1
|
Vanegas-Torres CA, Schindler M. HIV-1 Vpr Functions in Primary CD4 + T Cells. Viruses 2024; 16:420. [PMID: 38543785 PMCID: PMC10975730 DOI: 10.3390/v16030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/23/2024] Open
Abstract
HIV-1 encodes four accesory proteins in addition to its structural and regulatory genes. Uniquely amongst them, Vpr is abundantly present within virions, meaning it is poised to exert various biological effects on the host cell upon delivery. In this way, Vpr contributes towards the establishment of a successful infection, as evidenced by the extent to which HIV-1 depends on this factor to achieve full pathogenicity in vivo. Although HIV infects various cell types in the host organism, CD4+ T cells are preferentially targeted since they are highly permissive towards productive infection, concomitantly bringing about the hallmark immune dysfunction that accompanies HIV-1 spread. The last several decades have seen unprecedented progress in unraveling the activities Vpr possesses in the host cell at the molecular scale, increasingly underscoring the importance of this viral component. Nevertheless, it remains controversial whether some of these advances bear in vivo relevance, since commonly employed cellular models significantly differ from primary T lymphocytes. One prominent example is the "established" ability of Vpr to induce G2 cell cycle arrest, with enigmatic physiological relevance in infected primary T lymphocytes. The objective of this review is to present these discoveries in their biological context to illustrate the mechanisms whereby Vpr supports HIV-1 infection in CD4+ T cells, whilst identifying findings that require validation in physiologically relevant models.
Collapse
Affiliation(s)
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| |
Collapse
|
2
|
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023; 15:2218. [PMID: 38005895 PMCID: PMC10674744 DOI: 10.3390/v15112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.
Collapse
Affiliation(s)
| | | | | | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon, U1293, UMR5239, 69364 Lyon, France; (M.M.-H.); (L.P.); (P.J.)
| |
Collapse
|
3
|
Vpr and Its Cellular Interaction Partners: R We There Yet? Cells 2019; 8:cells8111310. [PMID: 31652959 PMCID: PMC6912716 DOI: 10.3390/cells8111310] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Vpr is a lentiviral accessory protein that is expressed late during the infection cycle and is packaged in significant quantities into virus particles through a specific interaction with the P6 domain of the viral Gag precursor. Characterization of the physiologically relevant function(s) of Vpr has been hampered by the fact that in many cell lines, deletion of Vpr does not significantly affect viral fitness. However, Vpr is critical for virus replication in primary macrophages and for viral pathogenesis in vivo. It is generally accepted that Vpr does not have a specific enzymatic activity but functions as a molecular adapter to modulate viral or cellular processes for the benefit of the virus. Indeed, many Vpr interacting factors have been described by now, and the goal of this review is to summarize our current knowledge of cellular proteins targeted by Vpr.
Collapse
|
4
|
Expression, purification and characterization of a full-length recombinant HIV-1 Vpu from inclusion bodies. Protein Expr Purif 2016; 128:109-14. [DOI: 10.1016/j.pep.2016.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/19/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022]
|
5
|
Defining the roles for Vpr in HIV-1-associated neuropathogenesis. J Neurovirol 2016; 22:403-15. [PMID: 27056720 DOI: 10.1007/s13365-016-0436-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
It is increasingly evident that the human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has a unique role in neuropathogenesis. Its ability to induce G2/M arrest coupled with its capacity to increase viral gene transcription gives it a unique role in sustaining viral replication and aiding in the establishment and maintenance of a systemic infection. The requirement of Vpr for HIV-1 infection and replication in cells of monocytic origin (a key lineage of cells involved in HIV-1 neuroinvasion) suggests an important role in establishing and sustaining infection in the central nervous system (CNS). Contributions of Vpr to neuropathogenesis can be expanded further through (i) naturally occurring HIV-1 sequence variation that results in functionally divergent Vpr variants; (ii) the dual activities of Vpr as a intracellular protein delivered and expressed during HIV-1 infection and as an extracellular protein that can act on neighboring, uninfected cells; (iii) cell type-dependent consequences of Vpr expression and exposure, including cell cycle arrest, metabolic dysregulation, and cytotoxicity; and (iv) the effects of Vpr on exosome-based intercellular communication in the CNS. Revealing that the effects of this pleiotropic viral protein is an essential part of a greater understanding of HIV-1-associated pathogenesis and potential approaches to treating and preventing disease caused by HIV-1 infection.
Collapse
|
6
|
Liang Z, Liu R, Lin Y, Liang C, Tan J, Qiao W. HIV-1 Vpr protein activates the NF-κB pathway to promote G2/M cell cycle arrest. Virol Sin 2015; 30:441-8. [PMID: 26676942 DOI: 10.1007/s12250-015-3654-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/24/2015] [Indexed: 12/14/2022] Open
Abstract
Viral protein R (Vpr) plays an important role in the replication and pathogenesis of Human immunodeficiency virus type 1 (HIV-1). Some of the various functions attributed to Vpr, including the induction of G2/M cell cycle arrest, activating the NF-κB pathway, and promoting viral reverse transcription, might be interrelated. To test this hypothesis, a panel of Vpr mutants were investigated for their ability to induce G2/M arrest and to activate the NF-κB pathway. The results showed that the Vpr mutants that failed to activate NF-κB also lost the activity to induce G2/M arrest, which suggests that inducing G2/M arrest via Vpr depends at least partially on the activation of NF-κB. This latter possibility is supported by data showing that knocking down the key factors in the NF-κB pathway-p65, RelB, IKKα, or IKKβ-partially rescued the G2/M arrest induced by Vpr. Our results suggest that the NF-κB pathway is probably involved in Vpr-induced G2/M cell cycle arrest.
