1
|
Chalabi Hagkarim N, Ip WH, Bertzbach LD, Abualfaraj T, Dobner T, Molloy DP, Stewart GS, Grand RJ. Identification of Adenovirus E1B-55K Interaction Partners through a Common Binding Motif. Viruses 2023; 15:2356. [PMID: 38140597 PMCID: PMC10747525 DOI: 10.3390/v15122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The adenovirus C5 E1B-55K protein is crucial for viral replication and is expressed early during infection. It can interact with E4orf6 to form a complex that functions as a ubiquitin E3 ligase. This complex targets specific cellular proteins and marks them for ubiquitination and, predominantly, subsequent proteasomal degradation. E1B-55K interacts with various proteins, with p53 being the most extensively studied, although identifying binding sites has been challenging. To explain the diverse range of proteins associated with E1B-55K, we hypothesized that other binding partners might recognize the simple p53 binding motif (xWxxxPx). In silico analyses showed that many known E1B-55K binding proteins possess this amino acid sequence; therefore, we investigated whether other xWxxxPx-containing proteins also bind to E1B-55K. Our findings revealed that many cellular proteins, including ATR, CHK1, USP9, and USP34, co-immunoprecipitate with E1B-55K. During adenovirus infection, several well-characterized E1B-55K binding proteins and newly identified interactors, including CSB, CHK1, and USP9, are degraded in a cullin-dependent manner. Notably, certain binding proteins, such as ATR and USP34, remain undegraded during infection. Structural predictions indicate no conservation of structure around the proposed binding motif, suggesting that the interaction relies on the correct arrangement of tryptophan and proline residues.
Collapse
Affiliation(s)
- Nafiseh Chalabi Hagkarim
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Wing-Hang Ip
- Leibniz Institute of Virology, Department of Viral Transformation, 20251 Hamburg, Germany
| | - Luca D. Bertzbach
- Leibniz Institute of Virology, Department of Viral Transformation, 20251 Hamburg, Germany
| | - Tareq Abualfaraj
- Department of Medical Microbiology and Immunology, Taibah University, P.O. Box 344, Madinah 41477, Saudi Arabia
| | - Thomas Dobner
- Leibniz Institute of Virology, Department of Viral Transformation, 20251 Hamburg, Germany
| | - David P. Molloy
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Grant S. Stewart
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Roger J. Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Ixovex-1, a novel oncolytic E1B-mutated adenovirus. Cancer Gene Ther 2022; 29:1628-1635. [PMID: 35596069 PMCID: PMC9663300 DOI: 10.1038/s41417-022-00480-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
There is a great demand for improved oncolytic viruses that selectively replicate within cancer cells while sparing normal cells. Here, we describe a novel oncolytic adenovirus, Ixovex-1, that obtains a cancer-selective replication phenotype by modulating the level of expression of the different, alternatively spliced E1B mRNA isoforms. Ixovex-1 is a recombinant adenovirus that carries a single point mutation in the E1B-93R 3' splice acceptor site that results in overexpression of the E1B-156R splice isoform. In this paper, we studied the characteristics of this novel oncolytic adenovirus by validating its in vitro behaviour in a panel of normal cells and cancer cells. We additionally studied its anti-tumour efficacy in vivo. Ixovex-1 significantly inhibited tumour growth and prolonged survival of mice in an immune-deficient lung carcinoma tumour implantation model. In complementation experiments, overexpression of E1B-156R was shown to increase the oncolytic index of both Ad5wt and ONYX-015. In contrast to prior viruses of similar type, Ixovex-1 includes a functional E3B region for better in vivo efficacy. Throughout this study, the Ixovex-1 virus has been proven to be superior in competency compared to a virus with multiple deletions.
Collapse
|
3
|
Hung G, Flint SJ. Normal human cell proteins that interact with the adenovirus type 5 E1B 55kDa protein. Virology 2017; 504:12-24. [PMID: 28135605 PMCID: PMC5337154 DOI: 10.1016/j.virol.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
Several of the functions of the human adenovirus type 5 E1B 55kDa protein are fulfilled via the virus-specific E3 ubiquitin ligase it forms with the viral E4 Orf6 protein and several cellular proteins. Important substrates of this enzyme have not been identified, and other functions, including repression of transcription of interferon-sensitive genes, do not require the ligase. We therefore used immunoaffinity purification and liquid chromatography-mass spectrometry of lysates of normal human cells infected in parallel with HAdV-C5 and E1B 55kDa protein-null mutant viruses to identify specifically E1B 55kDa-associated proteins. The resulting set of >90 E1B-associated proteins contained the great majority identified previously, and was enriched for those associated with the ubiquitin-proteasome system, RNA metabolism and the cell cycle. We also report very severe inhibition of viral genome replication when cells were exposed to both specific or non-specific siRNAs and interferon prior to infection.
Collapse
Affiliation(s)
- George Hung
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - S J Flint
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
4
|
Shinohara ET, Lu B, Hallahan DE. The Use of Gene Therapy in Cancer Research and Treatment. Technol Cancer Res Treat 2016; 3:479-90. [PMID: 15453813 DOI: 10.1177/153303460400300509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Gene therapy involves identifying a gene of interest and then manipulating the expression of this gene through a variety of techniques. Here we specifically address gene therapy's role in cancer research. This paper will encompass thoroughly investigated techniques such as cancer vaccines and suicide gene therapy and the latest advancements in and applications of these techniques. It will also cover newer techniques such as Antisense Oligonucleotides and small interfering RNAs and how these technologies are being developed and used. The use of gene therapy continues to expand in cancer research and has an integral role in the advancement of cancer treatment.
Collapse
Affiliation(s)
- E T Shinohara
- Department of Radiation Oncology, Vanderbilt University, 1301 22nd Avenue South, B-902, The Vanderbilt Clinic, Nashville, Tennessee 37232-5671, USA
| | | | | |
Collapse
|
5
|
Okumura F, Joo-Okumura A, Nakatsukasa K, Kamura T. The role of cullin 5-containing ubiquitin ligases. Cell Div 2016; 11:1. [PMID: 27030794 PMCID: PMC4812663 DOI: 10.1186/s13008-016-0016-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
The suppressor of cytokine signaling (SOCS) box consists of the BC box and the cullin 5 (Cul5) box, which interact with Elongin BC and Cul5, respectively. SOCS box-containing proteins have ubiquitin ligase activity mediated by the formation of a complex with the scaffold protein Cul5 and the RING domain protein Rbx2, and are thereby members of the cullin RING ligase superfamily. Cul5-type ubiquitin ligases have a variety of substrates that are targeted for polyubiquitination and proteasomal degradation. Here, we review the current knowledge on the identification of Cul5 and the regulation of its expression, as well as the signaling pathways regulated by Cul5 and how viruses highjack the Cul5 system to overcome antiviral responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| |
Collapse
|
6
|
Turner RL, Groitl P, Dobner T, Ornelles DA. Adenovirus replaces mitotic checkpoint controls. J Virol 2015; 89:5083-96. [PMID: 25694601 PMCID: PMC4403466 DOI: 10.1128/jvi.00213-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Infection with adenovirus triggers the cellular DNA damage response, elements of which include cell death and cell cycle arrest. Early adenoviral proteins, including the E1B-55K and E4orf3 proteins, inhibit signaling in response to DNA damage. A fraction of cells infected with an adenovirus mutant unable to express the E1B-55K and E4orf3 genes appeared to arrest in a mitotic-like state. Cells infected early in G1 of the cell cycle were predisposed to arrest in this state at late times of infection. This arrested state, which displays hallmarks of mitotic catastrophe, was prevented by expression of either the E1B-55K or the E4orf3 genes. However, E1B-55K mutant virus-infected cells became trapped in a mitotic-like state in the presence of the microtubule poison colcemid, suggesting that the two viral proteins restrict entry into mitosis or facilitate exit from mitosis in order to prevent infected cells from arresting in mitosis. The E1B-55K protein appeared to prevent inappropriate entry into mitosis through its interaction with the cellular tumor suppressor protein p53. The E4orf3 protein facilitated exit from mitosis by possibly mislocalizing and functionally inactivating cyclin B1. When expressed in noninfected cells, E4orf3 overcame the mitotic arrest caused by the degradation-resistant R42A cyclin B1 variant. IMPORTANCE Cells that are infected with adenovirus type 5 early in G1 of the cell cycle are predisposed to arrest in a mitotic-like state in a p53-dependent manner. The adenoviral E1B-55K protein prevents entry into mitosis. This newly described activity for the E1B-55K protein appears to depend on the interaction between the E1B-55K protein and the tumor suppressor p53. The adenoviral E4orf3 protein facilitates exit from mitosis, possibly by altering the intracellular distribution of cyclin B1. By preventing entry into mitosis and by promoting exit from mitosis, these adenoviral proteins act to prevent the infected cell from arresting in a mitotic-like state.
