1
|
Bellomo CM, Alonso DO, Pérez-Sautu U, Prieto K, Kehl S, Coelho RM, Periolo N, Di Paola N, Ferressini-Gerpe N, Kuhn JH, Sanchez-Lockhart M, Palacios G, Martínez VP. Andes Virus Genome Mutations That Are Likely Associated with Animal Model Attenuation and Human Person-to-Person Transmission. mSphere 2023:e0001823. [PMID: 37097182 DOI: 10.1128/msphere.00018-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
We performed whole-genome sequencing with bait enrichment techniques to analyze Andes virus (ANDV), a cause of human hantavirus pulmonary syndrome. We used cryopreserved lung tissues from a naturally infected long-tailed colilargo, including early, intermediate, and late cell culture, passages of an ANDV isolate from that animal, and lung tissues from golden hamsters experimentally exposed to that ANDV isolate. The resulting complete genome sequences were subjected to detailed comparative genomic analysis against American orthohantaviruses. We identified four amino acid substitutions related to cell culture adaptation that resulted in attenuation of ANDV in the typically lethal golden hamster animal model of hantavirus pulmonary syndrome. Changes in the ANDV nucleocapsid protein, glycoprotein, and small nonstructural protein open reading frames correlated with mutations typical for ANDV strains associated with increased virulence in the small-animal model. Finally, we identified three amino acid substitutions, two in the small nonstructural protein and one in the glycoprotein, that were only present in the clade of viruses associated with efficient person-to-person transmission. Our results indicate that there are single-nucleotide polymorphisms that could be used to predict strain-specific ANDV virulence and/or transmissibility. IMPORTANCE Several orthohantaviruses cause the zoonotic disease hantavirus pulmonary syndrome (HPS) in the Americas. Among them, HPS caused by Andes virus (ANDV) is of great public health concern because it is associated with the highest case fatality rate (up to 50%). ANDV is also the only orthohantavirus associated with relatively robust evidence of person-to-person transmission. This work reveals nucleotide changes in the ANDV genome that are associated with virulence attenuation in an animal model and increased transmissibility in humans. These findings may pave the way to early severity predictions in future ANDV-caused HPS outbreaks.
Collapse
Affiliation(s)
- Carla M Bellomo
- Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbran, Buenos Aires, Argentina
| | - Daniel O Alonso
- Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbran, Buenos Aires, Argentina
| | - Unai Pérez-Sautu
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | - Karla Prieto
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
- College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sebastian Kehl
- Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbran, Buenos Aires, Argentina
| | - Rocio M Coelho
- Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbran, Buenos Aires, Argentina
| | - Natalia Periolo
- Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbran, Buenos Aires, Argentina
| | - Nicholas Di Paola
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | | | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Valeria P Martínez
- Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbran, Buenos Aires, Argentina
| |
Collapse
|
2
|
Pillai SP, Fruetel JA, Anderson K, Levinson R, Hernandez P, Heimer B, Morse SA. Application of Multi-Criteria Decision Analysis Techniques for Informing Select Agent Designation and Decision Making. Front Bioeng Biotechnol 2022; 10:756586. [PMID: 35721853 PMCID: PMC9204104 DOI: 10.3389/fbioe.2022.756586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
The Centers for Disease Control and Prevention (CDC) Select Agent Program establishes a list of biological agents and toxins that potentially threaten public health and safety, the procedures governing the possession, utilization, and transfer of those agents, and training requirements for entities working with them. Every 2 years the Program reviews the select agent list, utilizing subject matter expert (SME) assessments to rank the agents. In this study, we explore the applicability of multi-criteria decision analysis (MCDA) techniques and logic tree analysis to support the CDC Select Agent Program biennial review process, applying the approach broadly to include non-select agents to evaluate its generality. We conducted a literature search for over 70 pathogens against 15 criteria for assessing public health and bioterrorism risk and documented the findings for archiving. The most prominent data gaps were found for aerosol stability and human infectious dose by inhalation and ingestion routes. Technical review of published data and associated scoring recommendations by pathogen-specific SMEs was found to be critical for accuracy, particularly for pathogens with very few known cases, or where proxy data (e.g., from animal models or similar organisms) were used to address data gaps. Analysis of results obtained from a two-dimensional plot of weighted scores for difficulty of attack (i.e., exposure and production criteria) vs. consequences of an attack (i.e., consequence and mitigation criteria) provided greater fidelity for understanding agent placement compared to a 1-to-n ranking and was used to define a region in the upper right-hand quadrant for identifying pathogens for consideration as select agents. A sensitivity analysis varied the numerical weights attributed to various properties of the pathogens to identify potential quantitative (x and y) thresholds for classifying select agents. The results indicate while there is some clustering of agent scores to suggest thresholds, there are still pathogens that score close to any threshold, suggesting that thresholding “by eye” may not be sufficient. The sensitivity analysis indicates quantitative thresholds are plausible, and there is good agreement of the analytical results with select agent designations. A second analytical approach that applied the data using a logic tree format to rule out pathogens for consideration as select agents arrived at similar conclusions.
Collapse
Affiliation(s)
- Segaran P. Pillai
- Office of the Commissioner, Food and Drug Administration, U.S. Department of Health and Human Services, Silver Spring, MD, United States
- *Correspondence: Segaran P. Pillai,
| | - Julia A. Fruetel
- Sandia National Laboratory, U.S. Department of Energy, Livermore, CA, United States
| | - Kevin Anderson
- Science and Technology Directorate, U.S. Department of Homeland Security, Washington, DC, United States
| | - Rebecca Levinson
- Sandia National Laboratory, U.S. Department of Energy, Livermore, CA, United States
| | - Patricia Hernandez
- Sandia National Laboratory, U.S. Department of Energy, Livermore, CA, United States
| | - Brandon Heimer
- Sandia National Laboratory, U.S. Department of Energy, Livermore, CA, United States
| | | |
Collapse
|
3
|
Isolation and characterization of new Puumala orthohantavirus strains from Germany. Virus Genes 2020; 56:448-460. [PMID: 32328924 PMCID: PMC7329759 DOI: 10.1007/s11262-020-01755-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/03/2020] [Indexed: 12/28/2022]
Abstract
Orthohantaviruses are re-emerging rodent-borne pathogens distributed all over the world. Here, we report the isolation of a Puumala orthohantavirus (PUUV) strain from bank voles caught in a highly endemic region around the city Osnabrück, north-west Germany. Coding and non-coding sequences of all three segments (S, M, and L) were determined from original lung tissue, after isolation and after additional passaging in VeroE6 cells and a bank vole-derived kidney cell line. Different single amino acid substitutions were observed in the RNA-dependent RNA polymerase (RdRP) of the two stable PUUV isolates. The PUUV strain from VeroE6 cells showed a lower titer when propagated on bank vole cells compared to VeroE6 cells. Additionally, glycoprotein precursor (GPC)-derived virus-like particles of a German PUUV sequence allowed the generation of monoclonal antibodies that allowed the reliable detection of the isolated PUUV strain in the immunofluorescence assay. In conclusion, this is the first isolation of a PUUV strain from Central Europe and the generation of glycoprotein-specific monoclonal antibodies for this PUUV isolate. The obtained virus isolate and GPC-specific antibodies are instrumental tools for future reservoir host studies.
