1
|
Zhang Y, Jiang Y, Jia Y, Pan X, Zhao T, Wang K, Yan H, Ma Z. Separation of anti-TMV active components and modes of action of Omphalia lapidescens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105728. [PMID: 38225082 DOI: 10.1016/j.pestbp.2023.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Omphalia lapidescens is a saprophytic and parasitic fungus belonging to the Polypora genus of Tricholomataceae. It has repellent, insecticidal, anti-inflammatory and immunomodulatory effects. RESULT This study found that the extract of O. lapidescens had significant anti-TMV activity, and the main active component was homopolysaccharide LW-1 by Bioassay-guided fractionation. LW-1 is a glucan with β-(1,3) glucoside bond as the main chain and β-(1,6) glucoside bond as the branch chain, with molecular weight in the range of 172,916-338,827 Da. The protective and inactive efficacies of LW-1(100 mg/L) against TMV were 78.10% and 48.20%, but had no direct effect on the morphology of TMV particles. The results of mechanism of action showed that LW-1 induced the increase of the activity of defense enzymes such as POD, SOD and PAL in Nicotiana glutinosa. The overexpression of resistance genes such as NPR1, PR1 and PR5, and the increase of SA content. Further transcriptome sequencing showed that LW-1 activated MAPK signaling pathway, plant-pathogen interaction pathway and glucosinolide metabolic pathway in Arabidopsis thaliana. Besides, LW-1 induced crops resistance against plant pathogenic fungi. CONCLUSION Taken together, the anti-TMV mechanism of LW-1 was to activate MAPK signaling pathway, inducing overexpression of resistance genes, activating plant immune system, and improving the synthesis and accumulation of plant defencins such as glucosinolide. LW-1-induced plant disease resistance has the advantages of broad spectrum and long duration, which has the potential to be developed as a new antiviral agent or plant immune resistance inducer.
Collapse
Affiliation(s)
- Yueyang Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Yue Jiang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Yina Jia
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Xiaoyu Pan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Tianrun Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Kaiyue Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - He Yan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China.
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Beris D, Tzima A, Gousi F, Rampou A, Psarra V, Theologidis I, Vassilakos N. Multiple integrations of a sense transgene, including a tandem inverted repeat confer stable RNA-silencing mediated virus resistance under different abiotic and biotic conditions. Transgenic Res 2023; 32:53-66. [PMID: 36633706 DOI: 10.1007/s11248-023-00333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023]
Abstract
In a previous study, tobacco plants, transformed with a sense construct of the 57K domain of the replicase gene of tobacco rattle virus (TRV), provided resistance against genetically distant isolates of the virus. In this work, 57K-specific siRNAs were detected with RT-qPCR solely in the resistant line verifying the RNA-silencing base of the resistance. The integration sites of the transgene into the plant genome were identified with inverse-PCR. Moreover, the resistance against TRV was practically unaffected by low temperature conditions and the presence of heterologous viruses. The mechanism of the resistance was further examined by a gene expression analysis that showed increased transcript levels of genes with a key-role in the RNA silencing pathway and the basal antiviral defence. This work provides a comprehensive characterization of the robust virus resistance obtained by a sense transgene and underlines the usefulness of transgenic plants obtained by such a strategy.
Collapse
Affiliation(s)
- Despoina Beris
- Laboratory of Virology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, 14561, Athens, Greece.
| | - Aliki Tzima
- Laboratory of Plant Pathology, Department of Crop Production, School of Agricultural Production Infrastructure and Environment, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Fani Gousi
- Laboratory of Virology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, 14561, Athens, Greece
- Laboratory of Plant Pathology, Department of Crop Production, School of Agricultural Production Infrastructure and Environment, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Aggeliki Rampou
- Laboratory of Virology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, 14561, Athens, Greece
| | - Venetia Psarra
- Laboratory of Virology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, 14561, Athens, Greece
| | - Ioannis Theologidis
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 Stefanou Delta Street, 14561, Athens, Greece
| | - Nikon Vassilakos
- Laboratory of Virology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, 14561, Athens, Greece
| |
Collapse
|
3
|
Plant Virus Adaptation to New Hosts: A Multi-scale Approach. Curr Top Microbiol Immunol 2023; 439:167-196. [PMID: 36592246 DOI: 10.1007/978-3-031-15640-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.
