, Pryce EN, Desai KV, Coombs G, McCaffery JM, Desai PJ. A hydrophobic domain within the small capsid protein of Kaposi's sarcoma-associated herpesvirus is required for assembly. J Gen Virol 2014; 95:1755-1769. [PMID: 24824860 DOI: 10.1099/vir.0.064303-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction.
Collapse
Affiliation(s)
- Christopher M Capuano
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Peter Grzesik
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dale Kreitler
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Erin N Pryce
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Keshal V Desai
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Gavin Coombs
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Prashant J Desai
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
19
|
Protein interactions in the murine cytomegalovirus capsid revealed by cryoEM. Protein Cell 2013; 4:833-45. [PMID: 24006185 DOI: 10.1007/s13238-013-3060-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022] Open
Abstract
Cytomegalovirus (CMV) is distinct among members of the Herpesviridae family for having the largest dsDNA genome (230 kb). Packaging of large dsDNA genome is known to give rise to a highly pressurized viral capsid, but molecular interactions conducive to the formation of CMV capsid resistant to pressurization have not been described. Here, we report a cryo electron microscopy (cryoEM) structure of the murine cytomegalovirus (MCMV) capsid at a 9.1 Å resolution and describe the molecular interactions among the ∼3000 protein molecules in the MCMV capsid at the secondary structure level. Secondary structural elements are resolved to provide landmarks for correlating with results from sequence-based prediction and for structure-based homology modeling. The major capsid protein (MCP) upper domain (MCPud) contains α-helices and β-sheets conserved with those in MCPud of herpes simplex virus type 1 (HSV-1), with the largest differences identified as a "saddle loop" region, located at the tip of MCPud and involved in interaction with the smallest capsid protein (SCP). Interactions among the bacteriophage HK97-like floor domain of MCP, the middle domain of MCP, the hook and clamp domains of the triplex proteins (hoop and clamp domains of TRI-1 and clamp domain of TRI-2) contribute to the formation of a mature capsid. These results offer a framework for understanding how cytomegalovirus uses various secondary structural elements of its capsid proteins to build a robust capsid for packaging its large dsDNA genome inside and for attaching unique functional tegument proteins outside.
Collapse
|
20
|
The smallest capsid protein mediates binding of the essential tegument protein pp150 to stabilize DNA-containing capsids in human cytomegalovirus. PLoS Pathog 2013; 9:e1003525. [PMID: 23966856 PMCID: PMC3744435 DOI: 10.1371/journal.ppat.1003525] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 06/14/2013] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that causes birth defects in newborns and life-threatening complications in immunocompromised individuals. Among all human herpesviruses, HCMV contains a much larger dsDNA genome within a similarly-sized capsid compared to the others, and it was proposed to require pp150, a tegument protein only found in cytomegaloviruses, to stabilize its genome-containing capsid. However, little is known about how pp150 interacts with the underlying capsid. Moreover, the smallest capsid protein (SCP), while dispensable in herpes simplex virus type 1, was shown to play essential, yet undefined, role in HCMV infection. Here, by cryo electron microscopy (cryoEM), we determine three-dimensional structures of HCMV capsid (no pp150) and virion (with pp150) at sub-nanometer resolution. Comparison of these two structures reveals that each pp150 tegument density is composed of two helix bundles connected by a long central helix. Correlation between the resolved helices and sequence-based secondary structure prediction maps the tegument density to the N-terminal half of pp150. The structures also show that SCP mediates interactions between the capsid and pp150 at the upper helix bundle of pp150. Consistent with this structural observation, ribozyme inhibition of SCP expression in HCMV-infected cells impairs the formation of DNA-containing viral particles and reduces viral yield by 10,000 fold. By cryoEM reconstruction of the resulting “SCP-deficient” viral particles, we further demonstrate that SCP is required for pp150 functionally binding to the capsid. Together, our structural and biochemical results point to a mechanism whereby SCP recruits pp150 to stabilize genome-containing capsid for the production of infectious HCMV virion. Human cytomegalovirus (HCMV) causes birth defects in newborns and life-threatening complications in immunocompromised individuals, such as AIDS patients and organ transplant recipients. The smallest capsid protein (SCP) – only 8 kDa molecular mass as compared to the 155 kDa major capsid protein – has been demonstrated to be essential for HCMV growth, but is dispensable in herpes simplex virus type 1. These seemingly contradictory observations have been a paradox. Here, we solve this paradox by high resolution cryo electron microscopy (cryoEM), in conjunction with functional studies using ribozyme inhibition. Our structural comparisons of HCMV virion and capsid reveal molecular interactions at the secondary structure level and suggest that SCP might contribute to capsid binding of pp150, an essential, cytomegalovirus-specific tegument protein. SCP-deficient particles generated by ribozyme inhibition of SCP-expression in HCMV-infected cells show no pp150 tegument density, demonstrating that SCP is required for the functional binding of pp150 to the capsid. Our results suggest that SCP recruits pp150 to stabilize the HCMV nucleocapsid to enable encapsidation of the genome, which is more densely packaged in HCMV than in other herpesviruses. Overall, this study not only resolves the above paradox, but also illustrates the passive acquisition of a new, essential function by SCP in the production of infectious HCMV virions.
Collapse
|
21
|
Homa FL, Huffman JB, Toropova K, Lopez HR, Makhov AM, Conway JF. Structure of the pseudorabies virus capsid: comparison with herpes simplex virus type 1 and differential binding of essential minor proteins. J Mol Biol 2013; 425:3415-28. [PMID: 23827137 DOI: 10.1016/j.jmb.2013.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
The structure of pseudorabies virus (PRV) capsids isolated from the nucleus of infected cells and from PRV virions was determined by cryo-electron microscopy (cryo-EM) and compared to herpes simplex virus type 1 (HSV-1) capsids. PRV capsid structures closely resemble those of HSV-1, including distribution of the capsid vertex specific component (CVSC) of HSV-1, which is a heterodimer of the pUL17 and pUL25 proteins. Occupancy of CVSC on all PRV capsids is near 100%, compared to ~50% reported for HSV-1 C-capsids and 25% or less that we measure for HSV-1 A- and B-capsids. A PRV mutant lacking pUL25 does not produce C-capsids and lacks visible CVSC density in the cryo-EM-based reconstruction. A reconstruction of PRV capsids in which green fluorescent protein was fused within the N-terminus of pUL25 confirmed previous studies with a similar HSV-1 capsid mutant localizing pUL25 to the CVSC density region that is distal to the penton. However, comparison of the CVSC density in a 9-Å-resolution PRV C-capsid map with the available crystal structure of HSV-1 pUL25 failed to find a satisfactory fit, suggesting either a different fold for PRV pUL25 or a capsid-bound conformation for pUL25 that does not match the X-ray model determined from protein crystallized in solution. The PRV capsid imaged within virions closely resembles C-capsids with the addition of weak but significant density shrouding the pentons that we attribute to tegument proteins. Our results demonstrate significant structure conservation between the PRV and HSV capsids.
