1
|
Lian ZH, Yang CH, Qiu Y, Ge XY. Evolutionary Analysis and Antiviral Drug Prediction of Mpox Virus. Microorganisms 2024; 12:2239. [PMID: 39597628 PMCID: PMC11596041 DOI: 10.3390/microorganisms12112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
The resurgence of mpox virus (MPXV) poses a significant challenge to global public health. Currently, there is a limited understanding of the evolutionary details of MPXV during its epidemics, and no specific drugs have been developed for it. Herein, analysis of mutations and positive selection sites (PSSs) within the MPXV genomes revealed 799 mutations and 40 PSSs. Visualization analysis indicated that these mutations and PSSs may affect protein structure. Additionally, a protein-protein interaction (PPI) network between human and MPXV was established, identifying 346 MPXV-interacting human proteins (MIHPs). An interaction network involving MIHPs and other viruses confirmed that these proteins can interact with various viruses that infect humans. Functional analysis of MIHPs suggested their enrichment in host immunity pathways. Lastly, two drugs targeting MIHPs and four compounds targeting MPXV proteins were screened as candidate antivirals against MPXV. These findings not only deepen our understanding of MPXV evolution but also aid in the development of anti-MPXV drugs.
Collapse
Affiliation(s)
| | | | | | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410012, China; (Z.-H.L.); (C.-H.Y.); (Y.Q.)
| |
Collapse
|
2
|
Huang Y, Bergant V, Grass V, Emslander Q, Hamad MS, Hubel P, Mergner J, Piras A, Krey K, Henrici A, Öllinger R, Tesfamariam YM, Dalla Rosa I, Bunse T, Sutter G, Ebert G, Schmidt FI, Way M, Rad R, Bowie AG, Protzer U, Pichlmair A. Multi-omics characterization of the monkeypox virus infection. Nat Commun 2024; 15:6778. [PMID: 39117661 PMCID: PMC11310467 DOI: 10.1038/s41467-024-51074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Multiple omics analyzes of Vaccinia virus (VACV) infection have defined molecular characteristics of poxvirus biology. However, little is known about the monkeypox (mpox) virus (MPXV) in humans, which has a different disease manifestation despite its high sequence similarity to VACV. Here, we perform an in-depth multi-omics analysis of the transcriptome, proteome, and phosphoproteome signatures of MPXV-infected primary human fibroblasts to gain insights into the virus-host interplay. In addition to expected perturbations of immune-related pathways, we uncover regulation of the HIPPO and TGF-β pathways. We identify dynamic phosphorylation of both host and viral proteins, which suggests that MAPKs are key regulators of differential phosphorylation in MPXV-infected cells. Among the viral proteins, we find dynamic phosphorylation of H5 that influenced the binding of H5 to dsDNA. Our extensive dataset highlights signaling events and hotspots perturbed by MPXV, extending the current knowledge on poxviruses. We use integrated pathway analysis and drug-target prediction approaches to identify potential drug targets that affect virus growth. Functionally, we exemplify the utility of this approach by identifying inhibitors of MTOR, CHUK/IKBKB, and splicing factor kinases with potent antiviral efficacy against MPXV and VACV.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Valter Bergant
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Vincent Grass
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Quirin Emslander
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - M Sabri Hamad
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Munich, Germany
- Core Facility Hohenheim, Universität Hohenheim, Stuttgart, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at University Hospital rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
| | - Antonio Piras
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Karsten Krey
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alexander Henrici
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yonas M Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ilaria Dalla Rosa
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Till Bunse
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Munich, Munich, Germany
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London, UK
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ulrike Protzer
- German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Munich, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany.
- German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany.
| |
Collapse
|
3
|
Alem F, Brahms A, Tarasaki K, Omole S, Kehn-Hall K, Schmaljohn CS, Bavari S, Makino S, Hakami RM. HSP90 is part of a protein complex with the L polymerase of Rift Valley fever phlebovirus and prevents its degradation by the proteasome during the viral genome replication/transcription stage. Front Cell Infect Microbiol 2024; 14:1331755. [PMID: 38800833 PMCID: PMC11127626 DOI: 10.3389/fcimb.2024.1331755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
The mosquito-borne Rift Valley fever virus (RVFV) from the Phenuiviridae family is a single-stranded RNA virus that causes the re-emerging zoonotic disease Rift Valley fever (RVF). Classified as a Category A agent by the NIH, RVFV infection can cause debilitating disease or death in humans and lead to devastating economic impacts by causing abortion storms in pregnant cattle. In a previous study, we showed that the host chaperone protein HSP90 is an RVFV-associated host factor that plays a critical role post viral entry, during the active phase of viral genome replication/transcription. In this study, we have elucidated the molecular mechanisms behind the regulatory effect of HSP90 during infection with RVFV. Our results demonstrate that during the early infection phase, host HSP90 associates with the viral RNA-dependent RNA polymerase (L protein) and prevents its degradation through the proteasome, resulting in increased viral replication.
Collapse
Affiliation(s)
- Farhang Alem
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Ashwini Brahms
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Kaori Tarasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Samson Omole
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Kylene Kehn-Hall
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Connie S. Schmaljohn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, United States
| | - Sina Bavari
- Tonix Pharmaceuticals, Frederick, MD, United States
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Ramin M. Hakami
- School of Systems Biology, George Mason University, Manassas, VA, United States
- Center for Infectious Disease Research, George Mason University, Manassas, VA, United States
| |
Collapse
|
4
|
Wang Z, Pan Q, Ma L, Zhao J, McIntosh F, Liu Z, Ding S, Lin R, Cen S, Finzi A, Liang C. Anthracyclines inhibit SARS-CoV-2 infection. Virus Res 2023; 334:199164. [PMID: 37379907 PMCID: PMC10305762 DOI: 10.1016/j.virusres.2023.199164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/13/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Vaccines and drugs are two effective medical interventions to mitigate SARS-CoV-2 infection. Three SARS-CoV-2 inhibitors, remdesivir, paxlovid, and molnupiravir, have been approved for treating COVID-19 patients, but more are needed, because each drug has its limitation of usage and SARS-CoV-2 constantly develops drug resistance mutations. In addition, SARS-CoV-2 drugs have the potential to be repurposed to inhibit new human coronaviruses, thus help to prepare for future coronavirus outbreaks. We have screened a library of microbial metabolites to discover new SARS-CoV-2 inhibitors. To facilitate this screening effort, we generated a recombinant SARS-CoV-2 Delta variant carrying the nano luciferase as a reporter for measuring viral infection. Six compounds were found to inhibit SARS-CoV-2 at the half maximal inhibitory concentration (IC50) below 1 μM, including the anthracycline drug aclarubicin that markedly reduced viral RNA-dependent RNA polymerase (RdRp)-mediated gene expression, whereas other anthracyclines inhibited SARS-CoV-2 by activating the expression of interferon and antiviral genes. As the most commonly prescribed anti-cancer drugs, anthracyclines hold the promise of becoming new SARS-CoV-2 inhibitors.
Collapse
Affiliation(s)
- Zhen Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Fiona McIntosh
- Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Rongtuan Lin
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Wu S, Zhao Y, Wang D, Chen Z. Mode of Action of Heat Shock Protein (HSP) Inhibitors against Viruses through Host HSP and Virus Interactions. Genes (Basel) 2023; 14:genes14040792. [PMID: 37107550 PMCID: PMC10138296 DOI: 10.3390/genes14040792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Misfolded proteins after stress-induced denaturation can regain their functions through correct re-folding with the aid of molecular chaperones. As a molecular chaperone, heat shock proteins (HSPs) can help client proteins fold correctly. During viral infection, HSPs are involved with replication, movement, assembly, disassembly, subcellular localization, and transport of the virus via the formation of macromolecular protein complexes, such as the viral replicase complex. Recent studies have indicated that HSP inhibitors can inhibit viral replication by interfering with the interaction of the virus with the HSP. In this review, we describe the function and classification of HSPs, the transcriptional mechanism of HSPs promoted by heat shock factors (HSFs), discuss the interaction between HSPs and viruses, and the mode of action of HSP inhibitors at two aspects of inhibiting the expression of HSPs and targeting the HSPs, and elaborate their potential use as antiviral agents.
