1
|
Hosie MJ, Pajek D, Samman A, Willett BJ. Feline immunodeficiency virus (FIV) neutralization: a review. Viruses 2011; 3:1870-90. [PMID: 22069520 PMCID: PMC3205386 DOI: 10.3390/v3101870] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 11/16/2022] Open
Abstract
One of the major obstacles that must be overcome in the design of effective lentiviral vaccines is the ability of lentiviruses to evolve in order to escape from neutralizing antibodies. The primary target for neutralizing antibodies is the highly variable viral envelope glycoprotein (Env), a glycoprotein that is essential for viral entry and comprises both variable and conserved regions. As a result of the complex trimeric nature of Env, there is steric hindrance of conserved epitopes required for receptor binding so that these are not accessible to antibodies. Instead, the humoral response is targeted towards decoy immunodominant epitopes on variable domains such as the third hypervariable loop (V3) of Env. For feline immunodeficiency virus (FIV), as well as the related human immunodeficiency virus-1 (HIV-1), little is known about the factors that lead to the development of broadly neutralizing antibodies. In cats infected with FIV and patients infected with HIV-1, only rarely are plasma samples found that contain antibodies capable of neutralizing isolates from other clades. In this review we examine the neutralizing response to FIV, comparing and contrasting with the response to HIV. We ask whether broadly neutralizing antibodies are induced by FIV infection and discuss the comparative value of studies of neutralizing antibodies in FIV infection for the development of more effective vaccine strategies against lentiviral infections in general, including HIV-1.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cat Diseases/immunology
- Cat Diseases/prevention & control
- Cat Diseases/virology
- Cats
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Humans
- Immune Evasion
- Immunity, Humoral
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodominant Epitopes/immunology
- Lentivirus Infections/immunology
- Lentivirus Infections/prevention & control
- Lentivirus Infections/veterinary
- Lentivirus Infections/virology
- Molecular Sequence Data
Collapse
Affiliation(s)
- Margaret J Hosie
- Medical Research Council, University of Glasgow Centre for Virus Research, Henry Wellcome Building for Comparative Medical Sciences, 464 Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | |
Collapse
|
2
|
Dudani A, Martyres A, Fliss H. Short communication: rapid preparation of preventive and therapeutic whole-killed retroviral vaccines using the microbicide taurine chloramine. AIDS Res Hum Retroviruses 2008; 24:635-42. [PMID: 18366297 DOI: 10.1089/aid.2007.0149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A current urgent priority is to develop microbicides and vaccines to combat retroviruses like human immunodeficiency virus (HIV). We show that the cysteine-selective natural compound, taurine chloramine (T-NCl), can be effective in this task. A number of proteins in all retroviruses contain highly conserved cysteine-rich regions that are essential for infection and replication. Our data show that by targeting these essential cysteine residues, T-NCl (2 or 5 mM) acts as a highly effective and safe microbicide that fully blocks the infectivity of high HIV-1 titers (10(6) TCID(50) units/ml) but is not injurious to eukaryotic cells. We also demonstrate that T-NCl can be used to prepare a highly effective whole-killed vaccine against murine AIDS (MAIDS) that shows both preventive and therapeutic efficacy. The vaccine consists of a T-NCl-inactivated retrovirus suspension in host cell lysate. The novelty of our approach lies in the ease and speed of vaccine preparation and its avoidance of harsh inactivation or purification steps that can alter native viral conformation. Our approach is therefore likely to overcome a number of intractable obstacles to the preparation of an effective whole-killed HIV vaccine, such as surviving infective viral particles, rapid viral mutation rates, numerous viral strains, and harsh purification steps. Our approach may also permit the rapid preparation of autologous, or custom-made, vaccines for individual patients.