Collapse
Affiliation(s)
- Zhibin Liang
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ruikang Liu
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yongquan Lin
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, H3T 1E2, Canada
- Departments of Medicine, McGill University, Montreal, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, H3T 1E2, Canada
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Desai TM, Marin M, Sood C, Shi J, Nawaz F, Aiken C, Melikyan GB. Fluorescent protein-tagged Vpr dissociates from HIV-1 core after viral fusion and rapidly enters the cell nucleus. Retrovirology 2015; 12:88. [PMID: 26511606 PMCID: PMC4625717 DOI: 10.1186/s12977-015-0215-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
Background HIV-1 Vpr is recruited into virions during assembly and appears to remain associated with the viral core after the reverse transcription and uncoating steps of entry. This feature has prompted the use of fluorescently labeled Vpr to visualize viral particles and to follow trafficking of post-fusion HIV-1 cores in the cytoplasm. Results Here, we tracked single pseudovirus entry and fusion and observed that fluorescently tagged Vpr gradually dissociates from post-fusion viral cores over the course of several minutes and accumulates in the nucleus. Kinetics measurements showed that fluorescent Vpr released from the cores very rapidly entered the cell nucleus. More than 10,000 Vpr molecules can be delivered into the cell nucleus within 45 min of infection by HIV-1 particles pseudotyped with the avian sarcoma and leukosis virus envelope glycoprotein. The fraction of Vpr from cell-bound viruses that accumulated in the nucleus was proportional to the extent of virus-cell fusion and was fully blocked by viral fusion inhibitors. Entry of virus-derived Vpr into the nucleus occurred independently of envelope glycoproteins or target cells. Fluorescence correlation spectroscopy revealed two forms of nuclear Vpr—monomers and very large complexes, likely involving host factors. The kinetics of viral Vpr entering the nucleus after fusion was not affected by point mutations in the capsid protein that alter the stability of the viral core. Conclusions The independence of Vpr shedding of capsid stability and its relatively rapid dissociation from post-fusion cores suggest that this process may precede capsid uncoating, which appears to occur on a slower time scale. Our results thus demonstrate that a bulk of fluorescently labeled Vpr incorporated into HIV-1 particles is released shortly after fusion. Future studies will address the question whether the quick and efficient nuclear delivery of Vpr derived from incoming viruses can regulate subsequent steps of HIV-1 infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0215-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanay M Desai
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
| | - Mariana Marin
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
| | - Chetan Sood
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Fatima Nawaz
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Gregory B Melikyan
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA. .,Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
8
|
Liu R, Lin Y, Jia R, Geng Y, Liang C, Tan J, Qiao W. HIV-1 Vpr stimulates NF-κB and AP-1 signaling by activating TAK1. Retrovirology 2014; 11:45. [PMID: 24912525 PMCID: PMC4057933 DOI: 10.1186/1742-4690-11-45] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/20/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The Vpr protein of human immunodeficiency virus type 1 (HIV-1) plays an important role in viral replication. It has been reported that Vpr stimulates the nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) signaling pathways, and thereby regulates viral and host cell gene expression. However, the molecular mechanism behind this function of Vpr is not fully understood. RESULTS Here, we have identified transforming growth factor-β-activated kinase 1 (TAK1) as the important upstream signaling molecule that Vpr associates with in order to activate NF-κB and AP-1 signaling. HIV-1 virion-associated Vpr is able to stimulate phosphorylation of TAK1. This activity of Vpr depends on its association with TAK1, since the S79A Vpr mutant lost interaction with TAK1 and was unable to activate TAK1. This association allows Vpr to promote the interaction of TAB3 with TAK1 and increase the polyubiquitination of TAK1, which renders TAK1 phosphorylation. In further support of the key role of TAK1 in this function of Vpr, knockdown of endogenous TAK1 significantly attenuated the ability of Vpr to activate NF-κB and AP-1 as well as the ability to stimulate HIV-1 LTR promoter. CONCLUSIONS HIV-1 Vpr enhances the phosphorylation and polyubiquitination of TAK1, and as a result, activates NF-κB and AP-1 signaling pathways and stimulates HIV-1 LTR promoter.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | |
Collapse
|
9
|
ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun 2014; 4:2130. [PMID: 23945651 PMCID: PMC3753548 DOI: 10.1038/ncomms3130] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 06/11/2013] [Indexed: 12/18/2022] Open
Abstract
Anticancer drug therapy activates both molecular cell death and autophagy pathways. Here we show that even sublethal concentrations of DNA-damaging drugs, such as etoposide and cisplatin, induce the expression of autophagy-related protein 5 (ATG5), which is both necessary and sufficient for the subsequent induction of mitotic catastrophe. We demonstrate that ATG5 translocates to the nucleus, where it physically interacts with survivin in response to DNA-damaging agents both in vitro and in carcinoma tissues obtained from patients who had undergone radiotherapy and/or chemotherapy. As a consequence, elements of the chromosomal passenger complex are displaced during mitosis, resulting in chromosome misalignment and segregation defects. Pharmacological inhibition of autophagy does not prevent ATG5-dependent mitotic catastrophe, but shifts the balance to an early caspase-dependent cell death. Our data suggest a dual role for ATG5 in response to drug-induced DNA damage, where it acts in two signalling pathways in two distinct cellular compartments, the cytosol and the nucleus. The protein ATG5 is known to be involved in the formation of autophagosomes. Here, Maskey et al. identify a new role of ATG5 in response to drug-induced DNA damage whereby ATG5 translocates to the nucleus, leading to chromosome misalignment and mitotic catastrophe.
Collapse
|
10
|
Guenzel CA, Hérate C, Benichou S. HIV-1 Vpr-a still "enigmatic multitasker". Front Microbiol 2014; 5:127. [PMID: 24744753 PMCID: PMC3978352 DOI: 10.3389/fmicb.2014.00127] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/12/2014] [Indexed: 11/13/2022] Open
Abstract
Like other HIV-1 auxiliary proteins, Vpr is conserved within all the human (HIV-1, HIV-2) and simian (SIV) immunodeficiency viruses. However, Vpr and homologous HIV-2, and SIV Vpx are the only viral auxiliary proteins specifically incorporated into virus particles through direct interaction with the Gag precursor, indicating that this presence in the core of the mature virions is mainly required for optimal establishment of the early steps of the virus life cycle in the newly infected cell. In spite of its small size, a plethora of effects and functions have been attributed to Vpr, including induction of cell cycle arrest and apoptosis, modulation of the fidelity of reverse transcription, nuclear import of viral DNA in macrophages and other non-dividing cells, and transcriptional modulation of viral and host cell genes. Even if some more recent studies identified a few cellular targets that HIV-1 Vpr may utilize in order to perform its different tasks, the real role and functions of Vpr during the course of natural infection are still enigmatic. In this review, we will summarize the main reported functions of HIV-1 Vpr and their significance in the context of the viral life cycle.
Collapse
Affiliation(s)
- Carolin A Guenzel
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| | - Cécile Hérate
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| | - Serge Benichou
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| |
Collapse
|
11
|
Reynoso R, Wieser M, Ojeda D, Bönisch M, Kühnel H, Bolcic F, Quendler H, Grillari J, Grillari-Voglauer R, Quarleri J. HIV-1 induces telomerase activity in monocyte-derived macrophages, possibly safeguarding one of its reservoirs. J Virol 2012; 86:10327-10337. [PMID: 22787205 PMCID: PMC3457250 DOI: 10.1128/jvi.01495-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/20/2012] [Indexed: 12/17/2022] Open
Abstract
Monocyte-derived macrophages (MDM) are widely distributed in all tissues and organs, including the central nervous system, where they represent the main part of HIV-infected cells. In contrast to activated CD4(+) T lymphocytes, MDM are resistant to cytopathic effects and survive HIV infection for a long period of time. The molecular mechanisms of how HIV is able to persist in macrophages are not fully elucidated yet. In this context, we have studied the effect of in vitro HIV-1 infection on telomerase activity (TA), telomere length, and DNA damage. Infection resulted in a significant induction of TA. This increase was directly proportional to the efficacy of HIV infection and was found in both nuclear and cytoplasmic extracts, while neither UV light-inactivated HIV nor exogenous addition of the viral protein Tat or gp120 affected TA. Furthermore, TA was not modified during monocyte-macrophage differentiation, MDM activation, or infection with vaccinia virus. HIV infection did not affect telomere length. However, HIV-infected MDM showed less DNA damage after oxidative stress than noninfected MDM, and this resistance was also increased by overexpressing telomerase alone. Taken together, our results suggest that HIV induces TA in MDM and that this induction might contribute to cellular protection against oxidative stress, which could be considered a viral strategy to make macrophages better suited as longer-lived, more resistant viral reservoirs. In the light of the clinical development of telomerase inhibitors as anticancer therapeutics, inhibition of TA in HIV-infected macrophages might also represent a novel therapeutic target against viral reservoirs.