Collapse
|
4
|
Orthohantavirus Isolated in Reservoir Host Cells Displays Minimal Genetic Changes and Retains Wild-Type Infection Properties. Viruses 2020; 12:v12040457. [PMID: 32316667 PMCID: PMC7232471 DOI: 10.3390/v12040457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Orthohantaviruses are globally emerging zoonotic pathogens. While the reservoir host role of several rodent species is well-established, detailed research on the mechanisms of host-othohantavirus interactions has been constrained by the lack of an experimental system that is able to effectively replicate natural infections in controlled settings. Here we report the isolation, and genetic and phenotypic characterization of a novel Puumala orthohantavirus (PUUV) in cells derived from its reservoir host, the bank vole. The isolation process resulted in cell culture infection that evaded antiviral responses, persisted cell passaging, and had minor viral genome alterations. Critically, experimental infections of bank voles with the new isolate resembled natural infections in terms of viral load and host cell distribution. When compared to an attenuated Vero E6 cell-adapted PUUV Kazan strain, the novel isolate demonstrated delayed virus-specific humoral responses. A lack of virus-specific antibodies was also observed during experimental infections with wild-type PUUV, suggesting that delayed seroconversion could be a general phenomenon during orthohantavirus infection in reservoir hosts. Our results demonstrate that orthohantavirus isolation on cells derived from a vole reservoir host retains wild-type infection properties and should be considered the method of choice for experimental infection models to replicate natural processes.
Collapse
|
5
|
Perley CC, Brocato RL, Kwilas SA, Daye S, Moreau A, Nichols DK, Wetzel KS, Shamblin J, Hooper JW. Three asymptomatic animal infection models of hemorrhagic fever with renal syndrome caused by hantaviruses. PLoS One 2019; 14:e0216700. [PMID: 31075144 PMCID: PMC6510444 DOI: 10.1371/journal.pone.0216700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Hantaan virus (HTNV) and Puumala virus (PUUV) are rodent-borne hantaviruses that are the primary causes of hemorrhagic fever with renal syndrome (HFRS) in Europe and Asia. The development of well characterized animal models of HTNV and PUUV infection is critical for the evaluation and the potential licensure of HFRS vaccines and therapeutics. In this study we present three animal models of HTNV infection (hamster, ferret and marmoset), and two animal models of PUUV infection (hamster, ferret). Infection of hamsters with a ~3 times the infectious dose 99% (ID99) of HTNV by the intramuscular and ~1 ID99 of HTNV by the intranasal route leads to a persistent asymptomatic infection, characterized by sporadic viremia and high levels of viral genome in the lung, brain and kidney. In contrast, infection of hamsters with ~2 ID99 of PUUV by the intramuscular or ~1 ID99 of PUUV by the intranasal route leads to seroconversion with no detectable viremia, and a transient detection of viral genome. Infection of ferrets with a high dose of either HTNV or PUUV by the intramuscular route leads to seroconversion and gradual weight loss, though kidney function remained unimpaired and serum viremia and viral dissemination to organs was not detected. In marmosets a 1,000 PFU HTNV intramuscular challenge led to robust seroconversion and neutralizing antibody production. Similarly to the ferret model of HTNV infection, no renal impairment, serum viremia or viral dissemination to organs was detected in marmosets. This is the first report of hantavirus infection in ferrets and marmosets.
Collapse
Affiliation(s)
- Casey C. Perley
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Rebecca L. Brocato
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Steven A. Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Sharon Daye
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Alicia Moreau
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Donald K. Nichols
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Kelly S. Wetzel
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Joshua Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Jay W. Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
6
|
Warner BM, Stein DR, Griffin BD, Tierney K, Leung A, Sloan A, Kobasa D, Poliquin G, Kobinger GP, Safronetz D. Development and Characterization of a Sin Nombre Virus Transmission Model in Peromyscus maniculatus. Viruses 2019; 11:v11020183. [PMID: 30795592 PMCID: PMC6409794 DOI: 10.3390/v11020183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
In North America, Sin Nombre virus (SNV) is the main cause of hantavirus cardiopulmonary syndrome (HCPS), a severe respiratory disease with a fatality rate of 35–40%. SNV is a zoonotic pathogen carried by deer mice (Peromyscus maniculatus), and few studies have been performed examining its transmission in deer mouse populations. Studying SNV and other hantaviruses can be difficult due to the need to propagate the virus in vivo for subsequent experiments. We show that when compared with standard intramuscular infection, the intraperitoneal infection of deer mice can be as effective in producing SNV stocks with a high viral RNA copy number, and this method of infection provides a more reproducible infection model. Furthermore, the age and sex of the infected deer mice have little effect on viral replication and shedding. We also describe a reliable model of direct experimental SNV transmission. We examined the transmission of SNV between deer mice and found that direct contact between deer mice is the main driver of SNV transmission rather than exposure to contaminated excreta/secreta, which is thought to be the main driver of transmission of the virus to humans. Furthermore, increases in heat shock responses or testosterone levels in SNV-infected deer mice do not increase the replication, shedding, or rate of transmission. Here, we have demonstrated a model for the transmission of SNV between deer mice, the natural rodent reservoir for the virus. The use of this model will have important implications for further examining SNV transmission and in developing strategies for the prevention of SNV infection in deer mouse populations.
Collapse
Affiliation(s)
- Bryce M Warner
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Derek R Stein
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E3R2, Canada.
| | - Bryan D Griffin
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E3R2, Canada.