Collapse
Affiliation(s)
- Roberta L Turner
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter Groitl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
7
|
Impact of the adenoviral E4 Orf3 protein on the activity and posttranslational modification of p53. J Virol 2015; 89:3209-20. [PMID: 25568206 DOI: 10.1128/jvi.03072-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1-17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076-1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3 ubiquitin ligase that contains the viral E1B 55-kDa and E4 Orf6 proteins, while the E4 Orf3 protein has been reported to block its ability to stimulate expression of p53-dependent genes. The comparisons reported here of the posttranslational modifications and activities of p53 populations that accumulate in infected normal human cells in the absence of both mechanisms of inactivation or of only the E3 ligase revealed little impact of the E4 Orf3 protein. These observations indicate that E4 Orf3-dependent disruption of Pml bodies does not have a major effect on the pattern of p53 posttranslational modifications in adenovirus-infected cells. Furthermore, they suggest that one or more additional viral proteins contribute to blocking p53 activation and the consequences that are deleterious for viral reproduction, such as apoptosis or cell cycle arrest.
Collapse
|
8
|
Sharon D, Schümann M, MacLeod S, McPherson R, Chaurasiya S, Shaw A, Hitt MM. 2-aminopurine enhances the oncolytic activity of an E1b-deleted adenovirus in hepatocellular carcinoma cells. PLoS One 2013; 8:e65222. [PMID: 23750246 PMCID: PMC3672087 DOI: 10.1371/journal.pone.0065222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/23/2013] [Indexed: 01/01/2023] Open
Abstract
Adenoviruses with deletions of viral genes have been extensively studied as potential cancer therapeutics. Although a high degree of cancer selectivity has been demonstrated with these conditionally replicating adenoviruses, low levels of virus replication can be detected in normal cells. Furthermore, these mutations were also found to reduce the activity of the replicating viruses in certain cancer cells. Recent studies have shown that co-administration of chemotherapeutic drugs may increase the activity of these viruses without affecting their specificity. We constructed an adenovirus with deletions of both the E1b and the VA-RNA genes and found that replication of this virus was selective for human hepatocellular carcinoma (HCC) cell lines when compared to normal cell lines. Furthermore, we show that 2-aminopurine (2′AP) treatment selectively enhanced virus replication and virus-mediated death of HCC cells. 2′AP did not compensate for the loss of VA-RNA activities, but rather the loss of an E1b-55K activity, such as the DNA damage response, suggesting that co-administration of 2′AP derivatives that block host DNA damage response, may increase the oncolytic activity of AdΔE1bΔVA without reducing its selectivity for HCC cells.
Collapse
Affiliation(s)
- David Sharon
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Schümann
- Institut für Virologie, Klinikum der Philipps-Universität Marburg, Marburg, Germany
| | - Sheena MacLeod
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Robyn McPherson
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Andrew Shaw
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Mary M. Hitt
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
9
|
Role of E1B55K in E4orf6/E1B55K E3 ligase complexes formed by different human adenovirus serotypes. J Virol 2013; 87:6232-45. [PMID: 23536656 DOI: 10.1128/jvi.00384-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The E4orf6 protein of serotypes representing all human adenovirus species forms Cullin-based E3 ubiquitin ligase complexes that facilitate virus infection by inducing degradation of cellular proteins that impede efficient viral replication. This complex also includes the viral E1B55K product believed to bind and introduce substrates for ubiquitination. Heterogeneity in the composition of these ligases exists, as some serotypes form Cul5-based complexes whereas others utilize Cul2. Significant variations in substrate specificities also exist among serotypes, as some degrade certain substrates very efficiently whereas others induce more modest or little degradation. As E1B55K is believed to function as the substrate acquisition component of the ligase, we undertook studies to compare the ability of representative E1B55K proteins to bind substrates with the efficacy of degradation by their respective E4orf6-based ligases. Interestingly, although efficient degradation in some cases corresponded to the ability of E1B55K to bind to or relocalize substrates, there were several examples of substrates that bound efficiently to E1B55K but were not degraded and others in which substrates were degraded even though binding to E1B55K was low or undetectable. These results suggest that transient interactions with E1B55K may be sufficient for efficient substrate degradation and that binding alone is not sufficient, implying that the orientation of the substrate in the ligase complex is probably crucial. Nevertheless, we found that the substrate specificity of certain E4orf6-based ligases could be altered through the formation of hybrid complexes containing E1B55K from another serotype, thus confirming identification of E1B55K as the substrate acquisition component of the complex.
Collapse
|
10
|
Future directions and treatment strategies for head and neck squamous cell carcinomas. Transl Res 2012; 160:167-77. [PMID: 22683420 PMCID: PMC3423575 DOI: 10.1016/j.trsl.2012.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/16/2012] [Accepted: 02/04/2012] [Indexed: 11/23/2022]
Abstract
Head and neck cancer is a devastating disease that afflicts many individuals worldwide. Conventional therapies are successful in only a limited subgroup and often leave the patient with disfigurement and long lasting adverse effects on normal physiologic functions. The field is in dire need of new therapies. Oncolytic viral as well as targeted therapies have shown some success in other malignancies and are attractive for the treatment of head and neck cancer. Recently, it has been shown that a subset of head and neck cancers is human papillomavirus (HPV) positive and that this subset of cancers is biologically distinct and more sensitive to chemoradiation therapies although the underlying mechanism is unclear. However, chemoresistance remains a general problem. One candidate mediator of therapeutic response, which is of interest for the targeting of both HPV-positive and -negative tumors is the human DEK proto-oncogene. DEK is upregulated in numerous tumors including head and neck cancers regardless of their HPV status. Depletion of DEK in tumor cells in culture results in sensitivity to genotoxic agents, particularly in rapidly proliferating cells. This suggests that tumors with high DEK protein expression may be correlated with poor clinical response to clastogenic therapies. Targeting molecules such as DEK in combination with new and/or conventional therapies, holds promise for novel future therapeutics for head and neck cancer.
Collapse
|
11
|
Svyatchenko VA, Tarasova MV, Netesov SV, Chumakov PM. Oncolytic adenoviruses in anticancer therapy: Current status and prospects. Mol Biol 2012. [DOI: 10.1134/s0026893312040103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Schreiner S, Wimmer P, Dobner T. Adenovirus degradation of cellular proteins. Future Microbiol 2012; 7:211-25. [PMID: 22324991 DOI: 10.2217/fmb.11.153] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic cells orchestrate constant synthesis and degradation of intracellular components, including soluble proteins and organelles. The two major intracellular degradation pathways are the ubiquitin/proteasome system and autophagy. Whereas ubiquitin/proteasome system is involved in rapid degradation of proteins, autophagy selectively removes protein aggregates and damaged organelles. Failure of these highly adjusted proteolytic systems to maintain basal turnover leads to altered cellular homeostasis. During evolution, certain viruses have developed mechanisms to exploit their functions to facilitate their own replication, prevent viral clearance and promote the outcome of infection. In this article, we summarize the current opinion on adenoviruses (Ad) and molecular host cell targets, extending on recent evidences for protein degradation pathways in infected cells. We describe recently identified connections between Ad-mediated proteolysis and viral replication with main emphasis on the function of certain Ad proteins.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany. sabrina.schreiner@hpi. uni-hamburg.de
| | | | | |
Collapse
|
13
|
Okumura F, Matsuzaki M, Nakatsukasa K, Kamura T. The Role of Elongin BC-Containing Ubiquitin Ligases. Front Oncol 2012; 2:10. [PMID: 22649776 PMCID: PMC3355856 DOI: 10.3389/fonc.2012.00010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/17/2012] [Indexed: 02/06/2023] Open
Abstract
The Elongin complex was originally identified as a positive regulator of RNA polymerase II and is composed of a transcriptionally active subunit (A) and two regulatory subunits (B and C). The Elongin BC complex enhances the transcriptional activity of Elongin A. “Classical” SOCS box-containing proteins interact with the Elongin BC complex and have ubiquitin ligase activity. They also interact with the scaffold protein Cullin (Cul) and the RING domain protein Rbx and thereby are members of the Cullin RING ligase (CRL) superfamily. The Elongin BC complex acts as an adaptor connecting Cul and SOCS box proteins. Recently, it was demonstrated that classical SOCS box proteins can be further divided into two groups, Cul2- and Cul5-type proteins. The classical SOCS box-containing protein pVHL is now classified as a Cul2-type protein. The Elongin BC complex containing CRL family is now considered two distinct protein assemblies, which play an important role in regulating a variety of cellular processes such as tumorigenesis, signal transduction, cell motility, and differentiation.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya, Aichi, Japan
| | | | | | | |
Collapse
|
14
|
Timely synthesis of the adenovirus type 5 E1B 55-kilodalton protein is required for efficient genome replication in normal human cells. J Virol 2012; 86:3064-72. [PMID: 22278242 DOI: 10.1128/jvi.06764-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies have indicated that the adenovirus type 5 E1B 55-kDa protein facilitates viral DNA synthesis in normal human foreskin fibroblasts (HFFs) but not in primary epithelial cells. To investigate this apparent difference further, viral DNA accumulation was examined in primary human fibroblasts and epithelial cells infected by the mutant AdEasyE1Δ2347, which carries the Hr6 frameshift mutation that prevents production of the E1B 55-kDa protein, in an E1-containing derivative of AdEasy. Impaired viral DNA synthesis was observed in normal HFFs but not in normal human bronchial epithelial cells infected by this mutant. However, acceleration of progression through the early phase, which is significantly slower in HFFs than in epithelial cells, eliminated the dependence of efficient viral DNA synthesis in HFFs on the E1B 55-kDa protein. These observations suggest that timely synthesis of the E1B 55-kDa protein protects normal cells against a host defense that inhibits adenoviral genome replication. One such defense is mediated by the Mre11-Rad50-Nbs1 complex. Nevertheless, examination of the localization of Mre11 and viral proteins by immunofluorescence suggested that this complex is inactivated similarly in AdEasyE1Δ2347 mutant-infected and AdEasyE1-infected HFFs.