Collapse
|
4
|
Montes N, Pagán I. Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022; 114:1-66. [PMID: 39492212 DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is an increasing societal awareness on the enormous threat that climate change may pose for human, animal and plant welfare. Although direct effects due to exposure to heat, drought or elevated greenhouse gasses seem to be progressively more obvious, indirect effects remain debatable. A relevant aspect to be clarified relates to the relationship between altered environmental conditions and pathogen-induced diseases. In the particular case of plant viruses, it is still unclear whether climate change will primarily represent an opportunity for the emergence of new infections in previously uncolonized areas and hosts, or if it will mostly be a strong constrain reducing the impact of plant virus diseases and challenging the pathogen's adaptive capacity. This review focuses on current knowledge on the relationship between climate change and the outcome plant-virus interactions. We summarize work done on how this relationship modulates plant virus pathogenicity, between-host transmission (which include the triple interaction plant-virus-vector), ecology, evolution and management of the epidemics they cause. Considering these studies, we propose avenues for future research on this subject.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Madrid, Spain; Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
5
|
Perdoncini Carvalho C, Ren R, Han J, Qu F. Natural Selection, Intracellular Bottlenecks of Virus Populations, and Viral Superinfection Exclusion. Annu Rev Virol 2022; 9:121-137. [PMID: 35567296 DOI: 10.1146/annurev-virology-100520-114758] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural selection acts on cellular organisms by ensuring the genes responsible for an advantageous phenotype consistently reap the phenotypic advantage. This is possible because reproductive cells of these organisms are almost always haploid, separating the beneficial gene from its rival allele at every generation. How natural selection acts on plus-strand RNA viruses is unclear because these viruses frequently load host cells with numerous genome copies and replicate thousands of progeny genomes in each cell. Recent studies suggest that these viruses encode the Bottleneck, Isolate, Amplify, Select (BIAS) mechanism that blocks all but a few viral genome copies from replication, thus creating the environment in which the bottleneck-escaping viral genome copies are isolated from each other, allowing natural selection to reward beneficial mutations and purge lethal errors. This BIAS mechanism also blocks the genomes of highly homologous superinfecting viruses, thus explaining cellular-level superinfection exclusion. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Ruifan Ren
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA;
| | - Junping Han
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA;
| | - Feng Qu
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA;
| |
Collapse
|
6
|
Xavier CAD, Nogueira AM, Bello VH, Watanabe LFM, Barbosa TMC, Alves Júnior M, Barbosa L, Beserra-Júnior JEA, Boari A, Calegario R, Gorayeb ES, Honorato Júnior J, Koch G, Lima GSDA, Lopes C, de Mello RN, Pantoja K, Silva FN, Ramos Sobrinho R, Santana EN, da Silva JWP, Krause-Sakate R, Zerbini FM. Assessing the diversity of whiteflies infesting cassava in Brazil. PeerJ 2021; 9:e11741. [PMID: 34316398 PMCID: PMC8286705 DOI: 10.7717/peerj.11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background The necessity of a competent vector for transmission is a primary ecological factor driving the host range expansion of plant arthropod-borne viruses, with vectors playing an essential role in disease emergence. Cassava begomoviruses severely constrain cassava production in Africa. Curiously, begomoviruses have never been reported in cassava in South America, the center of origin for this crop. It has been hypothesized that the absence of a competent vector in cassava is the reason why begomoviruses have not emerged in South America. Methods We performed a country-wide whitefly diversity study in cassava in Brazil. Adults and/or nymphs of whiteflies were collected from sixty-six cassava fields in the main agroecological zones of the country. A total of 1,385 individuals were genotyped based on mitochondrial cytochrome oxidase I sequences. Results A high species richness was observed, with five previously described species and two putative new ones. The prevalent species were Tetraleurodes acaciae and Bemisia tuberculata, representing over 75% of the analyzed individuals. Although we detected, for the first time, the presence of Bemisia tabaci Middle East-Asia Minor 1 (BtMEAM1) colonizing cassava in Brazil, it was not prevalent. The species composition varied across regions, with fields in the Northeast region showing a higher diversity. These results expand our knowledge of whitefly diversity in cassava and support the hypothesis that begomovirus epidemics have not occurred in cassava in Brazil due to the absence of competent vector populations. However, they indicate an ongoing adaptation process of BtMEAM1 to cassava, increasing the likelihood of begomovirus emergence in this crop.