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E3R2, Canada.
| | - Anders Leung
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E3R2, Canada.
| | - Angela Sloan
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E3R2, Canada.
| | - Darwyn Kobasa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E3R2, Canada.
| | - Guillaume Poliquin
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E3R2, Canada.
| | - Gary P Kobinger
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, QC G1V 0A6 Canada.
| | - David Safronetz
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E3R2, Canada.
| |
Collapse
|
7
|
Hägele S, Müller A, Nusshag C, Reiser J, Zeier M, Krautkrämer E. Virus- and cell type-specific effects in orthohantavirus infection. Virus Res 2018; 260:102-113. [PMID: 30508604 DOI: 10.1016/j.virusres.2018.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Orthohantaviruses Hantaan (HTNV) and Puumala (PUUV) virus cause hemorrhagic fever with renal syndrome (HFRS), that is characterized by acute renal failure with often massive proteinuria and by morphological changes of the tubular and glomerular apparatus. Orthohantaviral N protein is found in renal cells and plays a key role in replication. However, the replication in human renal cells is not well characterized. Therefore, we examined the orthohantaviral infection in different human renal cells. Differences in localization of N protein, release of particles, and modulation of the actin cytoskeleton between both virus species are observed in human renal cells. A substantial portion of HTNV N protein demonstrates a filamentous pattern in addition to the typical punctate pattern. Release of HTNV depends on an intact actin and microtubule cytoskeleton. In contrast, PUUV N protein is generally localized in a punctate pattern and release of PUUV does not require an intact actin cytoskeleton. Infection of podocytes results in cytoskeletal rearrangements that are more pronounced for HTNV. Analyzing Vero E6 cells revealed differences compared to human renal cells. The pattern of N proteins is strictly punctate, release does not depend on an intact actin cytoskeleton and cytoskeletal rearrangements are not present. No virus-specific variations between HTNV and PUUV are observed in Vero E6 cells. Using human renal cells as cell culture model for orthohantavirus infection demonstrates virus-specific differences and orthohantavirus-induced cytoskeletal rearrangements that are not observed in Vero E6 cells. Therefore, the choice of an appropriate cell culture system is a prerequisite to study orthohantavirus pathogenicity.
Collapse
Affiliation(s)
- Stefan Hägele
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Alexander Müller
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University, Medical Center, Chicago, IL, USA
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
8
|
Laenen L, Dellicour S, Vergote V, Nauwelaers I, De Coster S, Verbeeck I, Vanmechelen B, Lemey P, Maes P. Spatio-temporal analysis of Nova virus, a divergent hantavirus circulating in the European mole in Belgium. Mol Ecol 2016; 25:5994-6008. [PMID: 27862516 DOI: 10.1111/mec.13887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
Over the last decade, the recognized host range of hantaviruses has expanded considerably with the discovery of distinct hantaviruses in shrews, moles and bats. Unfortunately, in-depth studies of these viruses have been limited. Here we describe a comprehensive analysis of the spatial distribution, genetic diversity and evolution of Nova virus, a hantavirus that has the European mole as its natural host. Our analysis demonstrated that Nova virus has a high prevalence and widespread distribution in Belgium. While Nova virus displayed relatively high nucleotide diversity in Belgium, amino acid changes were limited. The nucleocapsid protein was subjected to strong purifying selection, reflecting the strict evolutionary constraints placed upon Nova virus by its host. Spatio-temporal analysis using Bayesian evolutionary inference techniques demonstrated that Nova virus had efficiently spread in the European mole population in Belgium, forming two distinct clades, representing east and west of Belgium. The influence of landscape barriers, in the form of the main waterways, on the dispersal velocity of Nova virus was assessed using an analytical framework for comparing Bayesian viral phylogenies with environmental landscape data. We demonstrated that waterways did not act as an environmental resistance factor slowing down Nova virus diffusion in the mole population. With this study, we provide information about the spatial diffusion of Nova virus and contribute sequence information that can be applied in further functional studies.
Collapse
Affiliation(s)
- Lies Laenen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Simon Dellicour
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Evolutionary and Computational Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Valentijn Vergote
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Inne Nauwelaers
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Sarah De Coster
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Ina Verbeeck
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Bert Vanmechelen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Philippe Lemey
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Evolutionary and Computational Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
9
|
Prescott J, Feldmann H, Safronetz D. Amending Koch's postulates for viral disease: When "growth in pure culture" leads to a loss of virulence. Antiviral Res 2016; 137:1-5. [PMID: 27832942 PMCID: PMC5182102 DOI: 10.1016/j.antiviral.2016.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/05/2016] [Indexed: 11/15/2022]
Abstract
It is a common laboratory practice to propagate viruses in cell culture. While convenient, these methodologies often result in unintentional genetic alterations, which have led to adaptation and even attenuation in animal models of disease. An example is the attenuation of hantaviruses (family: Bunyaviridae, genus: Hantavirus) when cultured in vitro. In this case, viruses propagated in the natural reservoir species cause disease in nonhuman primates that closely mimics the human disease, but passaging in cell culture attenuates these viruses to the extent that do not cause any measurable disease in nonhuman primates. As efforts to develop animal models progress, it will be important to take into account the influences that culture in vitro may have on the virulence of viruses. In this review we discuss this phenomenon in the context of past and recent examples in the published literature.
Collapse
Affiliation(s)
- Joseph Prescott
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA.
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA; Department of Medical Microbiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
10
|
Sankar S, Upadhyay M, Ramamurthy M, Vadivel K, Sagadevan K, Nandagopal B, Vivekanandan P, Sridharan G. Novel Insights on Hantavirus Evolution: The Dichotomy in Evolutionary Pressures Acting on Different Hantavirus Segments. PLoS One 2015; 10:e0133407. [PMID: 26193652 PMCID: PMC4508033 DOI: 10.1371/journal.pone.0133407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/26/2015] [Indexed: 01/01/2023] Open
Abstract
Background Hantaviruses are important emerging zoonotic pathogens. The current understanding of hantavirus evolution is complicated by the lack of consensus on co-divergence of hantaviruses with their animal hosts. In addition, hantaviruses have long-term associations with their reservoir hosts. Analyzing the relative abundance of dinucleotides may shed new light on hantavirus evolution. We studied the relative abundance of dinucleotides and the evolutionary pressures shaping different hantavirus segments. Methods A total of 118 sequences were analyzed; this includes 51 sequences of the S segment, 43 sequences of the M segment and 23 sequences of the L segment. The relative abundance of dinucleotides, effective codon number (ENC), codon usage biases were analyzed. Standard methods were used to investigate the relative roles of mutational pressure and translational selection on the three hantavirus segments. Results All three segments of hantaviruses are CpG depleted. Mutational pressure is the predominant evolutionary force leading to CpG depletion among hantaviruses. Interestingly, the S segment of hantaviruses is GpU depleted and in contrast to CpG depletion, the depletion of GpU dinucleotides from the S segment is driven by translational selection. Our findings also suggest that mutational pressure is the primary evolutionary pressure acting on the S and the M segments of hantaviruses. While translational selection plays a key role in shaping the evolution of the L segment. Our findings highlight how different evolutionary pressures may contribute disproportionally to the evolution of the three hantavirus segments. These findings provide new insights on the current understanding of hantavirus evolution. Conclusions There is a dichotomy among evolutionary pressures shaping a) the relative abundance of different dinucleotides in hantavirus genomes b) the evolution of the three hantavirus segments.