Collapse
Affiliation(s)
- A.K. Dudani
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Sir Frederick Banting Research Centre, Ottawa, Ontario, Canada K1A 0L2
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - A. Martyres
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Sir Frederick Banting Research Centre, Ottawa, Ontario, Canada K1A 0L2
| | - H. Fliss
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
3
|
Lecollinet S, Richardson J. Vaccination against the feline immunodeficiency virus: the road not taken. Comp Immunol Microbiol Infect Dis 2007; 31:167-90. [PMID: 17706778 DOI: 10.1016/j.cimid.2007.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/28/2022]
Abstract
Natural infection of domestic cats by the feline immunodeficiency virus (FIV) causes acquired immunodeficiency syndrome (AIDS). FIV is genetically related to human immunodeficiency virus (HIV), and the clinical and biological features of infections caused by feline and human viruses in their respective hosts are highly analogous. Although the obstacles to vaccinating against FIV and HIV would seem to be of comparable difficulty, a licensed vaccine against feline AIDS is already in widespread use in several countries. While this seemingly major advance in prevention of AIDS would appear to be highly instructive for HIV vaccine development, its message has not been heeded by investigators in the HIV field. This review endeavours to relate what has been learned about vaccination against feline AIDS, and to suggest what this may mean for HIV vaccine development.
Collapse
Affiliation(s)
- Sylvie Lecollinet
- UMR 1161 Virologie INRA-AFSSA-ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | | |
Collapse
|
4
|
Giannecchini S, Pistello M, Isola P, Matteucci D, Mazzetti P, Freer G, Bendinelli M. Role of Env in resistance of feline immunodeficiency virus (FIV)-infected cats to superinfection by a second FIV strain as determined by using a chimeric virus. J Virol 2007; 81:10474-85. [PMID: 17634241 PMCID: PMC2045460 DOI: 10.1128/jvi.01064-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A more or less pronounced resistance to superinfection by a second strain of the infecting virus has been observed in many lentivirus-infected hosts. We used a chimeric feline immunodeficiency virus (FIV), designated FIVchi, containing a large part of the env gene of a clade B virus (strain M2) and all the rest of the genome of a clade A virus (a p34TF10 molecular clone of the Petaluma strain modified to grow in lymphoid cells), to gain insights into such resistance. FIVchi was infectious and moderately pathogenic for cats and in vitro exhibited the neutralization specificity of the env donor. The experiments performed were bidirectional, in that cats preinfected with either parental virus were challenged with FIVchi and vice versa. The preinfected animals were partially or completely protected relative to what was observed in naïve control animals, most likely due, at least in part, to the circumstance that in all the preinfecting/challenge virus combinations examined, the first and the second virus shared significant viral components. Based on the proportions of complete protection observed, the role of a strongly matched viral envelope appeared to be modest and possibly dependent on the time interval between the first and the second infection. Furthermore, complete protection and the presence of measurable neutralizing antibodies capable of blocking the second virus in vitro were not associated.
Collapse
Affiliation(s)
- Simone Giannecchini
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Via San Zeno, 37 I-56127 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Crooks ET, Moore PL, Franti M, Cayanan CS, Zhu P, Jiang P, de Vries RP, Wiley C, Zharkikh I, Schülke N, Roux KH, Montefiori DC, Burton DR, Binley JM. A comparative immunogenicity study of HIV-1 virus-like particles bearing various forms of envelope proteins, particles bearing no envelope and soluble monomeric gp120. Virology 2007; 366:245-62. [PMID: 17580087 PMCID: PMC2080857 DOI: 10.1016/j.virol.2007.04.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/08/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
To assess the potential of native Envelope glycoprotein (Env) trimers as neutralizing antibody vaccines, we immunized guinea pigs with three types of VLPs and soluble gp120. Particles included "SOS-VLPs" (bearing disulfide-shackled functional trimers), "UNC-VLPs" (bearing uncleaved nonfunctional Env) and "naked VLPs" (bearing no Env). The SOS-VLPs were found to have a density of about 27 native trimers per particle, approximately twice that of live inactivated HIV-1 preparations. As immunogens, UNC- and SOS-VLP rapidly elicited anti-gp120 antibodies focused on the V3 loop and the gp120 coreceptor binding site. Reactivity to the gp41 immunodominant domain was absent in SOS-VLP sera, presumably because gp120-gp41 association is stabilized, effectively covering this epitope. Gp120-immune sera reacted with the receptor binding sites of gp120 and were less focused on the V3 loop. Some Env-VLP sera neutralized primary isolates at modest titers. The measurement of neutralization was found to be affected by the cell lines used. Depending on the assay particulars, non-Env specific antibodies in VLP sera could enhance infection, or nonspecifically neutralize. However, a neutralization assay using TZM-BL cells was essentially clear of these effects. We also describe a native trimer binding assay to confirm neutralization activity in a manner that completely eliminates nonspecific effects. Overall, our data suggests that Env-VLP sera were primarily focused on nonfunctional forms of Env on VLP surfaces, possibly gp120/gp41 monomers and not the trimers. Therefore, to make progress toward a more effective VLP-based vaccine, we will need to find ways to refocus the attention of B cells on native trimers.