Collapse
Affiliation(s)
- F L Homa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
22
|
Identification of a varicella-zoster virus replication inhibitor that blocks capsid assembly by interacting with the floor domain of the major capsid protein. J Virol 2012; 86:12198-207. [PMID: 22933294 DOI: 10.1128/jvi.01280-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel anti-varicella-zoster virus compound, a derivative of pyrazolo[1,5-c]1,3,5-triazin-4-one (coded as 35B2), was identified from a library of 9,600 random compounds. This compound inhibited both acyclovir (ACV)-resistant and -sensitive strains. In a plaque reduction assay under conditions in which the 50% effective concentration of ACV against the vaccine Oka strain (V-Oka) in human fibroblasts was 4.25 μM, the 50% effective concentration of 35B2 was 0.75 μM. The selective index of the compound was more than 200. Treatment with 35B2 inhibited neither immediate-early gene expression nor viral DNA synthesis. Twenty-four virus clones resistant to 35B2 were isolated, all of which had a mutation(s) in the amino acid sequence of open reading frame 40 (ORF40), which encodes the major capsid protein (MCP). Most of the mutations were located in the regions corresponding to the "floor" domain of the MCP of herpes simplex virus 1. Treatment with 35B2 changed the localization of MCP in the fibroblasts infected with V-Oka but not in the fibroblasts infected with the resistant clones, although it did not affect steady-state levels of MCP. Overexpression of the scaffold proteins restored the normal MCP localization in the 35B2-treated infected cells. The compound did not inhibit the scaffold protein-mediated translocation of MCP from the cytoplasm to the nucleus. Electron microscopic analysis demonstrated the lack of capsid formation in the 35B2-treated infected cells. These data indicate the feasibility of developing a new class of antivirals that target the herpesvirus MCPs and inhibit normal capsid formation by a mechanism that differs from those of the known protease and encapsidation inhibitors. Further biochemical studies are required to clarify the precise antiviral mechanism.
Collapse
|
23
|
The assembly domain of the small capsid protein of Kaposi's sarcoma-associated herpesvirus. J Virol 2012; 86:11926-30. [PMID: 22915821 DOI: 10.1128/jvi.01430-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Self-assembly of Kaposi's sarcoma-associated herpesvirus capsids occurs when six proteins are coexpressed in insect cells using recombinant baculoviruses; however, if the small capsid protein (SCP) is omitted from the coinfection, assembly does not occur. Herein we delineate and identify precisely the assembly domain and the residues of SCP required for assembly. Hence, six residues, R14, D18, V25, R46, G66, and R70 in the assembly domain, when changed to alanine, completely abolish or reduce capsid assembly.
Collapse
|
24
|
Germi R, Effantin G, Grossi L, Ruigrok RWH, Morand P, Schoehn G. Three-dimensional structure of the Epstein-Barr virus capsid. J Gen Virol 2012; 93:1769-1773. [PMID: 22592267 DOI: 10.1099/vir.0.043265-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV), a gammaherpesvirus, infects >90 % of the world's population. Primary infection by EBV can lead to infectious mononucleosis, and EBV persistence is associated with several malignancies. Despite its importance for human health, little structural information is available on EBV. Here we report the purification of the EBV capsid by CsCl- or sucrose density-gradient centrifugation. Cryo-electron microscopy and image analysis resulted in two slightly different three-dimensional structures at about 20 Å resolution. These structures were compared with that of human herpesvirus 8, another gammaherpesvirus. CsCl-gradient purification leads to the removal of part of the triplex complex around the fivefold axes, whereas the complexes between hexons remained in place. This may be due to local differences in stability resulting from variation in quasi-equivalent interactions between pentons and hexons compared with those between hexons only.
Collapse
Affiliation(s)
- Raphaele Germi
- CHU de Grenoble, Grenoble, France.,Unit for Virus Host Cell Interactions, UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Gregory Effantin
- Unit for Virus Host Cell Interactions, UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Laurence Grossi
- CHU de Grenoble, Grenoble, France.,Unit for Virus Host Cell Interactions, UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Rob W H Ruigrok
- Unit for Virus Host Cell Interactions, UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Patrice Morand
- CHU de Grenoble, Grenoble, France.,Unit for Virus Host Cell Interactions, UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Guy Schoehn
- CNRS - Institut de Biologie Structurale-Jean-Pierre Ebel, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble Cedex, France.,Unit for Virus Host Cell Interactions, UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France.,UJF-Grenoble-1 - Institut de Biologie Structurale-Jean-Pierre Ebel, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble Cedex, France.,CEA - Institut de Biologie Structurale-Jean-Pierre Ebel, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble Cedex, France
| |
Collapse
|
25
|
Cardone G, Heymann JB, Cheng N, Trus BL, Steven AC. Procapsid assembly, maturation, nuclear exit: dynamic steps in the production of infectious herpesvirions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:423-39. [PMID: 22297525 PMCID: PMC3475206 DOI: 10.1007/978-1-4614-0980-9_19] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herpesviruses, a family of animal viruses with large (125-250 kbp) linear DNA genomes, are highly diversified in terms of host range; nevertheless, their virions conform to a common architecture. The genome is confined at high density within a thick-walled icosahedral capsid with the uncommon (among viruses, generally) but unvarying triangulation number T = 16. The envelope is a membrane in which some 11 different viral glycoproteins are implanted. Between the capsid and the envelope is a capacious compartment called the tegument that accommodates ∼20-40 different viral proteins (depending on which virus) destined for delivery into a host cell. A strong body of evidence supports the hypothesis that herpesvirus capsids and those of tailed bacteriophages stem from a distant common ancestor, whereas their radically different infection apparatuses - envelope on one hand and tail on the other - reflect subsequent coevolution with divergent hosts. Here we review the molecular components of herpesvirus capsids and the mechanisms that regulate their assembly, with particular reference to the archetypal alphaherpesvirus, herpes simplex virus type 1; assess their duality with the capsids of tailed bacteriophages; and discuss the mechanism whereby, once DNA packaging has been completed, herpesvirus nucleocapsids exit from the nucleus to embark on later stages of the replication cycle.