Collapse
Affiliation(s)
- Rita Reynoso
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires, Argentina
| | - Matthias Wieser
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Diego Ojeda
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires, Argentina
| | - Maximilian Bönisch
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Harald Kühnel
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Institute of Physiology, Department of Natural Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Federico Bolcic
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires, Argentina
| | - Heribert Quendler
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Johannes Grillari
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
| | - Regina Grillari-Voglauer
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
12
|
Ferrucci A, Nonnemacher MR, Wigdahl B. Human immunodeficiency virus viral protein R as an extracellular protein in neuropathogenesis. Adv Virus Res 2012; 81:165-99. [PMID: 22094081 DOI: 10.1016/b978-0-12-385885-6.00010-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerous studies published in the past two decades have identified the viral protein R (Vpr) as one of the most versatile proteins in the life cycle of human immunodeficiency virus type 1 (HIV-1). In this regard, more than a thousand Vpr molecules are present in extracellular viral particles. Subsequent to viral entry, Vpr participates in early replicative events by assisting in viral genome nuclear import and, during the viral life cycle, by shuttling between the nucleus and the cytoplasm to accomplish its functions within the context of other replicative functions. Additionally, several studies have implicated Vpr as a proapoptotic protein because it promotes formation of permeability transition pores in mitochondria, which in turn affects transmembrane potential and adenosine triphosphate synthesis. Recent studies have identified Vpr as a virion-free protein in the serum and cerebrospinal fluid of patients infected with HIV-1 whose plasma viremia directly correlates with the extracellular concentration of Vpr. These observations pointed to a new role for Vpr as an additional weapon in the HIV-1 arsenal, involving the use of an extracellular protein to target and possibly inhibit HIV-1-uninfected bystander cells to enable them to escape immune surveillance. In addition, extracellular Vpr decreases adenosine triphosphate levels and affects the intracellular redox balance in neurons, ultimately causing their apoptosis. Herein, we review the role of Vpr as an extracellular protein and its downstream effects on cellular metabolism, functionality, and survival, with particular emphasis on how extracellular Vpr-induced oxidative stress might aggravate HIV-1-induced symptoms, thus affecting pathogenesis and disease progression.
Collapse
Affiliation(s)
- Adriano Ferrucci
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
13
|
Cellular phenotype impacts human immunodeficiency virus type 1 viral protein R subcellular localization. Virol J 2011; 8:397. [PMID: 21831263 PMCID: PMC3168423 DOI: 10.1186/1743-422x-8-397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 08/10/2011] [Indexed: 01/01/2023] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is a virion-associated regulatory protein that functions at several points within the viral life cycle and has been shown to accumulate primarily in the nucleus and at the nuclear envelope. However, most studies have investigated Vpr localization employing cell types irrelevant to HIV-1 pathogenesis. To gain a better understanding of how cellular phenotype might impact HIV-1 Vpr intracellular localization, Vpr localization was examined in several cell lines representing major cellular targets for HIV-1 infection within the peripheral blood, bone marrow, and central nervous system (CNS). Results Utilizing a green fluorescent protein-tagged Vpr, we detected Vpr mainly in foci inside the nucleus, at the nuclear envelope, and around the nucleoli, with dispersed accumulation in the cytoplasm of human endothelial kidney 293T cells. No differences were observed in Vpr localization pattern with respect to either the location of the tag (N- or C-terminus) or the presence of other viral proteins. Subsequently, the Vpr localization pattern was explored in two primary HIV-1 target cells within the peripheral blood: the CD4+ T lymphocyte (represented by the Jurkat CD4+ T-cell line) and the monocyte-macrophage (represented by the U-937 cell line). Vpr was found primarily in speckles within the cytoplasm of the Jurkat T cells, whereas it accumulated predominantly intranuclearly in U-937 monocytic cells. These patterns differ from that observed in a bone marrow progenitor cell line (TF-1), wherein Vpr localized mainly at the nuclear envelope with some intranuclear punctuate staining. Within the CNS, we examined two astroglioma cell lines and found that Vpr displayed a perinuclear and cytoplasmic distribution. Conclusions The results suggest that the pattern of Vpr localization depends on cellular phenotype, probably owing to interactions between Vpr and cell type-specific host factors. These interactions, in turn, are likely coupled to specific roles that Vpr plays in each cell type within the context of the viral life cycle. Phenotype-specific Vpr localization patterns might also provide an explanation with respect to Vpr secretion or release from HIV-1-infected cells within the peripheral blood and CNS.
Collapse
|
14
|
Romani B, Glashoff RH, Engelbrecht S. Functional integrity of naturally occurring mutants of HIV-1 subtype C Vpr. Virus Res 2010; 153:288-98. [PMID: 20801175 DOI: 10.1016/j.virusres.2010.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 08/02/2010] [Accepted: 08/19/2010] [Indexed: 02/01/2023]
Abstract
HIV-1 Vpr, an accessory protein with multiple functions, is involved in the induction of apoptosis, cell cycle G2 arrest, and modulation of gene expression. Many functions of this protein have been documented for the wild-type subtype B Vpr, however the functionality of other subtypes has not sufficiently been addressed. In this study, the functionality of Subtype B Vpr, 6 subtype C mutant Vpr proteins and the consensus sequence of subtype C Vpr were compared with each other. All the subtype B and C Vpr proteins localized to the nucleus of human 293T cells. Subtype C Vpr proteins induced cell cycle G2 arrest in a lower proportion of human 293T cells compared to subtype B Vpr. Subtype B and the naturally mutant Vpr proteins induced apoptosis in a similar manner, ranging from 95.33% to 98.64%. However, an artificially designed Vpr protein containing the consensus sequences of subtype C Vpr indicated a reduced ability in induction of apoptosis. The study of mRNA profile of the transfected cells indicated that all Vpr proteins modulated the apoptotic genes triggering the intrinsic pathway of apoptosis. Our results indicate that subtype C Vpr is able to exert the same functions previously reported for subtype B Vpr. Most natural mutations in Vpr not only do not disturb the functions of the protein but also potentiate the protein for an increased functionality. The natural mutations of Vpr may thus not always be regarded as defective mutations. The study suggests the adaptive role of the natural mutations commonly found in subtype C Vpr.