Collapse
Affiliation(s)
- Cesar A D Xavier
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | | | - Miguel Alves Júnior
- Faculdade de Engenharia Agronômica, Universidade Federal do Pará, Altamira, PA, Brazil
| | - Leonardo Barbosa
- Instituto Federal do Sudeste de Minas Gerais, Rio Pomba, MG, Brazil
| | | | | | - Renata Calegario
- Dep. de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Silva Gorayeb
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
| | - Jaime Honorato Júnior
- Centro Multidisciplinar do Campus de Barra, Universidade Federal do Oeste da Bahia, Barra, BA, Brazil
| | - Gabriel Koch
- Dep. de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Cristian Lopes
- Instituto Federal do Sudeste de Minas Gerais, Rio Pomba, MG, Brazil
| | | | | | - Fábio Nascimento Silva
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
| | - Roberto Ramos Sobrinho
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, AL, Brazil
| | | | | | | | - Francisco M Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
7
|
Mutability of demographic noise in microbial range expansions. ISME JOURNAL 2021; 15:2643-2654. [PMID: 33746203 PMCID: PMC8397776 DOI: 10.1038/s41396-021-00951-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022]
Abstract
Demographic noise, the change in the composition of a population due to random birth and death events, is an important driving force in evolution because it reduces the efficacy of natural selection. Demographic noise is typically thought to be set by the population size and the environment, but recent experiments with microbial range expansions have revealed substantial strain-level differences in demographic noise under the same growth conditions. Many genetic and phenotypic differences exist between strains; to what extent do single mutations change the strength of demographic noise? To investigate this question, we developed a high-throughput method for measuring demographic noise in colonies without the need for genetic manipulation. By applying this method to 191 randomly-selected single gene deletion strains from the E. coli Keio collection, we find that a typical single gene deletion mutation decreases demographic noise by 8% (maximal decrease: 81%). We find that the strength of demographic noise is an emergent trait at the population level that can be predicted by colony-level traits but not cell-level traits. The observed differences in demographic noise from single gene deletions can increase the establishment probability of beneficial mutations by almost an order of magnitude (compared to in the wild type). Our results show that single mutations can substantially alter adaptation through their effects on demographic noise and suggest that demographic noise can be an evolvable trait of a population.
