1
|
Antiviral Peptide-Based Conjugates: State of the Art and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020357. [PMID: 36839679 PMCID: PMC9958607 DOI: 10.3390/pharmaceutics15020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Infectious diseases caused by microbial pathogens (bacteria, virus, fungi, parasites) claim millions of deaths per year worldwide and have become a serious challenge to global human health in our century. Viral infections are particularly notable in this regard, not only because humankind is facing some of the deadliest viral pandemics in recent history, but also because the arsenal of drugs to combat the high levels of mutation, and hence the antigenic variability of (mostly RNA) viruses, is disturbingly scarce. Therefore, the search for new antivirals able to successfully fight infection with minimal or no adverse effects on the host is a pressing task. Traditionally, antiviral therapies have relied on relatively small-sized drugs acting as proteases, polymerases, integrase inhibitors, etc. In recent decades, novel approaches involving targeted delivery such as that achieved by peptide-drug conjugates (PDCs) have gained attention as alternative (pro)drugs for tackling viral diseases. Antiviral PDC therapeutics typically involve one or more small drug molecules conjugated to a cell-penetrating peptide (CPP) carrier either directly or through a linker. Such integration of two bioactive elements into a single molecular entity is primarily aimed at achieving improved bioavailability in conditions where conventional drugs are challenged, but may also turn up novel unexpected functionalities and applications. Advances in peptide medicinal chemistry have eased the way to antiviral PDCs, but challenges remain on the way to therapeutic success. In this paper, we review current antiviral CPP-drug conjugates (antiviral PDCs), with emphasis on the types of CPP and antiviral cargo. We integrate the conjugate and the chemical approaches most often applied to combine both entities. Additionally, we comment on various obstacles faced in the design of antiviral PDCs and on the future outlooks for this class of antiviral therapeutics.
Collapse
|
2
|
Brodyagin N, Katkevics M, Kotikam V, Ryan CA, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem 2021; 17:1641-1688. [PMID: 34367346 PMCID: PMC8313981 DOI: 10.3762/bjoc.17.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Peptide nucleic acid (PNA) is arguably one of the most successful DNA mimics, despite a most dramatic departure from the native structure of DNA. The present review summarizes 30 years of research on PNA's chemistry, optimization of structure and function, applications as probes and diagnostics, and attempts to develop new PNA therapeutics. The discussion starts with a brief review of PNA's binding modes and structural features, followed by the most impactful chemical modifications, PNA enabled assays and diagnostics, and discussion of the current state of development of PNA therapeutics. While many modifications have improved on PNA's binding affinity and specificity, solubility and other biophysical properties, the original PNA is still most frequently used in diagnostic and other in vitro applications. Development of therapeutics and other in vivo applications of PNA has notably lagged behind and is still limited by insufficient bioavailability and difficulties with tissue specific delivery. Relatively high doses are required to overcome poor cellular uptake and endosomal entrapment, which increases the risk of toxicity. These limitations remain unsolved problems waiting for innovative chemistry and biology to unlock the full potential of PNA in biomedical applications.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Christopher A Ryan
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
3
|
Cell-Penetrating Peptides and Transportan. Pharmaceutics 2021; 13:pharmaceutics13070987. [PMID: 34210007 PMCID: PMC8308968 DOI: 10.3390/pharmaceutics13070987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
In the most recent 25–30 years, multiple novel mechanisms and applications of cell-penetrating peptides (CPP) have been demonstrated, leading to novel drug delivery systems. In this review, I present a brief introduction to the CPP area with selected recent achievements. This is followed by a nostalgic journey into the research in my own laboratories, which lead to multiple CPPs, starting from transportan and paving a way to CPP-based therapeutic developments in the delivery of bio-functional materials, such as peptides, proteins, vaccines, oligonucleotides and small molecules, etc.
Collapse
|
4
|
Singh KRB, Sridevi P, Singh RP. Potential applications of peptide nucleic acid in biomedical domain. ENGINEERING REPORTS : OPEN ACCESS 2020; 2:e12238. [PMID: 32838227 PMCID: PMC7404446 DOI: 10.1002/eng2.12238] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 05/03/2023]
Abstract
Peptide Nucleic Acid (PNA) are DNA/RNA synthetic analogs with 2-([2-aminoethyl] amino) acetic acid backbone. They partake unique antisense and antigene properties, just due to its inhibitory effect on transcription and translation; they also undergo complementary binding to RNA/DNA with high affinity and specificity. Hence, to date, many methods utilizing PNA for diagnosis and treatment of various diseases namely cancer, AIDS, human papillomavirus, and so on, have been designed and developed. They are being used widely in polymerase chain reaction modulation/mutation, fluorescent in-situ hybridization, and in microarray as a probe; they are also utilized in many in-vitro and in-vivo assays and for developing micro and nano-sized biosensor/chip/array technologies. Earlier reviews, focused only on PNA properties, structure, and modifications related to diagnostics and therapeutics; our review emphasizes on PNA properties and synthesis along with its potential applications in diagnosis and therapeutics. Furthermore, prospects in biomedical applications of PNAs are being discussed in depth.
Collapse
Affiliation(s)
- Kshitij RB Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Parikipandla Sridevi
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| |
Collapse
|
5
|
Stasińska AR, Putaj P, Chmielewski MK. Disulfide bridge as a linker in nucleic acids' bioconjugation. Part II: A summary of practical applications. Bioorg Chem 2019; 95:103518. [PMID: 31911308 DOI: 10.1016/j.bioorg.2019.103518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
Disulfide conjugation invariably remains a key tool in research on nucleic acids. This versatile and cost-effective method plays a crucial role in structural studies of DNA and RNA as well as their interactions with other macromolecules in a variety of biological systems. In this article we review applications of disulfide-bridged conjugates of oligonucleotides with other (bio)molecules such as peptides, proteins etc. and present key findings obtained with their help.
Collapse
Affiliation(s)
- Anna R Stasińska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland; FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland
| | - Piotr Putaj
- FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland
| | - Marcin K Chmielewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland; FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland.
| |
Collapse
|
6
|
Abstract
Over the past two decades, cell-penetrating peptides (CPPs) have become increasingly popular both in research and in application. There have been numerous studies on the physiochemical characteristics and behavior of CPPs in various environments; likewise, the mechanisms of entry and delivery capabilities of these peptides have also been extensively researched. Besides the fundamental issues, there is an enormous interest in the delivery capabilities of the peptides as the family of CPPs is a promising and mostly non-toxic delivery vector candidate for numerous medical applications such as gene silencing, transgene delivery, and splice correction. Lately, however, there has been an emerging field of study besides the high-profile gene therapy applications-the use of peptides and CPPs to combat various infections caused by harmful bacteria, fungi, and viruses.In this chapter, we aim to provide a short overview of the history and properties of CPPs which is followed by more thorough descriptions of antimicrobial and antiviral peptides. To achieve this, we analyze the origin of such peptides, give an overview of the mechanisms of action and discuss the various practical applications which are ongoing or have been suggested based on research.
Collapse
Affiliation(s)
- Kalle Pärn
- Laboratory of Molecular Biotechnology, Institute of Technology, Tartu University, Nooruse 1/517, Tartu, 50411, Estonia,
| | | | | |
Collapse
|
7
|
Gupta P, Muse O, Rozners E. Recognition of double-stranded RNA by guanidine-modified peptide nucleic acids. Biochemistry 2011; 51:63-73. [PMID: 22146072 DOI: 10.1021/bi201570a] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Double-helical RNA has become an attractive target for molecular recognition because many noncoding RNAs play important roles in the control of gene expression. Recently, we discovered that short peptide nucleic acids (PNA) bind strongly and sequence selectively to a homopurine tract of double-helical RNA via formation of a triple helix. Herein, we tested if the molecular recognition of RNA could be enhanced by α-guanidine modification of PNA. Our study was motivated by the discovery of Ly and co-workers that the guanidine modification greatly enhances the cellular delivery of PNA. Isothermal titration calorimetry showed that the guanidine-modified PNA (GPNA) had reduced affinity and sequence selectivity for triple-helical recognition of RNA. The data suggested that in contrast to unmodified PNA, which formed a 1:1 PNA-RNA triple helix, GPNA preferred a 2:1 GPNA-RNA triplex invasion complex. Nevertheless, promising results were obtained for recognition of biologically relevant double-helical RNA. Consistent with enhanced strand invasion ability, GPNA derived from d-arginine recognized the transactivation response element of HIV-1 with high affinity and sequence selectivity, presumably via Watson-Crick duplex formation. On the other hand, strong and sequence selective triple helices were formed by unmodified and nucelobase-modified PNA and the purine-rich strand of the bacterial A-site. These results suggest that appropriate chemical modifications of PNA may enhance molecular recognition of complex noncoding RNAs.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | | | | |
Collapse
|
8
|
Delcroix M, Riley LW. Cell-Penetrating Peptides for Antiviral Drug Development. Pharmaceuticals (Basel) 2010; 3:448-470. [PMID: 27713263 PMCID: PMC4033964 DOI: 10.3390/ph3030448] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/06/2010] [Accepted: 03/01/2010] [Indexed: 11/18/2022] Open
Abstract
Viral diseases affect hundreds of millions of people worldwide, and the few available drugs to treat these diseases often come with limitations. The key obstacle to the development of new antiviral agents is their delivery into infected cells in vivo. Cell-penetrating peptides (CPPs) are short peptides that can cross the cellular lipid bilayer with the remarkable capability to shuttle conjugated cargoes into cells. CPPs have been successfully utilized to enhance the cellular uptake and intracellular trafficking of antiviral molecules, and thereby increase the inhibitory activity of potential antiviral proteins and oligonucleotide analogues, both in cultured cells and in animal models. This review will address the notable findings of these studies, highlighting some promising results and discussing the challenges CPP technology has to overcome for further clinical applications.