Collapse
Affiliation(s)
- Emma T. Crooks
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121
| | - Penny L. Moore
- National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Michael Franti
- Progenics Pharmaceuticals, 777 Old Saw Mill River Rd., Tarrytown, NY 10591
| | | | - Ping Zhu
- Department of Biological Science, and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Pengfei Jiang
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121
| | - Robbert P. de Vries
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Cheryl Wiley
- The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla CA 92037
| | - Irina Zharkikh
- The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla CA 92037
| | - Norbert Schülke
- Millennium Pharmaceuticals, Inc., 35 Landsdowne Street, Cambridge, MA 02139
| | - Kenneth H. Roux
- Department of Biological Science, and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - David C. Montefiori
- Duke University, Department of Surgery, La Salle Straight Extensions, Durham, NC 27710
| | - Dennis R. Burton
- The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla CA 92037
| | - James M. Binley
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121
- *corresponding author: James M. Binley, Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego CA 92121. tel: (858) 909 5142. fax: (858) 455 3804.
| |
Collapse
|
6
|
Abstract
Animal models for human immunodeficiency virus (HIV) infection play a key role in understanding the pathogenesis of AIDS and the development of therapeutic agents and vaccines. As the only lentivirus that causes an immunodeficiency resembling that of HIV infection, in its natural host, feline immunodeficiency virus (FIV) has been a unique and powerful model for AIDS research. FIV was first described in 1987 by Niels Pedersen and co-workers as the causative agent for a fatal immunodeficiency syndrome observed in cats housed in a cattery in Petaluma, California. Since this landmark observation, multiple studies have shown that natural and experimental infection of cats with biological isolates of FIV produces an AIDS syndrome very similar in pathogenesis to that observed for human AIDS. FIV infection induces an acute viremia associated with Tcell alterations including depressed CD4 :CD8 T-cell ratios and CD4 T-cell depletion, peripheral lymphadenopathy, and neutropenia. In later stages of FIV infection, the host suffers from chronic persistent infections that are typically self-limiting in an immunocompetent host, as well as opportunistic infections, chronic diarrhea and wasting, blood dyscracias, significant CD4 T-cell depletion, neurologic disorders, and B-cell lymphomas. Importantly, chronic FIV infection induces a progressive lymphoid and CD4 T-cell depletion in the infected cat. The primary mode of natural FIV transmission appears to be blood-borne facilitated by fighting and biting. However, experimental infection through transmucosal routes (rectal and vaginal mucosa and perinatal) have been well documented for specific FIV isolates. Accordingly, FIV disease pathogenesis exhibits striking similarities to that described for HIV-1 infection.