Collapse
Affiliation(s)
- Bizhan Romani
- Division of Medical Virology, Department of Pathology, University of Stellenbosch, Tygerberg 7505, South Africa.
| | | | | |
Collapse
|
15
|
Li G, Elder RT, Dubrovsky L, Liang D, Pushkarsky T, Chiu K, Fan T, Sire J, Bukrinsky M, Zhao RY. HIV-1 replication through hHR23A-mediated interaction of Vpr with 26S proteasome. PLoS One 2010; 5:e11371. [PMID: 20614012 PMCID: PMC2894085 DOI: 10.1371/journal.pone.0011371] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 05/26/2010] [Indexed: 01/07/2023] Open
Abstract
HIV-1 Vpr is a virion-associated protein. Its activities link to viral pathogenesis and disease progression of HIV-infected patients. In vitro, Vpr moderately activates HIV-1 replication in proliferating T cells, but it is required for efficient viral infection and replication in vivo in non-dividing cells such as macrophages. How exactly Vpr contributes to viral replication remains elusive. We show here that Vpr stimulates HIV-1 replication at least in part through its interaction with hHR23A, a protein that binds to 19S subunit of the 26S proteasome and shuttles ubiquitinated proteins to the proteasome for degradation. The Vpr-proteasome interaction was initially discovered in fission yeast, where Vpr was shown to associate with Mts4 and Mts2, two 19S-associated proteins. The interaction of Vpr with the 19S subunit of the proteasome was further confirmed in mammalian cells where Vpr associates with the mammalian orthologues of fission yeast Mts4 and S5a. Consistently, depletion of hHR23A interrupts interaction of Vpr with proteasome in mammalian cells. Furthermore, Vpr promotes hHR23A-mediated protein-ubiquitination, and down-regulation of hHR23A using RNAi significantly reduced viral replication in non-proliferating MAGI-CCR5 cells and primary macrophages. These findings suggest that Vpr-proteasome interaction might counteract certain host restriction factor(s) to stimulate viral replication in non-dividing cells.
Collapse
Affiliation(s)
- Ge Li
- Department of Pathology, Department of Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Robert T. Elder
- Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Larisa Dubrovsky
- Department of Microbiology and Tropic Medicine, George Washington University, Washington, D. C., United States of America
| | - Dong Liang
- Department of Pathology, Department of Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tatiana Pushkarsky
- Department of Microbiology and Tropic Medicine, George Washington University, Washington, D. C., United States of America
| | - Karen Chiu
- Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Tao Fan
- Department of Pathology, Department of Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Josephine Sire
- Pathogénie des Infections à Lentivirus, INSERM U372, Marseille, France
| | - Michael Bukrinsky
- Department of Microbiology and Tropic Medicine, George Washington University, Washington, D. C., United States of America
| | - Richard Y. Zhao
- Department of Pathology, Department of Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Ayinde D, Maudet C, Transy C, Margottin-Goguet F. Limelight on two HIV/SIV accessory proteins in macrophage infection: is Vpx overshadowing Vpr? Retrovirology 2010; 7:35. [PMID: 20380700 PMCID: PMC2867959 DOI: 10.1186/1742-4690-7-35] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 04/09/2010] [Indexed: 01/16/2023] Open
Abstract
HIV viruses encode a set of accessory proteins, which are important determinants of virulence due to their ability to manipulate the host cell physiology for the benefit of the virus. Although these viral proteins are dispensable for viral growth in many in vitro cell culture systems, they influence the efficiency of viral replication in certain cell types. Macrophages are early targets of HIV infection which play a major role in viral dissemination and persistence in the organism. This review focuses on two HIV accessory proteins whose functions might be more specifically related to macrophage infection: Vpr, which is conserved across primate lentiviruses including HIV-1 and HIV-2, and Vpx, a protein genetically related to Vpr, which is unique to HIV-2 and a subset of simian lentiviruses. Recent studies suggest that both Vpr and Vpx exploit the host ubiquitination machinery in order to inactivate specific cellular proteins. We review here why it remains difficult to decipher the role of Vpr in macrophage infection by HIV-1 and how recent data underscore the ability of Vpx to antagonize a restriction factor which counteracts synthesis of viral DNA in monocytic cells.
Collapse
Affiliation(s)
- Diana Ayinde
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | |
Collapse
|
17
|
Abstract
Like most viral regulatory proteins, HIV-1 Vpr and homologous proteins from primate lentiviruses are small and multifunctional. They are associated with a plethora of effects and functions, including induction of cell cycle arrest in the G(2) phase, induction of apoptosis, transactivation, enhancement of the fidelity of reverse transcription, and nuclear import of viral DNA in macrophages and other nondividing cells. This review focuses on the cellular proteins that have been reported to interact with Vpr and their significance with respect to the known functions and effects of Vpr on cells and on viral replication.
Collapse
Affiliation(s)
- Vicente Planelles
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East #2100-Room 2520, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
18
|
HIV-1 Vpr oligomerization but not that of Gag directs the interaction between Vpr and Gag. J Virol 2009; 84:1585-96. [PMID: 19923179 DOI: 10.1128/jvi.01691-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During HIV-1 assembly, the viral protein R (Vpr) is incorporated into newly made viral particles via an interaction with the C-terminal domain of the Gag polyprotein precursor Pr55(Gag). Vpr has been implicated in the nuclear import of newly made viral DNA and subsequently in its transcription. In addition, Vpr can affect the cell physiology by causing G(2)/M cell cycle arrest and apoptosis. Vpr can form oligomers, but their roles have not yet been investigated. We have developed fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer-based assays to monitor the interaction between Pr55(Gag) and Vpr in HeLa cells. To that end, we used enhanced green fluorescent protein-Vpr that can be incorporated into the virus and tetracysteine (TC)-tagged Pr55(Gag)-TC. This TC motif is tethered to the C terminus of Pr55(Gag) and does not interfere with Pr55(Gag) trafficking and the assembly of virus-like particles (VLPs). Results show that the Pr55(Gag)-Vpr complexes accumulated mainly at the plasma membrane. In addition, results with Pr55(Gag)-TC mutants confirm that the (41)LXXLF domain of Gag-p6 is essential for Pr55(Gag)-Vpr interaction. We also report that Vpr oligomerization is crucial for Pr55(Gag) recognition and its accumulation at the plasma membrane. On the other hand, Pr55(Gag)-Vpr complexes are still formed when Pr55(Gag) carries mutations impairing its multimerization. These findings suggest that Pr55(Gag)-Vpr recognition and complex formation occur early during Pr55(Gag) assembly.
Collapse
|
19
|
Li G, Bukrinsky M, Zhao RY. HIV-1 viral protein R (Vpr) and its interactions with host cell. Curr HIV Res 2009; 7:178-83. [PMID: 19275587 DOI: 10.2174/157016209787581436] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is engaged in dynamic and antagonistic interactions with host cells. Once infected by HIV-1, host cells initiate various antiviral strategies, such as innate antiviral defense mechanisms, to counteract viral invasion. In contrast, the virus has different strategies to suppress these host responses to infection. The final balance between these interactions determines the outcome of the viral infection and disease progression. Recent findings suggest that HIV-1 viral protein R (Vpr) interacts with some of the host innate antiviral factors, such as heat shock proteins, and plays an active role as a viral pathogenic factor. Cellular heat stress response factors counteract Vpr activities and inhibit HIV replication. However, Vpr overcomes these heat-stress-like responses by preventing heat shock factor-1 (HSF-1)-mediated activation of heat shock proteins. In this review, we will focus on the virus-host interactions involving Vpr. In addition to heat stress response proteins, we will discuss interactions of Vpr with other proteins, such as EF2 and Skp1/GSK3, their involvements in cellular responses to Vpr, as well as strategies to develop novel antiviral therapies aimed at enhancing anti-Vpr responses of the host cell.