Collapse
Affiliation(s)
- Melaine Delcroix
- School of Public Health, University of California, Berkeley, CA 94720, USA.
| | - Lee W Riley
- School of Public Health, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Pandey VN, Upadhyay A, Chaubey B. Prospects for antisense peptide nucleic acid (PNA) therapies for HIV. Expert Opin Biol Ther 2009; 9:975-989. [PMID: 19534584 PMCID: PMC2792880 DOI: 10.1517/14712590903052877] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since the discovery and synthesis of a novel DNA mimic, peptide nucleic acid (PNA) in 1991, PNAs have attracted tremendous interest and have shown great promise as potential antisense drugs. They have been used extensively as tools for specific modulation of gene expression by targeting translation or transcription processes. This review discusses the present and future therapeutic potential of this class of compound as anti-HIV-1 drugs.
Collapse
Affiliation(s)
- Virendra N Pandey
- University of Medicine and Dentistry, New Jersey-New Jersey Medical School, Department of Biochemistry and Molecular Biology, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
10
|
Amirkhanov NV, Dimitrov I, Opitz AW, Zhang K, Lackey JP, Cardi CA, Lai S, Wagner NJ, Thakur ML, Wickstrom E. Design of (Gd-DO3A)n-polydiamidopropanoyl-peptide nucleic acid-D(Cys-Ser-Lys-Cys) magnetic resonance contrast agents. Biopolymers 2008; 89:1061-76. [PMID: 18680101 DOI: 10.1002/bip.21059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We hypothesized that chelating Gd(III) to 1,4,7-tris(carboxymethylaza)cyclododecane-10-azaacetylamide (DO3A) on peptide nucleic acid (PNA) hybridization probes would provide a magnetic resonance genetic imaging agent capable of hybridization to a specific mRNA. Because of the low sensitivity of Gd(III) as an magnetic resonance imaging (MRI) contrast agent, a single Gd-DO3A complex per PNA hybridization agent could not provide enough contrast for detection of cancer gene mRNAs, even at thousands of mRNA copies per cell. To increase the Gd(III) shift intensity of MRI genetic imaging agents, we extended a novel DO3An-polydiamidopropanoyl (PDAPm) dendrimer, up to n = 16, from the N-terminus of KRAS PNA hybridization agents by solid phase synthesis. A C-terminal D(Cys-Ser-Lys-Cys) cyclized peptide analog of insulin-like growth factor 1 (IGF1) was included to enable receptor-mediated cellular uptake. Molecular dynamic simulation of the (Gd-DO3A-AEEA)16-PDAP4-AEEA2-KRAS PNA-AEEA-D(Cys-Ser-Lys-Cys) genetic imaging nanoparticles in explicit water yielded a pair correlation function similar to that of PAMAM dendrimers, and a predicted structure in which the PDAP dendron did not sequester the PNA. Thermal melting measurements indicated that the size of the PDAP dendron included in the (DO3A-AEEA)n-PDAPm-AEEA2-KRAS PNA-AEEA-D(Cys-Ser-Lys-Cys) probes (up to 16 Gd(III) cations per PNA) did not depress the melting temperatures (Tm) of the complementary PNA/RNA hybrid duplexes. The Gd(III) dendrimer PNA genetic imaging agents in phantom solutions displayed significantly greater T1 relaxivity per probe (r1 = 30.64 +/- 2.68 mM(-1) s(-1) for n = 2, r1 = 153.84 +/- 11.28 mM(-1) s(-1) for n = 8) than Gd-DTPA (r1 = 10.35 +/- 0.37 mM(-1) s(-1)), but less than that of (Gd-DO3A)32-PAMAM dendrimer (r1 = 771.84 +/- 20.48 mM(-1) s(-1)) (P < 0.05). Higher generations of PDAP dendrimers with 32 or more Gd-DO3A residues attached to PNA-D(Cys-Ser-Lys-Cys) genetic imaging agents might provide greater contrast for more sensitive detection.
Collapse
Affiliation(s)
- Nariman V Amirkhanov
- Laboratory of Nucleic Acids Chemistry, Institute of Chemical Biology and Fundamental Medicine, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Upadhyay A, Ponzio NM, Pandey VN. Immunological response to peptide nucleic acid and its peptide conjugate targeted to transactivation response (TAR) region of HIV-1 RNA genome. Oligonucleotides 2008; 18:329-335. [PMID: 19006449 PMCID: PMC2948452 DOI: 10.1089/oli.2008.0152] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/27/2008] [Indexed: 10/21/2022]
Abstract
Anti-human immunodeficiency virus-1 (HIV-1) polyamide (peptide) nucleic acids (PNAs) conjugated with cell-penetrating peptides (CPPs) targeted to the viral genome are potent virucidal and antiviral agents. Earlier, we have shown that the anti-HIV-1 PNA(TAR)-penetratin conjugate is rapidly taken up by cells and is nontoxic to mice when administered at repeat doses of as high as 100 mg/kg body weight. In the present studies we demonstrate that naked PNA(TAR) is immunologically inert as judged by the proliferation responses of splenocytes and lymph node cells from PNA(TAR)-immunized mice challenged with the immunizing antigen. In contrast, PNA(TAR)-penetratin conjugate is moderately immunogenic mainly due to its penetratin peptide component. Cytokine secretion profiles of the lymph node cells from the conjugate-immunized mice showed marginally elevated levels of proinflammatory cytokines, which are known to promote proliferation of T lymphocytes. Since the candidate compound, PNA(TAR)-penetratin conjugate displays potent virucidal and antiviral activities against HIV-1, the favorable immunological response together with negligible toxicity suggest a strong therapeutic potential for this class of compounds.
Collapse
Affiliation(s)
- Alok Upadhyay
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Newark, New Jersey
| | - Nicholas M. Ponzio
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry, New Jersey Medical School, Newark, New Jersey
| | - Virendra N. Pandey
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
12
|
Ganguly S, Chaubey B, Tripathi S, Upadhyay A, Neti PV, Howell RW, Pandey VN. Pharmacokinetic analysis of polyamide nucleic-acid-cell penetrating peptide conjugates targeted against HIV-1 transactivation response element. Oligonucleotides 2008; 18:277-286. [PMID: 18729823 PMCID: PMC2971648 DOI: 10.1089/oli.2008.0140] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 05/08/2008] [Indexed: 02/05/2023]
Abstract
We have demonstrated that polyamide nucleic acids complementary to the transactivation response (TAR) element of HIV-1 LTR inhibit HIV-1 production when transfected in HIV-1 infected cells. We have further shown that anti-TAR PNA (PNA(TAR)) conjugated with cell-penetrating peptide (CPP) is rapidly taken up by cells and exhibits strong antiviral and anti-HIV-1 virucidal activities. Here, we pharmacokinetically analyzed (125)I-labeled PNA(TAR) conjugated with two CPPs: a 16-mer penetratin derived from antennapedia and a 13-mer Tat peptide derived from HIV-1 Tat. We administered the (125)I-labeled PNA(TAR)-CPP conjugates to male Balb/C mice through intraperitoneal or gavage routes. The naked (125)I-labeled PNA(TAR) was used as a control. Following a single administration of the labeled compounds, their distribution and retention in various organs were monitored at various time points. Regardless of the administration route, a significant accumulation of each PNA(TAR)-CPP conjugate was found in different mouse organs and tissues. The clearance profile of the accumulated radioactivity from different organs displayed a biphasic exponential pathway whereby part of the radioactivity cleared rapidly, but a significant portion of it was slowly released over a prolonged period. The kinetics of clearance of individual PNA(TAR)-CPP conjugates slightly varied in different organs, while the overall biphasic clearance pattern remained unaltered regardless of the administration route. Surprisingly, unconjugated naked PNA(TAR) displayed a similar distribution and clearance profile in most organs studied although extent of its uptake was lower than the PNA(TAR)-CPP conjugates.
Collapse
Affiliation(s)
- Sabyasachi Ganguly
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, New Jersey
| | - Binay Chaubey
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, New Jersey
| | - Snehlata Tripathi
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, New Jersey
| | - Alok Upadhyay
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, New Jersey
| | - Prasad V.S.V. Neti
- Department of Radiology, UMDNJ-New Jersey Medical School, Newark, New Jersey
| | - Roger W. Howell
- Department of Radiology, UMDNJ-New Jersey Medical School, Newark, New Jersey
| | - Virendra Nath Pandey
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
13
|
Turner JJ, Williams D, Owen D, Gait MJ. Disulfide conjugation of peptides to oligonucleotides and their analogs. ACTA ACUST UNITED AC 2008; Chapter 4:Unit 4.28. [PMID: 18428958 DOI: 10.1002/0471142700.nc0428s24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peptide conjugation of oligonucleotides and their analogs is being studied widely towards improving the delivery of oligonucleotides into cells. Amongst the many possible routes of conjugation, the disulfide linkage has proved to be the most popular. This reversible linkage may have advantages for cell delivery, since it is likely to be cleaved within cells, thus releasing the oligonucleotide cargo. It is straightforward to introduce thiol functionalities into both oligonucleotide and peptide components suitable for disulfide conjugation. However, severe difficulties have been encountered in carrying out conjugations between highly cationic peptides and negatively charged oligonucleotides because of aggregation and precipitation. Presented here are reliable protocols for disulfide conjugation that have been verified for both cationic and hydrophobic peptides as well as oligonucleotides containing deoxyribonucleosides, ribonucleosides, 2'-O-methylribonucleosides, locked nucleic acid (LNA) units, as well as phosphorothioate backbones. Also presented are reliable protocols for disulfide conjugation of peptide nucleic acids (PNAs) with peptides.