Collapse
|
7
|
Dunham SP, Bruce J, Klein D, Flynn JN, Golder MC, MacDonald S, Jarrett O, Neil JC. Prime-boost vaccination using DNA and whole inactivated virus vaccines provides limited protection against virulent feline immunodeficiency virus. Vaccine 2006; 24:7095-108. [PMID: 17049683 DOI: 10.1016/j.vaccine.2006.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 04/03/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
Protection against feline immunodeficiency virus (FIV) has been achieved using a variety of vaccines notably whole inactivated virus (WIV) and DNA. However protection against more virulent isolates, typical of those encountered in natural infections, has been difficult to achieve. In an attempt to improve protection against virulent FIV(GL8), we combined both DNA and WIV vaccines in a "prime-boost" approach. Thirty cats were divided into four groups receiving vaccinations and one unvaccinated control group. Following viral challenge, two vaccinated animals, one receiving DNA alone and one the prime-boost vaccine remained free of viraemia, whilst all controls became viraemic. Animals vaccinated with WIV showed apparent early enhancement of infection at 2 weeks post challenge (pc) with higher plasma viral RNA loads than control animals or cats immunised with DNA alone. Despite this, animals vaccinated with WIV or DNA alone showed significantly lower proviral loads in peripheral blood mononuclear cells and mesenteric lymph node cells, whilst those receiving the DNA-WIV prime-boost vaccine showed significantly lower proviral loads in PBMC, than control animals, at 35 weeks pc. Therefore both DNA and WIV vaccines conferred limited protection against viral challenge but the combination of WIV and DNA in a prime-boost approach appeared to offer no significant advantage over either vaccine alone.
Collapse
Affiliation(s)
- Stephen P Dunham
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zipeto D, Matucci A, Ripamonti C, Scarlatti G, Rossolillo P, Turci M, Sartoris S, Tridente G, Bertazzoni U. Induction of human immunodeficiency virus neutralizing antibodies using fusion complexes. Microbes Infect 2006; 8:1424-33. [PMID: 16702010 DOI: 10.1016/j.micinf.2006.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 11/21/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infects cells by membrane fusion that is mediated by the envelope proteins gp120/gp41 and the cellular receptors CD4 and CCR5. During this process, some conserved viral epitopes are temporarily exposed and may induce a neutralizing antibody response when fixed in the fusogenic conformation. These transient structures are conserved and may be effective antigens for use in an anti-HIV-1 vaccine. In this study we tested different conditions of preparation of fusion complexes inducing neutralizing antibodies against both R5 and X4 tropic HIV-1 strains. Cell lines expressing HIV-1 gp120/gp41 and CD4-CCR5 were prepared and conditions for producing fusion complexes were tested. Complexes produced at different temperature and fixative combinations were used to immunize mice. Results indicated that (a) fusion complexes prepared at either 21 degrees C, 30 degrees C or 37 degrees C were immunogenic and induced neutralizing antibodies against both R5 and X4 HIV-1 heterologous isolates; (b) after extensive purification of antibodies there was no cytotoxic effect; (c) complexes prepared at 37 degrees C were more immunogenic and induced higher titers of neutralizing antibodies than complexes prepared at either 21 degrees C or 30 degrees C; (d) the fixative used did not affect the titer of neutralizing antibodies except for glutaraldehyde which was ineffective; (e) the neutralizing activity was retained after CD4-CCR5 antibody removal. The production of higher titers of neutralizing antibody with fusion complexes prepared at 37 degrees C, as compared to lower temperatures, may be related to the induction of antibodies against many different conformation intermediates that subsequently act synergistically at different steps in the fusion process.