Collapse
|
15
|
Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor Daxx is required for efficient transformation of primary rodent cells. J Virol 2011; 85:8752-65. [PMID: 21697482 DOI: 10.1128/jvi.00440-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Early region 1B 55K (E1B-55K) from adenovirus type 5 (Ad5) is a multifunctional regulator of lytic infection and contributes in vitro to complete cell transformation of primary rodent cells in combination with Ad5 E1A. Inhibition of p53 activated transcription plays a key role in processes by which E1B-55K executes its oncogenic potential. Nevertheless, additional functions of E1B-55K or further protein interactions with cellular factors of DNA repair, transcription, and apoptosis, including Mre11, PML, and Daxx, may also contribute to the transformation process. In line with previous results, we performed mutational analysis to define a Daxx interaction motif within the E1B-55K polypeptide. The results from these studies showed that E1B-55K/Daxx binding is not required for inhibition of p53-mediated transactivation or binding and degradation of cellular factors (p53/Mre11). Surprisingly, these mutants lost the ability to degrade Daxx and showed reduced transforming potential in primary rodent cells. In addition, we observed that E1B-55K lacking the SUMO-1 conjugation site (SCS/K104R) was sufficient for Daxx interaction but no longer capable of E1B-55K-dependent proteasomal degradation of the cellular factor Daxx. These results, together with the observation that E1B-55K SUMOylation is required for efficient transformation, provides evidence for the idea that SUMO-1-conjugated E1B-55K-mediated degradation of Daxx plays a key role in adenoviral oncogenic transformation. We assume that the viral protein contributes to cell transformation through the modulation of Daxx-dependent pathways. This further substantiates the assumption that further mechanisms for efficient transformation of primary cells can be separated from functions required for the inhibition of p53-stimulated transcription.
Collapse
|
16
|
Serotype-specific inactivation of the cellular DNA damage response during adenovirus infection. J Virol 2010; 85:2201-11. [PMID: 21159879 DOI: 10.1128/jvi.01748-10] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus type 5 (Ad5) inactivates the host cell DNA damage response by facilitating the degradation of Mre11, DNA ligase IV, and p53. In the case of p53, this is achieved through polyubiquitylation by Ad5E1B55K and Ad5E4orf6, which recruit a Cul5-based E3 ubiquitin ligase. Recent evidence indicates that this paradigm does not apply to other adenovirus serotypes, since Ad12, but not Ad5, causes the degradation of TOPBP1 through the action of E4orf6 alone and a Cul2-based E3 ubiquitin ligase. We now have extended these studies to adenovirus groups A to E. While infection by Ad4, Ad5, and Ad12 (groups E, C, and A, respectively) cause the degradation of Mre11, DNA ligase IV, and p53, infection with Ad3, Ad7, Ad9, and Ad11 (groups B1, B1, D, and B2, respectively) only affects DNA ligase IV levels. Indeed, Ad3, Ad7, and Ad11 cause the marked accumulation of p53. Despite this, MDM2 levels were very low following infection with all of the viruses examined here, regardless of whether they increase p53 expression. In addition, we found that only Ad12 causes the degradation of TOPBP1, and, like Ad5, Ad4 recruits a Cul5-based E3 ubiquitin ligase to degrade p53. Surprisingly, Mre11 and DNA ligase IV degradation do not appear to be significantly affected in Ad4-, Ad5-, or Ad12-infected cells depleted of Cul2 or Cul5, indicating that E1B55K and E4orf6 recruit multiple ubiquitin ligases to target cellular proteins. Finally, although Mre11 is not degraded by Ad3, Ad7, Ad9, and Ad11, no viral DNA concatemers could be detected. We suggest that group B and D adenoviruses have evolved mechanisms based on the loss of DNA ligase IV and perhaps other unknown molecules to disable the host cell DNA damage response to promote viral replication.
Collapse
|
17
|
The adenovirus E1b55K/E4orf6 complex induces degradation of the Bloom helicase during infection. J Virol 2010; 85:1887-92. [PMID: 21123383 DOI: 10.1128/jvi.02134-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The adenovirus (Ad) E1b55K and E4orf6 gene products assemble an E3 ubiquitin ligase complex that promotes degradation of cellular proteins. Among the known substrates are p53 and the Mre11-Rad50-Nbs1 (MRN) complex. Since members of the RecQ helicase family function together with MRN in genome maintenance, we investigated whether adenovirus affects RecQ proteins. We show that Bloom helicase (BLM) is degraded during adenovirus type 5 (Ad5) infection. BLM degradation is mediated by E1b55K/E4orf6 but is independent of MRN. We detected BLM localized at discrete foci around viral replication centers. These studies identify BLM as a new substrate for degradation by the adenovirus E1b55K/E4orf6 complex.
Collapse
|
18
|
The E4orf6/E1B55K E3 ubiquitin ligase complexes of human adenoviruses exhibit heterogeneity in composition and substrate specificity. J Virol 2010; 85:765-75. [PMID: 21068234 DOI: 10.1128/jvi.01890-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although human adenovirus type 5 (Ad5) has been widely studied, relatively little work has been done with other human adenovirus serotypes. The Ad5 E4orf6 and E1B55K proteins form Cul5-based E3 ubiquitin ligase complexes to degrade p53, Mre11, DNA ligase IV, integrin α3, and almost certainly other targets, presumably to optimize the cellular environment for viral replication and perhaps to facilitate persistence or latency. As this complex is essential for the efficient replication of Ad5, we undertook a systematic analysis of the structure and function of corresponding E4orf6/E1B55K complexes from other serotypes to determine the importance of this E3 ligase throughout adenovirus evolution. E4orf6 and E1B55K coding sequences from serotypes representing all subgroups were cloned, and each pair was expressed and analyzed for their capacity to assemble the Cullin-based ligase complex and to degrade substrates following plasmid DNA transfection. The results indicated that all formed Cullin-based E3 ligase complexes but that heterogeneity in both structure and function existed. Whereas Cul5 was present in the complexes of some serotypes, others recruited primarily Cul2, and the Ad16 complex clearly bound both Cul2 and Cul5. There was also heterogeneity in substrate specificity. Whereas all serotypes tested appeared to degrade DNA ligase IV, complexes from some serotypes failed to degrade Mre11, p53, or integrin α3. Thus, a major evolutionary pressure for formation of the adenovirus ligase complex may lie in the degradation of DNA ligase IV; however, it seems possible that the degradation of as-yet-unidentified critical targets or, perhaps even more likely, appropriate combinations of substrates plays a central role for these adenoviruses.