Collapse
Affiliation(s)
- John J Turner
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
14
|
Veldhoen S, Laufer SD, Restle T. Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci 2008; 9:1276-1320. [PMID: 19325804 PMCID: PMC2635728 DOI: 10.3390/ijms9071276] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/04/2008] [Accepted: 07/14/2008] [Indexed: 12/20/2022] Open
Abstract
Despite the fact that non-viral nucleic acid delivery systems are generally considered to be less efficient than viral vectors, they have gained much interest in recent years due to their superior safety profile compared to their viral counterpart. Among these synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cell-penetrating peptides (CPPs). The latter represent an assortment of fairly unrelated sequences essentially characterised by a high content of basic amino acids and a length of 10–30 residues. CPPs are capable of mediating the cellular uptake of hydrophilic macromolecules like peptides and nucleic acids (e.g. siRNAs, aptamers and antisense-oligonucleotides), which are internalised by cells at a very low rate when applied alone. Up to now, numerous sequences have been reported to show cell-penetrating properties and many of them have been used to successfully transport a variety of different cargos into mammalian cells. In recent years, it has become apparent that endocytosis is a major route of internalisation even though the mechanisms underlying the cellular translocation of CPPs are poorly understood and still subject to controversial discussions. In this review, we will summarise the latest developments in peptide-based cellular delivery of nucleic acid cargos. We will discuss different mechanisms of entry, the intracellular fate of the cargo, correlation studies of uptake versus biological activity of the cargo as well as technical problems and pitfalls.
Collapse
Key Words
- CLSM, confocal laser scanning microscopy
- CPP, cell-penetrating peptide
- EIPA, ethylisopropylamiloride
- FCS, fetal calf serum
- GFP, green fluorescent protein
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- HIV, human immunodeficiency virus
- IFN, interferon
- IL, interleukin
- LF, Lipofectamine™
- LF2000, Lipofectamine™ 2000
- MAP, model amphipathic peptide
- MEND, multifunctional envelope-type nano device
- NLS, nuclear localisation sequence
- OMe, O-methyl
- PAMAM, polyamidoamine
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PMO, phosphorodiamidate morpholino oligomer
- PNA, peptide nucleic acid
- PTD, protein transduction domains
- RNAi, RNA interference
- SAP, Sweet Arrow Peptide
- STR-R8, stearyl-R8
- TAR, transactivator responsive region
- TFO, triplex forming oligonucleotide
- TLR9, toll-like receptor 9
- TNF, tumour necrosis factor
- TP10, transportan 10
- bPrPp, bovine prion protein derived peptide
- cell-penetrating peptides
- endocytosis
- hCT, human calcitonin
- mPrPp, murine prion protein derived peptide
- miRNA, microRNA
- nucleic acid delivery
- nucleic acid drugs
- siRNA, small inhibitory RNA
Collapse
Affiliation(s)
- Sandra Veldhoen
- Department of Metabolomics, ISAS - Institute for Analytical Sciences, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
- Author to whom correspondence should be addressed; E-mail:
| | - Sandra D. Laufer
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Tobias Restle
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
15
|
Fabani MM, Ivanova GD, Gait MJ. Peptide–Peptide Nucleic Acid Conjugates for Modulation of Gene Expression. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Martin M. Fabani
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| | - Gabriela D. Ivanova
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| | - Michael J. Gait
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| |
Collapse
|
16
|
Brown D, Joy E, Greatorex J, Gait MJ, Lever AML. Steric block high affinity oligonucleotide analogues: a new tool for mapping RNA-protein binding sites. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:196-212. [PMID: 18205073 DOI: 10.1080/15257770701795961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Steric-block ON analogues are efficient inhibitors of RNA-protein interaction and therefore have potential to probe RNA sequences for putative protein binding sites and to investigate mechanisms of protein binding. The packaging process of HIV-1 is highly specific involving an interaction between the Gag protein and a conserved sequence that is only present on genomic viral RNA. Using oligonucleotide probes we have confirmed that the terminal purine loop is the major Gag binding site on SL3 and that a secondary Gag binding site exists at an internal purine bulge. We also demonstrate direct binding of oligonucleotide to their binding sites and confirm this interaction does not alter global RNA conformation, making them highly specific, nondisruptive probes of RNA protein interactions.
Collapse
Affiliation(s)
- Douglas Brown
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Chaubey B, Tripathi S, Pandey VN. Single acute-dose and repeat-doses toxicity of anti-HIV-1 PNA TAR-penetratin conjugate after intraperitoneal administration to mice. Oligonucleotides 2008; 18:9-20. [PMID: 18321159 DOI: 10.1089/oli.2007.0088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polyamide (peptide) nucleic acids conjugated with membrane-penetrating peptide are potential antisense therapeutic agents because of their unique chemical properties, high target specificity, and efficient cellular uptake. However, studies of their potential toxicity in animal models are lacking. In this study, we evaluated the toxicity of the response of Balb/C mice to anti-HIV-1 PNA TAR-penetratin conjugate targeted against the transactivation response (TAR) element of HIV-1 LTR. A single i.p. dose of 600 mg/kg of body weight was lethal, killing all mice within 72 hours. However, death did not occur after single doses of 100 and 300 mg/kg, although all mice experienced initial and transitory diarrhea and loss of agility. Repeated daily doses of 10, 30, and 100 mg/kg were well tolerated by mice during 8 days of treatment, although daily doses of 100 mg/kg caused diarrhea during the first 4 days of treatment. During 8 weeks of follow-up, mice fully recuperated. Serositis was observed in the spleens, livers, and kidneys at the ninth day of treatment, but not after the follow-up period. Necropsies, clinical chemistry studies, and hematological parameters demonstrated normal function of the major organs and no irreversible damage to the mice. These observations indicate that the PNA-peptide conjugate would be nontoxic at probable therapeutic doses and thus support its therapeutic potential as an antisense drug.
Collapse
Affiliation(s)
- Binay Chaubey
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | |
Collapse
|
18
|
Venkatesan N, Kim BH. Peptide conjugates of oligonucleotides: synthesis and applications. Chem Rev 2007; 106:3712-61. [PMID: 16967918 DOI: 10.1021/cr0502448] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Natarajan Venkatesan
- Laboratory for Modified Nucleic Acid Systems, Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | |
Collapse
|
19
|
Tripathi S, Chaubey B, Barton BE, Pandey VN. Anti HIV-1 virucidal activity of polyamide nucleic acid-membrane transducing peptide conjugates targeted to primer binding site of HIV-1 genome. Virology 2007; 363:91-103. [PMID: 17320140 PMCID: PMC2038983 DOI: 10.1016/j.virol.2007.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/06/2006] [Accepted: 01/18/2007] [Indexed: 11/21/2022]
Abstract
We have shown that polyamide nucleic acids (PNAs) targeted to the PBS (PNA(PBS)) and A-loop (PNA(A-loop)) sequences, when transfected into cells, inhibit HIV-1 replication by blocking the initiation of reverse transcription via destabilizing tRNA(3)(Lys) primer from the viral genome. Here we demonstrate that both PNA(PBS) and PNA(A-loop) conjugated with the membrane-transducing peptide (MTD) vectors penetratin and Tat are rapidly taken up by cells and inhibit HIV-1 replication. Moreover, MTD peptide conjugates of PNA(PBS) and PNA(A-loop) displayed potent virucidal activity against HIV-1. Brief exposure of HIV-1 virions to these conjugates rendered them noninfectious. The IC(50) values for virucidal activity were in the range of approximately 50 nM; IC(50) values for inhibition of HIV-1 replication/infection were 0.5 microM-0.7 microM. The virucidal property of these conjugates suggests that a cocktail of anti-HIV-1 PNA-MTD peptide conjugates targeting critical regions of the HIV-1 genome could serve as a prophylactic agent for inactivating HIV-1 virions after exposure to HIV-1.
Collapse
Affiliation(s)
- Snehlata Tripathi
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103
| | - Binay Chaubey
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103
| | - Beverly E. Barton
- Division of Urology, Department of Surgery, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103
| | - Virendra N. Pandey
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103
| |
Collapse
|
20
|
Ivanova G, Reigadas S, Ittig D, Arzumanov A, Andreola ML, Leumann C, Toulmé JJ, Gait MJ. Tricyclo-DNA containing oligonucleotides as steric block inhibitors of human immunodeficiency virus type 1 tat-dependent trans-activation and HIV-1 infectivity. Oligonucleotides 2007; 17:54-65. [PMID: 17461763 DOI: 10.1089/oli.2006.0046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Replication of human immunodeficiency virus type 1 (HIV-1) is controlled by a variety of viral and host proteins. The viral protein Tat acts in concert with host cellular factors to stimulate transcriptional elongation from the viral long terminal repeat (LTR) through a specific interaction with a 59-residue stem-loop RNA known as the trans-activation responsive element (TAR). Inhibitors of Tat-TAR recognition are expected to block transcription and suppress HIV-1 replication. In previous studies, we showed that 2'-O-methyl (OMe) oligonucleotide mixmers containing locked nucleic acid (LNA) residues are powerful steric block inhibitors of Tat-dependent trans-activation in a HeLa cell reporter system. Here we compare OMe/LNA mixmer oligonucleotides with oligonucleotides containing tricyclo-DNAs and their mixmers with OMe residues in four different assays: (1) binding to the target TAR RNA, (2) Tat-dependent in vitro transcription from an HIV-1 DNA template directed by HeLa cell nuclear extract, (3) trans-activation inhibition in HeLa cells containing a stably integrated firefly luciferase reporter gene under HIV-1 LTR control, and (4) an anti-HIV beta-galactosidase reporter assay of viral infection. Although tricyclo-DNA oligonucleotides bound TAR RNA more weakly, they were as good as OMe/LNA oligonucleotides in suppressing in vitro transcription and trans-activation in HeLa cells when delivered by cationic lipid. No inhibition of in vitro transcription and trans-activation in HeLa cells was observed for tricyclo-DNA/OMe mixmers, even though their affinities to TAR RNA were strong and their cell distributions did not differ from oligonucleotides containing all or predominantly tricyclo-DNA residues. Tricyclo-DNA 16-mer showed sequence-specific inhibition of beta-galactosidase expression in an anti-HIV HeLa cell reporter assay.