Collapse
Affiliation(s)
- Giovanni Cardone
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - J. Bernard Heymann
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benes L. Trus
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Imaging Sciences Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alasdair C. Steven
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Yu X, Shah S, Lee M, Dai W, Lo P, Britt W, Zhu H, Liu F, Zhou ZH. Biochemical and structural characterization of the capsid-bound tegument proteins of human cytomegalovirus. J Struct Biol 2011; 174:451-60. [PMID: 21459145 DOI: 10.1016/j.jsb.2011.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/24/2011] [Accepted: 03/11/2011] [Indexed: 01/25/2023]
Abstract
Human cytomegalovirus (HCMV) is the most genetically and structurally complex human herpesvirus and is composed of an envelope, a tegument, and a dsDNA-containing capsid. HCMV tegument plays essential roles in HCMV infection and assembly. Using cryo electron tomography (cryoET), here we show that HCMV tegument compartment can be divided into two sub-compartments: an inner and an outer tegument. The inner tegument consists of densely-packed proteins surrounding the capsid. The outer tegument contains those components that are loosely packed in the space between the inner tegument and the pleomorphic glycoprotein-containing envelope. To systematically characterize the inner tegument proteins interacting with the capsid, we used chemical treatment to strip off the entire envelope and most tegument proteins to obtain a tegumented capsid with inner tegument proteins. SDS-polyacrylamide gel electrophoresis analyses show that only two tegument proteins, UL32-encoded pp150 and UL48-encoded high molecular weight protein (HMWP), remains unchanged in their abundance in the tegumented capsids as compared to their abundance in the intact particles. Three-dimensional reconstructions by single particle cryo electron microscopy (cryoEM) reveal that the net-like layer of icosahedrally-ordered tegument densities are also the same in the tegumented capsid and in the intact particles. CryoET reconstruction of the tegumented capsid labeled with an anti-pp150 antibody is consistent with the biochemical and cryoEM data in localizing pp150 within the ordered tegument. Taken together, these results suggest that pp150, a betaherpesvirus-specific tegument protein, is a constituent of the net-like layer of icosahedrally-ordered capsid-bound tegument densities, a structure lacking similarities in alpha and gammaherpesviruses.
Collapse
Affiliation(s)
- Xuekui Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Functional characterization of Kaposi's sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis. Virology 2010; 407:306-18. [PMID: 20850163 DOI: 10.1016/j.virol.2010.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/16/2010] [Accepted: 08/17/2010] [Indexed: 11/20/2022]
Abstract
A systematic investigation of interactions amongst KSHV capsid proteins was undertaken in this study to comprehend lesser known KSHV capsid assembly mechanisms. Interestingly the interaction patterns of the KSHV small capsid protein, ORF65 suggested its plausible role in viral capsid assembly pathways. Towards further understanding this, ORF65-null recombinant mutants (BAC-∆65 and BAC-stop65) employing a bacterial artificial chromosome (BAC) system were generated. No significant difference was found in both overall viral gene expression and lytic DNA replication between stable monolayers of 293T-BAC36 (wild-type) and 293T-BAC-ORF65-null upon induction with 12-O-tetradecanoylphorbol-13-acetate, though the latter released 30-fold fewer virions to the medium than 293T-BAC36 cells. Sedimentation profiles of capsid proteins of ORF65-null recombinant mutants were non-reflective of their organization into the KSHV capsids and were also undetectable in cytoplasmic extracts compared to noticeable levels in nuclear extracts. These observations collectively suggested the pivotal role of ORF65 in the KSHV capsid assembly processes.
Collapse
|
28
|
Peng L, Ryazantsev S, Sun R, Zhou ZH. Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography. Structure 2010; 18:47-58. [PMID: 20152152 DOI: 10.1016/j.str.2009.10.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 09/03/2009] [Accepted: 10/30/2009] [Indexed: 12/27/2022]
Abstract
Gammaherpesviruses are etiologically associated with human tumors. A three-dimensional (3D) examination of their life cycle in the host is lacking, significantly limiting our understanding of the structural and molecular basis of virus-host interactions. Here, we report the first 3D visualization of key stages of the murine gammaherpesvirus 68 life cycle in NIH 3T3 cells, including viral attachment, entry, assembly, and egress, by dual-axis electron tomography. In particular, we revealed the transient processes of incoming capsids injecting viral DNA through nuclear pore complexes and nascent DNA being packaged into progeny capsids in vivo as a spool coaxial with the putative portal vertex. We discovered that intranuclear invagination of both nuclear membranes is involved in nuclear egress of herpesvirus capsids. Taken together, our results provide the structural basis for a detailed mechanistic description of gammaherpesvirus life cycle and also demonstrate the advantage of electron tomography in dissecting complex cellular processes of viral infection.
Collapse
Affiliation(s)
- Li Peng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
29
|
Small capsid protein pORF65 is essential for assembly of Kaposi's sarcoma-associated herpesvirus capsids. J Virol 2008; 82:7201-11. [PMID: 18463150 DOI: 10.1128/jvi.00423-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for KS tumors, multicentric Castleman's disease, and primary effusion lymphomas. Like other herpesvirus capsids, the KSHV capsid is an icosahedral structure composed of six proteins. The capsid shell is made up of the major capsid protein, two triplex proteins, and the small capsid protein. The scaffold protein and the protease occupy the internal space. The assembly of KSHV capsids is thought to occur in a manner similar to that determined for herpes simplex virus type 1 (HSV-1). Our goal was to assemble KSHV capsids in insect cells using the baculovirus expression vector system. Six KSHV capsid open reading frames were cloned and the proteins expressed in Sf9 cells: pORF25 (major capsid protein), pORF62 (triplex 1), pORF26 (triplex 2), pORF17 (protease), pORF17.5 (scaffold protein), and also pORF65 (small capsid protein). When insect cells were coinfected with these baculoviruses, angular capsids that contained internal core structures were readily observed by conventional electron microscopy of the infected cells. Capsids were also readily isolated from infected cells by using rate velocity sedimentation. With immuno-electron microscopy methods, these capsids were seen to be reactive to antisera to pORF65 as well as to KSHV-positive human sera, indicating the correct conformation of pORF65 in these capsids. When either virus expressing the triplex proteins was omitted from the coinfection, capsids did not assemble; similar to observations made in HSV-1-infected cells. If the virus expressing the scaffold protein was excluded, large open shells that did not attain icosahedral structure were seen in the nuclei of infected cells. The presence of pORF65 was required for capsid assembly, in that capsids did not form if this protein was absent as judged by both by ultrastructural analysis of infected cells and rate velocity sedimentation experiments. Thus, a novel outcome of this study is the finding that the small capsid protein of KSHV, like the major capsid and triplex proteins, is essential for capsid shell assembly.