Collapse
Affiliation(s)
- Sathish Sankar
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, 632 055, Tamil Nadu, India
| | - Mohita Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, 110 016, India
| | - Mageshbabu Ramamurthy
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, 632 055, Tamil Nadu, India
| | - Kumaran Vadivel
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, 632 055, Tamil Nadu, India
| | - Kalaiselvan Sagadevan
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, 632 055, Tamil Nadu, India
| | - Balaji Nandagopal
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, 632 055, Tamil Nadu, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, 110 016, India
- * E-mail:
| | - Gopalan Sridharan
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, 632 055, Tamil Nadu, India
| |
Collapse
|
11
|
Goeijenbier M, Meijers JCM, Anfasa F, Roose JM, van de Weg CAM, Bakhtiari K, Henttonen H, Vaheri A, Osterhaus ADME, van Gorp ECM, Martina BEE. Effect of Puumala hantavirus infection on human umbilical vein endothelial cell hemostatic function: platelet interactions, increased tissue factor expression and fibrinolysis regulator release. Front Microbiol 2015; 6:220. [PMID: 25852676 PMCID: PMC4371750 DOI: 10.3389/fmicb.2015.00220] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/05/2015] [Indexed: 12/02/2022] Open
Abstract
Puumala virus (PUUV) infection causes over 5000 cases of hemorrhagic fever in Europe annually and can influence the hemostatic balance extensively. Infection might lead to hemorrhage, while a recent study showed an increased risk of myocardial infarction during or shortly after PUUV infection. The mechanism by which this hantavirus influences the coagulation system remains unknown. Therefore we aimed to elucidate mechanisms explaining alterations seen in primary and secondary hemostasis during PUUV infection. By using low passage PUUV isolates to infect primary human umbilical vein endothelial cells (HUVECs) we were able to show alterations in the regulation of primary- and secondary hemostasis and in the release of fibrinolysis regulators. Our main finding was an activation of secondary hemostasis due to increased tissue factor (TF) expression leading to increased thrombin generation in a functional assay. Furthermore, we showed that during infection platelets adhered to HUVEC and subsequently specifically to PUUV virus particles. Infection of HUVEC with PUUV did not result in increased von Willebrand factor while they produced more plasminogen activator inhibitor type-1 (PAI-1) compared to controls. The PAI-1 produced in this model formed complexes with vitronectin. This is the first report that reveals a potential mechanism behind the pro-coagulant changes in PUUV patients, which could be the result of increased thrombin generation due to an increased TF expression on endothelial cells during infection. Furthermore, we provide insight into the contribution of endothelial cell responses regarding hemostasis in PUUV pathogenesis.
Collapse
Affiliation(s)
| | - Joost C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Department of Plasma Proteins, Sanquin Research, Amsterdam Netherlands
| | - Fatih Anfasa
- Department of Viroscience, Erasmus MC, Rotterdam Netherlands ; Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia Jakarta, Indonesia
| | - Jeroen M Roose
- Department of Viroscience, Erasmus MC, Rotterdam Netherlands ; Artemis One Health Institute, Utrecht Netherlands
| | | | - Kamran Bakhtiari
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Department of Plasma Proteins, Sanquin Research, Amsterdam Netherlands
| | | | - Antti Vaheri
- Department of Virology, Haartman Institute, University Of Helsinki Helsinki, Finland
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus MC, Rotterdam Netherlands ; Artemis One Health Institute, Utrecht Netherlands
| | | | - Byron E E Martina
- Department of Viroscience, Erasmus MC, Rotterdam Netherlands ; Artemis One Health Institute, Utrecht Netherlands
| |
Collapse
|
12
|
Fang LQ, Goeijenbier M, Zuo SQ, Wang LP, Liang S, Klein SL, Li XL, Liu K, Liang L, Gong P, Glass GE, van Gorp E, Richardus JH, Ma JQ, Cao WC, de Vlas SJ. The association between hantavirus infection and selenium deficiency in mainland China. Viruses 2015; 7:333-51. [PMID: 25609306 PMCID: PMC4306842 DOI: 10.3390/v7010333] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 12/17/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) caused by hantaviruses and transmitted by rodents is a significant public health problem in China, and occurs more frequently in selenium-deficient regions. To study the role of selenium concentration in HFRS incidence we used a multidisciplinary approach combining ecological analysis with preliminary experimental data. The incidence of HFRS in humans was about six times higher in severe selenium-deficient and double in moderate deficient areas compared to non-deficient areas. This association became statistically stronger after correction for other significant environment-related factors (low elevation, few grasslands, or an abundance of forests) and was independent of geographical scale by separate analyses for different climate regions. A case-control study of HFRS patients admitted to the hospital revealed increased activity and plasma levels of selenium binding proteins while selenium supplementation in vitro decreased viral replication in an endothelial cell model after infection with a low multiplicity of infection (MOI). Viral replication with a higher MOI was not affected by selenium supplementation. Our findings indicate that selenium deficiency may contribute to an increased prevalence of hantavirus infections in both humans and rodents. Future studies are needed to further examine the exact mechanism behind this observation before selenium supplementation in deficient areas could be implemented for HFRS prevention.
Collapse
Affiliation(s)
- Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; E-Mails: (L.-Q.F.); (S.-Q.Z.); (X.-L.L.); (K.L.)