Collapse
Affiliation(s)
- Gabriela Ivanova
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Agbottah ET, Traviss C, McArdle J, Karki S, St Laurent GC, Kumar A. Nuclear Factor 90(NF90) targeted to TAR RNA inhibits transcriptional activation of HIV-1. Retrovirology 2007; 4:41. [PMID: 17565699 PMCID: PMC1910605 DOI: 10.1186/1742-4690-4-41] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 06/12/2007] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Examination of host cell-based inhibitors of HIV-1 transcription may be important for attenuating viral replication. We describe properties of a cellular double-stranded RNA binding protein with intrinsic affinity for HIV-1 TAR RNA that interferes with Tat/TAR interaction and inhibits viral gene expression. RESULTS Utilizing TAR affinity fractionation, North-Western blotting, and mobility-shift assays, we show that the C-terminal variant of nuclear factor 90 (NF90ctv) with strong affinity for the TAR RNA, competes with Tat/TAR interaction in vitro. Analysis of the effect of NF90ctv-TAR RNA interaction in vivo showed significant inhibition of Tat-transactivation of HIV-1 LTR in cells expressing NF90ctv, as well as changes in histone H3 lysine-4 and lysine-9 methylation of HIV chromatin that are consistent with the epigenetic changes in transcriptionally repressed gene. CONCLUSION Structural integrity of the TAR element is crucial in HIV-1 gene expression. Our results show that perturbation Tat/TAR RNA interaction by the dsRNA binding protein is sufficient to inhibit transcriptional activation of HIV-1.
Collapse
Affiliation(s)
- Emmanuel T Agbottah
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - Christine Traviss
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - James McArdle
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - Sambhav Karki
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - Georges C St Laurent
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - Ajit Kumar
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| |
Collapse
|
22
|
Ivanova G, Arzumanov AA, Turner JJ, Reigadas S, Toulmé JJ, Brown DE, Lever AML, Gait MJ. Anti-HIV activity of steric block oligonucleotides. Ann N Y Acad Sci 2007; 1082:103-15. [PMID: 17145931 DOI: 10.1196/annals.1348.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The unabated increase in spread of HIV infection worldwide has redoubled efforts to discover novel antiviral and virucidal agents that might be starting points for clinical development. Oligonucleotides and their analogs targeted to form complementary duplexes with highly conserved regions of the HIV RNA have shown significant antiviral activity, but to date clinical studies have been dominated by RNase H-inducing oligonucleotide analog phosphorothioates (GEM 91 and 92) that have specificity and efficacy limitations. However, they have proven the principle that oligonucleotides can be safe anti-HIV drugs. Newer oligonucleotide analogs are now available, which act as strong steric block agents of HIV RNA function. We describe our ongoing studies targeting the HIV-1 trans-activation responsive region (TAR) and the viral packaging signal (psi) with steric block oligonucleotides of varying chemistry and demonstrate their great potential for steric blocking of viral protein interactions in vitro and in cells and describe the first antiviral studies. Peptide nucleic acids (PNA) disulfide linked to cell-penetrating peptides (CPP) have been found to have particular promise for the lipid-free direct delivery into cultured cells and are excellent candidates for their development as antiviral and virucidal agents.
Collapse
Affiliation(s)
- Gabriela Ivanova
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chaubey B, Tripathi S, Désiré J, Baussanne I, Décout JL, Pandey VN. Mechanism of RNA cleavage catalyzed by sequence specific polyamide nucleic acid-neamine conjugate. Oligonucleotides 2007; 17:302-313. [PMID: 17854270 DOI: 10.1089/oli.2007.0085] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In earlier studies, we found that a conjugate of neamine-polyamide nucleic acid targeting transactivation response element of HIV-1 RNA genome (HIV-1 TAR) displayed anti-HIV-1 activity and sequence-specific cleavage of the target RNA in vitro. Here we show that both the position of conjugation of polyamide nucleic acid (PNA) on neamine and the length of the spacer are critical parameters for conferring cleavage activity to the conjugate. The conjugation of PNA via a spacer incorporating 11 atoms to the 5-position of ring I of the neamine core conferred sequence-specific RNA cleavage activity on the conjugate, while conjugation to the 4'-position of ring II abolished this activity. Similarly, 5-neamine PNA complementary to TAR sequence of HIV-1 genome (PNA(TAR)) conjugates having either a 23-atom spacer or a bulky dansyl group between PNA and the neamine core also resulted in complete loss of cleavage activity. Based on these observations, we propose a mechanism for the observed RNA cleavage catalyzed by the conjugate involving unprotonated and protonated amino groups at the 3-position of ring I and the 6'-position of ring II of the neamine core, respectively.
Collapse
Affiliation(s)
- Binay Chaubey
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
24
|
Turner JJ, Jones S, Fabani MM, Ivanova G, Arzumanov AA, Gait MJ. RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol Dis 2006; 38:1-7. [PMID: 17113327 DOI: 10.1016/j.bcmd.2006.10.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 10/05/2006] [Accepted: 10/05/2006] [Indexed: 11/22/2022]
Abstract
Towards the development of oligonucleotide analogues and siRNA as drugs, one potential alternative to the use of liposomal transfection agents is the covalent conjugation of a cell-penetrating peptide (CPP), with the intention of imparting on the oligonucleotide or siRNA an enhanced ability to enter mammalian cells and reach the appropriate RNA target. We have developed robust methods for the chemical synthesis of disulfide-linked conjugates of oligonucleotide analogues, siRNA and peptide nucleic acids (PNA) with a range of cationic and other CPPs. In a HeLa cell assay with integrated plasmid reporters of Tat-dependent trans-activation at the TAR RNA target in the cell nucleus, we were unable to obtain steric block inhibition of gene expression for conjugates of CPPs with a 12-mer oligonucleotide mixmer of 2'-O-methyl and locked nucleic acids units. By contrast, we were able to obtain some reductions in expression of P38alpha MAP kinase mRNA in HeLa cells using microM concentrations of Penetratin or Tat peptides conjugated to the 3'-end of the sense strand of siRNA. However, the most promising results to date have been with a 16-mer PNA conjugated to the CPP Transportan or a double CPP R(6)-Penetratin, where we have demonstrated Tat-dependent trans-activation inhibition in HeLa cells. Results to date suggest the possibility of development of CPP-PNA conjugates as anti-HIV agents as well as other potential applications involving nuclear cell delivery, such as the redirection of splicing.
Collapse
Affiliation(s)
- John J Turner
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | | | |
Collapse
|
25
|
Raghunathan D, Sánchez-Pedregal VM, Junker J, Schwiegk C, Kalesse M, Kirschning A, Carlomagno T. TAR-RNA recognition by a novel cyclic aminoglycoside analogue. Nucleic Acids Res 2006; 34:3599-608. [PMID: 16855296 PMCID: PMC1524922 DOI: 10.1093/nar/gkl494] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The formation of the Tat-protein/TAR-RNA complex is a crucial step in the regulation of human immunodeficiency virus (HIV)-gene expression. To obtain full-length viral transcripts the Tat/TAR complex has to recruit the positive transcription elongation factor complex (P-EFTb), which interacts with TAR through its cyclin T1 (CycT1) component. Mutational studies identified the TAR hexanucleotide loop as a crucial region for contacting CycT1. Interfering with the interaction between the Tat/CycT1 complex and the TAR-RNA is an attractive strategy for the design of anti-HIV drugs. Positively charged molecules, like aminoglycosides or peptidomimetics, bind the TAR-RNA, disrupting the Tat/TAR complex. Here, we investigate the complex between the HIV-2 TAR-RNA and a neooligoaminodeoxysaccharide by NMR spectroscopy. In contrast to other aminoglycosides, this novel aminoglycoside analogue contacts simultaneously the bulge residues required for Tat binding and the A35 residue of the hexanucleotide loop. Upon complex formation, the loop region undergoes profound conformational changes. The novel binding mode, together with the easy accessibility of derivatives for the neooligoaminodeoxysaccharide, could open the way to the design of a new class of TAR-RNA binders, which simultaneously inhibit the formation of both the Tat/TAR binary complex and the Tat/TAR/CycT1 ternary complex by obstructing both the bulge and loop regions of the RNA.
Collapse
Affiliation(s)
| | | | | | | | - Markus Kalesse
- Institute of Organic Chemistry, University of HannoverSchneiderberg 1B, D-30167 Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry, University of HannoverSchneiderberg 1B, D-30167 Hannover, Germany
| | - Teresa Carlomagno
- To whom correspondence should be addressed. Tel: +49 551 201 2214; Fax: +49 551 201 2202;
| |
Collapse
|
26
|
Brown DE, Arzumanov A, Syed S, Gait MJ, Lever AML. Inhibition of HIV-1 replication by oligonucleotide analogues directed to the packaging signal and trans-activating response region. Antivir Chem Chemother 2006; 17:1-9. [PMID: 16542000 DOI: 10.1177/095632020601700101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HIV possesses a remarkable capacity for mutational escape from therapeutics that target the viral proteins and enzymes. Inhibitory strategies aimed at highly conserved nucleic acid sequences within the genome are an attractive alternative. However, it has proven difficult to achieve an effective level of therapeutic at the appropriate site within the cell. Oligonucleotide delivery is a rapidly advancing field. We have investigated oligonucleotide analogues as steric-block therapeutics against two highly conserved regions of the HIV-1 genome. In the study we show that 2'0-methyl/locked nucleic acid oligonucleotides against the packaging signal and trans-activating response regions of HIV can inhibit replication of the virus.