Collapse
|
30
|
Dai W, Jia Q, Bortz E, Shah S, Liu J, Atanasov I, Li X, Taylor KA, Sun R, Zhou ZH. Unique structures in a tumor herpesvirus revealed by cryo-electron tomography and microscopy. J Struct Biol 2007; 161:428-38. [PMID: 18096403 DOI: 10.1016/j.jsb.2007.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 10/12/2007] [Accepted: 10/13/2007] [Indexed: 11/17/2022]
Abstract
Gammaherpesviruses, including the human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, are causative agents of lymphomas and other malignancies. The structural characterization of these viruses has been limited due to difficulties in obtaining adequate amount of virion particles. Here we report the first three-dimensional structural characterization of a whole gammaherpesvirus virion by an emerging integrated approach of cryo-electron tomography combined with single-particle cryo-electron microscopy, using murine gammaherpesvirus-68 (MHV-68) as a model system. We found that the MHV-68 virion consists of distinctive envelope and tegument compartments, and a highly conserved nucleocapsid. Two layers of tegument are identified: an inner tegument layer tethered to the underlying capsid and an outer, flexible tegument layer conforming to the overlying, pleomorphic envelope, consistent with the sequential viral tegumentation process inside host cells. Surprisingly, comparison of the MHV-68 virion and capsid reconstructions shows that the interactions between the capsid and inner tegument proteins are completely different from those observed in alpha and betaherpesviruses. These observations support the notion that the inner layer tegument across different subfamilies of herpesviruses has evolved significantly to confer specific characteristics related to viral-host interactions, in contrast to a highly conserved capsid for genome encapsidation and protection.
Collapse
Affiliation(s)
- Wei Dai
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Deng B, O'Connor CM, Kedes DH, Zhou ZH. Cryo-electron tomography of Kaposi's sarcoma-associated herpesvirus capsids reveals dynamic scaffolding structures essential to capsid assembly and maturation. J Struct Biol 2007; 161:419-27. [PMID: 18164626 DOI: 10.1016/j.jsb.2007.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/12/2007] [Accepted: 10/13/2007] [Indexed: 11/19/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a recently discovered DNA tumor virus that belongs to the gamma-herpesvirus subfamily. Though numerous studies on KSHV and other herpesviruses, in general, have revealed much about their multilayered organization and capsid structure, the herpesvirus capsid assembly and maturation pathway remains poorly understood. Structural variability or irregularity of the capsid internal scaffolding core and the lack of adequate tools to study such structures have presented major hurdles to earlier investigations employing more traditional cryo-electron microscopy (cryoEM) single particle reconstruction. In this study, we used cryo-electron tomography (cryoET) to obtain 3D reconstructions of individual KSHV capsids, allowing direct visualization of the capsid internal structures and systematic comparison of the scaffolding cores for the first time. We show that B-capsids are not a structurally homogenous group; rather, they represent an ensemble of "B-capsid-like" particles whose inner scaffolding is highly variable, possibly representing different intermediates existing during the KSHV capsid assembly and maturation. This information, taken together with previous observations, has allowed us to propose a detailed pathway of herpesvirus capsid assembly and maturation.
Collapse
Affiliation(s)
- Binbin Deng
- Department of Pathology and Laboratory Medicine and The Keck Center Pharmacoinformatics Training Program, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
32
|
Bortz E, Wang L, Jia Q, Wu TT, Whitelegge JP, Deng H, Zhou ZH, Sun R. Murine gammaherpesvirus 68 ORF52 encodes a tegument protein required for virion morphogenesis in the cytoplasm. J Virol 2007; 81:10137-50. [PMID: 17634243 PMCID: PMC2045416 DOI: 10.1128/jvi.01233-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tegument, a semiordered matrix of proteins overlying the nucleocapsid and underlying the virion envelope, in viruses in the gamma subfamily of Herpesviridae is poorly understood. Murine gammaherpesvirus 68 (MHV-68) is a robust model for studying gammaherpesvirus virion structure, assembly, and composition, as MHV-68 efficiently completes the lytic phase and productively infects cultured cells. We have found that MHV-68 ORF52 encodes an abundant tegument protein conserved among gammaherpesviruses. Detergent sensitivity experiments revealed that the MHV-68 ORF52 protein is more tightly bound to the virion nucleocapsid than the ORF45 tegument protein but could be dissociated from particles that retained the ORF65 small capsomer protein. ORF52, tagged with enhanced green fluorescent protein or FLAG epitope, localized to the cytoplasm. A recombinant MHV-68 bacterial artificial chromosome mutant with a nonsense mutation incorporated into ORF52 exhibited viral DNA replication, expression of late lytic genes, and capsid assembly and packaging at levels near those of the wild type. However, the MHV-68 ORF52-null virus was deficient in the assembly and release of infectious virion particles. Instead, partially tegumented capsids produced by the ORF52-null mutant accumulated in the cytoplasm, containing conserved capsid proteins, the ORF64 and ORF67 tegument proteins, but virtually no ORF45 tegument protein. Thus, ORF52 is essential for the tegumentation and egress of infectious MHV-68 particles in the cytoplasm, suggesting an important conserved function in gammaherpesvirus virion morphogenesis.
Collapse
Affiliation(s)
- Eric Bortz
- Molecular Biology IDP, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Deng B, O'Connor CM, Kedes DH, Zhou ZH. Direct visualization of the putative portal in the Kaposi's sarcoma-associated herpesvirus capsid by cryoelectron tomography. J Virol 2007; 81:3640-4. [PMID: 17215290 PMCID: PMC1866054 DOI: 10.1128/jvi.02254-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic and biochemical studies have suggested the existence of a bacteriophage-like, DNA-packaging/ejecting portal complex in herpesviruses capsids, but its arrangement remained unknown. Here, we report the first visualization of a unique vertex in the Kaposi's sarcoma-associated herpesvirus (KSHV) capsid by cryoelectron tomography, thus providing direct structural evidence for the existence of a portal complex in a gammaherpesvirus. This putative KSHV portal is an internally localized, umbilicated structure and lacks all of the external machineries characteristic of portals in DNA bacteriophages.
Collapse
Affiliation(s)
- Binbin Deng
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, 6431 Fannin St., MSB 2.280, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
34
|
Staudt MR, Dittmer DP. The Rta/Orf50 transactivator proteins of the gamma-herpesviridae. Curr Top Microbiol Immunol 2006; 312:71-100. [PMID: 17089794 DOI: 10.1007/978-3-540-34344-8_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The replication and transcription activator protein, Rta, is encoded by Orf50 in Kaposi's sarcoma-associated herpesvirus (KSHV) and other known gammaherpesviruses including Epstein-Barr virus (EBV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS), and murine herpesvirus 68 (MHV-68). Each Rta/Orf50 homologue of each gammaherpesvirus plays a pivotal role in the initiation of viral lytic gene expression and lytic reactivation from latency. Here we discuss the Rta/Orf50 of KSHV in comparison to the Rta/Orf50s of other gammaherpesviruses in an effort to identify structural motifs, mechanisms of action, and modulating host factors.