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015CE, The Netherlands; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (M.G.); (J.-Q.M.); (W.-C.C.); Tel.: +31-10-704-4760 (M.G.); +86-10-58900422 (J.-Q.M.); +86-10-63896082 (W.-C.C.); Fax: +86-10-58900422 (J.-Q.M.); +86-10-63896082 (W.-C.C.)
| | - Shu-Qing Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; E-Mails: (L.-Q.F.); (S.-Q.Z.); (X.-L.L.); (K.L.)
| | - Li-Ping Wang
- Division of Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China; E-Mail:
| | - Song Liang
- Environmental and Global Health, College of Public Health and Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; E-Mail:
| | - Sabra L. Klein
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; E-Mails: (S.L.K.); (G.E.G.)
| | - Xin-Lou Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; E-Mails: (L.-Q.F.); (S.-Q.Z.); (X.-L.L.); (K.L.)
| | - Kun Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; E-Mails: (L.-Q.F.); (S.-Q.Z.); (X.-L.L.); (K.L.)
| | - Lu Liang
- Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing 100084, China; E-Mails: (L.L.); (P.G.)
| | - Peng Gong
- Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing 100084, China; E-Mails: (L.L.); (P.G.)
| | - Gregory E. Glass
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; E-Mails: (S.L.K.); (G.E.G.)
| | - Eric van Gorp
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015CE, The Netherlands; E-Mail:
| | - Jan H. Richardus
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000CA, The Netherlands; E-Mails: (J.H.R.); (S.J.V.)
| | - Jia-Qi Ma
- National Center for Public Health Surveillance and Information Service, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Authors to whom correspondence should be addressed; E-Mails: (M.G.); (J.-Q.M.); (W.-C.C.); Tel.: +31-10-704-4760 (M.G.); +86-10-58900422 (J.-Q.M.); +86-10-63896082 (W.-C.C.); Fax: +86-10-58900422 (J.-Q.M.); +86-10-63896082 (W.-C.C.)
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; E-Mails: (L.-Q.F.); (S.-Q.Z.); (X.-L.L.); (K.L.)
- Authors to whom correspondence should be addressed; E-Mails: (M.G.); (J.-Q.M.); (W.-C.C.); Tel.: +31-10-704-4760 (M.G.); +86-10-58900422 (J.-Q.M.); +86-10-63896082 (W.-C.C.); Fax: +86-10-58900422 (J.-Q.M.); +86-10-63896082 (W.-C.C.)
| | - Sake J. de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000CA, The Netherlands; E-Mails: (J.H.R.); (S.J.V.)
| |
Collapse
|
13
|
Abstract
The pathophysiology of hantavirus pulmonary syndrome (HPS) remains unclear because of a lack of surrogate disease models with which to perform pathogenesis studies. Nonhuman primates (NHP) are considered the gold standard model for studying the underlying immune activation/suppression associated with immunopathogenic viruses such as hantaviruses; however, to date an NHP model for HPS has not been described. Here we show that rhesus macaques infected with Sin Nombre virus (SNV), the primary etiological agent of HPS in North America, propagated in deer mice develop HPS, which is characterized by thrombocytopenia, leukocytosis, and rapid onset of respiratory distress caused by severe interstitial pneumonia. Despite establishing a systemic infection, SNV differentially activated host responses exclusively in the pulmonary endothelium, potentially the mechanism leading to acute severe respiratory distress. This study presents a unique chronological characterization of SNV infection and provides mechanistic data into the pathophysiology of HPS in a closely related surrogate animal model. We anticipate this model will advance our understanding of HPS pathogenesis and will greatly facilitate research toward the development of effective therapeutics and vaccines against hantaviral diseases.
Collapse
|
14
|
Lee JG, Gu SH, Baek LJ, Shin OS, Park KS, Kim HC, Klein TA, Yanagihara R, Song JW. Muju virus, harbored by Myodes regulus in Korea, might represent a genetic variant of Puumala virus, the prototype arvicolid rodent-borne hantavirus. Viruses 2014; 6:1701-14. [PMID: 24736214 PMCID: PMC4014717 DOI: 10.3390/v6041701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 01/11/2023] Open
Abstract
The genome of Muju virus (MUJV), identified originally in the royal vole (Myodes regulus) in Korea, was fully sequenced to ascertain its genetic and phylogenetic relationship with Puumala virus (PUUV), harbored by the bank vole (My. glareolus), and a PUUV-like virus, named Hokkaido virus (HOKV), in the grey red-backed vole (My. rufocanus) in Japan. Whole genome sequence analysis of the 6544-nucleotide large (L), 3652-nucleotide medium (M) and 1831-nucleotide small (S) segments of MUJV, as well as the amino acid sequences of their gene products, indicated that MUJV strains from different capture sites might represent genetic variants of PUUV, the prototype arvicolid rodent-borne hantavirus in Europe. Distinct geographic-specific clustering of MUJV was found in different provinces in Korea, and phylogenetic analyses revealed that MUJV and HOKV share a common ancestry with PUUV. A better understanding of the taxonomic classification and pathogenic potential of MUJV must await its isolation in cell culture.
Collapse
Affiliation(s)
- Jin Goo Lee
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 136-705, Korea.
| | - Se Hun Gu
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 136-705, Korea.
| | - Luck Ju Baek
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 136-705, Korea.
| | - Ok Sarah Shin
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 136-705, Korea.
| | - Kwang Sook Park
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 136-705, Korea.
| | - Heung-Chul Kim
- Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, Unit 15247, APO AP 96205-5247, USA.
| | - Terry A Klein
- Public Health Command Region-Pacific, 65th Medical Brigade, Unit 15281, APO AP 96205-5281, USA.
| | - Richard Yanagihara
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 136-705, Korea.
| |
Collapse
|
15
|
Plyusnina A, Razzauti M, Sironen T, Niemimaa J, Vapalahti O, Vaheri A, Henttonen H, Plyusnin A. Analysis of complete Puumala virus genome, Finland. Emerg Infect Dis 2013; 18:2070-2. [PMID: 23171600 DOI: 10.3201/eid1811.120747] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Puumala virus causes nephropathia epidemica, a rodent-borne zoonosis that is endemic to Europe. We sequenced the complete Puumala virus genome that was directly recovered from a person who died and compared it with those of viruses from local bank voles. The virus strain involved was neither a unique nor rare genetic variant.
Collapse
|
16
|
Li JL, Ling JX, Chen LJ, Wei F, Luo F, Liu YY, Xiong HR, How W, Yang ZQ. An efficient method for isolation of Hantaan virus through serial passages in suckling mice. Intervirology 2013; 56:172-7. [PMID: 23306793 DOI: 10.1159/000345444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 10/18/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Hantaan virus (HTNV) is one of the main etiologic agents for hemorrhagic fever with renal syndrome in China. However, it is very difficult to isolate the virus from its original host, which hampers the viral characterization. This study describes an efficient method for isolating HTNV in suckling mice. METHODS Hantavirus-infected Apodemus agrarius were screened by quantitative real-time PCR. The homogenates of one positive rodent lung tissue were inoculated into suckling mice for virus propagation through serial passages. RESULTS During the three passages in suckling mice, the number of viral RNA copies/nanogram of GAPDH mRNA increased significantly ranging from 477 to 7,278 and 46 to 4,898 in the tissues of brain and lung, respectively. Hantaviral antigens could be detected by indirect immunofluorescence assay and around 100-nm virion-like structures were also observed in brain tissue by transmission electron microscopy. No nucleotide exchange was found except for one in the 3'-non-coding domain of S segment when comparing the complete genome sequences from hantavirus in the first and the third passages. CONCLUSION These results suggest inoculation of suckling mice with suspected hantavirus-infected rodent samples is an efficient method for isolation and maintenance of HTNV.