Collapse
Affiliation(s)
- Donato Zipeto
- Laboratory of Molecular Virology, Department of Mother and Child, Biology and Genetics, Section of Biology and Genetics, University of Verona, Strada le Grazie n. 8, 37134 Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kusuhara H, Hohdatsu T, Okumura M, Sato K, Suzuki Y, Motokawa K, Gemma T, Watanabe R, Huang C, Arai S, Koyama H. Dual-subtype vaccine (Fel-O-Vax FIV) protects cats against contact challenge with heterologous subtype B FIV infected cats. Vet Microbiol 2005; 108:155-65. [PMID: 15899558 DOI: 10.1016/j.vetmic.2005.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 02/17/2005] [Accepted: 02/23/2005] [Indexed: 11/29/2022]
Abstract
Fel-O-Vax FIV is a dual-subtype vaccine consisting of inactivated whole viruses of subtype A (Petaluma strain) and subtype D (Shizuoka strain). The efficacy of this vaccine against heterologous subtype A strain challenge was demonstrated, but it is unclear whether the result reflects efficacy in the field. In this study, we evaluated the efficacy of this vaccine against contact challenge by exposing both vaccinated and unvaccinated control animals with cats infected with Aomori-2 strain belonging to subtype B, a subtype prevalent in many regions of the world. Nineteen specific-pathogen-free (SPF) cats were divided into a vaccinated group (six cats), an unvaccinated control group (eight cats), and a challenge group (five cats), and maintained in the same room. Cats were monitored for FIV proviral DNA by nested PCR and for FIV-specific antibody levels by ELISA. After 1 year of commingling, each cat in the vaccinated group was given a booster dose. In addition, the original challenge group was removed and replaced with another challenge group of SPF cats, which were inoculated with the Aomori-2 strain. FIV infection was confirmed in four of the eight animals in the unvaccinated control group by the 29th week in the second year of commingling. In contrast, all of the animals were negative in the vaccinated group. These findings confirmed the efficacy of this vaccine against heterologous stains classified as subtype B, and suggested that the vaccine exhibits broad efficacy against genetically diverse FIV.
Collapse
Affiliation(s)
- Hajime Kusuhara
- Department of Veterinary Infectious Disease, School of Veterinary Medicine and Animal Science, Kitasato University, Towada, Aomori 034-8628, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hosie MJ, Klein D, Binley JM, Dunsford TH, Jarrett O, Neil JC, Knapp E, Giannecchini S, Matteucci D, Bendinelli M, Hoxie JA, Willett BJ. Vaccination with an inactivated virulent feline immunodeficiency virus engineered to express high levels of Env. J Virol 2005; 79:1954-7. [PMID: 15650222 PMCID: PMC544106 DOI: 10.1128/jvi.79.3.1954-1957.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An inactivated virus vaccine was prepared from a pathogenic isolate of feline immunodeficiency virus containing a mutation that eliminated an endocytic sorting signal in the envelope glycoprotein, increasing its expression on virions. Cats immunized with inactivated preparations of this modified virus exhibited strong titers of antibody to Env by enzyme-linked immunosorbent assay. Evidence of protection following challenge demonstrated the potential of this approach to lentiviral vaccination.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Cat Diseases/prevention & control
- Cat Diseases/virology
- Cats
- Feline Acquired Immunodeficiency Syndrome/prevention & control
- Feline Acquired Immunodeficiency Syndrome/virology
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Genetic Engineering/methods
- Humans
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Molecular Sequence Data
- Mutation
- Neutralization Tests
- Vaccination/veterinary
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/genetics
- Vaccines, Inactivated/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Margaret J Hosie
- Retrovirus Research Laboratory, Institute of Comparative Medicine, University of Glasgow, Bearsden Rd., Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Uhl E, Heaton-Jones T, Pu R, Yamamoto J. FIV vaccine development and its importance to veterinary and human medicine: a review FIV vaccine 2002 update and review. Vet Immunol Immunopathol 2002; 90:113-32. [PMID: 12459160 PMCID: PMC7119750 DOI: 10.1016/s0165-2427(02)00227-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Revised: 08/05/2002] [Accepted: 08/14/2002] [Indexed: 10/27/2022]
Abstract
Feline immunodeficiency virus (FIV) is a natural infection of domestic cats that results in acquired immunodeficiency syndrome resembling human immunodeficiency virus (HIV) infection in humans. The worldwide prevalence of FIV infection in domestic cats has been reported to range from 1 to 28%. Hence, an effective FIV vaccine will have an important impact on veterinary medicine in addition to being used as a small animal AIDS model for humans. Since the discovery of FIV reported in 1987, FIV vaccine research has pursued both molecular and conventional vaccine approaches toward the development of a commercial product. Published FIV vaccine trial results from 1998 to the present have been compiled to update the veterinary clinical and research communities on the immunologic and experimental efficacy status of these vaccines. A brief report is included on the outcome of the 10 years of collaborative work between industry and academia which led to recent USDA approval of the first animal lentivirus vaccine, the dual-subtype FIV vaccine. The immunogenicity and efficacy of the experimental prototype, dual-subtype FIV vaccine and the efficacy of the currently approved commercial, dual-subtype FIV vaccine (Fel-O-Vax FIV) are discussed. Potential cross-reactivity complications between commercial FIV diagnostic tests, Idexx Snap Combo Test and Western blot assays, and sera from previously vaccinated cats are also discussed. Finally, recommendations are made for unbiased critical testing of new FIV vaccines, the currently USDA approved vaccine, and future vaccines in development.