Collapse
|
6
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
7
|
9-Butyl-Harmol Exerts Antiviral Activity against Newcastle Disease Virus through Targeting GSK-3β and HSP90β. J Virol 2023; 97:e0198422. [PMID: 36877059 PMCID: PMC10062145 DOI: 10.1128/jvi.01984-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
The paramyxoviruses represent a large family of human and animal pathogens that cause significant health and economic burdens worldwide. However, there are no available drugs against the virus. β-carboline alkaloids are a family of naturally occurring and synthetic products with outstanding antiviral activities. Here, we examined the antiviral effect of a series of β-carboline derivatives against several paramyxoviruses, including Newcastle disease virus (NDV), peste des petits ruminants virus (PPRV), and canine distemper virus (CDV). Among these derivatives, 9-butyl-harmol was identified as an effective antiviral agent against these paramyxoviruses. Further, a genome-wide transcriptome analysis in combination with target validation strategies reveals a unique antiviral mechanism of 9-butyl-harmol through the targeting of GSK-3β and HSP90β. On one hand, NDV infection blocks the Wnt/β-catenin pathway to suppress the host immune response. 9-butyl-harmol targeting GSK-3β dramatically activates the Wnt/β-catenin pathway, which results in the boosting of a robust immune response. On the other hand, NDV proliferation depends on the activity of HSP90. The L protein, but not the NP protein or the P protein, is proven to be a client protein of HSP90β, rather than HSP90α. 9-butyl-harmol targeting HSP90β decreases the stability of the NDV L protein. Our findings identify 9-butyl-harmol as a potential antiviral agent, provide mechanistic insights into the antiviral mechanism of 9-butyl-harmol, and illustrate the role of β-catenin and HSP90 during NDV infection. IMPORTANCE Paramyxoviruses cause devastating impacts on health and the economy worldwide. However, there are no suitable drugs with which to counteract the viruses. We determined that 9-butyl-harmol could serve as a potential antiviral agent against paramyxoviruses. Until now, the antiviral mechanism of β-carboline derivatives against RNA viruses has rarely been studied. Here, we found that 9-butyl-harmol exerts dual mechanisms of antiviral action, with its antiviral activities being mediated by two targets: GSK-3β and HSP90β. Correspondingly, the interaction between NDV infection and the Wnt/β-catenin pathway or HSP90 is demonstrated in this study. Taken together, our findings shed light on the development of antiviral agents against paramyxoviruses, based on the β-carboline scaffold. These results present mechanistic insights into the polypharmacology of 9-butyl-harmol. Understanding this mechanism also deepens the host-virus interaction and reveals new drug targets for anti-paramyxoviruses.
Collapse
|
8
|
Tumor Temperature: Friend or Foe of Virus-Based Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10082024. [PMID: 36009571 PMCID: PMC9405776 DOI: 10.3390/biomedicines10082024] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The temperature of a solid tumor is often dissimilar to baseline body temperature and, compared to healthy tissues, may be elevated, reduced, or a mix of both. The temperature of a tumor is dependent on metabolic activity and vascularization and can change due to tumor progression, treatment, or cancer type. Despite the need to function optimally within temperature-variable tumors, oncolytic viruses (OVs) are primarily tested at 37 °C in vitro. Furthermore, animal species utilized to test oncolytic viruses, such as mice, dogs, cats, and non-human primates, poorly recapitulate the temperature profile of humans. In this review, we discuss the importance of temperature as a variable for OV immunotherapy of solid tumors. Accumulating evidence supports that the temperature sensitivity of OVs lies on a spectrum, with some OVs likely hindered but others enhanced by elevated temperatures. We suggest that in vitro temperature sensitivity screening be performed for all OVs destined for the clinic to identify potential hinderances or benefits with regard to elevated temperature. Furthermore, we provide recommendations for the clinical use of temperature and OVs.
Collapse
|
9
|
Makhoba XH, Makumire S. The capture of host cell’s resources: The role of heat shock proteins and polyamines in SARS-COV-2 (COVID-19) pathway to viral infection. Biomol Concepts 2022; 13:220-229. [DOI: 10.1515/bmc-2022-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
The exposure of organisms and cells to unfavorable conditions such as increased temperature, antibiotics, reactive oxygen species, and viruses could lead to protein misfolding and cell death. The increased production of proteins such as heat shock proteins (HSPs) and polyamines has been linked to protein misfolding sequestration, thus maintaining, enhancing, and regulating the cellular system. For example, heat shock protein 40 (Hsp40) works hand in hand with Hsp70 and Hsp90 to successfully assist the newly synthesized proteins in folding properly. On the other hand, polyamines such as putrescine, spermidine, and spermine have been widely studied and reported to keep cells viable under harsh conditions, which are also involved in cell proliferation, differentiation, and growth. Polyamines are found in all living organisms, including humans and viruses. Some organisms have developed a mechanism to hijack mammalian host cell machinery for their benefit like viruses need polyamines for infection. Therefore, the role of HSPs and polyamines in SARS-CoV-2 (COVID-19) viral infection, how these molecules could delay the effectiveness of the current treatment in the market, and how COVID-19 relies on the host molecules for its successful infection are reviewed.
Collapse
Affiliation(s)
- Xolani Henry Makhoba
- Department of Biochemistry and Microbiology, University of Fort Hare , Alice Campus , Alice , South Africa
| | - Stanley Makumire
- Department of Integrative Biomedical Sciences, Structural Biology Research Unit, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Observatory 7925 , South Africa
| |
Collapse
|
10
|
Huang W, Li JY, Wu YY, Liao TL, Nielsen BL, Liu HJ. p17-Modulated Hsp90/Cdc37 Complex Governs Oncolytic Avian Reovirus Replication by Chaperoning p17, Which Promotes Viral Protein Synthesis and Accumulation of Viral Proteins σC and σA in Viral Factories. J Virol 2022; 96:e0007422. [PMID: 35107368 PMCID: PMC8941905 DOI: 10.1128/jvi.00074-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
In this work we have determined that heat shock protein 90 (Hsp90) is essential for avian reovirus (ARV) replication by chaperoning the ARV p17 protein. p17 modulates the formation of the Hsp90/Cdc37 complex by phosphorylation of Cdc37, and this chaperone machinery protects p17 from ubiquitin-proteasome degradation. Inhibition of the Hsp90/Cdc37 complex by inhibitors (17-N-allylamino-17-demethoxygeldanamycin 17-AGG, and celastrol) or short hairpin RNAs (shRNAs) significantly reduced expression levels of viral proteins and virus yield, suggesting that the Hsp90/Cdc37 chaperone complex functions in virus replication. The expression levels of p17 were decreased at the examined time points (2 to 7 h and 7 to 16 h) in 17-AAG-treated cells in a dose-dependent manner while the expression levels of viral proteins σA, σC, and σNS were decreased at the examined time point (7 to 16 h). Interestingly, the expression levels of σC, σA, and σNS proteins increased along with coexpression of p17 protein. p17 together with the Hsp90/Cdc37 complex does not increase viral genome replication but enhances viral protein stability, maturation, and virus production. Virus factories of ARV are composed of nonstructural proteins σNS and μNS. We found that the Hsp90/Cdc37 chaperone complex plays an important role in accumulation of the outer-capsid protein σC, inner core protein σA, and nonstructural protein σNS of ARV in viral factories. Depletion of Hsp90 inhibited σA, σC, and p17 proteins colocalized with σNS in viral factories. This study provides novel insights into p17-modulated formation of the Hsp90/Cdc37 chaperone complex governing virus replication via stabilization and maturation of viral proteins and accumulation of viral proteins in viral factories for virus assembly. IMPORTANCE Molecular mechanisms that control stabilization of ARV proteins and the intermolecular interactions among inclusion components remain largely unknown. Here, we show that the ARV p17 is an Hsp90 client protein. The Hsp90/Cdc37 chaperone complex is essential for ARV replication by protecting p17 chaperone from ubiquitin-proteasome degradation. p17 modulates the formation of Hsp90/Cdc37 complex by phosphorylation of Cdc37, and this chaperone machinery protects p17 from ubiquitin-proteasome degradation, suggesting a feedback loop between p17 and the Hsp90/Cdc37 chaperone complex. p17 together with the Hsp90/Cdc37 complex does not increase viral genome replication but enhances viral protein stability and virus production. Depletion of Hsp90 prevented viral proteins σA, σC, and p17 from colocalizing with σNS in viral factories. Our findings elucidate that the Hsp90/Cdc37 complex chaperones p17, which, in turn, promotes the synthesis of viral proteins σA, σC, and σNS and facilitates accumulation of the outer-capsid protein σC and inner core protein σA in viral factories for virus assembly.
Collapse
Affiliation(s)
- Wei‐Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jyun-Yi Li
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
11
|
Schatten H. Virus Exploitation (Hijacking) of Centrosomes. THE CENTROSOME AND ITS FUNCTIONS AND DYSFUNCTIONS 2022; 235:51-54. [DOI: 10.1007/978-3-031-20848-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Chicken Heat Shock Protein 70 Is an Essential Host Protein for Infectious Bursal Disease Virus Infection In Vitro. Pathogens 2021; 10:pathogens10060664. [PMID: 34071696 PMCID: PMC8229272 DOI: 10.3390/pathogens10060664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bursal disease virus (IBDV) infection causes pathogenicity and mortality in chickens, leading to huge economic losses in the poultry industry worldwide. Studies of host-virus interaction can help us to better understand the viral pathogenicity. As a highly conservative host factor, heat shock protein 70 (Hsp70) is observed to be involved in numerous viral infections. However, there is little information about the role of chicken Hsp70 (cHsp70) in IBDV infection. In the present study, the increased expression of cHsp70 was observed during IBDV-infected DF-1 cells. Further studies revealed that Hsp70 had similar locations with the viral double-stranded RNA (dsRNA), and the result of pull-down assay showed the direct interaction between cHsp70 with dsRNA, viral proteins (vp)2 and 3, indicating that maybe cHsp70 participates in the formation of the replication and transcription complex. Furthermore, overexpression of cHsp70 promoted IBDV production and knockdown of cHsp70 using small interfering RNAs (siRNA) and reducedviral production, implying the necessity of cHsp70 in IBDV infection. These results reveal that cHsp70 is essential for IBDV infection in DF-1 cells, suggesting that targeting cHsp70 may be applied as an antiviral strategy.