Collapse
Affiliation(s)
- M R Staudt
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 804 Mary Ellen Jones Bldg, CB 7290, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
35
|
Parsons CH, Adang LA, Overdevest J, O’Connor CM, Taylor JR, Camerini D, Kedes DH. KSHV targets multiple leukocyte lineages during long-term productive infection in NOD/SCID mice. J Clin Invest 2006; 116:1963-73. [PMID: 16794734 PMCID: PMC1481659 DOI: 10.1172/jci27249] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 05/09/2006] [Indexed: 12/31/2022] Open
Abstract
To develop an animal model of Kaposi sarcoma-associated herpesvirus (KSHV) infection uniquely suited to evaluate longitudinal patterns of viral gene expression, cell tropism, and immune responses, we injected NOD/SCID mice intravenously with purified virus and measured latent and lytic viral transcripts in distal organs over the subsequent 4 months. We observed sequential escalation of first latent and then lytic KSHV gene expression coupled with electron micrographic evidence of virion production within the murine spleen. Using novel technology that integrates flow cytometry with immunofluorescence microscopy, we found that the virus establishes infection in murine B cells, macrophages, NK cells, and, to a lesser extent, dendritic cells. To investigate the potential for human KSHV-specific immune responses within this immunocompromised host, we implanted NOD/SCID mice with functional human hematopoietic tissue grafts (NOD/SCID-hu mice) and observed that a subset of animals produced human KSHV-specific antibodies. Furthermore, treatment of these chimeric mice with ganciclovir at the time of inoculation led to prolonged but reversible suppression of KSHV DNA and RNA levels, suggesting that KSHV can establish latent infection in vivo despite ongoing suppression of lytic replication.
Collapse
Affiliation(s)
- Christopher H. Parsons
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Departments of Microbiology and Internal Medicine, University of Virginia Health Systems, Charlottesville, Virginia, USA.
Department of Molecular Biology & Biochemistry, Center for Immunology, and Center for Virus Research, School of Biological Sciences, University of California, Irvine, California, USA
| | - Laura A. Adang
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Departments of Microbiology and Internal Medicine, University of Virginia Health Systems, Charlottesville, Virginia, USA.
Department of Molecular Biology & Biochemistry, Center for Immunology, and Center for Virus Research, School of Biological Sciences, University of California, Irvine, California, USA
| | - Jon Overdevest
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Departments of Microbiology and Internal Medicine, University of Virginia Health Systems, Charlottesville, Virginia, USA.
Department of Molecular Biology & Biochemistry, Center for Immunology, and Center for Virus Research, School of Biological Sciences, University of California, Irvine, California, USA
| | - Christine M. O’Connor
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Departments of Microbiology and Internal Medicine, University of Virginia Health Systems, Charlottesville, Virginia, USA.
Department of Molecular Biology & Biochemistry, Center for Immunology, and Center for Virus Research, School of Biological Sciences, University of California, Irvine, California, USA
| | - J. Robert Taylor
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Departments of Microbiology and Internal Medicine, University of Virginia Health Systems, Charlottesville, Virginia, USA.
Department of Molecular Biology & Biochemistry, Center for Immunology, and Center for Virus Research, School of Biological Sciences, University of California, Irvine, California, USA
| | - David Camerini
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Departments of Microbiology and Internal Medicine, University of Virginia Health Systems, Charlottesville, Virginia, USA.
Department of Molecular Biology & Biochemistry, Center for Immunology, and Center for Virus Research, School of Biological Sciences, University of California, Irvine, California, USA
| | - Dean H. Kedes
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Departments of Microbiology and Internal Medicine, University of Virginia Health Systems, Charlottesville, Virginia, USA.
Department of Molecular Biology & Biochemistry, Center for Immunology, and Center for Virus Research, School of Biological Sciences, University of California, Irvine, California, USA
| |
Collapse
|
36
|
Heymann JB, Belnap DM. Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol 2006; 157:3-18. [PMID: 17011211 DOI: 10.1016/j.jsb.2006.06.006] [Citation(s) in RCA: 418] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 06/07/2006] [Accepted: 06/11/2006] [Indexed: 11/17/2022]
Abstract
Bsoft is a software package written for image processing of electron micrographs, interpretation of reconstructions, molecular modeling, and general image processing. The code is modularized to allow for rapid testing and deployment of new processing algorithms, while also providing sufficient infrastructure to deal with many file formats and parametric data. The design is deliberately open to allow interchange of information with other image and molecular processing software through a standard parameter file (currently a text-based encoding of parameters in the STAR format) and its support of multiple image and molecular formats. It also allows shell scripting of processes and allows subtasks to be distributed across multiple computers for concurrent processing. Bsoft has undergone many modifications and advancements since its initial release [Heymann, J.B., 2001. Bsoft: image and molecular processing in electron microscopy. J. Struct. Biol. 133, 156-169]. Much of the emphasis is on single particle analysis and tomography, and sufficient functionality is available in the package to support most needed operations for these techniques. The key graphical user interface is the program bshow, which displays an image and is used for many interactive purposes such as fitting the contrast transfer function or picking particles. Bsoft also offers various tools to manipulate atomic structures and to refine the fit of a known molecular structure to a density in a reconstruction.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
37
|
O'Connor CM, Kedes DH. Mass spectrometric analyses of purified rhesus monkey rhadinovirus reveal 33 virion-associated proteins. J Virol 2006; 80:1574-83. [PMID: 16415032 PMCID: PMC1346966 DOI: 10.1128/jvi.80.3.1574-1583.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The repertoire of proteins that comprise intact gammaherpesviruses, including the human pathogen Kaposi's sarcoma-associated herpesvirus (KSHV), is likely to have critical functions not only in viral structure and assembly but also in the early stages of infection and evasion of the host's rapidly deployed antiviral defenses. To develop a better understanding of these proteins, we analyzed the composition of rhesus monkey rhadinovirus (RRV), a close phylogenetic relative of KSHV. Unlike KSHV, RRV replicates to high titer in cell culture and thus serves as an effective model for studying primate gammaherpesvirus structure and virion proteomics. We employed two complementary mass spectrometric approaches and found that RRV contains at least 33 distinct virally encoded proteins. We have assigned 7 of these proteins to the capsid, 17 to the tegument, and 9 to the envelope. Of the five gammaherpesvirus-specific tegument proteins, three have no known function. We also found three proteins not previously associated with a purified herpesvirus and an additional seven that represent new findings for a member of the gamma-2 herpesviruses. Detergent extraction resulted in particles that contained six distinct tegument proteins in addition to the expected capsid structural proteins, suggesting that this subset of tegument components may interact more directly with or with higher affinity for the underlying capsid and, in turn, may play a role in assembly or transport of viral or subviral particles during entry or egress.