Collapse
Affiliation(s)
- E.W Uhl
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - T.G Heaton-Jones
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - R Pu
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - J.K Yamamoto
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| |
Collapse
|
12
|
Giannecchini S, Isola P, Sichi O, Matteucci D, Pistello M, Zaccaro L, Del Mauro D, Bendinelli M. AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: failure to protect and possible enhancement of challenge infection by four cell-based vaccines prepared with autologous lymphoblasts. J Virol 2002; 76:6882-92. [PMID: 12072489 PMCID: PMC136316 DOI: 10.1128/jvi.76.14.6882-6892.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunogenicity and protective activity of four cell-based feline immunodeficiency virus (FIV) vaccines prepared with autologous lymphoblasts were investigated. One vaccine was composed of FIV-infected cells that were paraformaldehyde fixed at the peak of viral expression. The other vaccines were attempts to maximize the expression of protective epitopes that might become exposed as a result of virion binding to cells and essentially consisted of cells mildly fixed after saturation of their surface with adsorbed, internally inactivated FIV particles. The levels of FIV-specific lymphoproliferation exhibited by the vaccinees were comparable to the ones previously observed in vaccine-protected cats, but antibodies were largely directed to cell-derived constituents rather than to truly viral epitopes and had very poor FIV-neutralizing activity. Moreover, under one condition of testing, some vaccine sera enhanced FIV replication in vitro. As a further limit, the vaccines proved inefficient at priming animals for anamnestic immune responses. Two months after completion of primary immunization, the animals were challenged with a low dose of homologous ex vivo FIV. Collectively, 8 of 20 vaccinees developed infection versus one of nine animals mock immunized with fixed uninfected autologous lymphoblasts. After a boosting and rechallenge with a higher virus dose, all remaining animals became infected, thus confirming their lack of protection.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Acquired Immunodeficiency Syndrome/prevention & control
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/immunology
- Cats
- Disease Models, Animal
- Feline Acquired Immunodeficiency Syndrome/prevention & control
- Female
- Immunization, Secondary
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/physiology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/transplantation
- Leukocytes, Mononuclear/virology
- Lymphocyte Activation
- RNA, Viral/blood
- Transplantation, Autologous
- Vaccination
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Simone Giannecchini
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy
| | - Patrizia Isola
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy
| | - Olimpia Sichi
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy
| | - Donatella Matteucci
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy
| | - Lucia Zaccaro
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy
| | - Daniela Del Mauro
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy
| | - Mauro Bendinelli
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy
- Corresponding author. Mailing address: Dipartimento di Biomedicina, Università di Pisa, Via San Zeno 37, I-56127 Pisa, Italy. Phone: 39-050-553562. Fax: 39-050-559455. E-mail:
| |
Collapse
|