Collapse
|
13
|
Li C, Chu H, Liu X, Chiu MC, Zhao X, Wang D, Wei Y, Hou Y, Shuai H, Cai J, Chan JFW, Zhou J, Yuen KY. Human coronavirus dependency on host heat shock protein 90 reveals an antiviral target. Emerg Microbes Infect 2020; 9:2663-2672. [PMID: 33179566 PMCID: PMC7751432 DOI: 10.1080/22221751.2020.1850183] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid accumulation of viral proteins in host cells render viruses highly dependent on cellular chaperones including heat shock protein 90 (Hsp90). Three highly pathogenic human coronaviruses, including MERS-CoV, SARS-CoV and SARS-CoV-2, have emerged in the past 2 decades. However, there is no approved antiviral agent against these coronaviruses. We inspected the role of Hsp90 for coronavirus propagation. First, an Hsp90 inhibitor, 17-AAG, significantly suppressed MERS-CoV propagation in cell lines and physiological-relevant human intestinal organoids. Second, siRNA depletion of Hsp90β, but not Hsp90α, significantly restricted MERS-CoV replication and abolished virus spread. Third, Hsp90β interaction with MERS-CoV nucleoprotein (NP) was revealed in a co-immunoprecipitation assay. Hsp90β is required to maintain NP stability. Fourth, 17-AAG substantially inhibited the propagation of SARS-CoV and SARS-CoV-2. Collectively, Hsp90 is a host dependency factor for human coronavirus MERS-CoV, SARS-CoV and SARS-COV-2. Hsp90 inhibitors can be repurposed as a potent and broad-spectrum antiviral against human coronaviruses.
Collapse
Affiliation(s)
- Cun Li
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiaojuan Liu
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Man Chun Chiu
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiaoyu Zhao
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Dong Wang
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yuxuan Wei
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yuxin Hou
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Huiping Shuai
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jianpiao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kwok Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
14
|
Yin H, Shang Q, Zhang S, Shen M, Huang H, Zhao W, Xijie G, Wu P. Comprehensive analysis of lncRNA-mRNA regulatory network in BmNPV infected cells treated with Hsp90 inhibitor. Mol Immunol 2020; 127:230-237. [PMID: 33022580 DOI: 10.1016/j.molimm.2020.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main pathogens that seriously affect the sustainable development of sericulture industry. Inhibition of Hsp90 by Hsp90 inhibitor, geldanamycin (GA) significantly suppresses BmNPV proliferation in Bombyx mori, while the functional mechanism is not clear. LncRNA has been widely reported to play an important role in immune responses and host-virus interactions in mammalian. However, related research has been rarely reported on silkworm. In this study, firstly, we confirmed the decrease of BmNPV ORF75 protein in the BmNPV-infected BmN cells treated with GA. Next, by using a genome-wide transcriptome analysis, we compared the lncRNA and mRNA expression profiles in BmNPV infected BmN cells treated with or without GA and identified a total of 282 differentially expressed lncRNAs (DElncRNAs) and 523 DEmRNAs. KEGG pathway analysis revealed DEmRNA were mainly involved in ubiquitin mediated proteolysis, spliceosome, RNA transport and oxidative phosphorylation. Further, we selected 27 immune-related DEmRNAs, which displayed the similar changes of expression patterns on both protein level and transcript level to construct DElncRNA-DEmRNA network. In addition, based on the DElncRNA-bmo-miR-278-3p-BmHSC70 regulatory network, we explored the potential function of several lncRNAs as sponges to inhibit the regulatory effect of bmo-278-3p on Bombyx mori heat shock protein cognate 70 (BmHSC70). Our finding suggests that lncRNAs play a role in the regulation of BmNPV proliferation by Hsp90.
Collapse
Affiliation(s)
- Haotong Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Qi Shang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Shaolun Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Haoling Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Guo Xijie
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| |
Collapse
|
15
|
Sood A, Sui Y, McDonough E, Santamaría-Pang A, Al-Kofahi Y, Pang Z, Jahrling PB, Kuhn JH, Ginty F. Comparison of Multiplexed Immunofluorescence Imaging to Chromogenic Immunohistochemistry of Skin Biomarkers in Response to Monkeypox Virus Infection. Viruses 2020; 12:E787. [PMID: 32717786 PMCID: PMC7472296 DOI: 10.3390/v12080787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
Over the last 15 years, advances in immunofluorescence-imaging based cycling methods, antibody conjugation methods, and automated image processing have facilitated the development of a high-resolution, multiplexed tissue immunofluorescence (MxIF) method with single cell-level quantitation termed Cell DIVETM. Originally developed for fixed oncology samples, here it was evaluated in highly fixed (up to 30 days), archived monkeypox virus-induced inflammatory skin lesions from a retrospective study in 11 rhesus monkeys to determine whether MxIF was comparable to manual H-scoring of chromogenic stains. Six protein markers related to immune and cellular response (CD68, CD3, Hsp70, Hsp90, ERK1/2, ERK1/2 pT202_pY204) were manually quantified (H-scores) by a pathologist from chromogenic IHC double stains on serial sections and compared to MxIF automated single cell quantification of the same markers that were multiplexed on a single tissue section. Overall, there was directional consistency between the H-score and the MxIF results for all markers except phosphorylated ERK1/2 (ERK1/2 pT202_pY204), which showed a decrease in the lesion compared to the adjacent non-lesioned skin by MxIF vs an increase via H-score. Improvements to automated segmentation using machine learning and adding additional cell markers for cell viability are future options for improvement. This method could be useful in infectious disease research as it conserves tissue, provides marker colocalization data on thousands of cells, allowing further cell level data mining as well as a reduction in user bias.
Collapse
Affiliation(s)
- Anup Sood
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| | - Yunxia Sui
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| | - Elizabeth McDonough
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| | - Alberto Santamaría-Pang
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| | - Yousef Al-Kofahi
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| | - Zhengyu Pang
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Frederick, MD 21702, USA;
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Frederick, MD 21702, USA;
| | - Fiona Ginty
- GE Research, 1 Research Circle, Niskayuna, NY 12309, USA; (A.S.); (Y.S.); (E.M.); (A.S.-P.); (Y.A.-K.); (Z.P.)
| |
Collapse
|
16
|
Peng C, Zhou Y, Cao S, Pant A, Campos Guerrero ML, McDonald P, Roy A, Yang Z. Identification of Vaccinia Virus Inhibitors and Cellular Functions Necessary for Efficient Viral Replication by Screening Bioactives and FDA-Approved Drugs. Vaccines (Basel) 2020; 8:vaccines8030401. [PMID: 32708182 PMCID: PMC7564539 DOI: 10.3390/vaccines8030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Four decades after the eradication of smallpox, poxviruses continue to threaten the health of humans and other animals. Vaccinia virus (VACV) was used as the vaccine that successfully eradicated smallpox and is a prototypic member of the poxvirus family. Many cellular pathways play critical roles in productive poxvirus replication. These pathways provide opportunities to expand the arsenal of poxvirus antiviral development by targeting the cellular functions required for efficient poxvirus replication. In this study, we developed and optimized a secreted Gaussia luciferase-based, simplified assay procedure suitable for high throughput screening. Using this procedure, we screened a customized compound library that contained over 3200 bioactives and FDA (Food and Drug Administration)-approved chemicals, most having known cellular targets, for their inhibitory effects on VACV replication. We identified over 140 compounds that suppressed VACV replication. Many of these hits target cellular pathways previously reported to be required for efficient VACV replication, validating the effectiveness of our screening. Importantly, we also identified hits that target cellular functions with previously unknown roles in the VACV replication cycle. Among those in the latter category, we verified the antiviral role of several compounds targeting the janus kinase/signal transducer and activator of transcription-3 (JAK/STAT3) signaling pathway by showing that STAT3 inhibitors reduced VACV replication. Our findings identify pathways that are candidates for use in the prevention and treatment of poxvirus infections and additionally provide a foundation to investigate diverse cellular pathways for their roles in poxvirus replications.
Collapse
Affiliation(s)
- Chen Peng
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Yanan Zhou
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Shuai Cao
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Anil Pant
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Marlene L. Campos Guerrero
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Peter McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS 66045, USA; (P.M.); (A.R.)
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS 66045, USA; (P.M.); (A.R.)