Collapse
Affiliation(s)
- Christine M O'Connor
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Box 800734, University of Virginia Health Systems, Charlottesville, VA 22908, USA
| | | |
Collapse
|
38
|
Adamson WE, McNab D, Preston VG, Rixon FJ. Mutational analysis of the herpes simplex virus triplex protein VP19C. J Virol 2006; 80:1537-48. [PMID: 16415029 PMCID: PMC1346951 DOI: 10.1128/jvi.80.3.1537-1548.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) capsids have an icosahedral structure with capsomers formed by the major capsid protein, VP5, linked in groups of three by distinctive structures called triplexes. Triplexes are heterotrimers formed by two proteins in a 1:2 stoichiometry. The single-copy protein is called VP19C, and the dimeric protein is VP23. We have carried out insertional and deletional mutagenesis on VP19C and have examined the effects of the mutations on virus growth and capsid assembly. Insertional mutagenesis showed that the N-terminal approximately 100 amino acids of the protein, which correspond to a region that is poorly conserved among herpesviruses, are insensitive to disruption and that insertions into the rest of the protein had various effects on virus growth. Some, but not all, severely disabled mutants were compromised in the ability to bind VP23 or VP5. Analysis of deletion mutants revealed the presence of a nuclear localization signal (NLS) near the N terminus of VP19C, and this was mapped to a 33-amino-acid region by fusion of specific sequences to a green fluorescent protein marker. By replacing the endogenous NLS with that from the simian virus 40 large T antigen, we were able to show that the first 45 amino acids of VP19C were not essential for assembly of functional capsids and infectious virus particles. However, removing the first 63 amino acids resulted in formation of aberrant capsids and prevented virus growth, suggesting that the poorly conserved N-terminal sequences have some as-yet-unidentified function.
Collapse
Affiliation(s)
- Walt E Adamson
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| | | | | | | |
Collapse
|
39
|
Okoye ME, Sexton GL, Huang E, McCaffery JM, Desai P. Functional analysis of the triplex proteins (VP19C and VP23) of herpes simplex virus type 1. J Virol 2006; 80:929-40. [PMID: 16378995 PMCID: PMC1346874 DOI: 10.1128/jvi.80.2.929-940.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The triplex of herpesvirus capsids is a unique structural element. In herpes simplex virus type 1 (HSV-1), one molecule of VP19C and two of VP23 form a three-pronged structure that acts to stabilize the capsid shell through interactions with adjacent VP5 molecules. The interaction between VP19C and VP23 was inferred by yeast cryoelectron microscopy studies and subsequently confirmed by the two-hybrid assay. In order to define the functional domains of VP19C and VP23, a Tn7-based transposon was used to randomly insert 15 bp into the coding regions of these two proteins. The mutants were initially screened for interaction in the yeast two-hybrid assay to identify the domains important for triplex formation. Using genetic complementation assays in HSV-1-infected cells, the domains of each protein required for virus replication were similarly uncovered. The same mutations that abolish interaction between these two proteins in the yeast two-hybrid assay similarly failed to complement the growth of the VP23- and VP19C-null mutant viruses in the genetic complementation assay. Some of these mutants were transferred into recombinant baculoviruses to analyze the effect of the mutations on herpesvirus capsid assembly in insect cells. The mutations that abolished the interaction in the yeast two-hybrid assay also abolished capsid assembly in insect cells. The outcome of these experiments showed that insertions in at least four regions and especially the amino terminus of VP23 abolished function, whereas the amino terminus of VP19C can tolerate transposon insertions. A novel finding of these studies was the ability to assemble herpesvirus capsids in insect cells using VP5 and VP19C that contained a histidine handle at their amino terminus.
Collapse
Affiliation(s)
- Mercy E Okoye
- Molecular Virology Laboratories, Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, The Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
40
|
Yu X, Trang P, Shah S, Atanasov I, Kim YH, Bai Y, Zhou ZH, Liu F. Dissecting human cytomegalovirus gene function and capsid maturation by ribozyme targeting and electron cryomicroscopy. Proc Natl Acad Sci U S A 2005; 102:7103-8. [PMID: 15883374 PMCID: PMC1091747 DOI: 10.1073/pnas.0408826102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human CMV (HCMV) is the leading viral cause of birth defects and causes one of the most common opportunistic infections among transplant recipients and AIDS patients. Cleavage of internal scaffolding proteins by the viral protease (Pr) occurs during HCMV capsid assembly. To gain insight into the mechanism of HCMV capsid maturation and the roles of the Pr in viral replication, an RNase P ribozyme was engineered to target the Pr mRNA and down-regulate its expression by >99%, generating premature Pr-minus capsids. Furthermore, scaffolding protein processing and DNA encapsidation were inhibited by 99%, and viral growth was reduced by 10,000-fold. 3D structural comparison of the Pr-minus and wild-type B capsids by electron cryomicroscopy, at an unprecedented 12.5-angstroms resolution, unexpectedly revealed that the structures are identical in their overall shape and organization. However, the Pr-minus capsid contains tenuous connections between the scaffold and the capsid shell, whereas the wild-type B capsid has extra densities in its core that may represent the viral Pr. Our findings indicate that cleavage of the scaffolding protein is not associated with the morphological changes that occur during capsid maturation. Instead, the protease appears to be required for DNA encapsidation and the subsequent maturation steps leading to infectious progeny. These results therefore provide key insights into an essential step of HCMV infection using an RNase P ribozyme-based inhibition strategy.
Collapse
Affiliation(s)
- Xuekui Yu
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Davison AJ, Trus BL, Cheng N, Steven AC, Watson MS, Cunningham C, Deuff RML, Renault T. A novel class of herpesvirus with bivalve hosts. J Gen Virol 2005; 86:41-53. [PMID: 15604430 DOI: 10.1099/vir.0.80382-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ostreid herpesvirus 1 (OsHV-1) is the only member of the Herpesviridae that has an invertebrate host and is associated with sporadic mortality in the Pacific oyster (Crassostrea gigas) and other bivalve species. Cryo-electron microscopy of purified capsids revealed the distinctive T=16 icosahedral structure characteristic of herpesviruses, although the preparations examined lacked pentons. The gross genome organization of OsHV-1 was similar to that of certain mammalian herpesviruses (including herpes simplex virus and human cytomegalovirus), consisting of two invertible unique regions (U(L), 167.8 kbp; U(S), 3.4 kbp) each flanked by inverted repeats (TR(L)/IR(L), 7.6 kbp; TR(S)/IR(S), 9.8 kbp), with an additional unique sequence (X, 1.5 kbp) between IR(L) and IR(S). Of the 124 unique genes predicted from the 207 439 bp genome sequence, 38 were members of 12 families of related genes and encoded products related to helicases, inhibitors of apoptosis, deoxyuridine triphosphatase and RING-finger proteins, in addition to membrane-associated proteins. Eight genes in three of the families appeared to be fragmented. Other genes that did not belong to the families were predicted to encode DNA polymerase, the two subunits of ribonucleotide reductase, a helicase, a primase, the ATPase subunit of terminase, a RecB-like protein, additional RING-like proteins, an ion channel and several other membrane-associated proteins. Sequence comparisons showed that OsHV-1 is at best tenuously related to the two classes of vertebrate herpesviruses (those associated with mammals, birds and reptiles, and those associated with bony fish and amphibians). OsHV-1 thus represents a third major class of the herpesviruses.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Benes L Trus
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Imaging Sciences Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Moira S Watson
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Charles Cunningham
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | | | - Tristan Renault
- Laboratoire de Génétique et Pathologie, IFREMER, 17390 La Tremblade, France
| |
Collapse
|
42
|
Abstract
The proteins that compose a herpesvirus virion are thought to contain the functional information required for de novo infection, as well as virion assembly and egress. To investigate functional roles of Kaposi's sarcoma-associated herpesvirus (KSHV) virion proteins in viral productive replication and de novo infection, we attempted to identify virion proteins from purified KSHV by a proteomic approach. Extracellular KSHV virions were purified from phorbol-12-tetradecanoate-13-acetate-induced BCBL-1 cells through double-gradient ultracentrifugation, and their component proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Thirty prominent protein bands were excised and subjected to high-performance liquid chromatography ion trap mass spectrometric analysis. This study led to the identification of 24 virion-associated proteins. These include five capsid proteins, eight envelope glycoproteins, six tegument proteins, and five proteins whose locations in the virions have not yet been defined. Putative tegument proteins encoded by open reading frame 21 (ORF21), ORF33, and ORF45 were characterized and found to be resistant to protease digestion when purified virions were treated with trypsin, confirming that they are located within the virion particles. The ORF64-encoded large tegument protein was found to be associated with capsid but sensitive to protease treatment, suggesting its unique structure and array in KSHV virions. In addition, cellular beta-actin and class II myosin heavy chain type A were found inside KSHV virions and associated with tegument-capsid structure. Identification of KSHV virion proteins makes it possible to study the functional roles of these virion proteins in KSHV replication and pathogenicity.