Collapse
Affiliation(s)
- Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
20
|
|
21
|
Srinivasan A, Ayyavoo V, Mahalingam S, Kannan A, Boyd A, Datta D, Kalyanaraman VS, Cristillo A, Collman RG, Morellet N, Sawaya BE, Murali R. A comprehensive analysis of the naturally occurring polymorphisms in HIV-1 Vpr: potential impact on CTL epitopes. Virol J 2008; 5:99. [PMID: 18721481 PMCID: PMC2553080 DOI: 10.1186/1743-422x-5-99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 08/23/2008] [Indexed: 12/20/2022] Open
Abstract
The enormous genetic variability reported in HIV-1 has posed problems in the treatment of infected individuals. This is evident in the form of HIV-1 resistant to antiviral agents, neutralizing antibodies and cytotoxic T lymphocytes (CTLs) involving multiple viral gene products. Based on this, it has been suggested that a comprehensive analysis of the polymorphisms in HIV proteins is of value for understanding the virus transmission and pathogenesis as well as for the efforts towards developing anti-viral therapeutics and vaccines. This study, for the first time, describes an in-depth analysis of genetic variation in Vpr using information from global HIV-1 isolates involving a total of 976 Vpr sequences. The polymorphisms at the individual amino acid level were analyzed. The residues 9, 33, 39, and 47 showed a single variant amino acid compared to other residues. There are several amino acids which are highly polymorphic. The residues that show ten or more variant amino acids are 15, 16, 28, 36, 37, 48, 55, 58, 59, 77, 84, 86, 89, and 93. Further, the variant amino acids noted at residues 60, 61, 34, 71 and 72 are identical. Interestingly, the frequency of the variant amino acids was found to be low for most residues. Vpr is known to contain multiple CTL epitopes like protease, reverse transcriptase, Env, and Gag proteins of HIV-1. Based on this, we have also extended our analysis of the amino acid polymorphisms to the experimentally defined and predicted CTL epitopes. The results suggest that amino acid polymorphisms may contribute to the immune escape of the virus. The available data on naturally occurring polymorphisms will be useful to assess their potential effect on the structural and functional constraints of Vpr and also on the fitness of HIV-1 for replication.
Collapse
Affiliation(s)
- Alagarsamy Srinivasan
- Thomas Jefferson University, Department of Microbiology and Immunology, Jefferson Alumni Hall Rm 461, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Velpandi Ayyavoo
- University of Pittsburgh, Department of Infectious Diseases & Microbiology, Parran Hall Rm 439, 130 DeSoto Street, Pittsburgh, PA 15261, USA
| | - Sundarasamy Mahalingam
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Aarthi Kannan
- Thomas Jefferson University, Department of Microbiology and Immunology, Jefferson Alumni Hall Rm 461, 1020 Locust Street, Philadelphia, PA 19107, USA
- Wellesley College, 21 Wellesley College Rd Unit 7430, Wellesley, MA 02481, USA
| | - Anne Boyd
- Thomas Jefferson University, Department of Microbiology and Immunology, Jefferson Alumni Hall Rm 461, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Debduti Datta
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Anthony Cristillo
- Advanced Bioscience Laboratories, Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| | - Ronald G Collman
- University of Pennsylvania School of Medicine, 522 Johnson Pavilion, 36th and Hamilton Walk, Philadelphia PA 19104, USA
| | - Nelly Morellet
- Unite de Pharmacologie Chimique et Genetique, INSERM, Avenue de l'Observatoire, Paris Cedex 06, France
| | - Bassel E Sawaya
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122, USA
| | - Ramachandran Murali
- University of Pennsylvania School of Medicine, Dept of Pathology and Laboratory Medicine, 243 John Morgan, Philadelphia PA 19104, USA
| |
Collapse
|
22
|
Caly L, Saksena NK, Piller SC, Jans DA. Impaired nuclear import and viral incorporation of Vpr derived from a HIV long-term non-progressor. Retrovirology 2008; 5:67. [PMID: 18638397 PMCID: PMC2515335 DOI: 10.1186/1742-4690-5-67] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 07/18/2008] [Indexed: 12/22/2022] Open
Abstract
We previously reported an epidemiologically linked HIV-1 infected patient cohort in which a long-term non-progressor (LTNP) infected two recipients who then exhibited normal disease progression. Expression of patient-derived vpr sequences from each of the three cohort members in mammalian cells tagged with GFP revealed a significant reduction in Vpr nuclear import and virion incorporation uniquely from the LTNP, whereas Vpr from the two progressing recipients displayed normal localisation and virion incorporation, implying a link between efficient Vpr nuclear import and HIV disease progression. Importantly, an F72L point mutation in the LTNP was identified for the first time as being uniquely responsible for decreased Vpr nuclear import.
Collapse
Affiliation(s)
- Leon Caly
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
23
|
Benko Z, Liang D, Agbottah E, Hou J, Taricani L, Young PG, Bukrinsky M, Zhao RY. Antagonistic interaction of HIV-1 Vpr with Hsf-mediated cellular heat shock response and Hsp16 in fission yeast (Schizosaccharomyces pombe). Retrovirology 2007; 4:16. [PMID: 17341318 PMCID: PMC1828740 DOI: 10.1186/1742-4690-4-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 03/07/2007] [Indexed: 01/08/2023] Open
Abstract
Background Expression of the HIV-1 vpr gene in human and fission yeast cells displays multiple highly conserved activities, which include induction of cell cycle G2 arrest and cell death. We have previously characterized a yeast heat shock protein 16 (Hsp16) that suppresses the Vpr activities when it is overproduced in fission yeast. Similar suppressive effects were observed when the fission yeast hsp16 gene was overexpressed in human cells or in the context of viral infection. In this study, we further characterized molecular actions underlying the suppressive effect of Hsp16 on the Vpr activities. Results We show that the suppressive effect of Hsp16 on Vpr-dependent viral replication in proliferating T-lymphocytes is mediated through its C-terminal end. In addition, we show that Hsp16 inhibits viral infection in macrophages in a dose-dependent manner. Mechanistically, Hsp16 suppresses Vpr activities in a way that resembles the cellular heat shock response. In particular, Hsp16 activation is mediated by a heat shock factor (Hsf)-dependent mechanism. Interestingly, vpr gene expression elicits a moderate increase of endogenous Hsp16 but prevents its elevation when cells are grown under heat shock conditions that normally stimulate Hsp16 production. Similar responsive to Vpr elevation of Hsp and counteraction of this elevation by Vpr were also observed in our parallel mammalian studies. Since Hsf-mediated elevation of small Hsps occurs in all eukaryotes, this finding suggests that the anti-Vpr activity of Hsps is a conserved feature of these proteins. Conclusion These data suggest that fission yeast could be used as a model to further delineate the potential dynamic and antagonistic interactions between HIV-1 Vpr and cellular heat shock responses involving Hsps.