Collapse
Affiliation(s)
- J-L Li
- State Key Laboratory of Virology, Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Plyusnina A, Razzauti M, Sironen T, Niemimaa J, Vapalahti O, Vaheri A, Henttonen H, Plyusnin A. Analysis of Complete Puumala Virus Genome, Finland. Emerg Infect Dis 2012. [PMID: 23171600 PMCID: PMC3557877 DOI: 10.3201/eid1812.120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Puumala virus causes nephropathia epidemica, a rodent-borne zoonosis that is endemic to Europe. We sequenced the complete Puumala virus genome that was directly recovered from a person who died and compared it with those of viruses from local bank voles. The virus strain involved was neither a unique nor rare genetic variant.
Collapse
|
18
|
Transmission ecology of Sin Nombre hantavirus in naturally infected North American deermouse populations in outdoor enclosures. PLoS One 2012; 7:e47731. [PMID: 23110096 PMCID: PMC3482230 DOI: 10.1371/journal.pone.0047731] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/14/2012] [Indexed: 11/30/2022] Open
Abstract
Sin Nombre hantavirus (SNV), hosted by the North American deermouse (Peromyscus maniculatus), causes hantavirus pulmonary syndrome (HPS) in North America. Most transmission studies in the host were conducted under artificial conditions, or extrapolated information from mark-recapture data. Previous studies using experimentally infected deermice were unable to demonstrate SNV transmission. We explored SNV transmission in outdoor enclosures using naturally infected deermice. Deermice acquiring SNV in enclosures had detectable viral RNA in blood throughout the acute phase of infection and acquired significantly more new wounds (indicating aggressive encounters) than uninfected deermice. Naturally-infected wild deermice had a highly variable antibody response to infection, and levels of viral RNA sustained in blood varied as much as 100-fold, even in individuals infected with identical strains of virus. Deermice that infected other susceptible individuals tended to have a higher viral RNA load than those that did not infect other deermice. Our study is a first step in exploring the transmission ecology of SNV infection in deermice and provides new knowledge about the factors contributing to the increase of the prevalence of a zoonotic pathogen in its reservoir host and to changes in the risk of HPS to human populations. The techniques pioneered in this study have implications for a wide range of zoonotic disease studies.
Collapse
|
19
|
Kurolt IC, Paessler S, Markotić A. Resequencing of the Puumala virus strain Sotkamo from the WHO Arbovirus collection. Virus Genes 2012; 45:389-92. [PMID: 22798055 DOI: 10.1007/s11262-012-0780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
RNA viruses exhibit a high mutation rate as the RNA-dependent RNA polymerase lacks proofreading and repair capabilities. It is known that serial passaging on cell culture leads to virus adaptation. Puumala virus (PUUV) strain Sotkamo is the prototype virus for the low-pathogenic hantavirus Puumala, family Bunyaviridae. A full-length sequence of the strain Sotkamos tripartite genome was made available more than 15 years ago, after at least 15 passages on Vero E6 cells. A distinct sample from the sequenced strain, with unknown passage history, was then included in the WHO Arbovirus collection. The genome sequence of this included sample was determined in this study and exhibited over 99 % identity in comparison to the previously published sequence. A total of 23 nucleotide changes across all genome segments were found. The small segment had the highest nucleotide variance without changes on the protein level. Within the extraviral domain of the glycoproteins, the majority of non-synonymous mutations were detected, whereas the large segment is most conserved on the nucleotide level. It seems possible that the PUUV strain Sotkamo adapted differently to serial passaging on cell culture in two different laboratories. In addition, a distinct passage number could exhibit itself within the nucleotide differences.
Collapse
Affiliation(s)
- Ivan C Kurolt
- Research Department, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10000 Zagreb, Croatia.
| | | | | |
Collapse
|
20
|
Stoltz M, Sundström KB, Hidmark Å, Tolf C, Vene S, Ahlm C, Lindberg AM, Lundkvist Å, Klingström J. A model system for in vitro studies of bank vole borne viruses. PLoS One 2011; 6:e28992. [PMID: 22194969 PMCID: PMC3241689 DOI: 10.1371/journal.pone.0028992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 11/17/2011] [Indexed: 12/24/2022] Open
Abstract
The bank vole (Myodes glareolus) is a common small mammal in Europe and a natural host for several important emerging zoonotic viruses, e.g. Puumala hantavirus (PUUV) that causes hemorrhagic fever with renal syndrome (HFRS). Hantaviruses are known to interfere with several signaling pathways in infected human cells, and HFRS is considered an immune-mediated disease. There is no in vitro-model available for infectious experiments in bank vole cells, nor tools for analyses of bank vole immune activation and responses. Consequently, it is not known if there are any differences in the regulation of virus induced responses in humans compared to natural hosts during infection. We here present an in vitro-model for studies of bank vole borne viruses and their interactions with natural host cell innate immune responses. Bank vole embryonic fibroblasts (VEFs) were isolated and shown to be susceptible for PUUV-infection, including a wild-type PUUV strain (only passaged in bank voles). The significance of VEFs as a model system for bank vole associated viruses was further established by infection studies showing that these cells are also susceptible to tick borne encephalitis, cowpox and Ljungan virus. The genes encoding bank vole IFN-β and Mx2 were partially sequenced and protocols for semi-quantitative RT-PCR were developed. Interestingly, PUUV did not induce an increased IFN-β or Mx2 mRNA expression. Corresponding infections with CPXV and LV induced IFN-β but not Mx2, while TBEV induced both IFN-β and Mx2. In conclusion, VEFs together with protocols developed for detection of bank vole innate immune activation provide valuable tools for future studies of how PUUV and other zoonotic viruses affect cells derived from bank voles compared to human cells. Notably, wild-type PUUV which has been difficult to cultivate in vitro readily infected VEFs, suggesting that embryonic fibroblasts from natural hosts might be valuable for isolation of wild-type hantaviruses.