Collapse
|
19
|
Infection with E1B-mutant adenovirus stabilizes p53 but blocks p53 acetylation and activity through E1A. Oncogene 2010; 30:865-75. [PMID: 20935676 DOI: 10.1038/onc.2010.461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wild-type adenovirus type 5 eliminates p53 through the E1B-55kDa and E4-34kDa gene products. Deletion or mutation of E1B-55kDa has long been thought to confer p53-selective replication of oncolytic viruses. We show here that infection with E1B-defective adenovirus mutants induces massive accumulation of p53, without obvious defects in p53 localization, phosphorylation, conformation and oligomerization. Nonetheless, p53 completely failed to induce its target genes in this scenario, for example, p21/CDKN1A, Mdm2 and PUMA. Two regions of the E1A gene products independently contributed to the suppression of p21 transcription. Depending on the E1A conserved region 3, E1B-defective adenovirus impaired the ability of the transcription factor Sp1 to bind the p21 promoter. Moreover, the amino terminal region of E1A, binding the acetyl transferases p300 and CREB-binding protein, blocked p53 K382 acetylation in infected cells. Mutating either of these E1A regions, in addition to E1B, partially restored p21 mRNA levels. Our findings argue that adenovirus attenuates p53-mediated p21 induction, through at least two E1B-independent mechanisms. Other virus species and cancer cells may employ analogous strategies to impair p53 activity.
Collapse
|
20
|
van Zeeburg HJT, Huizenga A, Brink A, van den Doel PB, Zhu ZB, McCormick F, Brakenhoff RH, van Beusechem VW. Comparison of oncolytic adenoviruses for selective eradication of oral cancer and pre-cancerous lesions. Gene Ther 2010; 17:1517-24. [PMID: 20686507 DOI: 10.1038/gt.2010.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oncolytic adenoviruses are being investigated as potential anti-cancer agents. Selective lytic replication in cancer cells is essential for an effective and safe treatment. In this study, we compared 11 oncolytic adenoviruses in relevant cell cultures to assess their use for treating oral cancer and pre-cancerous lesions. We determined the cytotoxicity of oncolytic adenovirus infection and calculated selectivity indices for cytotoxicity to cancer cells compared with normal oral keratinocytes and fibroblasts. Keratinocytes were very sensitive to wild-type adenovirus serotype 5 (Ad5); 1- to 3-log more than head and neck squamous cell carcinoma (HNSCC) cells. The potencies of oncolytic adenoviruses to kill HNSCC cells within 7 days after infection ranged from approximately 10 times less potent to approximately 10 times more potent than Ad5. The selectivity indices determined on fibroblasts and keratinocytes differed markedly. Two oncolytic adenoviruses were more selective than Ad5 for HNSCC cells compared with fibroblasts; and five viruses showed selective replication on HNSCC cells compared with keratinocytes. Overall, CRAd-S.RGD with E1A driven by the survivin promoter and an infectivity-enhancing capsid modification showed the most favourable cytotoxicity pattern; being very potent in killing HNSCC cells, only slightly less effective than Ad5 in killing pre-neoplastic keratinocytes and the least toxic to normal keratinocytes.
Collapse
Affiliation(s)
- H J T van Zeeburg
- Department of Otolaryngology/Head-Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Morawska-Onyszczuk M, Bieńkowska-Szewczyk K, Dobbelstein M. Self-association of adenovirus type 5 E1B-55 kDa as well as p53 is essential for their mutual interaction. Oncogene 2009; 29:1773-86. [PMID: 20023703 DOI: 10.1038/onc.2009.461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adenovirus type 5 E1B-55 kDa oncoprotein forms a complex with the tumor suppressor p53 and inactivates it. E1B-55 kDa and p53 are each capable of forming oligomers. We mapped the oligomerization domain of E1B-55 kDa to the central portion of the protein. Disturbing E1B-55 kDa self-association by point mutations at residues 285/286 or 307 not only impairs its intracellular localization to the cytoplasmic clusters, but in addition, its association with p53. Strikingly, tetramerization of p53 is also required for efficient association with E1B-55 kDa. Moreover, two different E1B-55 kDa mutants defective for p53 binding but proficient for oligomerization can trans-complement each other for p53 relocalization. We propose that the homo-oligomerization of each component enables efficient interaction between E1B-55 kDa and p53 through increased avidity.
Collapse
Affiliation(s)
- M Morawska-Onyszczuk
- Department of Molecular Oncology, Göttingen Center of Molecular Bioscience, Ernst Caspari Haus, University of Göttingen, Göttingen 37077, Germany
| | | | | |
Collapse
|
22
|
A proteomic approach to identify candidate substrates of human adenovirus E4orf6-E1B55K and other viral cullin-based E3 ubiquitin ligases. J Virol 2009; 83:12172-84. [PMID: 19759146 DOI: 10.1128/jvi.01169-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has been known for some time that the human adenovirus serotype 5 (Ad5) E4orf6 and E1B55K proteins work in concert to degrade p53 and to regulate selective export of late viral mRNAs during productive infection. Both of these functions rely on the formation by the Ad5 E4orf6 protein of a cullin 5-based E3 ubiquitin ligase complex containing elongins B and C. E1B55K is believed to function as the substrate recognition module for the complex and, in addition to p53, Mre11 and DNA ligase IV have also been identified as substrates. To discover additional substrates we have taken a proteomic approach by using two-dimensional difference gel electrophoresis to detect cellular proteins that decrease significantly in amount in p53-null H1299 human lung carcinoma cells after expression of E1B55K and E4orf6 using adenovirus vectors. Several species were detected and identified by mass spectroscopy, and for one of these, integrin alpha3, we went on in a parallel study to confirm it as a bone fide substrate of the complex (F. Dallaire et al., J. Virol. 83:5329-5338, 2009). Although the system has some limitations, it may still be of some general use in identifying candidate substrates of any viral cullin-based E3 ubiquitin ligase complex, and we suggest a series of criteria for substrate validation.
Collapse
|
23
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
24
|
Miller DL, Rickards B, Mashiba M, Huang W, Flint SJ. The adenoviral E1B 55-kilodalton protein controls expression of immune response genes but not p53-dependent transcription. J Virol 2009; 83:3591-603. [PMID: 19211769 PMCID: PMC2663238 DOI: 10.1128/jvi.02269-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/30/2009] [Indexed: 01/20/2023] Open
Abstract
The human adenovirus type 5 (Ad5) E1B 55-kDa protein modulates several cellular processes, including activation of the tumor suppressor p53. Binding of the E1B protein to the activation domain of p53 inhibits p53-dependent transcription. This activity has been correlated with the transforming activity of the E1B protein, but its contribution to viral replication is not well understood. To address this issue, we used microarray hybridization methods to examine cellular gene expression in normal human fibroblasts (HFFs) infected by Ad5, the E1B 55-kDa-protein-null mutant Hr6, or a mutant carrying substitutions that impair repression of p53-dependent transcription. Comparison of the changes in cellular gene expression observed in these and our previous experiments (D. L. Miller et al., Genome Biol. 8:R58, 2007) by significance analysis of microarrays indicated excellent reproducibility. Furthermore, we again observed that Ad5 infection led to efficient reversal of the p53-dependent transcriptional program. As this same response was also induced in cells infected by the two mutants, we conclude that the E1B 55-kDa protein is not necessary to block activation of p53 in Ad5-infected cells. However, groups of cellular genes that were altered in expression specifically in the absence of the E1B protein were identified by consensus k-means clustering of the hybridization data. Statistical analysis of the enrichment of genes associated with specific functions in these clusters established that the E1B 55-kDa protein is necessary for repression of genes encoding proteins that mediate antiviral and immune defenses.
Collapse
Affiliation(s)
- Daniel L Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | | | | | |
Collapse
|
25
|
Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation. J Virol 2009; 83:4000-12. [PMID: 19211739 DOI: 10.1128/jvi.02417-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
26
|
Cardoso FM, Kato SEM, Huang W, Flint SJ, Gonzalez RA. An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells. Virology 2008; 378:339-46. [PMID: 18632130 DOI: 10.1016/j.virol.2008.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/03/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
It is well established that the human subgroup C adenovirus type 5 (Ad5) E1B 55 kDa protein can regulate the activity and concentration of the cellular tumor suppressor, p53. However, the contribution(s) of these functions of the E1B protein to viral reproduction remains unclear. To investigate this issue, we examined properties of p53 in normal human cells infected by E1B mutant viruses that display defective entry into the late phase or viral late mRNA export. The steady-state concentrations of p53 were significantly higher in cells infected by the E1B 55 kDa null mutant Hr6 or three mutants carrying small insertions in the E1B 55 kDa protein coding sequence than in Ad5-infected cells. Nevertheless, none of the mutants induced apoptosis in infected cells. Rather, the localization of p53 to E1B containing nuclear sites observed during infection by Ad5 was prevented by mutations that impair interaction of the E1B protein with p53 and/or with the E4 Orf6 protein. These results indicate that the E1B protein fulfills an early function that correlates efficient entry into the late phase with the localization of E1B and p53 in the nucleus of Ad5-infected normal human cells.