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
- Correspondence:
| |
Collapse
|
17
|
Aviner R, Frydman J. Proteostasis in Viral Infection: Unfolding the Complex Virus-Chaperone Interplay. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034090. [PMID: 30858229 DOI: 10.1101/cshperspect.a034090] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viruses are obligate intracellular parasites that rely on their hosts for protein synthesis, genome replication, and viral particle production. As such, they have evolved mechanisms to divert host resources, including molecular chaperones, facilitate folding and assembly of viral proteins, stabilize complex structures under constant mutational pressure, and modulate signaling pathways to dampen antiviral responses and prevent premature host death. Biogenesis of viral proteins often presents unique challenges to the proteostasis network, as it requires the rapid and orchestrated production of high levels of a limited number of multifunctional, multidomain, and aggregation-prone proteins. To overcome such challenges, viruses interact with the folding machinery not only as clients but also as regulators of chaperone expression, function, and subcellular localization. In this review, we summarize the main types of interactions between viral proteins and chaperones during infection, examine evolutionary aspects of this relationship, and discuss the potential of using chaperone inhibitors as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ranen Aviner
- Department of Biology, Stanford University, Stanford, California 94305
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California 94305.,Department of Genetics, Stanford University, Stanford, California 94305
| |
Collapse
|
18
|
Milani A, Basirnejad M, Bolhassani A. Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions. Immunotherapy 2020; 11:215-239. [PMID: 30730280 DOI: 10.2217/imt-2018-0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat-shock proteins (HSPs) have been involved in different functions including chaperone activity, protein folding, apoptosis, autophagy and immunity. The HSP families have powerful effects on the stimulation of innate immune responses through Toll-like receptors and scavenger receptors. Moreover, HSP-mediated phagocytosis directly enhances the processing and presentation of internalized antigens via the endocytic pathway in adaptive immune system. These properties of HSPs have been used for development of prophylactic and therapeutic vaccines against infectious and noninfectious diseases. Several studies also demonstrated the relationship between HSPs and drug resistance as well as their use as a novel biomarker for detecting tumors in patients. The present review describes different roles of HSPs in biology and medicine especially biochemical and immunological aspects.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Hsp90 Chaperones Bluetongue Virus Proteins and Prevents Proteasomal Degradation. J Virol 2019; 93:JVI.00898-19. [PMID: 31375577 PMCID: PMC6798104 DOI: 10.1128/jvi.00898-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 01/20/2023] Open
Abstract
The molecular chaperone machinery is important for the maintenance of protein homeostasis within the cells. The principle activities of the chaperone machinery are to facilitate protein folding and organize conformationally dynamic client proteins. Prominent among the members of the chaperone family are heat shock protein 70 (Hsp70) and 90 (Hsp90). Like cellular proteins, viral proteins depend upon molecular chaperones to mediate their stabilization and folding. Bluetongue virus (BTV), which is a model system for the Reoviridae family, is a nonenveloped arbovirus that causes hemorrhagic disease in ruminants. This constitutes a significant burden upon animals of commercial significance, such as sheep and cattle. Here, for the first time, we examined the role of chaperone proteins in the viral lifecycle of BTV. Using a combination of molecular, biochemical, and microscopic techniques, we examined the function of Hsp90 and its relevance to BTV replication. We demonstrate that Hsp70, the chaperone that is commonly usurped by viral proteins, does not influence virus replication, while Hsp90 activity is important for virus replication by stabilizing BTV proteins and preventing their degradation via the ubiquitin-proteasome pathway. To our knowledge this is the first report showing the involvement of Hsp90 as a modulator of BTV infection.IMPORTANCE Protein chaperones are instrumental for maintaining protein homeostasis, enabling correct protein folding and organization; prominent members include heat shock proteins 70 and 90. Virus infections place a large burden on this homeostasis. Identifying and understanding the underlying mechanisms that facilitate Bluetongue virus replication and spread through the usurpation of host factors is of primary importance for the development of intervention strategies. Our data identify and show that heat shock protein 90, but not heat shock protein 70, stabilizes bluetongue virus proteins, safeguarding them from proteasomal degradation.
Collapse
|
20
|
Discovery of 2-isoxazol-3-yl-acetamide analogues as heat shock protein 90 (HSP90) inhibitors with significant anti-HIV activity. Eur J Med Chem 2019; 183:111699. [PMID: 31561045 DOI: 10.1016/j.ejmech.2019.111699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
The recent burst of explorations on heat shock protein 90 (HSP90) in virus research supports its emergence as a promising target to overcome the drawbacks of current antiviral therapeutic regimen. In continuation of our efforts towards the discovery of novel anti-retroviral molecules, we designed, synthesized fifteen novels 2-isoxazol-3-yl-acetamide based compounds (2a-o) followed by analysis of their anti-HIV activity and cytotoxicity studies. 2a-b, 2e, 2j, and 2l-m were found to be active with inhibitory potentials >80% at their highest non-cytotoxic concentration (HNC). Further characterization of anti-HIV activity of these molecules suggests that 2l has ∼3.5 fold better therapeutic index than AUY922, the second generation HSP90 inhibitor. The anti-HIV activity of 2l is a cell type, virus isolate and viral load independent phenomena. Interestingly, 2l does not significantly modulate viral enzymes like Reverse Transcriptase (RT), Integrase (IN) and Protease (PR) as compared to their known inhibitors in a cell free in vitro assay system at its HNC. Further, 2l mediated inhibition of HSP90 attenuates HIV-1 LTR driven gene expression. Taken together, structural rationale, modeling studies and characterization of biological activities suggest that this novel scaffold can attenuate HIV-1 replication significantly within the host and thus opens a new horizon to develop novel anti-HIV therapeutic candidates.
Collapse
|
21
|
Kumar P, Gaur P, Kumari R, Lal SK. Influenza A virus neuraminidase protein interacts with Hsp90, to stabilize itself and enhance cell survival. J Cell Biochem 2018; 120:6449-6458. [DOI: 10.1002/jcb.27935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Purnima Kumar
- Department of Biotechnology, Mewar University Chittorgarh India
- Virology Group International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Pratibha Gaur
- Virology Group International Centre for Genetic Engineering and Biotechnology New Delhi India
- Research Group Model Systems for Infection Helmholtz Center for Infection Research Braunschweig Germany
| | - Rashmi Kumari
- Virology Group International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Sunil K Lal
- Department of Biotechnology, Mewar University Chittorgarh India
- Virology Group International Centre for Genetic Engineering and Biotechnology New Delhi India
- School of Science Monash University Bandar Sunway Malaysia
| |
Collapse
|
22
|
Cheng W, Jia H, Wang X, He X, Jin Q, Cao J, Jing Z. Ectromelia virus upregulates the expression of heat shock protein�70 to promote viral replication. Int J Mol Med 2018; 42:1044-1053. [DOI: 10.3892/ijmm.2018.3655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/26/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Wenyu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu�730046, P.R.�China
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiaoxia Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Qiwang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB�R3E 3R2, Canada
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| |
Collapse
|
23
|
Jordan I, John K, Höwing K, Lohr V, Penzes Z, Gubucz-Sombor E, Fu Y, Gao P, Harder T, Zádori Z, Sandig V. Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines. Avian Pathol 2017; 45:137-55. [PMID: 26814192 DOI: 10.1080/03079457.2016.1138280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Veterinary vaccines contribute to food security, interrupt zoonotic transmissions, and help to maintain overall health in livestock. Although vaccines are usually cost-effective, their adoption depends on a multitude of factors. Because poultry vaccines are usually given to birds with a short life span, very low production cost per dose is one important challenge. Other hurdles are to ensure a consistent and reliable supply of very large number of doses, and to have flexible production processes to accommodate a range of different pathogens and dosage requirements. Most poultry vaccines are currently being produced on primary avian cells derived from chicken or waterfowl embryos. This production system is associated with high costs, logistic complexities, rigid intervals between harvest and production, and supply limitations. We investigated whether the continuous cell lines Cairina retina and CR.pIX may provide a substrate independent of primary cell cultures or embryonated eggs. Viruses examined for replication in these cell lines are strains associated with, or contained in vaccines against egg drop syndrome, Marek's disease, Newcastle disease, avian influenza, infectious bursal disease and Derzsy's disease. Each of the tested viruses required the development of unique conditions for replication that are described here and can be used to generate material for in vivo efficacy studies and to accelerate transfer of the processes to larger production volumes.
Collapse
Affiliation(s)
| | | | | | | | - Zoltán Penzes
- b Ceva-Phylaxia Veterinary Biologicals Co. Ltd. , Budapest , Hungary
| | | | - Yan Fu
- c Ningbo Tech-Bank Co Ltd , Shanghai , People's Republic of China
| | - Peng Gao
- c Ningbo Tech-Bank Co Ltd , Shanghai , People's Republic of China
| | - Timm Harder
- d Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald-Insel Riems , Germany
| | - Zoltán Zádori
- e Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences , Budapest , Hungary
| | | |
Collapse
|
24
|
Nayak TK, Mamidi P, Kumar A, Singh LPK, Sahoo SS, Chattopadhyay S, Chattopadhyay S. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages. Viruses 2017; 9:v9010003. [PMID: 28067803 PMCID: PMC5294972 DOI: 10.3390/v9010003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.