Collapse
Affiliation(s)
- Zsigmond Benko
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dong Liang
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Departments of Pathology, Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Emmanuel Agbottah
- Department of Microbiology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Jason Hou
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lorena Taricani
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Paul G Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Michael Bukrinsky
- Department of Microbiology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Richard Y Zhao
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Departments of Pathology, Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Fassati A. HIV infection of non-dividing cells: a divisive problem. Retrovirology 2006; 3:74. [PMID: 17067381 PMCID: PMC1635064 DOI: 10.1186/1742-4690-3-74] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 10/26/2006] [Indexed: 02/07/2023] Open
Abstract
Understanding how lentiviruses can infect terminally differentiated, non-dividing cells has proven a very complex and controversial problem. It is, however, a problem worth investigating, for it is central to HIV-1 transmission and AIDS pathogenesis. Here I shall attempt to summarise what is our current understanding for HIV-1 infection of non-dividing cells. In some cases I shall also attempt to make sense of controversies in the field and advance one or two modest proposals.
Collapse
Affiliation(s)
- Ariberto Fassati
- Wohl Virion Centre and MRC-UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK.
| |
Collapse
|
25
|
Terada Y, Yasuda Y. Human immunodeficiency virus type 1 Vpr induces G2 checkpoint activation by interacting with the splicing factor SAP145. Mol Cell Biol 2006; 26:8149-58. [PMID: 16923959 PMCID: PMC1636759 DOI: 10.1128/mcb.01170-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vpr, the viral protein R of human immunodeficiency virus type 1, induces G(2) cell cycle arrest and apoptosis in mammalian cells via ATR (for "ataxia-telangiectasia-mediated and Rad3-related") checkpoint activation. The expression of Vpr induces the formation of the gamma-histone 2A variant X (H2AX) and breast cancer susceptibility protein 1 (BRCA1) nuclear foci, and a C-terminal domain is required for Vpr-induced ATR activation and its nuclear localization. However, the cellular target of Vpr, as well as the mechanism of G(2) checkpoint activation, was unknown. Here we report that Vpr induces checkpoint activation and G(2) arrest by binding to the CUS1 domain of SAP145 and interfering with the functions of the SAP145 and SAP49 proteins, two subunits of the multimeric splicing factor 3b (SF3b). Vpr interacts with and colocalizes with SAP145 through its C-terminal domain in a speckled distribution. The depletion of either SAP145 or SAP49 leads to checkpoint-mediated G(2) cell cycle arrest through the induction of nuclear foci containing gamma-H2AX and BRCA1. In addition, the expression of Vpr excludes SAP49 from the nuclear speckles and inhibits the formation of the SAP145-SAP49 complex. To conclude, these results point out the unexpected roles of the SAP145-SAP49 splicing factors in cell cycle progression and suggest that cellular expression of Vpr induces checkpoint activation and G(2) arrest by interfering with the function of SAP145-SAP49 complex in host cells.
Collapse
Affiliation(s)
- Yasuhiko Terada
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
26
|
Schafer EA, Venkatachari NJ, Ayyavoo V. Antiviral effects of mifepristone on human immunodeficiency virus type-1 (HIV-1): targeting Vpr and its cellular partner, the glucocorticoid receptor (GR). Antiviral Res 2006; 72:224-32. [PMID: 16889838 DOI: 10.1016/j.antiviral.2006.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/16/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
The HIV-1 viral protein R, Vpr, increases virus replication in T cells and is necessary for the optimal infection of primary monocytes/macrophages and other non-dividing cells. Vpr interacts with the cellular glucocorticoid receptor (GR) and transactivates the HIV-1 LTR through glucocorticoid response element (GRE), an event that can be blocked by the GR antagonist, mifepristone. Results demonstrated that Vpr-induced transactivation of the HIV-1 LTR was inhibited by mifepristone in a dose-dependent manner by >60% at a 10 microM concentration. Infectivity assays using X4 and R5 viruses demonstrated antiviral effects on a dose-dependent regimen of mifepristone. The effects of mifepristone were also tested in latently infected cells that could be activated with extracellular Vpr protein and results indicated specific inhibition of virus reactivation in the presence of this antagonist.
Collapse
MESH Headings
- Anti-HIV Agents/pharmacology
- Cell Line
- Cells, Cultured
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Viral/drug effects
- Gene Products, vpr/metabolism
- HIV Core Protein p24/biosynthesis
- HIV Long Terminal Repeat/genetics
- HIV Long Terminal Repeat/physiology
- HIV-1/drug effects
- HIV-1/physiology
- HeLa Cells
- Humans
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/virology
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/virology
- Mifepristone/pharmacology
- Promoter Regions, Genetic
- Receptors, Glucocorticoid/metabolism
- Transcriptional Activation
- Virus Activation
- Virus Latency
- Virus Replication/drug effects
- vpr Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Elizabeth A Schafer
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Graduate School of Public Health, 130 Desoto Street, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
27
|
Marchand C, Johnson AA, Semenova E, Pommier Y. Mechanisms and inhibition of HIV integration. DRUG DISCOVERY TODAY. DISEASE MECHANISMS 2006; 3:253-260. [PMID: 20431697 PMCID: PMC2860614 DOI: 10.1016/j.ddmec.2006.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
HIV integrase is required for viral replication and a rationale target for antiretroviral therapies. Integrase inhibitors are potentially complementary to current treatments. This review focuses on the mechanisms of HIV integration. The roles of viral and cellular co-factors during pre-integration complex (PIC) formation and integration are reviewed. The biochemical mechanisms of integration, integrase structures and approaches to inhibit integration are described.