Collapse
Affiliation(s)
- Douglas E Brown
- University of Cambridge, Department of Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | |
Collapse
|
27
|
Wan L, Zhang X, Gunaseelan S, Pooyan S, Debrah O, Leibowitz MJ, Rabson AB, Stein S, Sinko PJ. Novel multi-component nanopharmaceuticals derived from poly(ethylene) glycol, retro-inverso-Tat nonapeptide and saquinavir demonstrate combined anti-HIV effects. AIDS Res Ther 2006; 3:12. [PMID: 16635263 PMCID: PMC1481600 DOI: 10.1186/1742-6405-3-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 04/24/2006] [Indexed: 11/10/2022] Open
Abstract
Background Current anti-AIDS therapeutic agents and treatment regimens can provide a dramatically improved quality of life for HIV-positive people, many of whom have no detectable viral load for prolonged periods of time. Despite this, curing AIDS remains an elusive goal, partially due to the occurrence of drug resistance. Since the development of resistance is linked to, among other things, fluctuating drug levels, our long-term goal has been to develop nanotechnology-based drug delivery systems that can improve therapy by more precisely controlling drug concentrations in target cells. The theme of the current study is to investigate the value of combining AIDS drugs and modifiers of cellular uptake into macromolecular conjugates having novel pharmacological properties. Results Bioconjugates were prepared from different combinations of the approved drug, saquinavir, the antiviral agent, R.I.CK-Tat9, the polymeric carrier, poly(ethylene) glycol and the cell uptake enhancer, biotin. Anti-HIV activities were measured in MT-2 cells, an HTLV-1-transformed human lymphoid cell line, infected with HIV-1 strain Vbu 3, while parallel studies were performed in uninfected cells to determine cellular toxicity. For example, R.I.CK-Tat9 was 60 times more potent than L-Tat9 while the addition of biotin resulted in a prodrug that was 2850 times more potent than L-Tat9. Flow cytometry and confocal microscopy studies suggest that variations in intracellular uptake and intracellular localization, as well as synergistic inhibitory effects of SQV and Tat peptides, contributed to the unexpected and substantial differences in antiviral activity. Conclusion Our results demonstrate that highly potent nanoscale multi-drug conjugates with low non-specific toxicity can be produced by combining moieties with anti-HIV agents for different targets onto macromolecules having improved delivery properties.
Collapse
Affiliation(s)
- Li Wan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
| | - Xiaoping Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
| | - Simi Gunaseelan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
| | - Shahriar Pooyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
| | - Olivia Debrah
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
| | - Michael J Leibowitz
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08903-2681, USA
| | - Arnold B Rabson
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08903-2681, USA
| | - Stanley Stein
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08903-2681, USA
| | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160Frelinghuysen Road, Piscataway, New Jersey 08854-0789, USA
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08903-2681, USA
| |
Collapse
|
28
|
Lundin KE, Good L, Strömberg R, Gräslund A, Smith CIE. Biological activity and biotechnological aspects of peptide nucleic acid. ADVANCES IN GENETICS 2006; 56:1-51. [PMID: 16735154 DOI: 10.1016/s0065-2660(06)56001-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the latest decades a number of different nucleic acid analogs containing natural nucleobases on a modified backbone have been synthesized. An example of this is peptide nucleic acid (PNA), a DNA mimic with a noncyclic peptide-like backbone, which was first synthesized in 1991. Owing to its flexible and neutral backbone PNA displays very good hybridization properties also at low-ion concentrations and has subsequently attracted large interest both in biotechnology and biomedicine. Numerous modifications have been made, which could be of value for particular settings. However, the original PNA does so far perform well in many diverse applications. The high biostability makes it interesting for in vivo use, although the very limited diffusion over lipid membranes requires further modifications in order to make it suitable for treatment in eukaryotic cells. The possibility to use this nucleic acid analog for gene regulation and gene editing is discussed. Peptide nucleic acid is now also used for specific genetic detection in a number of diagnostic techniques, as well as for site-specific labeling and hybridization of functional molecules to both DNA and RNA, areas that are also discussed in this chapter.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center Karolinska Institutet, Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
29
|
Cogoi S, Codognotto A, Rapozzi V, Xodo LE. Antigene property of PNA conjugated to the nuclear localization signal peptide. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:971-4. [PMID: 16248074 DOI: 10.1081/ncn-200059333] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Peptide nucleic acid (PNA) is a DNA mimic with antigene properties. To enhance its capacity to enter in the cell and internalize in the nucleus, PNA has been conjugated to the nuclear localization signal (NLS) peptide, PKKKRKV PNA-NLS conjugates form stable hybrids with complementary DNA strands and poorly tolerate mismatched base pairing. Employed against cancer-associated genes, PNA-NLS exhibited a potent and specific antigene activity, suggesting exciting therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Susanna Cogoi
- Department of Biochemical Science and Technology, School of Medicine, Udine, Italy
| | | | | | | |
Collapse
|
30
|
Turner JJ, Ivanova GD, Verbeure B, Williams D, Arzumanov AA, Abes S, Lebleu B, Gait MJ. Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic Acids Res 2005; 33:6837-49. [PMID: 16321967 PMCID: PMC1301599 DOI: 10.1093/nar/gki991] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The trans-activation response (TAR) RNA stem–loop that occurs at the 5′ end of HIV RNA transcripts is an important antiviral target and is the site of interaction of the HIV-1 Tat protein together with host cellular factors. Oligonucleotides and their analogues targeted to TAR are potential antiviral candidates. We have investigated a range of cell penetrating peptide (CPP) conjugates of a 16mer peptide nucleic acid (PNA) analogue targeted to the apical stem–loop of TAR and show that disulfide-linked PNA conjugates of two types of CPP (Transportan or a novel chimeric peptide R6-Penetratin) exhibit dose-dependent inhibition of Tat-dependent trans-activation in a HeLa cell assay when incubated for 24 h. Activity is reached within 6 h if the lysosomotropic reagent chloroquine is co-administered. Fluorescein-labelled stably-linked conjugates of Tat, Transportan or Transportan TP10 with PNA were inactive when delivered alone, but attained trans-activation inhibition in the presence of chloroquine. Confocal microscopy showed that such fluorescently labelled CPP–PNA conjugates were sequestered in endosomal or membrane-bound compartments of HeLa cells, which varied in appearance depending on the CPP type. Co-administration of chloroquine was seen in some cases to release fluorescence from such compartments into the nucleus, but with different patterns depending on the CPP. The results show that CPP–PNA conjugates of different types can inhibit Tat-dependent trans-activation in HeLa cells and have potential for development as antiviral agents. Endosomal or membrane release is a major factor limiting nuclear delivery and trans-activation inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Saïd Abes
- UMR 5124 CNRS, CC 086, Université Montpellier 2Place Eugène Bataillon, 34095 Montpellier, France
| | - Bernard Lebleu
- UMR 5124 CNRS, CC 086, Université Montpellier 2Place Eugène Bataillon, 34095 Montpellier, France
| | - Michael J. Gait
- To whom correspondence should be addressed. Tel: +44 1223 248011; Fax: +44 1223 402070;
| |
Collapse
|
31
|
Turner JJ, Fabani M, Arzumanov AA, Ivanova G, Gait MJ. Targeting the HIV-1 RNA leader sequence with synthetic oligonucleotides and siRNA: chemistry and cell delivery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1758:290-300. [PMID: 16337923 DOI: 10.1016/j.bbamem.2005.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/27/2005] [Accepted: 10/28/2005] [Indexed: 01/22/2023]
Abstract
New candidates for development as potential drugs or virucides against HIV-1 infection and AIDS continue to be needed. The HIV-1 RNA leader sequence has many essential functional sites for virus replication and regulation that includes several highly conserved sequences. The review describes the historical context of targeting the HIV-1 RNA leader sequence with antisense phosphorothioate oligonucleotides, such as GEM 91, and goes on to describe modern approaches to targeting this region with steric blocking oligonucleotide analogues having newer and more advantageous chemistries, as well as recent studies on siRNA, towards the attainment of antiviral activity. Recent attempts to obtain improved cell delivery are highlighted, including exciting new developments in the use of peptide conjugates of peptide nucleic acid (PNA) as potential virucides.
Collapse
Affiliation(s)
- John J Turner
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | |
Collapse
|
32
|
Tripathi S, Chaubey B, Ganguly S, Harris D, Casale RA, Pandey VN. Anti-HIV-1 activity of anti-TAR polyamide nucleic acid conjugated with various membrane transducing peptides. Nucleic Acids Res 2005; 33:4345-4356. [PMID: 16077030 PMCID: PMC1182329 DOI: 10.1093/nar/gki743] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 06/20/2005] [Accepted: 07/12/2005] [Indexed: 11/23/2022] Open
Abstract
The transactivator responsive region (TAR) present in the 5'-NTR of the HIV-1 genome represents a potential target for antiretroviral intervention and a model system for the development of specific inhibitors of RNA-protein interaction. Earlier, we have shown that an anti-TAR polyamide nucleotide analog (PNA(TAR)) conjugated to a membrane transducing (MTD) peptide, transportan, is efficiently taken up by the cells and displays potent antiviral and virucidal activity [B. Chaubey, S. Tripathi, S. Ganguly, D. Harris, R. A. Casale and V. N. Pandey (2005) Virology, 331, 418-428]. In the present communication, we have conjugated five different MTD peptides, penetratin, tat peptide, transportan-27, and two of its truncated derivatives, transportan-21 and transportan-22, to a 16mer PNA targeted to the TAR region of the HIV-1 genome. The individual conjugates were examined for their uptake efficiency as judged by FACScan analysis, uptake kinetics using radiolabeled conjugate, virucidal activity and antiviral efficacy assessed by inhibition of HIV-1 infection/replication. While FACScan analysis revealed concentration-dependent cellular uptake of all the PNA(TAR)-peptide conjugates where uptake of the PNA(TAR)-penetratin conjugate was most efficient as >90% MTD was observed within 1 min at a concentration of 200 nM. The conjugates with penetratin, transportan-21 and tat-peptides were most effective as an anti-HIV virucidal agents with IC50 values in the range of 28-37 nM while IC50 for inhibition of HIV-1 replication was lowest with PNA(TAR)-transportan-27 (0.4 microM) followed by PNA(TAR)-tat (0.72 microM) and PNA(TAR)-penetratin (0.8 microM). These results indicate that anti-HIV-1 PNA conjugated with MTD peptides are not only inhibitory to HIV-1 replication in vitro but are also potent virucidal agents which render HIV-1 virions non-infectious upon brief exposure.