Collapse
Affiliation(s)
- Tapas K Nayak
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| | - Prabhudutta Mamidi
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Abhishek Kumar
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Laishram Pradeep K Singh
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| | - Subhransu S Sahoo
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
25
|
Protein Primary Structure of the Vaccinia Virion at Increased Resolution. J Virol 2016; 90:9905-9919. [PMID: 27558425 DOI: 10.1128/jvi.01042-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/17/2016] [Indexed: 01/16/2023] Open
Abstract
Here we examine the protein covalent structure of the vaccinia virus virion. Within two virion preparations, >88% of the theoretical vaccinia virus-encoded proteome was detected with high confidence, including the first detection of products from 27 open reading frames (ORFs) previously designated "predicted," "uncharacterized," "inferred," or "hypothetical" polypeptides containing as few as 39 amino acids (aa) and six proteins whose detection required nontryptic proteolysis. We also detected the expression of four short ORFs, each of which was located within an ORF ("ORF-within-ORF"), including one not previously recognized or known to be expressed. Using quantitative mass spectrometry (MS), between 58 and 74 proteins were determined to be packaged. A total of 63 host proteins were also identified as candidates for packaging. Evidence is provided that some portion of virion proteins are "nicked" via a combination of endoproteolysis and concerted exoproteolysis in a manner, and at sites, independent of virus origin or laboratory procedures. The size of the characterized virion phosphoproteome was doubled from 189 (J. Matson, W. Chou, T. Ngo, and P. D. Gershon, Virology 452-453:310-323, 2014, doi:http://dx.doi.org/10.1016/j.virol.2014.01.012) to 396 confident, unique phosphorylation sites, 268 of which were within the packaged proteome. This included the unambiguous identification of phosphorylation "hot spots" within virion proteins. Using isotopically enriched ATP, 23 sites of intravirion kinase phosphorylation were detected within nine virion proteins, all at sites already partially occupied within the virion preparations. The clear phosphorylation of proteins RAP94 and RP19 was consistent with the roles of these proteins in intravirion early gene transcription. In a blind search for protein modifications, cysteine glutathionylation and O-linked glycosylation featured prominently. We provide evidence for the phosphoglycosylation of vaccinia virus proteins. IMPORTANCE Poxviruses are among the most complex and irregular virions, about whose internal structure little is known. To better understand poxvirus virion structure, imaging should be supplemented with other tools. Here, we provide a deep study of the covalent structure of the vaccinia virus virion using the various tools of contemporary mass spectrometry.
Collapse
|
26
|
Liem J, Liu J. Stress Beyond Translation: Poxviruses and More. Viruses 2016; 8:v8060169. [PMID: 27314378 PMCID: PMC4926189 DOI: 10.3390/v8060169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023] Open
Abstract
Poxviruses are large double-stranded DNA viruses that form viral factories in the cytoplasm of host cells. These viruses encode their own transcription machinery, but rely on host translation for protein synthesis. Thus, poxviruses have to cope with and, in most cases, reprogram host translation regulation. Granule structures, called antiviral granules (AVGs), have been observed surrounding poxvirus viral factories. AVG formation is associated with abortive poxvirus infection, and AVGs contain proteins that are typically found in stress granules (SGs). With certain mutant poxviruses lack of immunoregulatory factor(s), we can specifically examine the mechanisms that drive the formation of these structures. In fact, cytoplasmic macromolecular complexes form during many viral infections and contain sensing molecules that can help reprogram transcription. More importantly, the similarity between AVGs and cytoplasmic structures formed during RNA and DNA sensing events prompts us to reconsider the cause and consequence of these AVGs. In this review, we first summarize recent findings regarding how poxvirus manipulates host translation. Next, we compare and contrast SGs and AVGs. Finally, we review recent findings regarding RNA- and especially DNA-sensing bodies observed during viral infection.
Collapse
Affiliation(s)
- Jason Liem
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Jia Liu
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
27
|
Survey of molecular chaperone requirement for the biosynthesis of hamster polyomavirus VP1 protein in Saccharomyces cerevisiae. Arch Virol 2016; 161:1807-19. [PMID: 27038828 DOI: 10.1007/s00705-016-2846-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
A number of viruses utilize molecular chaperones during various stages of their life cycle. It has been shown that members of the heat-shock protein 70 (Hsp70) chaperone family assist polyomavirus capsids during infection. However, the molecular chaperones that assist the formation of recombinant capsid viral protein 1 (VP1)-derived virus-like particles (VLPs) in yeast remain unclear. A panel of yeast strains with single chaperone gene deletions were used to evaluate the chaperones required for biosynthesis of recombinant hamster polyomavirus capsid protein VP1. The impact of deletion or mild overexpression of chaperone genes was determined in live cells by flow cytometry using enhanced green fluorescent protein (EGFP) fused with VP1. Targeted genetic analysis demonstrated that VP1-EGFP fusion protein levels were significantly higher in yeast strains in which the SSZ1 or ZUO1 genes encoding ribosome-associated complex components were deleted. The results confirmed the participation of cytosolic Hsp70 chaperones and suggested the potential involvement of the Ydj1 and Caj1 co-chaperones and the endoplasmic reticulum chaperones in the biosynthesis of VP1 VLPs in yeast. Likewise, the markedly reduced levels of VP1-EGFP in Δhsc82 and Δhsp82 yeast strains indicated that both Hsp70 and Hsp90 chaperones might assist VP1 VLPs during protein biosynthesis.
Collapse
|
28
|
Weisheit S, Villar M, Tykalová H, Popara M, Loecherbach J, Watson M, Růžek D, Grubhoffer L, de la Fuente J, Fazakerley JK, Bell-Sakyi L. Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasit Vectors 2015; 8:599. [PMID: 26582129 PMCID: PMC4652421 DOI: 10.1186/s13071-015-1210-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ixodid ticks are important vectors of a wide variety of viral, bacterial and protozoan pathogens of medical and veterinary importance. Although several studies have elucidated tick responses to bacteria, little is known about the tick response to viruses. To gain insight into the response of tick cells to flavivirus infection, the transcriptomes and proteomes of two Ixodes spp cell lines infected with the flavivirus tick-borne encephalitis virus (TBEV) were analysed. METHODS RNA and proteins were isolated from the Ixodes scapularis-derived cell line IDE8 and the Ixodes ricinus-derived cell line IRE/CTVM19, mock-infected or infected with TBEV, on day 2 post-infection (p.i.) when virus production was increasing, and on day 6 p.i. when virus production was decreasing. RNA-Seq and mass spectrometric technologies were used to identify changes in abundance of, respectively, transcripts and proteins. Functional analyses were conducted on selected transcripts using RNA interference (RNAi) for gene knockdown in tick cells infected with the closely-related but less pathogenic flavivirus Langat virus (LGTV). RESULTS Differential expression analysis using DESeq resulted in totals of 43 and 83 statistically significantly differentially-expressed transcripts in IDE8 and IRE/CTVM19 cells, respectively. Mass spectrometry detected 76 and 129 statistically significantly differentially-represented proteins in IDE8 and IRE/CTVM19 cells, respectively. Differentially-expressed transcripts and differentially-represented proteins included some that may be involved in innate immune and cell stress responses. Knockdown of the heat-shock proteins HSP90, HSP70 and gp96, the complement-associated protein Factor H and the protease trypsin resulted in increased LGTV replication and production in at least one tick cell line, indicating a possible antiviral role for these proteins. Knockdown of RNAi-associated proteins Argonaute and Dicer, which were included as positive controls, also resulted in increased LGTV replication and production in both cell lines, confirming their role in the antiviral RNAi pathway. CONCLUSIONS This systems biology approach identified several molecules that may be involved in the tick cell innate immune response against flaviviruses and highlighted that ticks, in common with other invertebrate species, have other antiviral responses in addition to RNAi.
Collapse
Affiliation(s)
- Sabine Weisheit
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0377, Norway.
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Hana Tykalová
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
| | - Marina Popara
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Julia Loecherbach
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Daniel Růžek
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
- Veterinary Research Institute, Hudcova 70, Brno, 62100, Czech Republic.
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - John K Fazakerley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | | |
Collapse
|
29
|
Jirakanwisal K, Srisutthisamphan K, Thepparit C, Suptawiwat O, Auewarakul P, Paemanee A, Roytrakul S, Smith DR. Identification of Hsp90 as a species independent H5N1 avian influenza A virus PB2 interacting protein. Comp Immunol Microbiol Infect Dis 2015; 43:28-35. [PMID: 26616658 DOI: 10.1016/j.cimid.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/26/2015] [Accepted: 10/15/2015] [Indexed: 01/05/2023]
Abstract
The avian influenza polymerase protein PB2 subunit is an important mediator of cross species adaptation and adaptation to mammalian cells is strongly but not exclusively associated with an adaptive mutation of the codon at position 627 of the PB2 protein which alters the glutamate normally found at this position to a lysine. This study sought to identify host cell factors in both mammalian and avian cells that interacted in a species specific or species independent manner. Two PB2 fusion proteins differing only in codon 627 were generated and transfected into mammalian and avian cells and interacting proteins identified through co-immunoprecipitation. A number of proteins including Hsp90 were identified and further investigation showed that Hsp90 interacted with both isoforms of PB2 in both mammalian and avian cells. Hsp90 is thus identified as a species independent interacting protein, further confirming that this protein may be a suitable target for anti-influenza drug development.