Collapse
Affiliation(s)
- Christophe Marchand
- Laboratory of Molecular Pharmacology, Bldg. 37, Rm. 5068, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255
| | - Allison A Johnson
- Laboratory of Molecular Pharmacology, Bldg. 37, Rm. 5068, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255
| | - Elena Semenova
- Laboratory of Molecular Pharmacology, Bldg. 37, Rm. 5068, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Bldg. 37, Rm. 5068, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255
| |
Collapse
|
28
|
Varin A, Decrion AZ, Sabbah E, Quivy V, Sire J, Van Lint C, Roques BP, Aggarwal BB, Herbein G. Synthetic Vpr protein activates activator protein-1, c-Jun N-terminal kinase, and NF-kappaB and stimulates HIV-1 transcription in promonocytic cells and primary macrophages. J Biol Chem 2005; 280:42557-67. [PMID: 16243842 DOI: 10.1074/jbc.m502211200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus (HIV) Vpr protein plays a critical role in AIDS pathogenesis, especially by allowing viral replication within nondividing cells such as mononuclear phagocytes. Most of the data obtained so far have been in experiments with endogenous Vpr protein; therefore the effects of extracellular Vpr protein remain largely unknown. We used synthetic Vpr protein to activate nuclear transcription factors activator protein-1 (AP-1) and NF-kappaB in the promonocytic cell line U937 and in primary macrophages. Synthetic HIV-1 Vpr protein activated AP-1, c-Jun N-terminal kinase, and MKK7 in both U937 cells and primary macrophages. Synthetic Vpr activated NF-kappaB in primary macrophages and to a lesser extent in U937 cells. Because synthetic Vpr activated AP-1 and NF-kappaB, which bind to the HIV-1 long terminal repeat, we investigated the effect of synthetic Vpr on HIV-1 replication. We observed that synthetic Vpr stimulated HIV-1 long terminal repeat in U937 cells and enhanced viral replication in chronically infected U1 promonocytic cells. Similarly, synthetic Vpr stimulated HIV-1 replication in acutely infected primary macrophages. Activation of transcription factors and enhancement of viral replication in U937 cells and primary macrophages were mediated by both the N-terminal and the C-terminal moieties of synthetic Vpr. Therefore, our results suggest that extracellular Vpr could fuel the progression of AIDS via stimulation of HIV-1 provirus present in such cellular reservoirs as mononuclear phagocytes in HIV-infected patients.
Collapse
Affiliation(s)
- Audrey Varin
- Department of Virology, EA3186, IFR133, Franche-Comté University, F-25030 Besançon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yoshizuka N, Yoshizuka-Chadani Y, Krishnan V, Zeichner SL. Human immunodeficiency virus type 1 Vpr-dependent cell cycle arrest through a mitogen-activated protein kinase signal transduction pathway. J Virol 2005; 79:11366-81. [PMID: 16103188 PMCID: PMC1193619 DOI: 10.1128/jvi.79.17.11366-11381.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein has important functions in advancing HIV pathogenesis via several effects on the host cell. Vpr mediates nuclear import of the preintegration complex, induces host cell apoptosis, and inhibits cell cycle progression at G(2), which increases HIV gene expression. Some of Vpr's activities have been well described, but some functions, such as cell cycle arrest, are not yet completely characterized, although components of the ATR DNA damage repair pathway and the Cdc25C and Cdc2 cell cycle control mechanisms clearly play important roles. We investigated the mechanisms underlying Vpr-mediated cell cycle arrest by examining global cellular gene expression profiles in cell lines that inducibly express wild-type and mutant Vpr proteins. We found that Vpr expression is associated with the down-regulation of genes in the MEK2-ERK pathway and with decreased phosphorylation of the MEK2 effector protein ERK. Exogenous provision of excess MEK2 reverses the cell cycle arrest associated with Vpr, confirming the involvement of the MEK2-ERK pathway in Vpr-mediated cell cycle arrest. Vpr therefore appears to arrest the cell cycle at G(2)/M through two different mechanisms, the ATR mechanism and a newly described MEK2 mechanism. This redundancy suggests that Vpr-mediated cell cycle arrest is important for HIV replication and pathogenesis. Our findings additionally reinforce the idea that HIV can optimize the host cell environment for viral replication.
Collapse
Affiliation(s)
- Naoto Yoshizuka
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | | | | | | |
Collapse
|
30
|
Vázquez N, Greenwell-Wild T, Marinos NJ, Swaim WD, Nares S, Ott DE, Schubert U, Henklein P, Orenstein JM, Sporn MB, Wahl SM. Human immunodeficiency virus type 1-induced macrophage gene expression includes the p21 gene, a target for viral regulation. J Virol 2005; 79:4479-91. [PMID: 15767448 PMCID: PMC1061522 DOI: 10.1128/jvi.79.7.4479-4491.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In contrast to CD4+ T cells, human immunodeficiency virus type 1 (HIV-1)-infected macrophages typically resist cell death, support viral replication, and consequently, may facilitate HIV-1 transmission. To elucidate how the virus commandeers the macrophage's intracellular machinery for its benefit, we analyzed HIV-1-infected human macrophages for virus-induced gene transcription by using multiple parameters, including cDNA expression arrays. HIV-1 infection induced the transcriptional regulation of genes associated with host defense, signal transduction, apoptosis, and the cell cycle, among which the cyclin-dependent kinase inhibitor 1A (CDKN1A/p21) gene was the most prominent. p21 mRNA and protein expression followed a bimodal pattern which was initially evident during the early stages of infection, and maximum levels occurred concomitant with active HIV-1 replication. Mechanistically, viral protein R (Vpr) independently regulates p21 expression, consistent with the reduced viral replication and lack of p21 upregulation by a Vpr-negative virus. Moreover, the treatment of macrophages with p21 antisense oligonucleotides or small interfering RNAs reduced HIV-1 infection. In addition, the synthetic triterpenoid and peroxisome proliferator-activated receptor gamma ligand, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), which is known to influence p21 expression, suppressed viral replication. These data implicate p21 as a pivotal macrophage facilitator of the viral life cycle. Moreover, regulators of p21, such as CDDO, may provide an interventional approach to modulate HIV-1 replication.
Collapse
Affiliation(s)
- Nancy Vázquez
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Le Rouzic E, Benichou S. The Vpr protein from HIV-1: distinct roles along the viral life cycle. Retrovirology 2005; 2:11. [PMID: 15725353 PMCID: PMC554975 DOI: 10.1186/1742-4690-2-11] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 02/22/2005] [Indexed: 12/30/2022] Open
Abstract
The genomes of human and simian immunodeficiency viruses (HIV and SIV) encode the gag, pol and env genes and contain at least six supplementary open reading frames termed tat, rev, nef, vif, vpr, vpx and vpu. While the tat and rev genes encode regulatory proteins absolutely required for virus replication, nef, vif, vpr, vpx and vpu encode for small proteins referred to "auxiliary" (or "accessory"), since their expression is usually dispensable for virus growth in many in vitro systems. However, these auxiliary proteins are essential for viral replication and pathogenesis in vivo. The two vpr- and vpx-related genes are found only in members of the HIV-2/SIVsm/SIVmac group, whereas primate lentiviruses from other lineages (HIV-1, SIVcpz, SIVagm, SIVmnd and SIVsyk) contain a single vpr gene. In this review, we will mainly focus on vpr from HIV-1 and discuss the most recent developments in our understanding of Vpr functions and its role during the virus replication cycle.