Collapse
Affiliation(s)
- Snehlata Tripathi
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School185 South Orange Avenue, Newark, NJ 07103, USA
- Applied BiosystemsBedford, MA 01730, USA
| | - Binay Chaubey
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School185 South Orange Avenue, Newark, NJ 07103, USA
- Applied BiosystemsBedford, MA 01730, USA
| | - Sabyasachi Ganguly
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School185 South Orange Avenue, Newark, NJ 07103, USA
- Applied BiosystemsBedford, MA 01730, USA
| | - Dylan Harris
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School185 South Orange Avenue, Newark, NJ 07103, USA
- Applied BiosystemsBedford, MA 01730, USA
| | | | - Virendra N. Pandey
- To whom correspondence should be addressed. Tel: +1 973 972 0660; Fax: +1 973 972 8657/5594;
| |
Collapse
|
33
|
Zorko M, Langel U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 2005; 57:529-45. [PMID: 15722162 DOI: 10.1016/j.addr.2004.10.010] [Citation(s) in RCA: 633] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 10/27/2004] [Indexed: 11/20/2022]
Abstract
Cell-penetrating peptides (CPPs) are short peptides of less than 30 amino acids that are able to penetrate cell membranes and translocate different cargoes into cells. The only common feature of these peptides appears to be that they are amphipathic and net positively charged. The mechanism of cell translocation is not known but it is apparently receptor and energy independent although, in certain cases, translocation can be partially mediated by endocytosis. Cargoes that are successfully internalized by CPPs range from small molecules to proteins and supramolecular particles. Most CPPs are inert or have very limited side effects. Their penetration into cells is rapid and initially first-order, with half-times from 5 to 20 min. The size of smaller cargoes does not affect the rate of internalization, but with larger cargoes, the rate is substantially decreased. CPPs are novel vehicles for the translocation of cargo into cells, whose properties make them potential drug delivery agents, of interest for future use.
Collapse
Affiliation(s)
- Matjaz Zorko
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, SLO-1000, Ljubljana, Slovenia.
| | | |
Collapse
|
34
|
Chaubey B, Tripathi S, Ganguly S, Harris D, Casale RA, Pandey VN. A PNA-transportan conjugate targeted to the TAR region of the HIV-1 genome exhibits both antiviral and virucidal properties. Virology 2005; 331:418-428. [PMID: 15629784 DOI: 10.1016/j.virol.2004.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2004] [Revised: 09/03/2004] [Accepted: 10/19/2004] [Indexed: 01/12/2023]
Abstract
We have earlier reported that anti-TAR PNA conjugated with the membrane-transducing peptide transportan inhibits transactivation of the HIV-1 LTR resulting in decreased production of HIV-1 virions by chronically infected H9 cells (N., Kaushik, A., Basu, P., Palumbo, R.L., Myers, V.N., Pandey, 2002. Anti-TAR polyamide nucleotide analog conjugated with a membrane permeating peptide inhibits HIV-1 production. J. Virol. 76, 3881-3891). In this study, we have found that the PNA(TAR)-transportan conjugate is efficiently internalized by cells and kinetics analysis reveals a sigmoidal curve with a cooperativity index of 6, indicating very rapid cellular uptake. Additionally, analysis of uptake at varying temperatures or in the presence of phenylarsine oxide revealed that the mechanism of uptake is neither receptor-dependent nor occurs via endocytosis. We also found that the PNA(TAR)-transportan conjugate exhibits potent virucidal activity as HIV-1 virions pretreated with the conjugate were rendered noninfectious, suggesting that the conjugate may also permeate the virus envelope. The anti-HIV-1 virucidal activity of the conjugate may be useful either in topical formulations designed to block HIV-1 infection or as a prophylactic agent for inactivation of HIV-1 in the circulating plasma prior to attachment and entry.
Collapse
Affiliation(s)
- Binay Chaubey
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, MSB, A920K, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
35
|
Dietz GPH, Bähr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 2005; 27:85-131. [PMID: 15485768 DOI: 10.1016/j.mcn.2004.03.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 02/17/2004] [Accepted: 03/16/2004] [Indexed: 01/12/2023] Open
Abstract
In recent years, vast amounts of data on the mechanisms of neural de- and regeneration have accumulated. However, only in disproportionally few cases has this led to efficient therapies for human patients. Part of the problem is to deliver cell death-averting genes or gene products across the blood-brain barrier (BBB) and cellular membranes. The discovery of Antennapedia (Antp)-mediated transduction of heterologous proteins into cells in 1992 and other "Trojan horse peptides" raised hopes that often-frustrating attempts to deliver proteins would now be history. The demonstration that proteins fused to the Tat protein transduction domain (PTD) are capable of crossing the BBB may revolutionize molecular research and neurobiological therapy. However, it was only recently that PTD-mediated delivery of proteins with therapeutic potential has been achieved in models of neural degeneration in nerve trauma and ischemia. Several groups have published the first positive results using protein transduction domains for the delivery of therapeutic proteins in relevant animal models of human neurological disorders. Here, we give an extensive review of peptide-mediated protein transduction from its early beginnings to new advances, discuss their application, with particular focus on a critical evaluation of the limitations of the method, as well as alternative approaches. Besides applications in neurobiology, a large number of reports using PTD in other systems are included as well. Because each protein requires an individual purification scheme that yields sufficient quantities of soluble, transducible material, the neurobiologist will benefit from the experiences of other researchers in the growing field of protein transduction.
Collapse
|
36
|
Turner JJ, Arzumanov AA, Gait MJ. Synthesis, cellular uptake and HIV-1 Tat-dependent trans-activation inhibition activity of oligonucleotide analogues disulphide-conjugated to cell-penetrating peptides. Nucleic Acids Res 2005; 33:27-42. [PMID: 15640444 PMCID: PMC546131 DOI: 10.1093/nar/gki142] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oligonucleotides composed of 2′-O-methyl and locked nucleic acid residues complementary to HIV-1 trans-activation responsive element TAR block Tat-dependent trans-activation in a HeLa cell assay when delivered by cationic lipids. We describe an improved procedure for synthesis and purification under highly denaturing conditions of 5′-disulphide-linked conjugates of 3′-fluorescein labelled oligonucleotides with a range of cell-penetrating peptides and investigate their abilities to enter HeLa cells and block trans-activation. Free uptake of 12mer OMe/LNA oligonucleotide conjugates to Tat (48–58), Penetratin and R9F2 was observed in cytosolic compartments of HeLa cells. Uptake of the Tat conjugate was enhanced by N-terminal addition of four Lys or Arg residues or a second Tat peptide. None of the conjugates entered the nucleus or inhibited trans-activation when freely delivered, but inhibition was obtained in the presence of cationic lipids. Nuclear exclusion was seen for free delivery of Tat (48–58), Penetratin and R9 conjugates of 16mer phosphorothioate OMe oligonucleotide. Uptake into human fibroblast cytosolic compartments was seen for Tat, Penetratin, R9F2 and Transportan conjugates. Large enhancements of HeLa cell uptake into cytosolic compartments were seen when free Tat peptide was added to Tat conjugate of 12mer OMe/LNA oligonucleotide or Penetratin peptide to Penetratin conjugate of the same oligonucleotide.
Collapse
Affiliation(s)
| | | | - Michael J. Gait
- To whom correspondence should be addressed. Tel: +44 1223 248011; Fax: +44 1223 402070;
| |
Collapse
|
37
|
Nielsen PE. The many faces of PNA. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Prater CE, Miller PS. 3'-methylphosphonate-modified oligo-2'-O-methylribonucleotides and their Tat peptide conjugates: uptake and stability in mouse fibroblasts in culture. Bioconjug Chem 2004; 15:498-507. [PMID: 15149177 DOI: 10.1021/bc049977+] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antisense oligo-2'-O-methylribonucleotides and their methylphosphonate derivatives show high binding affinities for their complementary targets under essentially physiological conditions. Additionally, the methylphosphonate linkage is resistant to nuclease hydrolysis. Here we show that a single methylphosphonate internucleotide linkage at the 3'-end of an oligo-2'-O-methylribonucleotide is sufficient to prevent degradation by the 3'-exonuclease activity found in mammalian serum. Complexes formed between a cationic lipid, Oligofectamine, and 5'-[(32)P]-labeled methylphosphonate modified oligo-2'-O-methylribonucleotides are taken up by mouse L(929) fibroblasts in culture. The extent of uptake appears to be dependent upon the sequence of the oligonucleotide. Examination of lysates of oligonucleotide treated cells by polyacrylamide gel electrophoresis showed that no degradation of the oligonucleotide occurred, even after incubation for 24 h. A fluorescein-derivatized oligomer was shown to localize mainly in the cell nucleus as monitored by fluorescence microscopy. Covalent conjugates of fluorescein-derivatized 3'-methylphosphonate modified oligo-2'-O-methylribonucleotides with Tat peptide, a cell permeating peptide, were also prepared. The Tat peptide was coupled to the 5'-end of the oligonucleotide using either disulfide coupling chemistry or conjugation of a keto derivative of the Tat peptide via a 4-(2-aminooxyethoxy-2-(ethylureido)quinoline group at the 5'-end of the oligonucleotide. Although formation of the Tat peptide conjugates was confirmed by mass spectrometry, the propensity of these oligonucleotides to form aggregates and their apparent high affinity for plastic and glass made the conjugates unsuitable for studies of uptake by cells in culture.