Collapse
Affiliation(s)
- Krit Jirakanwisal
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamontol Sai 4, Salaya 73170, Nakorn Pathom, Thailand
| | - Kanjana Srisutthisamphan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamontol Sai 4, Salaya 73170, Nakorn Pathom, Thailand
| | - Chutima Thepparit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamontol Sai 4, Salaya 73170, Nakorn Pathom, Thailand
| | - Ornpreya Suptawiwat
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Atchara Paemanee
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamontol Sai 4, Salaya 73170, Nakorn Pathom, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang 12120, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang 12120, Pathum Thani, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamontol Sai 4, Salaya 73170, Nakorn Pathom, Thailand.
| |
Collapse
|
30
|
Marreiros R, Müller-Schiffmann A, Bader V, Selvarajah S, Dey D, Lingappa VR, Korth C. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets. Virus Res 2014; 207:155-64. [PMID: 25451064 DOI: 10.1016/j.virusres.2014.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022]
Abstract
Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation therapeutics. A key basis for the commonality between viral and neurodegenerative disease aggregation is a broader definition of assembly as more than just simple aggregation, particularly suited for the crowded cytoplasm. The assembly machines are collections of proteins that catalytically accelerate an assembly reaction that would occur spontaneously but too slowly to be relevant in vivo. Being an enzyme complex with a functional allosteric site, appropriated for a non-physiological purpose (e.g. viral infection or conformational disease), these assembly machines present a superior pharmacological target because inhibition of their active site will amplify an effect on their substrate reaction. Here, we present this hypothesis based on recent proof-of-principle studies against Aβ assembly relevant in Alzheimer's disease.
Collapse
Affiliation(s)
- Rita Marreiros
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Andreas Müller-Schiffmann
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Verian Bader
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | - Carsten Korth
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
31
|
Das I, Basantray I, Mamidi P, Nayak TK, B. M. P, Chattopadhyay S, Chattopadhyay S. Heat shock protein 90 positively regulates Chikungunya virus replication by stabilizing viral non-structural protein nsP2 during infection. PLoS One 2014; 9:e100531. [PMID: 24959709 PMCID: PMC4069056 DOI: 10.1371/journal.pone.0100531] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/25/2014] [Indexed: 02/06/2023] Open
Abstract
Background The high morbidity and socio-economic loss associated with the recent massive global outbreak of Chikungunya virus (CHIKV) emphasize the need to understand the biology of the virus for developing effective antiviral therapies. Methods and Findings In this study, an attempt was made to understand the molecular mechanism involved in Heat shock protein 90 (Hsp90) mediated regulation of CHIKV infection in mammalian cells using CHIKV prototype strain (S 27) and Indian outbreak strain of 2006 (DRDE-06). Our results showed that Hsp90 is required at a very early stage of viral replication and Hsp90 inhibitor Geldanamycin (GA) can abrogate new virus particle formation more effectively in the case of S 27 than that of DRDE-06. Further analysis revealed that CHIKV nsP2 protein level is specifically reduced by GA treatment as well as HSP90-siRNA transfection; however, viral RNA remains unaltered. Immunoprecipitation analysis showed that nsP2 interacts with Hsp90 during infection; however this interaction is reduced in the presence of GA. In addition, our analysis on Hsp90 associated PI3K/Akt/mTOR signaling pathway demonstrated that CHIKV infection stabilizes Raf1 and activates Hsp90 client protein Akt, which in turn phosphorylates mTOR. Subsequently, this phosphorylation leads to the activation of two important downstream effectors, S6K and 4EBP1, which may facilitate translation of viral as well as cellular mRNAs. Hence, the data suggests that CHIKV infection is regulated by Hsp90 associated Akt phosphorylation and DRDE-06 is more efficient than S 27 in enhancing the activation of host signaling molecules for its efficient replication and virus production. Conclusion Hsp90 positively regulates Chikungunya virus replication by stabilizing CHIKV-nsP2 through its interaction during infection. The study highlights the possible molecular mechanism of GA mediated inhibition of CHIKV replication and differential effect of this drug on S 27 and DRDE-06, which will be informative for developing effective anti-CHIKV therapies in future.
Collapse
Affiliation(s)
- Indrani Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Itishree Basantray
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Prabhudutta Mamidi
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Tapas K. Nayak
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, Odisha, India
| | - Pratheek B. M.
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, Odisha, India
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, Odisha, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- * E-mail:
| |
Collapse
|
32
|
Nuss JE, Kehn-Hall K, Benedict A, Costantino J, Ward M, Peyser BD, Retterer CJ, Tressler LE, Wanner LM, McGovern HF, Zaidi A, Anthony SM, Kota KP, Bavari S, Hakami RM. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors. PLoS One 2014; 9:e93483. [PMID: 24809507 PMCID: PMC4014464 DOI: 10.1371/journal.pone.0093483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/05/2014] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV). Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry) with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90), as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.
Collapse
Affiliation(s)
- Jonathan E. Nuss
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Kylene Kehn-Hall
- School of Systems Biology, and National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Ashwini Benedict
- School of Systems Biology, and National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Julie Costantino
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Michael Ward
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Brian D. Peyser
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Cary J. Retterer
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Lyal E. Tressler
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Laura M. Wanner
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Hugh F. McGovern
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Anum Zaidi
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Scott M. Anthony
- University of Texas Health Sciences Center, Houston, Texas, United States of America
| | - Krishna P. Kota
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail: (RMH); (SB)
| | - Ramin M. Hakami
- School of Systems Biology, and National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
- * E-mail: (RMH); (SB)
| |
Collapse
|
33
|
Filone CM, Caballero IS, Dower K, Mendillo ML, Cowley GS, Santagata S, Rozelle DK, Yen J, Rubins KH, Hacohen N, Root DE, Hensley LE, Connor J. The master regulator of the cellular stress response (HSF1) is critical for orthopoxvirus infection. PLoS Pathog 2014; 10:e1003904. [PMID: 24516381 PMCID: PMC3916389 DOI: 10.1371/journal.ppat.1003904] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022] Open
Abstract
The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.
Collapse
Affiliation(s)
- Claire Marie Filone
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Ignacio S. Caballero
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ken Dower
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marc L. Mendillo
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Glenn S. Cowley
- The Broad Institute, Cambridge Massachusetts, United States of America
| | - Sandro Santagata
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Daniel K. Rozelle
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Judy Yen
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kathleen H. Rubins
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Nir Hacohen
- The Broad Institute, Cambridge Massachusetts, United States of America
| | - David E. Root
- The Broad Institute, Cambridge Massachusetts, United States of America
| | - Lisa E. Hensley
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Maryland, United States of America
| | - John Connor
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
34
|
Gao J, Xiao S, Liu X, Wang L, Zhang X, Ji Q, Wang Y, Mo D, Chen Y. Inhibition of HSP90 attenuates porcine reproductive and respiratory syndrome virus production in vitro. Virol J 2014; 11:17. [PMID: 24490822 PMCID: PMC3942275 DOI: 10.1186/1743-422x-11-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/29/2014] [Indexed: 12/29/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) infection leads to substantial economic losses to the swine industry worldwide. However, no effective countermeasures exist to combat this virus infection so far. The most common antiviral strategy relies on directly inhibiting viral proteins. However, this strategy invariably leads to the emergence of drug resistance due to the error-prone nature of viral ploymerase. Targeting cellular proteins required for viral infection for developing new generation of antivirals is gaining concern. Recently, heat shock protein 90 (HSP90) was found to be an important host factor for the replication of multiple viruses and the inhibition of HSP90 showed significant antiviral effects. It is thought that the inhibition of HSP90 could be a promising broad-range antiviral approach. However, the effects of HSP90 inhibition on PRRSV infection have not been evaluated. In the current research, we tried to inhibit HSP90 and test whether the inhibition affect PRRSV infection. Methods We inhibit the function of HSP90 with two inhibitors, geldanamycin (GA) and 17- allylamono-demethoxygeldanamycin (17-AAG), and down-regulated the expression of endogenous HSP90 with specific small-interfering RNAs (siRNAs). Cell viability was measured with alamarBlue. The protein level of viral N was determined by western blotting and indirect immunofluorescence (IFA). Besides, IFA was employed to examine the level of viral double-stranded RNA (dsRNA). The viral RNA copy number and the level of IFN-β mRNA were determined by quantitative real-time PCR (qRT-PCR). Results Our results indicated that both HSP90 inhibitors showed strong anti-PRRSV activity. They could reduce viral production by preventing the viral RNA synthesis. These inhibitory effects were not due to the activation of innate interferon response. In addition, we observed that individual knockdown targeting HSP90α or HSP90β did not show dramatic inhibitory effect. Combined knockdown of these two isoforms was required to reduce viral infection. Conclusions Our results shed light on the possibility of developing potential therapeutics targeting HSP90 against PRRSV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
35
|
Immune responses of orange-spotted grouper, Epinephelus coioides, against virus-like particles of betanodavirus produced in Escherichia coli. Vet Immunol Immunopathol 2014; 157:87-96. [DOI: 10.1016/j.vetimm.2013.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022]
|
36
|
Friedrich BM, Trefry JC, Biggins JE, Hensley LE, Honko AN, Smith DR, Olinger GG. Potential vaccines and post-exposure treatments for filovirus infections. Viruses 2012; 4:1619-50. [PMID: 23170176 PMCID: PMC3499823 DOI: 10.3390/v4091619] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 01/07/2023] Open
Abstract
Viruses of the family Filoviridae represent significant health risks as emerging infectious diseases as well as potentially engineered biothreats. While many research efforts have been published offering possibilities toward the mitigation of filoviral infection, there remain no sanctioned therapeutic or vaccine strategies. Current progress in the development of filovirus therapeutics and vaccines is outlined herein with respect to their current level of testing, evaluation, and proximity toward human implementation, specifically with regard to human clinical trials, nonhuman primate studies, small animal studies, and in vitro development. Contemporary methods of supportive care and previous treatment approaches for human patients are also discussed.