Collapse
Affiliation(s)
- Malin Stoltz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Essbauer SS, Krautkrämer E, Herzog S, Pfeffer M. A new permanent cell line derived from the bank vole (Myodes glareolus) as cell culture model for zoonotic viruses. Virol J 2011; 8:339. [PMID: 21729307 PMCID: PMC3145595 DOI: 10.1186/1743-422x-8-339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 07/05/2011] [Indexed: 01/30/2023] Open
Abstract
Background Approximately 60% of emerging viruses are of zoonotic origin, with three-fourths derived from wild animals. Many of these zoonotic diseases are transmitted by rodents with important information about their reservoir dynamics and pathogenesis missing. One main reason for the gap in our knowledge is the lack of adequate cell culture systems as models for the investigation of rodent-borne (robo) viruses in vitro. Therefore we established and characterized a new cell line, BVK168, using the kidney of a bank vole, Myodes glareolus, the most abundant member of the Arvicolinae trapped in Germany. Results BVK168 proved to be of epithelial morphology expressing tight junctions as well as adherence junction proteins. The BVK168 cells were analyzed for their infectability by several arbo- and robo-viruses: Vesicular stomatitis virus, vaccinia virus, cowpox virus, Sindbis virus, Pixuna virus, Usutu virus, Inkoo virus, Puumalavirus, and Borna disease virus (BDV). The cell line was susceptible for all tested viruses, and most interestingly also for the difficult to propagate BDV. Conclusion In conclusion, the newly established cell line from wildlife rodents seems to be an excellent tool for the isolation and characterization of new rodent-associated viruses and may be used as in vitro-model to study properties and pathogenesis of these agents.
Collapse
|
22
|
Characterization of two substrains of Puumala virus that show phenotypes that are different from each other and from the original strain. J Virol 2010; 85:1747-56. [PMID: 21106742 DOI: 10.1128/jvi.01428-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hantaviruses, the causative agents of two emerging diseases, are negative-stranded RNA viruses with a tripartite genome. We isolated two substrains from a parental strain of Puumala hantavirus (PUUV-Pa), PUUV-small (PUUV-Sm) and PUUV-large (PUUV-La), named after their focus size when titrated. The two isolates were sequenced; this revealed differences at two positions in the nucleocapsid protein and two positions in the RNA-dependent RNA polymerase, but the glycoproteins were identical. We also detected a 43-nucleotide deletion in the PUUV-La S-segment 5' noncoding region covering a predicted hairpin loop structure that was found to be conserved among all hantaviruses with members of the rodent subfamily Arvicolinae as their hosts. Stocks of PUUV-La showed a lower ratio of viral RNA to infectious particles than stocks of PUUV-Sm and PUUV-Pa, indicating that PUUV-La replicated more efficiently in alpha/beta interferon (IFN-α/β)-defective Vero E6 cells. In Vero E6 cells, PUUV-La replicated to higher titers and PUUV-Sm replicated to lower titers than PUUV-Pa. In contrast, in IFN-competent MRC-5 cells, PUUV-La and PUUV-Sm replicated to similar levels, while PUUV-Pa progeny virus production was strongly inhibited. The different isolates clearly differed in their potential to induce innate immune responses in MRC-5 cells. PUUV-Pa caused stronger induction of IFN-β, ISG56, and MxA than PUUV-La and PUUV-Sm, while PUUV-Sm caused stronger MxA and ISG56 induction than PUUV-La. These data demonstrate that the phenotypes of isolated hantavirus substrains can have substantial differences compared to each other and to the parental strain. Importantly, this implies that the reported differences in phenotypes for hantaviruses might depend more on chance due to spontaneous mutations during passage than inherited true differences between hantaviruses.
Collapse
|
23
|
Wang H, Alminaite A, Vaheri A, Plyusnin A. Interaction between hantaviral nucleocapsid protein and the cytoplasmic tail of surface glycoprotein Gn. Virus Res 2010; 151:205-12. [PMID: 20566401 DOI: 10.1016/j.virusres.2010.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 01/07/2023]
Abstract
Hantaviral N and Gn proteins were shown to interact, thus providing the long-awaited evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Using pull-down assay and point mutagenesis it was demonstrated that intact, properly folded zinc fingers in the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80-248) are essential for the interaction.
Collapse
Affiliation(s)
- Hao Wang
- Department of Virology, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
24
|
Abstract
Hantaviruses are globally important human pathogens that cause hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Capillary leakage is central to hantaviral diseases, but how it develops, has remained unknown. It has been hypothesized that the pathogenesis of hantavirus infection would be a complex interplay between direct viral effects and immunopathological mechanisms. Both of these were studied in the so far best model of mild hemorrhagic fever with renal syndrome, i.e. cynomolgus macaques infected with wild-type Puumala hantavirus. Viral RNA detected by in situ hybridization and nucleocapsid protein detected by immunohistochemical staining were observed in kidney, spleen and liver tissues. Inflammatory cell infiltrations and tubular damage were found in the kidneys, and these infiltrations contained mainly CD8-type T-cells. Importantly, these results are consistent with those obtained from patients with hantaviral disease, thus showing that the macaque model of hantavirus infection mimics human infection also on the tissue level. Furthermore, both the markers of viral replication and the T-cells appeared to co-localize in the kidneys to the sites of tissue damage, suggesting that these two together might be responsible for the pathogenesis of hantavirus infection.
Collapse
|
25
|
Sironen T, Kallio ER, Vaheri A, Lundkvist Å, Plyusnin A. Quasispecies dynamics and fixation of a synonymous mutation in hantavirus transmission. J Gen Virol 2008; 89:1309-1313. [PMID: 18420810 DOI: 10.1099/vir.0.83662-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA-dependent RNA polymerases, the key enzymes in replication of RNA viruses, have a low fidelity; thus, these viruses replicate as a swarm of mutants termed viral quasispecies. Constant generation of new mutations allows RNA viruses to adapt swiftly to a novel environment through selection of both pre-existing and de novo-generated genetic variants. Here, quasispecies dynamics were studied in vivo in controlled hantavirus transmission from experimentally infected to naïve rodents through infested cage bedding. An elementary step of virus microevolution was apparent, as one synonymous mutation (A759G) repeatedly became fixed in the viral RNA quasispecies populations in the recipient animals.