Collapse
Affiliation(s)
- F M Cardoso
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México
| | | | | | | | | |
Collapse
|
27
|
Distinct requirements of adenovirus E1b55K protein for degradation of cellular substrates. J Virol 2008; 82:9043-55. [PMID: 18614635 DOI: 10.1128/jvi.00925-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1b55K and E4orf6 proteins of adenovirus type 5 (Ad5) assemble into a complex together with cellular proteins including cullin 5, elongins B and C, and Rbx1. This complex possesses E3 ubiquitin ligase activity and targets cellular proteins for proteasome-mediated degradation. The ligase activity has been suggested to be responsible for all functions of E1b55K/E4orf6, including promoting efficient viral DNA replication, preventing a cellular DNA damage response, and stimulating late viral mRNA nuclear export and late protein synthesis. The known cellular substrates for degradation by E1b55K/E4orf6 are the Mre11/Rad50/Nbs1 DNA repair complex, the tumor suppressor p53, and DNA ligase IV. Here we show that the degradation of individual targets can occur independently of other substrates. Furthermore, we identify separation-of-function mutant forms of E1b55K that can distinguish substrates for binding and degradation. Our results identify distinct regions of E1b55K that are involved in substrate recognition but also imply that there are additional requirements beyond protein association. These mutant proteins will facilitate the determination of the relevance of specific substrates to the functions of E1b55K in promoting infection and inactivating host defenses.
Collapse
|
28
|
Yang M, Cao X, Yu MC, Fa Gu J, Shen ZH, Ding M, Yu DB, Zheng S, Liu XY. Potent Antitumor Efficacy of ST13 for Colorectal Cancer Mediated by Oncolytic Adenovirus via Mitochondrial Apoptotic Cell Death. Hum Gene Ther 2008; 19:343-53. [DOI: 10.1089/hum.2007.0137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Min Yang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Cao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Can Yu
- Kathleen B. and Mason I. Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | - Jin Fa Gu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zong Hou Shen
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Miao Ding
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - De Bing Yu
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 100051, China
| | - Shu Zheng
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xin Yuan Liu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 100051, China
| |
Collapse
|
29
|
Adenovirus E1B55K region is required to enhance cyclin E expression for efficient viral DNA replication. J Virol 2008; 82:3415-27. [PMID: 18234796 DOI: 10.1128/jvi.01708-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adenoviruses (Ads) with E1B55K mutations can selectively replicate in and destroy cancer cells. However, the mechanism of Ad-selective replication in tumor cells is not well characterized. We have shown previously that expression of several cell cycle-regulating genes is markedly affected by the Ad E1b gene in WI-38 human lung fibroblast cells (X. Rao, et al., Virology 350:418-428, 2006). In the current study, we show that the Ad E1B55K region is required to enhance cyclin E expression and that the failure to induce cyclin E overexpression due to E1B55K mutations prevents viral DNA from undergoing efficient replication in WI-38 cells, especially when the cells are arrested in the G(0) phase of the cell cycle by serum starvation. In contrast, cyclin E induction is less dependent on the function encoded in the E1B55K region in A549 and other cancer cells that are permissive for replication of E1B55K-mutated viruses, whether the cells are in the S phase or G(0) phase. The small interfering RNA that specifically inhibits cyclin E expression partially decreased viral replication. Our study provides evidence suggesting that E1B55K may be involved in cell cycle regulation that is important for efficient viral DNA replication and that cyclin E overexpression in cancer cells may be associated with the oncolytic replication of E1B55K-mutated viruses.
Collapse
|
30
|
Farkas SL, Harrach B, Benko M. Completion of the genome analysis of snake adenovirus type 1, a representative of the reptilian lineage within the novel genus Atadenovirus. Virus Res 2007; 132:132-9. [PMID: 18166240 DOI: 10.1016/j.virusres.2007.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 11/13/2007] [Accepted: 11/16/2007] [Indexed: 11/16/2022]
Abstract
Genome sequencing and analysis of snake adenovirus type 1 (SnAdV-1), originating from corn snake, were completed. This is the first full genomic sequence of an adenovirus from reptilian hosts. The presence of characteristic genus-common genes and transcription units, showed that SnAdV-1 shares similar genome organisation with members of the recently established genus Atadenovirus. Three novel open reading frames of yet unknown functions were found. One of these seemed to be related to a putative gene, the so-called 105R that has recently been described from the genome of the tree shrew adenovirus. The other two putative genes were found to be unique for SnAdV-1. On phylogenetic trees, SnAdV-1 clustered within the atadenovirus clade. Thereby the hypothesis on the reptilian origin of atadenoviruses was further strengthened. Interestingly, however, one of the most striking features of atadenoviruses, namely the base content heavily biased towards A+T, is not characteristic for SnAdV-1 having a genome of balanced composition with a G+C value of 50.21%.
Collapse
Affiliation(s)
- Szilvia L Farkas
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581, Budapest, P.O. Box 18, Hungary
| | | | | |
Collapse
|
31
|
Yang ZR, Wang HF, Zhao J, Peng YY, Wang J, Guinn BA, Huang LQ. Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther 2007; 14:599-615. [PMID: 17479105 DOI: 10.1038/sj.cgt.7701054] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite setbacks in the past and apparent hurdles ahead, gene therapy is advancing toward reality. The past several years have witnessed this new field of biomedicine developing rapidly both in breadth and depth, especially for the treatment of cancer, thanks largely to the better understanding of molecular and genetic basis of oncogenesis and the development of new and improved vectors and technologies for gene delivery and targeting. This article is intended to provide a brief review of recent advances in cancer gene therapy using adenoviruses, both as vectors and as oncolytic agents, and some of the recent progress in the development of immunotoxins for use in cancer gene therapy.
Collapse
Affiliation(s)
- Z R Yang
- Center for Biotech & BioMedicine and Division of Life Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Luo K, Ehrlich E, Xiao Z, Zhang W, Ketner G, Yu XF. Adenovirus E4orf6 assembles with Cullin5‐ElonginB‐ElonginC E3 ubiquitin ligase through an HIV/SIV Vif‐like BC‐box to regulate p53. FASEB J 2007; 21:1742-50. [PMID: 17351129 DOI: 10.1096/fj.06-7241com] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adenovirus protein E4orf6 targets p53 for polyubiquitination and proteasomal degradation and is known to form a complex with the Cul5-ElonginB-ElonginC E3 ubiquitin ligase. However, whether Cul5 is directly responsible for the E4orf6-mediated degradation of p53 remains unclear. By using a dominant-negative mutant of Cul5 and silencing Cul5 expression through RNA interference, we have now demonstrated that E4orf6-mediated p53 degradation requires Cul5. Furthermore, we have identified a lentiviral Vif-like BC-box motif in E4orf6 that is highly conserved among adenoviruses from multiple species. More importantly, we have shown that this Vif-like BC-box is essential for the recruitment of Cul5-ElonginB-ElonginC E3 ubiquitin ligase by E4orf6 and is also required for E4orf6-mediated p53 degradation. E4orf6 selectively recruited Cul5 despite the lack of either a Cul5-box, which is used by cellular substrate receptors to recruit Cul5, or a newly identified HCCH zinc-binding motif, which is used by primate lentiviral Vif to recruit Cul5. Therefore, adenovirus E4orf6 molecules represent a novel family of viral BC-box proteins the cellular ancestor of which is as yet unknown.
Collapse
Affiliation(s)
- Kun Luo
- Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Theadenovirus type 5 (Ad5) E1B-55K and E4orf6 proteins are required together to stimulate viral late nuclear mRNA export to the cytoplasm and to restrict host cell nuclear mRNA export during the late phase of infection. Previous studies have shown that these two viral proteins interact with the cellular proteins elongins B and C, cullin 5, RBX1, and additional cellular proteins to form an E3 ubiquitin-protein ligase that polyubiquitinates p53 and probably one or more subunits of the MRE11-RAD50-NBS1 (MRN) complex, directing their proteasomal degradation. The MRN complex is required for cellular DNA double-strand break repair and induction of the DNA damage response by adenovirus infection. To determine if the ability of E1B-55K and E4orf6 to stimulate viral late mRNA nuclear export requires the ubiquitin-protein ligase activity of this viral ubiquitin-protein ligase complex, we designed and expressed a dominant-negative mutant form of cullin 5 in HeLa cells before infection with wild-type Ad5 or the E1B-55K null mutant dl1520. The dominant-negative cullin 5 protein stabilized p53 and the MRN complex, indicating that it inhibited the viral ubiquitin-protein ligase but had no effect on viral early mRNA synthesis, early protein synthesis, or viral DNA replication. However, expression of the dominant-negative cullin 5 protein caused a decrease in viral late protein synthesis and viral nuclear mRNA export similar to the phenotype produced by mutations in E1B-55K. We conclude that the stimulation of adenovirus late mRNA nuclear export by E1B-55K and E4orf6 results from the ubiquitin-protein ligase activity of the adenovirus ubiquitin-protein ligase complex.