Collapse
Affiliation(s)
- Chrissy E Prater
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
39
|
Abstract
Peptide nucleic acids (PNA) are deoxyribonucleic acid (DNA) mimics with a pseudopeptide backbone. PNA is an extremely good structural mimic of DNA (or of ribonucleic acid [RNA]), and PNA oligomers are able to form very stable duplex structures with Watson-Crick complementary DNA and RNA (or PNA) oligomers, and they can also bind to targets in duplex DNA by helix invasion. Therefore, these molecules are of interest in many areas of chemistry, biology, and medicine, including drug discovery, genetic diagnostics, molecular recognition, and the origin of life. Recent progress in studies of PNA properties and applications is reviewed.
Collapse
Affiliation(s)
- Peter E Nielsen
- Center for Biomolecular Recognition, IMBG, The Panum Institute, University of Copenhagen, Blegdamsvej 3C, Copenhagen DK-2200N, Denmark.
| |
Collapse
|
40
|
Arzumanov A, Stetsenko DA, Malakhov AD, Reichelt S, Sørensen MD, Babu BR, Wengel J, Gait MJ. A structure-activity study of the inhibition of HIV-1 Tat-dependent trans-activation by mixmer 2'-O-methyl oligoribonucleotides containing locked nucleic acid (LNA), alpha-L-LNA, or 2'-thio-LNA residues. Oligonucleotides 2004; 13:435-53. [PMID: 15025911 DOI: 10.1089/154545703322860762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The HIV-1 trans-activation responsive element (TAR) RNA stem-loop interacts with the HIV trans-activator protein Tat and other cellular factors to stimulate transcriptional elongation from the viral long terminal repeat (LTR). Inhibitors of these interactions block full-length transcription and, hence, would potentially inhibit HIV replication. We have studied structure-activity relationships in inhibition of trans-activation by steric block 2'-O-methyl (OMe) oligonucleotides chimeras (mixmers) containing locked nucleic acid (LNA) units. Inhibition was measured both in Tat-dependent in vitro transcription from an HIV-1 DNA template directed by HeLa cell nuclear extract and in a robust HeLa cell reporter assay that involves use of stably integrated plasmids to express firefly luciferase Tat dependently and Renilla luciferase Tat-independently. OMe oligonucleotides with optimally 40%-50% LNA units and a minimum of 12 residues in length were active in the cellular assay when delivered with cationic gemini surfactant GS11 at 50% inhibitory concentrations of 230 +/- 40 nM, whereas activity in the in vitro transcription assay was observed down to 9 residues. No cellular activity was observed for OMe oligonucleotides of 12 or 16 residues, which was shown to be due to poor cellular uptake. Both 12-mer mixmers containing alpha -L-LNA or 2'-thio-LNA (S-LNA) were also active in in vitro transcription and the former in cellular reporter inhibition assays, demonstrating that the property of promotion of cellular uptake by LNA is not due to specific sugar conformational effects. Covalent conjugates of OMe/LNA chimeras with Kaposi-fibroblast growth factor (K-FGF) or Transportan peptides failed to enter HeLa cells without a delivery agent but were fully active when delivered by cationic gemini surfactant, showing that in principle, peptide conjugation does not interfere with cellular activity. Thus, OMe/LNA mixmers are powerful reagents for use as steric block inhibitors of gene expression regulated by protein-RNA interactions within HeLa cell nuclei.
Collapse
Affiliation(s)
- Andrey Arzumanov
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Riguet E, Tripathi S, Chaubey B, Désiré J, Pandey VN, Décout JL. A peptide nucleic acid-neamine conjugate that targets and cleaves HIV-1 TAR RNA inhibits viral replication. J Med Chem 2004; 47:4806-4809. [PMID: 15369382 DOI: 10.1021/jm049642d] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neamine part of the aminoglycoside antibiotic neomycin B was conjugated to a 16 mer peptide nucleic acid (PNA) targeting HIV-1 TAR RNA. Attachment of the neamine core allows cellular uptake of the PNA and results in potent inhibition of HIV-1 replication. The polycationic neamine moiety imparts greater solubility to the PNA and also confers a unique RNA cleavage property to the conjugate which is specific to its target site and functional at physiological concentrations of Mg(2+). These properties suggest a potential therapeutic application for this class of compounds.
Collapse
Affiliation(s)
- Emmanuel Riguet
- Laboratoire de Chimie Bio-Organique, Département de Pharmacochimie Moléculaire, UMR 5063 CNRS/Université Joseph Fourier-Grenoble I, FR CNRS 2607, BP 138, 5 Avenue de Verdun, F-38243 Meylan, France
| | | | | | | | | | | |
Collapse
|
42
|
Rasmussen H, Liljefors T, Petersson B, Nielsen PE, Liljefors T, Kastrup JS. The influence of a chiral amino acid on the helical handedness of PNA in solution and in crystals. J Biomol Struct Dyn 2004; 21:495-502. [PMID: 14692794 DOI: 10.1080/07391102.2004.10506943] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The X-ray structure of a self-complementary PNA hexamer (H-CGTACG-L-Lys-NH(2)) has been determined to 2.35 A resolution. The introduction of an L-lysine moiety has previously been shown to induce a preferred left-handedness of the PNA double helices in aqueous solution. However, in the crystal structure an equal amount of interchanging right- and left-handed helices is observed. The lysine moieties are pointing into large solvent channels and no significant interactions between this moiety and the remaining PNA molecule are observed. In contrast, molecular mechanics calculations show a preference for the left-handed helix of this hexameric PNA in aqueous solution as expected. The calculations indicate that the difference in the free energy of solvation between the left-handed and the right-handed helix is the determining factor for the preference of the left-handed helix in aqueous solution.
Collapse
Affiliation(s)
- H Rasmussen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
van Rossenberg SMW, Sliedregt-Bol KM, Prince P, van Berkel TJC, van Boom JH, van der Marel GA, Biessen EAL. A targeted peptide nucleic acid to down-regulate mouse microsomal triglyceride transfer protein expression in hepatocytes. Bioconjug Chem 2004; 14:1077-82. [PMID: 14624620 DOI: 10.1021/bc0340417] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide nucleic acids (PNA's) have shown to hold potential as antisense drugs. In this study we have designed PNA drugs for the microsomal triglyceride transfer protein (MTP), which is known to play a critical role in the assembly of atherogenic lipoproteins, and have converted the most potent drug into a liver-targeted prodrug. First, we have synthesized three PNA sequences targeting domains on the mouse MTP mRNA, which were not involved in intrastrand base-pairing interactions as jugded from its secondary structure. Only one of the PNA's, PNA569, showed dose-dependent inhibition of MTP expression in a cell-free system for coupled transcription/translation of MTP. Second, to improve the cellular uptake of this PNA drug, we have conjugated PNA569 to a high affinity ligand for the asialoglycoprotein receptor, K(GalNAc)(2). As compared to the parent PNA, the prodrug PNA-K(GalNAc)(2) was found to display to a markedly improved capacity to inhibit MTP mRNA expression in parenchymal liver cells. A glycoconjugated nonsense control appeared to be ineffective. In conclusion, the design of a targeted PNA is described to reduce MTP expression in parenchymal liver cells by 70%. The presented approach for targeted tissue-specific down-regulation of genes by PNA's may be valid for other genes as well.
Collapse
Affiliation(s)
- Sabine M W van Rossenberg
- Leiden/Amsterdam Center for Drug Research, Division of Biopharmaceutics, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
Gallazzi F, Wang Y, Jia F, Shenoy N, Landon LA, Hannink M, Lever SZ, Lewis MR. Synthesis of radiometal-labeled and fluorescent cell-permeating peptide-PNA conjugates for targeting the bcl-2 proto-oncogene. Bioconjug Chem 2004; 14:1083-95. [PMID: 14624621 DOI: 10.1021/bc034084n] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The B-cell lymphoma/leukemia-2 (bcl-2) proto-oncogene has been associated with the transformation of benign lesions to malignancy, disease progression, poor prognosis, reduced survival, and development of resistance to radiation and chemotherapy in many types of cancer. The objective of this work was to synthesize an antisense peptide nucleic acid (PNA) complementary to the first six codons of the bcl-2 open reading frame, conjugated to a membrane-permeating peptide for intracellular delivery, and modified with a bifunctional chelating agent for targeting imaging and therapeutic radiometals to tumors overexpressing bcl-2. Four peptide-PNA constructs were synthesized by a combination of manual and automated stepwise elongation techniques, including bcl-2 antisense conjugates and nonsense conjugates with no complementarity to any known mammalian gene or DNA sequence. The PNA sequences were synthesized manually by solid-phase 9-fluorenylmethoxycarbonyl (Fmoc) techniques. Then a fully protected lysine monomer, modified with 1,4,7,10-tetraazacyclododecane-N,N',N'',N'"-tetraacetic acid (DOTA) for radiometal chelation, was coupled manually to each PNA sequence. Synthesis of the DOTA-PNA conjugates was followed by automated elongation with a peptide sequence (PTD-4-glycine, PTD-4-G), known to mediate cellular internalization of impermeable effector molecules, or its retro-inverso analogue (ri-PTD-4-G). Preparation of the four conjugates required an innovative synthetic strategy, using mild acid conditions to generate hydrophobic, partially deprotected intermediates. These intermediates were purified by semipreparative reversed-phase HPLC and completely deprotected to yield pure peptide-PNA conjugates in 6% to 9% overall yield. Using modifications of this synthetic strategy, the ri-PTD-4-G conjugate of bcl-2 antisense PNA was prepared using a lysine derivative of tetramethylrhodamine (TMR) for fluorescence microscopy. Plasma stability studies showed that (111)In-DOTA-labeled ri-PTD-4-G-anti-bcl-2 PNA was stable for 168 h at 37 degrees C, unlike the conjugate containing the parent peptide sequence. Scanning confocal fluorescence microscopy of TMR-labeled ri-PTD-4-G-anti-bcl-2 PNA in Raji lymphoma cells demonstrated that the retro-inverso peptide was active in membrane permeation and mediated cellular internalization of the antisense PNA into the cytoplasm, where high concentrations of bcl-2 mRNA are expected to be present.