Collapse
Affiliation(s)
- Fan Xiu Zhu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
43
|
O'Connor CM, Damania B, Kedes DH. De novo infection with rhesus monkey rhadinovirus leads to the accumulation of multiple intranuclear capsid species during lytic replication but favors the release of genome-containing virions. J Virol 2004; 77:13439-47. [PMID: 14645602 PMCID: PMC296083 DOI: 10.1128/jvi.77.24.13439-13447.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rhesus monkey rhadinovirus (RRV) is one of the closest phylogenetic relatives to the human pathogen Kaposi's sarcoma-associated herpesvirus (KSHV), yet it has the distinct experimental advantage of entering efficiently into lytic replication and growing to high titers in culture. RRV therefore holds promise as a potentially attractive model with which to study gammaherpesvirus structure and assembly. We have isolated RRV capsids, determined their molecular composition, and identified the genes encoding five of the main capsid structural proteins. Our data indicate that, as with other herpesviruses, lytic infection with RRV leads to the synthesis of three distinct intranuclear capsid species. However, in contrast to the inefficiency of KSHV maturation following reactivation from latently infected B-cell lines (K. Nealon, W. W. Newcomb, T. R. Pray, C. S. Craik, J. C. Brown, and D. H. Kedes, J. Virol. 75:2866-2878, 2001), de novo infection of immortalized rhesus fibroblasts with RRV results in the release of high levels of infectious virions with genome-containing C capsids at their center. Together, our findings argue for the use of RRV as a powerful model with which to study the structure and assembly of gammaherpesviruses and, specifically, the human rhadinovirus,KSHV.
Collapse
Affiliation(s)
- Christine M O'Connor
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
44
|
Yu XK, O'Connor CM, Atanasov I, Damania B, Kedes DH, Zhou ZH. Three-dimensional structures of the A, B, and C capsids of rhesus monkey rhadinovirus: insights into gammaherpesvirus capsid assembly, maturation, and DNA packaging. J Virol 2004; 77:13182-93. [PMID: 14645575 PMCID: PMC296048 DOI: 10.1128/jvi.77.24.13182-13193.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhesus monkey rhadinovirus (RRV) exhibits high levels of sequence homology to human gammaherpesviruses, such as Kaposi's sarcoma-associated herpesvirus, and grows to high titers in cell cultures, making it a good model system for studying gammaherpesvirus capsid structure and assembly. We have purified RRV A, B, and C capsids, thus for the first time allowing direct structure comparisons by electron cryomicroscopy and three-dimensional reconstruction. The results show that the shells of these capsids are identical and are each composed of 12 pentons, 150 hexons, and 320 triplexes. Structural differences were apparent inside the shells and through the penton channels. The A capsid is empty, and its penton channels are open. The B capsid contains a scaffolding core, and its penton channels are closed. The C capsid contains a DNA genome, which is closely packaged into regularly spaced density shells (25 A apart), and its penton channels are open. The different statuses of the penton channels suggest a functional role of the channels during capsid maturation, and the overall structural similarities of RRV capsids to alphaherpesvirus capsids suggest a common assembly and maturation pathway. The RRV A capsid reconstruction at a 15-A resolution, the best achieved for gammaherpesvirus particles, reveals overall structural similarities to alpha- and betaherpesvirus capsids. However, the outer regions of the capsid, including densities attributed to the Ta triplex and the small capsomer-interacting protein (SCIP or ORF65), exhibit prominent differences from their structural counterparts in alphaherpesviruses. This structural disparity suggests that SCIP and the triplex, together with tegument and envelope proteins, confer structural and potentially functional specificities to alpha-, beta-, and gammaherpesviruses.
Collapse
Affiliation(s)
- Xue-Kui Yu
- Department of PathologyLaboratory Medicine, University of Texas at Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
45
|
Bortz E, Whitelegge JP, Jia Q, Zhou ZH, Stewart JP, Wu TT, Sun R. Identification of proteins associated with murine gammaherpesvirus 68 virions. J Virol 2004; 77:13425-32. [PMID: 14645600 PMCID: PMC296060 DOI: 10.1128/jvi.77.24.13425-13432.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Murine gammaherpesvirus 68 (MHV68 [also known as gammaHV-68]) is distinguished by its ability to replicate to high titers in cultured cells, making it an excellent candidate for studying gammaherpesvirus virion composition. Extracellular MHV68 virions were isolated, and abundant virion-associated proteins were identified by mass spectrometry. Five nucleocapsid protein homologues, the tegument protein homologue encoded by open reading frame (ORF) 75c, and envelope glycoproteins B and H were detected. In addition, gene products from MHV68 ORF20, ORF24, ORF28, ORF45, ORF48, and ORF52 were identified in association with virions, suggesting that these gammaherpesvirus genes are involved in the early phase of infection or virion assembly and egress.