Collapse
Affiliation(s)
- Jennifer L Woo
- Molecular Biology Institute, Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | | |
Collapse
|
34
|
Li X, Raikwar SP, Liu YH, Lee SJ, Zhang YP, Zhang S, Cheng L, Lee SD, Juliar BE, Gardner TA, Jeng MH, Kao C. Combination therapy of androgen-independent prostate cancer using a prostate restricted replicative adenovirus and a replication-defective adenovirus encoding human endostatin-angiostatin fusion gene. Mol Cancer Ther 2006; 5:676-84. [PMID: 16546982 DOI: 10.1158/1535-7163.mct-05-0339] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although prostate-restricted replicative adenovirus has exhibited significant antitumor efficacy in preclinical studies, it is necessary to develop more potent adenoviruses for prostate cancer gene therapy. We evaluated the synergistic killing effect of prostate-restricted replicative adenovirus and AdEndoAngio, a replication-defective adenovirus expressing the endostatin-angiostatin fusion protein (EndoAngio). When coadministered with AdEndoAngio, prostate-restricted replicative adenovirus significantly elevated EndoAngio expression, suggesting that AdEndoAngio coreplicates with prostate-restricted replicative adenovirus. Conditioned medium from prostate cancer cells infected by prostate-restricted replicative adenovirus plus AdEndoAngio inhibited the growth, tubular network formation, and migration of human umbilical vein endothelial cells better than conditioned medium from prostate cancer cells infected by AdEndoAngio alone. Furthermore, in vivo animal studies showed that the coadministration of prostate-restricted replicative adenovirus plus AdEndoAngio resulted in the complete regression of seven out of eight treated androgen-independent CWR22rv tumors, with a tumor nodule maintaining a small size for 14 weeks. The residual single tumor exhibited extreme pathologic features together with more endostatin-reactive antibody-labeled tumor cells and fewer CD31-reactive antibody-labeled capillaries than the AdEndoAngio-treated tumors. These results show that combination therapy using prostate-restricted replicative adenovirus together with antiangiogenic therapy has more potent antitumor effects and advantages than single prostate-restricted replicative adenovirus and deserves more extensive investigation.
Collapse
Affiliation(s)
- Xiong Li
- Department of Urology, Indiana University School of Medicine. 1001 West 10th Street, Room OPW 320, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Glockzin G, Mantwill K, Jurchott K, Bernshausen A, Ladhoff A, Royer HD, Gansbacher B, Holm PS. Characterization of the recombinant adenovirus vector AdYB-1: implications for oncolytic vector development. J Virol 2006; 80:3904-11. [PMID: 16571807 PMCID: PMC1440461 DOI: 10.1128/jvi.80.8.3904-3911.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Conditionally replicating adenoviruses are a promising new modality for the treatment of cancer. However, early clinical trials demonstrate that the efficacy of current vectors is limited. Interestingly, DNA replication and production of viral particles do not always correlate with virus-mediated cell lysis and virus release depending on the vector utilized for infection. However, we have previously reported that nuclear accumulation of the human transcription factor YB-1 by regulating the adenoviral E2 late promoter facilitates viral DNA replication of E1-deleted adenovirus vectors which are widely used for cancer gene therapy. Here we report the promotion of virus-mediated cell killing as a new function of the human transcription factor YB-1. In contrast to the E1A-deleted vector dl312 the first-generation adenovirus vector AdYB-1, which overexpresses YB-1 under cytomegalovirus promoter control, led to necrosis-like cell death, virus production, and viral release after infection of A549 and U2OS tumor cell lines. Our data suggest that the integration of YB-1 in oncolytic adenoviruses is a promising strategy for developing oncolytic vectors with enhanced potency against different malignancies.
Collapse
Affiliation(s)
- Gabriel Glockzin
- Institut fuer Experimentelle Onkologie und Therapieforschung, Technische Universitaet Muenchen, Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Merrill MK, Selznick LA, Gromeier M. Oncolytic viruses for the treatment of malignant glioma. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.3.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Gonzalez R, Huang W, Finnen R, Bragg C, Flint SJ. Adenovirus E1B 55-kilodalton protein is required for both regulation of mRNA export and efficient entry into the late phase of infection in normal human fibroblasts. J Virol 2006; 80:964-74. [PMID: 16378998 PMCID: PMC1346875 DOI: 10.1128/jvi.80.2.964-974.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human adenovirus type 5 (Ad5) E1B 55-kDa protein is required for selective nuclear export of viral late mRNAs from the nucleus and concomitant inhibition of export of cellular mRNAs in HeLa cells and some other human cell lines, but its contributions(s) to replication in normal human cells is not well understood. We have therefore examined the phenotypes exhibited by viruses carrying mutations in the E1B 55-kDa protein coding sequence in normal human fibroblast (HFFs). Ad5 replicated significantly more slowly in HFFs than it does in tumor cells, a difference that is the result of delayed entry into the late phase of infection. The A143 mutation, which specifically impaired export of viral late mRNAs from the nucleus in infected HeLa cells (R. A. Gonzalez and S. J. Flint, J. Virol. 76:4507-4519, 2002), induced a more severe defect in viral mRNA export in HFFs. This observation indicates that the E1B 55-kDa protein regulates mRNA export during the late phase of infection of normal human cells. Other mutants exhibited phenotypes not observed in HeLa cells. In HFFs infected by the null mutant Hr6, synthesis of viral late mRNAs and proteins was severely impaired. Such defects in late gene expression were the result of inefficient progression into the late phase of infection, for viral DNA synthesis was 10-fold less efficient in Hr6-infected HFFs than in cells infected by Ad5. Similar, but less severe, defects in viral DNA synthesis were induced by the insertion mutation H224, which has been reported to inhibit binding of the E1B 55-kDa protein to p53 (C. C. Kao, P. R. Yew, and A. J. Berk, Virology 179:806-814, 1990).
Collapse
Affiliation(s)
- Ramon Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
DNA viruses have enormous utility in cancer research, both as tools for tumor target discovery as well as agents for lytic cancer therapies. This is because there is a profound functional overlap between the DNA viral and tumor cell programs. DNA viruses encode proteins that elicit growth deregulation in infected cells similar to that engendered by mutations in tumor cells. Evolution has refined viral proteins to target the critical cellular hubs that regulate growth. Thus, viral proteins are discriminating biochemical probes that can be used to identify and characterize novel tumor targets. Moreover, the overlap between the DNA viral and tumor programs can also be exploited for the development of lytic cancer therapies. Discovering whether tumor cells selectively complement the replication of viral mutants can reveal novel oncolytic viral therapies, as well as unexpected tumor properties. For example, altered RNA export was recently uncovered as a novel tumor cell property that underlies ONYX-015 replication, a promising oncolytic adenoviral therapy. A perspective is provided on how adenovirus could be systematically exploited to map the requisite role, or indeed the redundancy, of cellular pathways that act in an integrated program to elicit pathological replication. This knowledge has important applications for the rational design of the next generation of oncolytic viruses, as well as the discovery of efficacious combination cancer therapies.
Collapse
Affiliation(s)
- Clodagh C O'Shea
- Cancer Research Institute, University of California San Francisco, 94115, USA.
| |
Collapse
|
39
|
Abstract
Replication-selective oncolytic viruses have emerged as a new treatment platform for cancers. However, selectivity and potency need to be improved before virotherapy can become a standard treatment modality. In addition, mechanisms that can be incorporated to enable targeting a broad range of cancer types are highly desirable. Cancer cells are well known to have multiple blocks in apoptosis pathways. On the other hand, viruses have evolved to express numerous antiapoptotic genes to antagonize apoptosis induced upon infection. Viruses with deletions in antiapoptotic genes can therefore be complemented by antiapoptotic genetic changes in cancer cells for efficient replication and oncolysis. In this review, we summarize the recent development of this concept, the potential obstacles, and future directions for optimization.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Molecular Neurosurgery Laboratory, Massachusetts General Hospital and Harvard Medical School, MA, USA.
| | | |
Collapse
|
40
|
O'Shea CC, Soria C, Bagus B, McCormick F. Heat shock phenocopies E1B-55K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy. Cancer Cell 2005; 8:61-74. [PMID: 16023599 DOI: 10.1016/j.ccr.2005.06.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 05/11/2005] [Accepted: 06/23/2005] [Indexed: 12/15/2022]
Abstract
ONYX-015 is an E1B-55K-deleted adenovirus that has promising clinical activity as a cancer therapy. However, many tumor cells fail to support ONYX-015 oncolytic replication. E1B-55K functions include p53 degradation, RNA export, and host protein shutoff. Here, we show that resistant tumor cell lines fail to provide the RNA export functions of E1B-55K necessary for ONYX-015 replication; viral 100K mRNA export is necessary for host protein shutoff. However, heat shock rescues late viral RNA export and renders refractory tumor cells permissive to ONYX-015. These data indicate that heat shock and late adenoviral RNAs may converge upon a common mechanism for their export. Moreover, these data suggest that the concomitant induction of a heat shock response could significantly improve ONYX-015 cancer therapy.