Collapse
Affiliation(s)
- Brian M. Friedrich
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - John C. Trefry
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - Julia E. Biggins
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - Lisa E. Hensley
- United States Food and Drug Administration (FDA), Medical Science Countermeasures Initiative (McMi), 10903 New Hampshire Avenue, Silver Spring, MD 20901, USA; (L.E.H.)
| | - Anna N. Honko
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - Darci R. Smith
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - Gene G. Olinger
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
- Author to whom correspondence should be addressed; (G.G.O.); Tel.: +1-301-619-8581; +1-301-619-2290
| |
Collapse
|
37
|
Zaborowska I, Kellner K, Henry M, Meleady P, Walsh D. Recruitment of host translation initiation factor eIF4G by the Vaccinia Virus ssDNA-binding protein I3. Virology 2012; 425:11-22. [PMID: 22280895 DOI: 10.1016/j.virol.2011.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/09/2011] [Accepted: 12/23/2011] [Indexed: 11/15/2022]
Abstract
Poxviruses are large double-stranded DNA viruses that replicate exclusively in the cytoplasm of infected cells within discrete compartments termed viral factories. Recent work has shown that the prototypical poxvirus, Vaccinia Virus (VacV) sequesters components of the eukaryotic translation initiation complex eIF4F within viral factories while also stimulating formation of eIF4F complexes. However, the forces that govern these events remain unknown. Here, we show that maximal eIF4F formation requires viral DNA replication and the formation of viral factories, suggesting that sequestration functions to promote eIF4F assembly, and identify the ssDNA-binding protein, I3 as a viral factor that interacts and co-localizes with the eIF4F scaffold protein, eIF4G. Although it did not adversely affect host or viral protein synthesis, I3 specifically mediated the binding of eIF4G to ssDNA. Combined, our findings offer an explanation for the specific pattern and temporal process of eIF4G redistribution and eIF4F complex assembly within VacV-infected cells.
Collapse
Affiliation(s)
- Izabela Zaborowska
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
38
|
Geller R, Taguwa S, Frydman J. Broad action of Hsp90 as a host chaperone required for viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:698-706. [PMID: 22154817 DOI: 10.1016/j.bbamcr.2011.11.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 02/06/2023]
Abstract
Viruses are intracellular pathogens responsible for a vast number of human diseases. Due to their small genome size, viruses rely primarily on the biosynthetic apparatus of the host for their replication. Recent work has shown that the molecular chaperone Hsp90 is nearly universally required for viral protein homeostasis. As observed for many endogenous cellular proteins, numerous different viral proteins have been shown to require Hsp90 for their folding, assembly, and maturation. Importantly, the unique characteristics of viral replication cause viruses to be hypersensitive to Hsp90 inhibition, thus providing a novel therapeutic avenue for the development of broad-spectrum antiviral drugs. The major developments in this emerging field are hereby discussed. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Ron Geller
- Department of Biology and BioX Program, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
39
|
Li J, Soroka J, Buchner J. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:624-35. [PMID: 21951723 DOI: 10.1016/j.bbamcr.2011.09.003] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022]
Abstract
Hsp90 is a dimeric molecular chaperone required for the activation and stabilization of numerous client proteins many of which are involved in essential cellular processes like signal transduction pathways. This activation process is regulated by ATP-induced large conformational changes, co-chaperones and posttranslational modifications. For some co-chaperones, a detailed picture on their structures and functions exists, for others their contributions to the Hsp90 system is still unclear. Recent progress on the conformational dynamics of Hsp90 and how co-chaperones affect the Hsp90 chaperone cycle significantly increased our understanding of the gearings of this complex molecular machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (Hsp90).
Collapse
Affiliation(s)
- Jing Li
- Technische Universitat, Munchen, Germany
| | | | | |
Collapse
|
40
|
Mutsvunguma LZ, Moetlhoa B, Edkins AL, Luke GA, Blatch GL, Knox C. Theiler's murine encephalomyelitis virus infection induces a redistribution of heat shock proteins 70 and 90 in BHK-21 cells, and is inhibited by novobiocin and geldanamycin. Cell Stress Chaperones 2011; 16:505-15. [PMID: 21445704 PMCID: PMC3156266 DOI: 10.1007/s12192-011-0262-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 11/26/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 μM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 μM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus.
Collapse
Affiliation(s)
- Lorraine Z. Mutsvunguma
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | - Boitumelo Moetlhoa
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | - Adrienne L. Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | - Garry A. Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST UK
| | - Gregory L. Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | - Caroline Knox
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| |
Collapse
|
41
|
Dower K, Rubins KH, Hensley LE, Connor JH. Development of Vaccinia reporter viruses for rapid, high content analysis of viral function at all stages of gene expression. Antiviral Res 2011; 91:72-80. [PMID: 21569797 PMCID: PMC3177160 DOI: 10.1016/j.antiviral.2011.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/20/2011] [Accepted: 04/27/2011] [Indexed: 01/25/2023]
Abstract
Vaccinia virus is the prototypical orthopoxvirus of Poxviridae, a family of viruses that includes the human pathogens Variola (smallpox) and Monkeypox. Core viral functions are conserved among orthopoxviruses, and consequently Vaccinia is routinely used to study poxvirus biology and screen for novel antiviral compounds. Here we describe the development of a series of fluorescent protein-based reporter Vaccinia viruses that provide unprecedented resolution for tracking viral function. The reporter viruses are divided into two sets: (1) single reporter viruses that utilize temporally regulated early, intermediate, or late viral promoters; and (2) multi-reporter viruses that utilize multiple temporally regulated promoters. Promoter and reporter combinations were chosen that yielded high signal-to-background for stage-specific viral outputs. We provide examples for how these viruses can be used in the rapid and accurate monitoring of Vaccinia function and drug action.
Collapse
Affiliation(s)
- Ken Dower
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
42
|
Dutta D, Chattopadhyay S, Bagchi P, Halder UC, Nandi S, Mukherjee A, Kobayashi N, Taniguchi K, Chawla-Sarkar M. Active participation of cellular chaperone Hsp90 in regulating the function of rotavirus nonstructural protein 3 (NSP3). J Biol Chem 2011; 286:20065-77. [PMID: 21489987 DOI: 10.1074/jbc.m111.231878] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein 90 (Hsp90) has been reported to positively regulate rotavirus replication by modulating virus induced PI3K/Akt and NFκB activation. Here, we report the active association of Hsp90 in the folding and stabilization of rotavirus nonstructural protein 3 (NSP3). In pCD-NSP3-transfected cells, treatment with Hsp90 inhibitor (17-N,N-dimethylethylenediamine-geldanamycin (17DMAG)) resulted in the proteasomal degradation of NSP3. Sequence analysis and deletion mutations revealed that the region spanning amino acids 225-258 within the C-terminal eIF4G-binding domain of NSP3 is a putative Hsp90 binding region. Co-immunoprecipitation and mammalian two-hybrid experiments revealed direct interaction of the C-terminal 12-kDa domain of Hsp90 (C90) with residues 225-258 of NSP3. NSP3-Hsp90 interaction is important for the formation of functionally active mature NSP3, because full-length NSP3 in the presence of the Hsp90 inhibitor or NSP3 lacking the amino acid 225-258 region did not show NSP3 dimers following in vitro coupled transcription-translation followed by chase. Disruption of residues 225-258 within NSP3 also resulted in poor RNA binding and eIF4G binding activity. In addition, inhibition of Hsp90 by 17DMAG resulted in reduced nuclear translocation of poly(A)-binding protein and translation of viral proteins. These results highlight the crucial role of Hsp90 chaperone in the regulation of assembly and functionality of a viral protein during the virus replication and propagation in host cells.
Collapse
Affiliation(s)
- Dipanjan Dutta
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK. Proteomics for development of vaccine. J Proteomics 2011; 74:2596-616. [PMID: 21310271 DOI: 10.1016/j.jprot.2011.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The success of genome projects has provided us with a vast amount of information on genes of many pathogenic species and has raised hopes for rapid progress in combating infectious diseases, both by construction of new effective vaccines and by creating a new generation of therapeutic drugs. Proteomics, a strategy complementary to the genomic-based approach, when combined with immunomics (looking for immunogenic proteins) and vaccinomics (characterization of host response to immunization), delivers valuable information on pathogen-host cell interaction. It also speeds the identification and detailed characterization of new antigens, which are potential candidates for vaccine development. This review begins with an overview of the global status of vaccinology based on WHO data. The main part of this review describes the impact of proteomic strategies on advancements in constructing effective antibacterial, antiviral and anticancer vaccines. Diverse aspects of disease mechanisms and disease preventions have been investigated by proteomics.