Collapse
Affiliation(s)
- Tarja Sironen
- Department of Virology, Haartman Institute, University of Helsinki, Finland
| | - Eva R Kallio
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Finnish Forest Research Institute, Vantaa, Finland
| | - Antti Vaheri
- Department of Virology, Haartman Institute, University of Helsinki, Finland
| | - Åke Lundkvist
- Swedish Institute for Infectious Disease Control and MTC, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Plyusnin
- Swedish Institute for Infectious Disease Control and MTC, Karolinska Institutet, Stockholm, Sweden
- Department of Virology, Haartman Institute, University of Helsinki, Finland
| |
Collapse
|
26
|
Lukashevich IS, Patterson J, Carrion R, Moshkoff D, Ticer A, Zapata J, Brasky K, Geiger R, Hubbard GB, Bryant J, Salvato MS. A live attenuated vaccine for Lassa fever made by reassortment of Lassa and Mopeia viruses. J Virol 2005; 79:13934-42. [PMID: 16254329 PMCID: PMC1280243 DOI: 10.1128/jvi.79.22.13934-13942.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 08/18/2005] [Indexed: 11/20/2022] Open
Abstract
Lassa virus (LASV) and Mopeia virus (MOPV) are closely related Old World arenaviruses that can exchange genomic segments (reassort) during coinfection. Clone ML29, selected from a library of MOPV/LASV (MOP/LAS) reassortants, encodes the major antigens (nucleocapsid and glycoprotein) of LASV and the RNA polymerase and zinc-binding protein of MOPV. Replication of ML29 was attenuated in guinea pigs and nonhuman primates. In murine adoptive-transfer experiments, as little as 150 PFU of ML29 induced protective cell-mediated immunity. All strain 13 guinea pigs vaccinated with clone ML29 survived at least 70 days after LASV challenge without either disease signs or histological lesions. Rhesus macaques inoculated with clone ML29 developed primary virus-specific T cells capable of secreting gamma interferon in response to homologous MOP/LAS and heterologous MOPV and lymphocytic choriomeningitis virus. Detailed examination of two rhesus macaques infected with this MOPV/LAS reassortant revealed no histological lesions or disease signs. Thus, ML29 is a promising attenuated vaccine candidate for Lassa fever.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hardestam J, Klingström J, Mattsson K, Lundkvist A. HFRS causing hantaviruses do not induce apoptosis in confluent Vero E6 and A-549 cells. J Med Virol 2005; 76:234-40. [PMID: 15834879 DOI: 10.1002/jmv.20347] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hantaviruses are known to cause little or no cytopathic effect in vitro, but have been suggested to cause apoptosis. To determine whether different hantaviruses would induce apoptosis to varying degrees, confluent Vero E6 cells were infected with the hemorrhagic fever with renal syndrome (HFRS) causing viruses Hantaan, Dobrava, Saaremaa, and Puumala. However, no difference was found in the percentage of adherent cells, or of cells with condensed nuclei, between non-infected and virus-infected cells at 3, 6, 9, or 12 days after infection. Furthermore, no differences in the percentage of cells with inter-nucleosomal cleavage of DNA between uninfected and Hantaan infected cells could be detected using the TUNEL assay. Possibly, slightly more apoptotic cells, but never more than 5%, were detected after Hantaan infection of non-confluent cells as compared to the negative control. Earlier reported results that Tula hantavirus induces significant apoptosis on Vero E6 cells were also verified, suggesting that non-pathogenic hantaviruses might differ from HFRS-causing strains regarding induction of apoptosis. In conclusion, the results indicated that the HFRS-causing hantaviruses might induce a very low level of apoptosis in dividing cells, but not at all in confluent cells.
Collapse
Affiliation(s)
- Jonas Hardestam
- Swedish Institute for Infectious Disease Control, Solna, Sweden
| | | | | | | |
Collapse
|
28
|
Klempa B, Stanko M, Labuda M, Ulrich R, Meisel H, Krüger DH. Central European Dobrava Hantavirus isolate from a striped field mouse (Apodemus agrarius). J Clin Microbiol 2005; 43:2756-63. [PMID: 15956394 PMCID: PMC1151903 DOI: 10.1128/jcm.43.6.2756-2763.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/06/2004] [Accepted: 02/20/2005] [Indexed: 11/20/2022] Open
Abstract
Dobrava virus (DOBV) is a hantavirus that causes hemorrhagic fever with renal syndrome (HFRS) in Europe. It is hosted by at least two rodent species, Apodemus flavicollis and A. agrarius. According to their natural hosts they form the distinct genetic lineages DOBV-Af and DOBV-Aa, respectively. We have now established a DOBV isolate named Slovakia (SK/Aa) from an A. agrarius animal captured in Slovakia. The complete S and M and partial L segment nucleotide sequences of the new isolate were determined. Phylogenetic analyses showed that the SK/Aa isolate clustered together with the other DOBV-Aa sequences amplified from A. agrarius before and can be taken as the representative of this genetic lineage. SK/Aa, in comparison with a DOBV-Af isolate, was used for serotyping neutralizing antibodies of HFRS patients in Central Europe. Most patients' sera exhibited a higher endpoint titer when probed with our new isolate, suggesting that DOBV-Aa strains are responsible for most of the DOBV-caused HFRS cases in this region.
Collapse
Affiliation(s)
- Boris Klempa
- Institute of Virology, Helmut Ruska Haus, Charité School of Medicine, Humboldt University, D-10098 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Novella IS, Zárate S, Metzgar D, Ebendick-Corpus BE. Positive selection of synonymous mutations in vesicular stomatitis virus. J Mol Biol 2004; 342:1415-21. [PMID: 15364570 DOI: 10.1016/j.jmb.2004.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 08/03/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
Prevailing evolutionary forces are typically deduced from the pattern of differences in synonymous and non-synonymous mutations, under the assumption of neutrality in the absence of amino acid change. We determined the complete sequence of ten vesicular stomatitis virus populations evolving under positive selection. A significant number of the mutations occurred independently in two or more strains, a process known as parallel evolution, and a substantial fraction of the parallel mutations were silent. Parallel evolution was also identified in non-coding regions. These results indicate that silent mutations can significantly contribute to adaptation in RNA viruses, and relative frequencies of synonymous and non-synonymous substitutions may not be useful to resolve their evolutionary history.
Collapse
Affiliation(s)
- I S Novella
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, OH 43614 USA.
| | | | | | | |
Collapse
|
30
|
Abstract
"Emerging infections" have been defined as infections that have newly appeared, that have appeared previously but are expanding in incidence and geographic range, or that threaten to increase in the near future. This article focuses on nine emerging viral infectious agents. These viruses illustrate how such agents emerge: by encroaching on previously unvisited habitats (eg, hantaviruses), by air travel (eg, SARS), and by accidental importation (eg, monkeypox). Additionally, the example of SARS demonstrates not only how quickly emerging viral infections can spread but also how quickly they can be identified and contained with motivated cooperation.
Collapse
Affiliation(s)
- John R Su
- Departments of Pathology and Preventive Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|