Collapse
Affiliation(s)
- Clodagh C O'Shea
- Cancer Research Institute, University of California, San Francisco, CA 94115, USA.
| | | | | | | |
Collapse
|
41
|
Lomonosova E, Subramanian T, Chinnadurai G. Mitochondrial localization of p53 during adenovirus infection and regulation of its activity by E1B-19K. Oncogene 2005; 24:6796-808. [PMID: 16007153 DOI: 10.1038/sj.onc.1208836] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent results have revealed that the p53 tumor suppressor protein possesses a direct transcription-independent apoptotic activity. During apoptosis induced by genotoxic stress, a small fraction of p53 is targeted to mitochondria where it initiates apoptosis by causing mitochondrial dysfunction. In adenovirus-infected cells, the expression of E1A protein enhances the accumulation of p53 during early phases of infection and during late times after infection, it is targeted for degradation by the combined action of E1B-55K and E4-orf6 proteins. The functional significance of E1A-mediated accumulation of p53 during early phases of viral replication is not known. Our studies with isogenic epithelial cell lines that differ only on the status of p53 indicate that Ad infection induces apoptosis by p53-dependent and -independent pathways and both pathways are suppressed by E1B-19K. We show that during early phase of Ad infection, a fraction of p53 is targeted to the mitochondria. In virus infected cells, a large fraction of the viral antiapoptosis protein E1B-19K is also localized in mitochondria during early and late phases of infection. Coimmunoprecipitation analysis has revealed that p53 and E1B-19K form a complex in mitochondria. The interaction of 19K involves two noncontiguous regions located around amino-acid residues 14-15 and 123-124. On p53, the mutations within the DNA-binding domain reduce interaction with E1B-19K. Our studies also suggest that 19K may additionally complex with the multidomain mitochondrial proapoptotic protein BAK, thereby reducing the level of p53 interaction with BAK. We suggest that p53-induced apoptosis may be important for efficient cell lysis and viral spread and that E1B-19K may neutralize the apoptotic activity of p53 at multiple levels.
Collapse
Affiliation(s)
- Elena Lomonosova
- Institute for Molecular Virology, Saint Louis University School of Medicine, 3681 Park Avenue, St Louis, MO 63110, USA
| | | | | |
Collapse
|
42
|
Jiang H, Gomez-Manzano C, Alemany R, Medrano D, Alonso M, Bekele BN, Lin E, Conrad CC, Yung WKA, Fueyo J. Comparative effect of oncolytic adenoviruses with E1A-55 kDa or E1B-55 kDa deletions in malignant gliomas. Neoplasia 2005; 7:48-56. [PMID: 15720816 PMCID: PMC1490320 DOI: 10.1593/neo.04391] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Replication-competent oncolytic adenoviruses hold considerable promise for treating malignant gliomas. The toxicity of the clinically tested E1B-55 kDa mutant virus is negligible; however, its full clinical potential is still being evaluated. The purpose of the present study is to compare the antiglioma activity in vitro and in vivo between Delta-24, an E1A mutant adenovirus, and RA55, an E1B-55 kDa mutant adenovirus. We selected human glioma cell lines that were tumorigenic in nude mice and express wild-type p53 (U-87 MG, D54 MG) or mutant p53 (U-251 MG, U-373 MG) protein. Our studies demonstrated that Delta-24 induced a more potent antiglioma effect in vitro than RA55. Moreover, Delta-24 replicated markedly more efficiently than RA55 in both wild-type and mutant p53 scenarios. Importantly, direct intratumoral injection of Delta-24, but not RA55, significantly suppresses tumor growth in intracranial (U-87 MG, U-251 MG) or subcutaneous (D54 MG) animal models. Staining for hexon protein detected replicating adenoviruses in xenografts infected with Delta-24, but not with RA55. Collectively, these data indicate that E1A mutant adenoviruses targeting the Rb pathway are more powerful putative agents for antiglioma therapy than E1B mutant adenoviruses, and suggest that E1A mutant adenoviruses should be tested in the clinical setting for patients with malignant gliomas.
Collapse
Affiliation(s)
- Hong Jiang
- Brain Tumor Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | - Diana Medrano
- Brain Tumor Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Marta Alonso
- Brain Tumor Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - B Nebiyou Bekele
- Department of Biostatistics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - E Lin
- Department of Biostatistics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles C Conrad
- Brain Tumor Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - W K Alfred Yung
- Brain Tumor Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Juan Fueyo
- Brain Tumor Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
43
|
Chu RL, Post DE, Khuri FR, Van Meir EG. Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res 2005; 10:5299-312. [PMID: 15328165 DOI: 10.1158/1078-0432.ccr-0349-03] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oncolytic virotherapy is the use of genetically engineered viruses that specifically target and destroy tumor cells via their cytolytic replication cycle. Viral-mediated tumor destruction is propagated through infection of nearby tumor cells by the newly released progeny. Each cycle should amplify the number of oncolytic viruses available for infection. Our understanding of the life cycles of cytolytic viruses has allowed manipulation of their genome to selectively kill tumor cells over normal tissue. Because the mechanism of tumor destruction is different, oncolytic virotherapy should work synergistically with current modes of treatment such as chemotherapy and radiation therapy. This article focuses on oncolytic adenoviruses that have been created and tested in preclinical and clinical trials in combination with chemotherapy, radiation therapy, and gene therapy.
Collapse
Affiliation(s)
- Roland L Chu
- Laboratory of Molecular Neuro-Oncology, Departments of Neurosurgery, Hematology/Oncology, and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
44
|
O'Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A, Boyle L, Pandey K, Soria C, Kunich J, Shen Y, Habets G, Ginzinger D, McCormick F. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6:611-23. [PMID: 15607965 DOI: 10.1016/j.ccr.2004.11.012] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 10/27/2004] [Accepted: 11/17/2004] [Indexed: 12/29/2022]
Abstract
ONYX-015 is an adenovirus that lacks the E1B-55K gene product for p53 degradation. Thus, ONYX-015 was conceived as an oncolytic virus that would selectively replicate in p53-defective tumor cells. Here we show that loss of E1B-55K leads to the induction, but not the activation, of p53 in ONYX-015-infected primary cells. We use a novel adenovirus mutant, ONYX-053, to demonstrate that loss of E1B-55K-mediated late viral RNA export, rather than p53 degradation, restricts ONYX-015 replication in primary cells. In contrast, we show that tumor cells that support ONYX-015 replication provide the RNA export function of E1B-55K. These data reveal that tumor cells have altered mechanisms for RNA export and resolve the controversial role of p53 in governing ONYX-015 oncolytic selectivity.
Collapse
|
45
|
Hobom U, Dobbelstein M. E1B-55-kilodalton protein is not required to block p53-induced transcription during adenovirus infection. J Virol 2004; 78:7685-97. [PMID: 15220443 PMCID: PMC434109 DOI: 10.1128/jvi.78.14.7685-7697.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The adenovirus E1B-55-kDa protein binds and inactivates the tumor suppressor protein p53. However, the role of this interaction during infection is still poorly understood and was therefore examined here. Infection with a virus carrying the E1B-55-kDa mutation R239A, preventing the interaction with p53, led to the accumulation of p53. However, p53 target genes were not activated in the infected cells, although p53 phosphorylation did occur and the p53 antagonists Mdm2 and deltaNp73 did not accumulate. Deletion of E4orf6, alone or in combination with E1B-55-kDa, did not allow the induction of p53-responsive genes either. In transient reporter assays, the viral E1A-13S protein antagonized p53 activity; mutational analysis suggested that this depends partially on p300 binding, but it depends even more strongly on the interaction of E1A with the p400/TRRAP protein complex. However, viruses expressing E1A mutants lacking these binding activities, in combination with E1B-55-kDa R239A, still abolished p53 activity. In contrast, when the mutation of E1B-55-kDa at R239A was combined with a deletion of the apoptosis inhibitor E1B-19-kDa, infected cells showed more extensive apoptosis than after infection with single mutants, suggesting that accumulated p53, albeit transcriptionally inactive, might nonetheless enhance apoptosis. Despite extensive apoptosis of the infected cells, the deletion of E1B-19-kDa, in combination with the E1B-55-kDa mutation or in the presence of the constitutively active p53 mutant p53mt24-28, reduced virus replication less than fivefold. In conclusion, adenovirus does not need direct binding of E1B-55-kDa to inactivate p53, and forced p53 activity with consecutive apoptosis does not severely impair virus replication.