Collapse
Affiliation(s)
- Monika Adamczyk-Poplawska
- Department of Virology, Institute of Microbiology, Biology Faculty, Warsaw University, Warsaw, Poland
| | | | | |
Collapse
|
44
|
Kong Q, Xue C, Ren X, Zhang C, Li L, Shu D, Bi Y, Cao Y. Proteomic analysis of purified coronavirus infectious bronchitis virus particles. Proteome Sci 2010; 8:29. [PMID: 20534109 PMCID: PMC2909931 DOI: 10.1186/1477-5956-8-29] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/09/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Infectious bronchitis virus (IBV) is the coronavirus of domestic chickens causing major economic losses to the poultry industry. Because of the complexity of the IBV life cycle and the small number of viral structural proteins, important virus-host relationships likely remain to be discovered. Toward this goal, we performed two-dimensional gel electrophoresis fractionation coupled to mass spectrometry identification approaches to perform a comprehensive proteomic analysis of purified IBV particles. RESULTS Apart from the virus-encoded structural proteins, we detected 60 host proteins in the purified virions which can be grouped into several functional categories including intracellular trafficking proteins (20%), molecular chaperone (18%), macromolcular biosynthesis proteins (17%), cytoskeletal proteins (15%), signal transport proteins (15%), protein degradation (8%), chromosome associated proteins (2%), ribosomal proteins (2%), and other function proteins (3%). Interestingly, 21 of the total host proteins have not been reported to be present in virions of other virus families, such as major vault protein, TENP protein, ovalbumin, and scavenger receptor protein. Following identification of the host proteins by proteomic methods, the presence of 4 proteins in the purified IBV preparation was verified by western blotting and immunogold labeling detection. CONCLUSIONS The results present the first standard proteomic profile of IBV and may facilitate the understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Qingming Kong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Smith DR, McCarthy S, Chrovian A, Olinger G, Stossel A, Geisbert TW, Hensley LE, Connor JH. Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antiviral Res 2010; 87:187-94. [PMID: 20452380 DOI: 10.1016/j.antiviral.2010.04.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/22/2010] [Accepted: 04/30/2010] [Indexed: 12/24/2022]
Abstract
Ebola virus (EBOV), a negative-sense RNA virus in the family Filoviridae, is known to cause severe hemorrhagic fever in humans and other primates. Infection with EBOV causes a high mortality rate and currently there is no FDA-licensed vaccine or therapeutic treatment available. Recently, heat-shock protein 90 (Hsp90), a molecular chaperone, was shown to be an important host factor for the replication of several negative-strand viruses. We tested the effect of several different Hsp90 inhibitors including geldanamycin, radicicol, and 17-allylamino-17-demethoxygeldanamycin (17-AAG; a geldanamycin analog) on the replication of Zaire EBOV. Our results showed that inhibition of Hsp90 significantly reduced the replication of EBOV. Classic Hsp90 inhibitors reduced viral replication with an effective concentration at 50% (EC(50)) in the high nanomolar to low micromolar range, while drugs from a new class of Hsp90 inhibitors showed markedly more potent inhibition. These compounds blocked EBOV replication with an EC(50) in the low nanomolar range and showed significant potency in blocking replication in primary human monocytes. These results validated that Hsp90 is an important host factor for the replication of filoviruses and suggest that Hsp90 inhibitors may be therapeutically effective in treating EBOV infection.
Collapse
Affiliation(s)
- Darci R Smith
- U.S. Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, MD, United States
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Pastorino B, Nougairède A, Wurtz N, Gould E, de Lamballerie X. Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs. Antiviral Res 2010; 87:281-94. [PMID: 20452379 DOI: 10.1016/j.antiviral.2010.04.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/21/2010] [Accepted: 04/30/2010] [Indexed: 01/19/2023]
Abstract
The genus Flavivirus contains approximately 70 arthropod-borne enveloped RNA viruses many of which cause severe human and in some cases, animal disease. They include dengue virus, yellow fever virus, West Nile virus, Japanese encephalitis virus, and tick-borne encephalitis virus. Hundreds of thousands of deaths due to flavivirus infections occur each year, many of which are unpreventable due to lack of availability of appropriate vaccines and/or antiviral drugs. Flaviviruses exploit the cytoplasmic cellular machinery to facilitate propagation of infectious progeny virions. They engage in dynamic and antagonistic interactions with host cell membranes and biochemical processes. Following infection, the cells initiate various antiviral strategies to counteract viral invasion. In its defense, the virus has alternative strategies to suppress these host responses to infection. The fine balance between these interactions determines the outcome of the viral infection and disease progression. Published studies have revealed specific effects of flaviviruses on cellular processes, but the underlying mechanisms that determine the specific cytopathogenetic changes induced by different flaviviruses have not, as yet, been elucidated. Independently of the suppression of the type I IFN response which has been described in detail elsewhere, this review focuses on recent discoveries relating to alterations of host metabolism following viral infection. Such studies may contribute to new approaches to antiviral drug development. The role of host cellular factors will be examined in the context of protection and/or pathogenesis resulting from flavivirus infection, with particular emphasis on West Nile virus and dengue virus.
Collapse
Affiliation(s)
- Boris Pastorino
- Unité des Virus Emergents, UMR190 "Emergence des pathologies virales" Université de la Méditerranée, Institut de Recherche pour le Développement, Faculté de Médecine, Marseille, France
| | | | | | | | | |
Collapse
|
47
|
Chen YM, Kuo CE, Wang TY, Shie PS, Wang WC, Huang SL, Tsai TJ, Chen PP, Chen JC, Chen TY. Cloning of an orange-spotted grouper Epinephelus coioides heat shock protein 90AB (HSP90AB) and characterization of its expression in response to nodavirus. FISH & SHELLFISH IMMUNOLOGY 2010; 28:895-904. [PMID: 20153436 DOI: 10.1016/j.fsi.2010.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/29/2010] [Accepted: 02/03/2010] [Indexed: 05/28/2023]
Abstract
The heat shock proteins (HSPs) family which consists of HSP90, HSP70, and low molecular mass HSPs are involved in chaperone activity. Here, we report the cloning and characterization of HSP90AB gene from orange-spotted grouper, Epinephelus coioides. The full-length of grouper HSP90AB was 727 amino acids and possessed an ATPase domain as well as an evolutionarily conserved molecular chaperone. The HSP90AB-green fluorescent protein fusion protein was evenly distributed in the cytoplasm. Immunohistochemistry (IHC) and real-time polymerase chain reaction (PCR) analyses indicated that the expression of grouper HSP90AB was marginally increased following nodavirus infection. Grouper E. coioides that received HSP90 inhibitor geldanamycin (GA) showed an increase in HSP90AB expression and growth of nodavirus supporting nodavirus replication.
Collapse
Affiliation(s)
- Young-Mao Chen
- Laboratories of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
A targeted analysis of cellular chaperones reveals contrasting roles for heat shock protein 70 in flock house virus RNA replication. J Virol 2010; 84:330-9. [PMID: 19828623 DOI: 10.1128/jvi.01808-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cytosolic chaperones are a diverse group of ubiquitous proteins that play central roles in multiple processes within the cell, including protein translation, folding, intracellular trafficking, and quality control. These cellular proteins have also been implicated in the replication of numerous viruses, although the full extent of their involvement in viral replication is unknown. We have previously shown that the heat shock protein 40 (hsp40) chaperone encoded by the yeast YDJ1 gene facilitates RNA replication of flock house virus (FHV), a well-studied and versatile positive-sense RNA model virus. To further explore the roles of chaperones in FHV replication, we examined a panel of 30 yeast strains with single deletions of cytosolic proteins that have known or hypothesized chaperone activity. We found that the majority of cytosolic chaperone deletions had no impact on FHV RNA accumulation, with the notable exception of J-domain-containing hsp40 chaperones, where deletion of APJ1 reduced FHV RNA accumulation by 60%, while deletion of ZUO1, JJJ1, or JJJ2 markedly increased FHV RNA accumulation, by 4- to 40-fold. Further studies using cross complementation and double-deletion strains revealed that the contrasting effects of J domain proteins were reproduced by altering expression of the major cytosolic hsp70s encoded by the SSA and SSB families and were mediated in part by divergent effects on FHV RNA polymerase synthesis. These results identify hsp70 chaperones as critical regulators of FHV RNA replication and indicate that cellular chaperones can have both positive and negative regulatory effects on virus replication.
Collapse
|
50
|
Pockley AG, Calderwood SK, Santoro MG. Role of Heat Shock Proteins in Viral Infection. PROKARYOTIC AND EUKARYOTIC HEAT SHOCK PROTEINS IN INFECTIOUS DISEASE 2009; 4. [PMCID: PMC7121897 DOI: 10.1007/978-90-481-2976-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the most intriguing and less known aspects of the interaction between viruses and their host is the impact of the viral infection on the heat shock response (HSR). While both a positive and a negative role of different heat shock proteins (HSP) in the control of virus replication has been hypothesized, HSP function during the virus replication cycle is still not well understood. This chapter describes different aspects of the interactions between viruses and heat shock proteins during infection of mammalian cells: the first part focuses on the modulation of the heat shock response by human viral pathogens; the second describes the interactions of HSP and other chaperones with viral components, and their function during different steps of the virus replication cycle; the last part summarizes our knowledge on the effect of hyperthermia and HSR modulators on virus replication.
Collapse
Affiliation(s)
- A. Graham Pockley
- School of Medicine & Biomedical Science, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX United Kingdom
| | - Stuart K. Calderwood
- Beth Israel Deaconess Medical Center, Harvard Medical School, Burlington Avenue 21-27, Boston, 02215 U.S.A
| | - M. Gabriella Santoro
- Dipto. Biologia, Università di Roma, Tor Vergata, Via della Ricerca Scientifica 1, Roma, 00133 Italy
| |
Collapse
|