Collapse
MESH Headings
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Chromatography, High Pressure Liquid
- Drug Delivery Systems
- Fluorescent Dyes
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, bcl-2/drug effects
- Heterocyclic Compounds, 1-Ring/chemistry
- Humans
- Indium Radioisotopes
- Lymphoma, B-Cell/genetics
- Microscopy, Confocal
- Molecular Structure
- Peptide Nucleic Acids/chemical synthesis
- Peptide Nucleic Acids/pharmacology
- Peptides/chemical synthesis
- Peptides/pharmacology
- Proto-Oncogene Mas
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rhodamines/chemistry
- Spectrometry, Fluorescence
Collapse
Affiliation(s)
- Fabio Gallazzi
- Molecular Biology Program, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Murchie AIH, Davis B, Isel C, Afshar M, Drysdale MJ, Bower J, Potter AJ, Starkey ID, Swarbrick TM, Mirza S, Prescott CD, Vaglio P, Aboul-ela F, Karn J. Structure-based drug design targeting an inactive RNA conformation: exploiting the flexibility of HIV-1 TAR RNA. J Mol Biol 2004; 336:625-38. [PMID: 15095977 DOI: 10.1016/j.jmb.2003.12.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 12/08/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
The targeting of RNA for the design of novel anti-viral compounds represents an area of vast potential. We have used NMR and computational methods to model the interaction of a series of synthetic inhibitors of the in vitro RNA binding activities of a peptide derived from the transcriptional activator protein, Tat, from human immunodeficiency virus type 1. Inhibition has been measured through the monitering of fluorescence resonance energy transfer between fluorescently labeled peptide and RNA components. A series of compounds containing a bi-aryl heterocycle as one of the three substituents on a benzylic scaffold, induce a novel, inactive TAR conformation by stacking between base-pairs at the site of a three-base bulge within TAR. The development of this series resulted in an enhancement in potency (with Ki < 100 nM in an in vitro assay) and the removal of problematic guanidinium moieties. Ligands from this series can act as inhibitors of Tat-induced transcription in a cell-free system. This study validates the drug design strategy of using a ligand to target the RNA receptor in a non-functional conformation.
Collapse
|
46
|
Davis B, Afshar M, Varani G, Murchie AIH, Karn J, Lentzen G, Drysdale M, Bower J, Potter AJ, Starkey ID, Swarbrick T, Aboul-ela F. Rational design of inhibitors of HIV-1 TAR RNA through the stabilisation of electrostatic "hot spots". J Mol Biol 2004; 336:343-56. [PMID: 14757049 DOI: 10.1016/j.jmb.2003.12.046] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The targeting of RNA for the design of novel anti-viral compounds has until now proceeded largely without incorporating direct input from structure-based design methodology, partly because of lack of structural data, and complications arising from substrate flexibility. We propose a paradigm to explain the physical mechanism for ligand-induced refolding of trans-activation response element (TAR RNA) from human immunodeficiency virus 1 (HIV-1). Based upon Poisson-Boltzmann analysis of the TAR structure, as bound by a peptide derived from the transcriptional activator protein, Tat, our hypothesis shows that two specific electrostatic interactions are necessary to stabilise the conformation. This result contradicts the belief that a single argininamide residue is responsible for stabilising the TAR fold, as well as the conventional wisdom that electrostatic interactions with RNA are non-specific or dominated by phosphates. We test this hypothesis by using NMR and computational methods to model the interaction of a series of novel inhibitors of the in vitro RNA-binding activities for a peptide derived from Tat. A subset of inhibitors, including the bis-guanidine compound rbt203 and its analogues, induce a conformation in TAR similar to that brought about by the protein. Comparison of the interactions of two of these ligands with the RNA and structure-activity relationships observed within the compound series, confirm the importance of the two specific electrostatic interactions in the stabilisation of the Tat-bound RNA conformation. This work illustrates how the use of medicinal chemistry and structural analysis can provide a rational basis for prediction of ligand-induced conformational change, a necessary step towards the application of structure-based methods in the design of novel RNA or protein-binding drugs.
Collapse
Affiliation(s)
- Ben Davis
- RiboTargets Ltd, Granta Park, Abington, CB1 6GB, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bajramovic JJ, Münter S, Syan S, Nehrbass U, Brahic M, Gonzalez-Dunia D. Borna disease virus glycoprotein is required for viral dissemination in neurons. J Virol 2003; 77:12222-31. [PMID: 14581559 PMCID: PMC254271 DOI: 10.1128/jvi.77.22.12222-12231.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 08/12/2003] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented negative-strand RNA virus with a tropism for neurons. Infection with BDV causes neurological diseases in a wide variety of animal species. Although it is known that the virus spreads from neuron to neuron, assembled viral particles have never been visualized in the brains of infected animals. This has led to the hypothesis that BDV spreads as nonenveloped ribonucleoproteins (RNP) rather than as enveloped viral particles. We assessed whether the viral envelope glycoprotein (GP) is required for neuronal dissemination of BDV by using primary cultures of rat hippocampal neurons. We show that upon in vitro infection, BDV replicated and spread efficiently in this system. Despite rapid virus dissemination, very few infectious viral particles were detectable in the culture. However, neutralizing antibodies directed against BDV-GP inhibited BDV spread. In addition, interference with BDV-GP processing by inhibiting furin-mediated cleavage of the glycoprotein blocked virus spread. Finally, antisense treatment with peptide nucleic acids directed against BDV-GP mRNA inhibited BDV dissemination, marking BDV-GP as an attractive target for antiviral therapy against BDV. Together, our results demonstrate that the expression and correct processing of BDV-GP are necessary for BDV dissemination in primary cultures of rat hippocampal neurons, arguing against the hypothesis that the virus spreads from neuron to neuron in the form of nonenveloped RNP.
Collapse
Affiliation(s)
- Jeffrey J Bajramovic
- Unité des Virus Lents, CNRS URA 1930, Département de Virologie, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
48
|
Hamma T, Saleh A, Huq I, Rana TM, Miller PS. Inhibition of HIV tat-TAR interactions by an antisense oligo-2'-O-methylribonucleoside methylphosphonate. Bioorg Med Chem Lett 2003; 13:1845-8. [PMID: 12749881 DOI: 10.1016/s0960-894x(03)00323-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An antisense oligo-2'-O-methylribonucleotide having alternating methylphosphonate/phosphodiester linkages, 1676, whose sequence is complementary to the apical stem-loop of HIV-1 TAR RNA, was prepared to determine its effects on Tat protein-TAR interaction and Tat-mediated gene transactivation in cell culture. This oligomer and its all-phosphodiester analogue, 1707, were shown to: (1) bind to TAR at 37 degrees C with K(d)'s in the low nM concentration range; (2) inhibit Tat-TAR complex formation; and (3) inhibit expression of a chloramphenicol reporter gene under control of the HIV LTR in HeLa HL3T1 cells in culture.
Collapse
MESH Headings
- Base Sequence
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- Gene Expression Regulation, Viral/drug effects
- Gene Products, tat/antagonists & inhibitors
- Gene Products, tat/chemistry
- Gene Products, tat/metabolism
- HIV Long Terminal Repeat/drug effects
- HIV-1/genetics
- HIV-1/metabolism
- HeLa Cells
- Humans
- Kinetics
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides/chemistry
- Oligodeoxyribonucleotides/metabolism
- Oligodeoxyribonucleotides/pharmacology
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Organophosphorus Compounds/chemistry
- Organophosphorus Compounds/metabolism
- Organophosphorus Compounds/pharmacology
- RNA, Complementary/chemistry
- RNA, Complementary/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Tomoko Hamma
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, 615 North Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Holmes SC, Arzumanov AA, Gait MJ. Steric inhibition of human immunodeficiency virus type-1 Tat-dependent trans-activation in vitro and in cells by oligonucleotides containing 2'-O-methyl G-clamp ribonucleoside analogues. Nucleic Acids Res 2003; 31:2759-68. [PMID: 12771202 PMCID: PMC156719 DOI: 10.1093/nar/gkg384] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report the synthesis of a novel 2'-O-methyl (OMe) riboside phosphoramidite derivative of the G-clamp tricyclic base and incorporation into a series of small steric blocking OMe oligonucleotides targeting the apical stem-loop region of human immunodeficiency virus type 1 (HIV-1) trans- activation-responsive (TAR) RNA. Binding to TAR RNA is substantially enhanced for certain single site substitutions in the centre of the oligonucleotide, and doubly substituted anti-TAR OMe 9mers or 12mers exhibit remarkably low binding constants of <0.1 nM. G-clamp-containing oligomers achieved 50% inhibition of Tat-dependent in vitro transcription at approximately 25 nM, 4-fold lower than for a TAR 12mer OMe oligonucleotide and better than found for any other oligonucleotide tested to date. Addition of one or two OMe G-clamps did not impart cellular trans-activation inhibition activity to cellularly inactive OMe oligonucleotides. Addition of an OMe G-clamp to a 12mer OMe-locked nucleic acid chimera maintained, but did not enhance, inhibition of Tat-dependent in vitro transcription and cellular trans-activation in HeLa cells. The results demonstrate clearly that an OMe G-clamp has remarkable RNA-binding enhancement ability, but that oligonucleotide effectiveness in steric block inhibition of Tat-dependent trans-activation both in vitro and in cells is governed by factors more complex than RNA-binding strength alone.
Collapse
Affiliation(s)
- Stephen C Holmes
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|