Collapse
Affiliation(s)
- Urs Hobom
- Institut für Virologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
46
|
Zhang ZL, Zou WG, Luo CX, Li BH, Wang JH, Sun LY, Qian QJ, Liu XY. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res 2004; 13:481-9. [PMID: 14728805 DOI: 10.1038/sj.cr.7290191] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ONYX-015 is an attractive therapeutic adenovirus for cancer because it can selectively replicate in tumor cells and kill them. To date, clinical trials of this adenovirus have demonstrated marked safety but not potent enough when it was used alone. In this paper, we put forward a novel concept of Gene-ViroTherapy strategy and in this way, we constructed an armed therapeutic oncolytic adenovirus system, ZD55-gene, which is not only deleted of E1B 55-kD gene similar to ONYX-015, but also armed with foreign antitumor gene. ZD55-gene exhibited similar cytopathic effects and replication kinetics to that of ONYX-015 in vitro. Importantly, the carried gene is expressed and the expression level can increase with the replication of virus. Consequently, a significant antitumoral efficacy was observed when ZD55-CD/5-FU was used as an example in nude mice with subcutaneous human SW620 colon cancer. Our data demonstrated that ZD55-gene, which utilizing the Gene-ViroTherapy strategy, is more efficacious than each individual component in vivo.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Antineoplastic Agents/therapeutic use
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Cells, Cultured
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/therapy
- Cytopathogenic Effect, Viral/drug effects
- Female
- Fluorouracil/therapeutic use
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Genetic Therapy
- Genetic Vectors
- HeLa Cells
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Transplantation
- Oncogenes/drug effects
- Transplantation, Heterologous
- Virus Replication
Collapse
Affiliation(s)
- Zi Lai Zhang
- Laboratory of Biotechnology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The potential use of adenoviruses in therapy against cancer has evoked a rapidly moving field of research. Unlike conventional gene therapy vectors, oncolytic adenoviruses retain the ability to replicate. However, replication is restricted as much as possible to tumor cells, with the aim of eliminating these cells through viral cytotoxicity. The two key issues are to improve the efficiency of virus replication and cell killing while ensuring the specificity of these activities for tumor cells. Wild-type adenoviruses as such may already be usable for cancer therapy. Strategies to further improve efficiency and specificity include the partial or complete removal of viral genes. The idea is that functions carried out by the corresponding gene products are not required for replication in tumor cells, but are needed in normal cells. Accordingly, the removal of genes encoding E1B-55 kDa or E1B-19 kDa, or the mutation of E1A may improve the selective killing of tumor cells. On the other hand, the overexpression of the adenovirus death protein (ADP) may enhance viral spread and oncolytic efficiency. Other strategies to improve the specific oncolytic activity of replicating adenoviruses have been pursued. For instance, some promoters are active specifically in tumor cells, and these promoters were introduced into the viral genome, to regulate essential viral genes. Moreover, replicating viruses were engineered to express toxic proteins or drug converters. A number of these viruses have been tested successfully using tumor xenografts in nude mice as a model system. An oncolytic adenovirus lacking the E1B-55 kDa gene product, termed dl1520 or ONYX015, was injected into squamous cell carcinomas of head and neck in phase II clinical trials, and the results were encouraging when chemotherapy was applied in parallel. In the future, further progress might be achieved on the level of virus constructs, but also by refining and adjusting simultaneous conventional therapies, and by standardizing the assessment of the clinical outcome. Recent progress has been made towards the use of replicating virus constructs in cancer therapy. The goal of these developments is to remove cancerous cells from patients with the help of viruses that selectively replicate in these cells. These viruses are generally termed oncolytic viruses. Some convenient properties of adenovirus make this virus particularly useful for this purpose. It infects a large number of human cell types, especially epithelial cells, which give rise to the vast majority of human malignancies. It can be grown easily and to high titers, and the creation of virus recombinants is well established. Finally, a large body of basic research has already been carried out on this virus, facilitating its manipulation. Various approaches to use adenovirus as a cancer drug have been reviewed (Alemany et al. 1999a, 2000; Curiel 2000; Galanis et al. 2001b; Gromeier 2001; Heise and Kirn 2000; Kirn 2000a; Kirn et al. 2001; Kirn and McCormick 1996; Smith and Chiocca 2000; Sunamura 2000; Wells 2000; Wodarz 2001). The aim of this chapter is to provide an integrated overview of these strategies.
Collapse
Affiliation(s)
- M Dobbelstein
- Institut für Virologie, Philipps-Universität Marburg, Robert Koch Str. 17, 35037 Marburg, Germany.
| |
Collapse
|
48
|
Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD. The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 2003; 22:6610-20. [PMID: 14657032 PMCID: PMC291825 DOI: 10.1093/emboj/cdg630] [Citation(s) in RCA: 449] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 10/24/2003] [Accepted: 10/27/2003] [Indexed: 12/11/2022] Open
Abstract
The maintenance of genome integrity requires a rapid and specific response to many types of DNA damage. The conserved and related PI3-like protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate signal transduction pathways in response to genomic insults, such as DNA double-strand breaks (DSBs). It is unclear which proteins recognize DSBs and activate these pathways, but the Mre11/Rad50/NBS1 complex has been suggested to act as a damage sensor. Here we show that infection with an adenovirus lacking the E4 region also induces a cellular DNA damage response, with activation of ATM and ATR. Wild-type virus blocks this signaling through degradation of the Mre11 complex by the viral E1b55K/E4orf6 proteins. Using these viral proteins, we show that the Mre11 complex is required for both ATM activation and the ATM-dependent G(2)/M checkpoint in response to DSBs. These results demonstrate that the Mre11 complex can function as a damage sensor upstream of ATM/ATR signaling in mammalian cells.
Collapse
Affiliation(s)
- Christian T Carson
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
49
|
Punga T, Akusjärvi G. Adenovirus 2 E1B-55K protein relieves p53-mediated transcriptional repression of the survivin and MAP4 promoters. FEBS Lett 2003; 552:214-8. [PMID: 14527689 DOI: 10.1016/s0014-5793(03)00927-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well established that adenovirus E1B-55K protein functions as an inhibitor of the tumor suppressor protein p53 by binding and inactivating p53 as a transcriptional activator protein. Here we show that the adenovirus 2 E1B-55K protein also blocks p53 as a transcriptional repressor protein of the survivin and the MAP4 promoters. The repression is dependent on the ability of E1B-55K to bind to p53 and is enhanced by coexpression of the adenovirus E4orf6 protein. Overexpression of the transcriptional corepressor protein Sin3A partially relieves the inhibitory effect of E1B-55K, suggesting that E1B-55K blocks p53 functions by interfering with the Sin3 complex.
Collapse
Affiliation(s)
- Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden.
| | | |
Collapse
|
50
|
Huang TG, Savontaus MJ, Shinozaki K, Sauter BV, Woo SLC. Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther 2003; 10:1241-7. [PMID: 12858189 DOI: 10.1038/sj.gt.3301987] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conditionally replicative adenovirus (CRAD) is an attractive anticancer agent as it can selectively replicate in tumor cells. Expression of telomerase reverse transcriptase (TERT) is a unique tumor cell characteristic, being absent in normal postmitotic cells. Thus, we constructed a TERT promoter regulated CRAD for tumor-specific oncolysis by replacing the endogenous adenovirus E1A promoter with that of human TERT (Adv-TERTp-E1A). We showed that its replication was severely attenuated in TERT-negative cells, but that it replicated almost as efficiently as wild-type adenovirus in TERT-positive cells. Accordingly, Adv-TERTp-E1A conferred cytopathicity to TERT-positive, but not TERT-negative, cells. In vivo replication of Adv-TERTp-E1A after local administration into a xenograft model of human hepatocellular carcinoma in nude mice was demonstrated by an increase in adenovirus titers in tumor extracts by several orders of magnitude between 6 h and 3 days postvector injection. Furthermore, significant inhibition of tumor growth with substantial necrotic tumor areas staining positively for adenovirus was observed with Adv-TERTp-E1A, but not with a control replication-deficient adenovirus. There was also the absence of hepatotoxicity in tumor-bearing animals after intratumoral delivery of the CRAD. The results indicate that the TERT promoter-driven CRAD is capable of tumor-selective replication and oncolysis in vitro and in vivo, and can be utilized as an adjuvant treatment agent for cancer.
Collapse
Affiliation(s)
- T-G Huang
- Carl C. Icahn Center for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|