Collapse
Affiliation(s)
- Eric Bortz
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Dourmishev LA, Dourmishev AL, Palmeri D, Schwartz RA, Lukac DM. Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev 2003; 67:175-212, table of contents. [PMID: 12794189 PMCID: PMC156467 DOI: 10.1128/mmbr.67.2.175-212.2003] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma had been recognized as unique human cancer for a century before it manifested as an AIDS-defining illness with a suspected infectious etiology. The discovery of Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, in 1994 by using representational difference analysis, a subtractive method previously employed for cloning differences in human genomic DNA, was a fitting harbinger for the powerful bioinformatic approaches since employed to understand its pathogenesis in KS. Indeed, the discovery of KSHV was rapidly followed by publication of its complete sequence, which revealed that the virus had coopted a wide armamentarium of human genes; in the short time since then, the functions of many of these viral gene variants in cell growth control, signaling apoptosis, angiogenesis, and immunomodulation have been characterized. This critical literature review explores the pathogenic potential of these genes within the framework of current knowledge of the basic herpesvirology of KSHV, including the relationships between viral genotypic variation and the four clinicoepidemiologic forms of Kaposi's sarcoma, current viral detection methods and their utility, primary infection by KSHV, tissue culture and animal models of latent- and lytic-cycle gene expression and pathogenesis, and viral reactivation from latency. Recent advances in models of de novo endothelial infection, microarray analyses of the host response to infection, receptor identification, and cloning of full-length, infectious KSHV genomic DNA promise to reveal key molecular mechanisms of the candidate pathogeneic genes when expressed in the context of viral infection.
Collapse
|
47
|
Lo P, Yu X, Atanasov I, Chandran B, Zhou ZH. Three-dimensional localization of pORF65 in Kaposi's sarcoma-associated herpesvirus capsid. J Virol 2003; 77:4291-7. [PMID: 12634386 PMCID: PMC150664 DOI: 10.1128/jvi.77.7.4291-4297.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of the six herpesvirus capsid proteins, the smallest capsid proteins (SCPs) share the least sequence homology among herpesvirus family members and have been implicated in virus specificity during infection. The herpes simplex virus-1 (HSV-1) SCP was shown to be horn shaped and to specifically bind the upper domain of each major capsid protein in hexons but not in pentons. In Kaposi's sarcoma-associated herpesvirus (KSHV), the protein encoded by the ORF65 gene (pORF65) is the putative SCP but its location remains controversial due to the absence of such horn-shaped densities from both the pentons and hexons of the KSHV capsid reconstructions. To directly locate the KSHV SCP, we have used electron cryomicroscopy and three-dimensional reconstruction techniques to compare the three-dimensional structure of KSHV capsids to that of anti-pORF65 antibody-labeled capsids. Our difference map shows prominent antibody densities bound to the tips of the hexons but not to pentons, indicating that KSHV SCP is attached to the upper domain of the major capsid protein in hexons but not to that in pentons, similar to HSV-1 SCP. The lack of horn-shaped densities on the hexons indicates that KSHV SCP exhibits structural features that are substantially different from those of HSV-1 SCP. The location of SCP at the outermost regions of the capsid suggests a possible role in mediating capsid interactions with the tegument and cytoskeletal proteins during infection.
Collapse
Affiliation(s)
- Pierrette Lo
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
48
|
Zhu FX, Yuan Y. The ORF45 protein of Kaposi's sarcoma-associated herpesvirus is associated with purified virions. J Virol 2003; 77:4221-30. [PMID: 12634379 PMCID: PMC150667 DOI: 10.1128/jvi.77.7.4221-4230.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF45 is encoded by an immediate-early gene in the KSHV genome. This protein was recently shown to interact with interferon regulatory factor 7 and inhibit virus-mediated alpha/beta interferon induction (Zhu et al., Proc. Natl. Acad. Sci. USA 99:5573-5578, 2002). ORF45 was characterized as a phosphorylated protein, and it is localized in the cytoplasm of infected cells. In this report, we provide evidence that ORF45 is associated with KSHV virions. (i) ORF45 was detected in gradient-purified virions by Western blotting along with known structural proteins of KSHV including gB, K8.1, and major capsid protein. In contrast, ORF50/Rta, K8alpha, and ORF59/PF8 were not detected in the same virion preparation. (ii) ORF45 comigrates with KSHV virions in sucrose gradient ultracentrifugation. (iii) Virion-associated ORF45 was resistant to trypsin digestion but became sensitive after the virions were treated with detergent which destroys the viral envelope. (iv) ORF45 remained associated with tegument-nucleocapsid complex when virion-specific glycoproteins were removed after detergent treatment. (v) An ORF45 protein band was visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extensively purified KSHV virions and identified by mass spectrometry. (vi) By immunoelectron microscopy, virus-like structures were specifically stained by anti-ORF45 antibody. Based on the evidence, we conclude that ORF45 is associated with purified KSHV virions and appears to be a tegument protein. The presence of ORF45 in KSHV virions raised the possibility that this protein may be delivered to host cells at the start of infection and therefore have the opportunity to act at the very early stage of the infection, suggesting an important role of ORF45 in KSHV primary infection.
Collapse
Affiliation(s)
- Fan Xiu Zhu
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
49
|
Abstract
In this article we have attempted to describe some structural aspects of large viruses. Although this may seem a straightforward task, it is complicated by the fact that large viruses do not represent a distinctive class of organisms and any grouping under this heading will include a range of unrelated viruses with different structures, replication strategies, and host types. To simplify matters we limited our definition to dsDNA viruses with genomes of 100 kbp or larger. However, even this restricted grouping includes viruses with diverse and seemingly unrelated structures. Furthermore, few if any structural features are exclusive to large viruses and most of what appears distinctive about their structure or assembly can also be found in smaller, and usually better characterized, viruses. Therefore we have not attempted to provide a comprehensive catalog of the properties of large viruses but have tried to illustrate particular structural points with examples from a few of the better known forms, notably herpes simplex virus (HSV) and phage T4. The two techniques used to provide rigorous analyses of virus structures are X-ray crystallography and electron cryomicroscopy with computer-assisted reconstruction. To date, X-ray crystallography has been successful only with smaller viruses, and what is known about the structures of these large viruses has come primarily from electron cryomicroscopy. However, with the notable exception of the HSV capsid, such studies have been limited in extent and of relatively low resolution, and the information obtained has been confined largely to describing the spatial distributions and relationships between the subunits. Nevertheless, these studies have given us our clearest insights into the biology of these complex particles and increases in resolution promise to extend these insights by bridging the gap between gross and atomic structures, as exemplified by the identification and mapping of secondary structural elements in the HSV capsid.
Collapse
Affiliation(s)
- Frazer J Rixon
- MRC Virology Unit, Institute of Virology, Glasgow G11 5JR, United Kingdom
| | | |
Collapse
|
50
|
Cheng N, Trus BL, Belnap DM, Newcomb WW, Brown JC, Steven AC. Handedness of the herpes simplex virus capsid and procapsid. J Virol 2002; 76:7855-9. [PMID: 12097597 PMCID: PMC136369 DOI: 10.1128/jvi.76.15.7855-7859.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capsid of herpes simplex virus has an icosahedral surface lattice with a nonskew triangulation number, T=16. Nevertheless, the proteins arrayed on this lattice necessarily have an intrinsic handedness. We have determined the handedness of both the herpes simplex virus type 1 capsid and its precursor procapsid by a cryoelectron microscopic tilting method.
Collapse
Affiliation(s)
- Naiqian Cheng
- Laboratory of Structural Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|