Collapse
Affiliation(s)
- Erwann Le Rouzic
- Institut Cochin, Department of Infectious Diseases, INSERM U567, CNRS UMR8104, Université Paris 5, Paris, France
| | - Serge Benichou
- Institut Cochin, Department of Infectious Diseases, INSERM U567, CNRS UMR8104, Université Paris 5, Paris, France
| |
Collapse
|
32
|
Abstract
HIV-1, like the other lentiviruses, has evolved the ability to infect nondividing cells including macrophages. HIV-1 replication in monocytes/macrophages entails peculiar features and differs in many respects from that in CD4 T lymphocytes. HIV-1 exhibits different tropism for CD4 T cells and macrophages. The virus can enter macrophages via several routes. Mitosis is not required for nuclear import of viral DNA or for its integration into the host cell genome. Specific cellular factors are required for HIV-1 transcription in macrophages. The assembly and budding of viral particles in macrophages take place in late endosomal compartments. Viral particles can use the exosome pathway to exit cells. Given their functions in host defence against pathogens and the regulation of the immune response plus their permissivity to HIV-1 infection, monocytes/macrophages exert a dual role in HIV infection. They contribute to the establishment and persistence of HIV-1 infection, and may activate surrounding T cells favouring their infection. Furthermore, monocytes/macrophages act as a Trojan horse to transmit HIV-1 to the central nervous system. They also exhibit antiviral activity and express many molecules that inhibit HIV-1 replication. Activated microglia and macrophages may also exert a neurotrophic and neuroprotective effect on infected brain regulating glutamate metabolism or by secretion of neurotrophins. This review will discuss specific aspects of viral replication in monocytes/macrophages and the role of their interactions with the cellular environment in HIV-1 infection swinging between protection and pathogenesis.
Collapse
Affiliation(s)
- Alessia Verani
- Human Virology Unit, DIBIT, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
33
|
Skasko M, Weiss KK, Reynolds HM, Jamburuthugoda V, Lee K, Kim B. Mechanistic differences in RNA-dependent DNA polymerization and fidelity between murine leukemia virus and HIV-1 reverse transcriptases. J Biol Chem 2005; 280:12190-200. [PMID: 15644314 PMCID: PMC1752212 DOI: 10.1074/jbc.m412859200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We compared the mechanistic and kinetic properties of murine leukemia virus (MuLV) and human immunodeficiency virus type 1 (HIV-1) reverse transcriptases (RTs) during RNA-dependent DNA polymerization and mutation synthesis using pre-steady-state kinetic analysis. First, MuLV RT showed 6.5-121.6-fold lower binding affinity (K(d)) to deoxynucleotide triphosphate (dNTP) substrates than HIV-1 RT, although the two RTs have similar incorporation rates (k(pol)). Second, compared with HIV-1 RT, MuLV RT showed dramatic reduction during multiple dNTP incorporations at low dNTP concentrations. Presumably, due to its low dNTP binding affinity, the dNTP binding step becomes rate-limiting in the multiple rounds of the dNTP incorporation by MuLV RT, especially at low dNTP concentrations. Third, similar fold differences between MuLV and HIV-1 RTs in the K(d) and k(pol) values to correct and incorrect dNTPs were observed. This indicates that these two RT proteins have similar misinsertion fidelities. Fourth, these two RT proteins have different mechanistic capabilities regarding mismatch extension. MuLV RT has a 3.1-fold lower mismatch extension fidelity, compared with HIV-1 RT. Finally, MuLV RT has a 3.8-fold lower binding affinity to mismatched template/primer (T/P) substrate compared with HIV-1 RT. Our data suggest that the active site of MuLV RT has an intrinsically low dNTP binding affinity, compared with HIV-1 RT. In addition, instead of the misinsertion step, the mismatch extension step, which varies between MuLV and HIV-1 RTs, contributes to their fidelity differences. The implications of these kinetic differences between MuLV and HIV-1 RTs on viral cell type specificity and mutagenesis are discussed.
Collapse
Affiliation(s)
- Mark Skasko
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
34
|
Bériault V, Clément JF, Lévesque K, Lebel C, Yong X, Chabot B, Cohen EA, Cochrane AW, Rigby WFC, Mouland AJ. A late role for the association of hnRNP A2 with the HIV-1 hnRNP A2 response elements in genomic RNA, Gag, and Vpr localization. J Biol Chem 2004; 279:44141-53. [PMID: 15294897 DOI: 10.1074/jbc.m404691200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two cis-acting RNA trafficking sequences (heterogenous ribonucleoprotein A2 (hnRNP A2)-response elements 1 and 2 or A2RE-1 and A2RE-2) have been identified in HIV-1 vpr and gag mRNAs and were found to confer cytoplasmic RNA trafficking in a murine oligodendrocyte assay. Their activities were assessed during HIV-1 proviral gene expression in COS7 cells. Single point mutations that were shown to severely block RNA trafficking were introduced into each of the A2REs. In both cases, this resulted in a marked decrease in hnRNP A2 binding to HIV-1 genomic RNA in whole cell extracts and hnRNP A2-containing polysomes. This also resulted in an accumulation of HIV-1 genomic RNA in the nucleus and a significant reduction in genomic RNA encapsidation levels. Immunofluorescence analyses revealed altered expression patterns for pr55Gag and particularly that for Vpr. Vpr localization became almost completely nuclear and this was reflected in a significant reduction in virion-associated Vpr levels. These effects coincided with late steps of the viral replication cycle and were not seen at early time points post-transfection. Transcription, splicing, steady state RNA levels, and pr55Gag processing were not affected. On the other hand, viral replication was markedly compromised in A2RE-2 mutant viruses and this correlated with lowered genomic RNA encapsidation levels. These data reveal new insights into the virus-host interactions between hnRNP A2 and the HIV-1 A2REs and their influence on the patterns of HIV-1 gene expression and viral assembly.
Collapse
Affiliation(s)
- Véronique Bériault
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital, Room 323A, 3755 Côte-Ste-Catherine Road, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dickie P, Roberts A, Uwiera R, Witmer J, Sharma K, Kopp JB. Focal glomerulosclerosis in proviral and c-fms transgenic mice links Vpr expression to HIV-associated nephropathy. Virology 2004; 322:69-81. [PMID: 15063118 DOI: 10.1016/j.virol.2004.01.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 12/16/2003] [Accepted: 01/14/2004] [Indexed: 10/26/2022]
Abstract
Clinical and morphologic features of human immunodeficiency virus (HIV)-associated nephropathy (HIVAN), such as proteinuria, sclerosing glomerulopathy, tubular degeneration, and interstitial disease, have been modeled in mice bearing an HIV proviral transgene rendered noninfectious through a deletion in gag/pol. Exploring the genetic basis of HIVAN, HIV transgenic mice bearing mutations in either or both of the accessory genes nef and vpr were created. Proteinuria and focal glomerulosclerosis (FGS) only developed in mice with an intact vpr gene. Transgenic mice bearing a simplified proviral DNA (encoding only Tat and Vpr) developed renal disease characterized by FGS in which Vpr protein was localized to glomerular and tubular epithelia by immunohistochemistry. The dual transgenic progeny of HIV[Tat/Vpr] mice bred to HIV[DeltaVpr] proviral transgenic mice displayed a more severe nephropathy with no apparent increase in Vpr expression, implying that multiple viral genes contribute to HIVAN. However, the unique contribution of macrophage-specific Vpr expression in the development of glomerular disease was underscored by the induction of FGS in multiple murine lines bearing a c-fms/vpr transgene.
Collapse
Affiliation(s)
- Peter Dickie
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| | | | | | | | | | | |
Collapse
|