Collapse
|
8
|
McLeish MJ, Fraile A, García-Arenal F. Population Genomics of Plant Viruses: The Ecology and Evolution of Virus Emergence. PHYTOPATHOLOGY 2021; 111:32-39. [PMID: 33210987 DOI: 10.1094/phyto-08-20-0355-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The genomics era has revolutionized studies of adaptive evolution by monitoring large numbers of loci throughout the genomes of many individuals. Ideally, the investigation of emergence in plant viruses requires examining the population dynamics of both virus and host, their interactions with each other, with other organisms and the abiotic environment. Genetic mechanisms that affect demographic processes are now being studied with high-throughput technologies, traditional genetics methods, and new computational tools for big-data. In this review, we discuss the utility of these approaches to monitor and detect changes in virus populations within cells and individuals, and over wider areas across species and communities of ecosystems. The advent of genomics in virology has fostered a multidisciplinary approach to tackling disease risk. The ability to make sense of the information now generated in this integrated setting is by far the most substantial obstacle to the ultimate goal of plant virology to minimize the threats to food security posed by disease. To achieve this goal, it is imperative to understand and forecast how populations respond to future changes in complex natural systems.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
9
|
da Silva W, Kutnjak D, Xu Y, Xu Y, Giovannoni J, Elena SF, Gray S. Transmission modes affect the population structure of potato virus Y in potato. PLoS Pathog 2020; 16:e1008608. [PMID: 32574227 PMCID: PMC7347233 DOI: 10.1371/journal.ppat.1008608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/09/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023] Open
Abstract
Transmission is a crucial part of a viral life cycle and transmission mode can have an important impact on virus biology. It was demonstrated that transmission mode can influence the virulence and evolution of a virus; however, few empirical data are available to describe the direct underlying changes in virus population structure dynamics within the host. Potato virus Y (PVY) is an RNA virus and one of the most damaging pathogens of potato. It comprises several genetically variable strains that are transmitted between plants via different transmission modes. To investigate how transmission modes affect the within-plant viral population structure, we have used a deep sequencing approach to examine the changes in the genetic structure of populations (in leaves and tubers) of three PVY strains after successive passages by horizontal (aphid and mechanical) and vertical (via tubers) transmission modes. Nucleotide diversities of viral populations were significantly influenced by transmission modes; lineages transmitted by aphids were the least diverse, whereas lineages transmitted by tubers were the most diverse. Differences in nucleotide diversities of viral populations between leaves and tubers were transmission mode-dependent, with higher diversities in tubers than in leaves for aphid and mechanically transmitted lineages. Furthermore, aphid and tuber transmissions were shown to impose stronger genetic bottlenecks than mechanical transmission. To better understand the structure of virus populations within the host, transmission mode, movement of the virus within the host, and the number of replication cycles after transmission event need to be considered. Collectively, our results suggest a significant impact of virus transmission modes on the within-plant diversity of virus populations and provide quantitative fundamental data for understanding how transmission can shape virus diversity in the natural ecosystems, where different transmission modes are expected to affect virus population structure and consequently its evolution.
Collapse
Affiliation(s)
- Washington da Silva
- Department of Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York, United States of America
- * E-mail: (WdS); (DK)
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Paterna, València, Spain
- * E-mail: (WdS); (DK)
| | - Yi Xu
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York, United States of America
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yimin Xu
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
- Emerging Pests & Pathogens Research Unit, USDA, ARS, Ithaca, New York, United States of America
| | - James Giovannoni
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
- Emerging Pests & Pathogens Research Unit, USDA, ARS, Ithaca, New York, United States of America
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Stewart Gray
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York, United States of America
- Emerging Pests & Pathogens Research Unit, USDA, ARS, Ithaca, New York, United States of America
| |
Collapse
|
10
|
Inferring Transmission Bottleneck Size from Viral Sequence Data Using a Novel Haplotype Reconstruction Method. J Virol 2020; 94:JVI.00014-20. [PMID: 32295920 PMCID: PMC7307158 DOI: 10.1128/jvi.00014-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Viral populations undergo a repeated cycle of within-host growth followed by transmission. Viral evolution is affected by each stage of this cycle. The number of viral particles transmitted from one host to another, known as the transmission bottleneck, is an important factor in determining how the evolutionary dynamics of the population play out, restricting the extent to which the evolved diversity of the population can be passed from one host to another. Previous study of viral sequence data has suggested that the transmission bottleneck size for influenza A transmission between human hosts is small. Reevaluating these data using a novel and improved method, we largely confirm this result, albeit that we infer a slightly higher bottleneck size in some cases, of between 1 and 13 virions. While a tight bottleneck operates in human influenza transmission, it is not extreme in nature; some diversity can be meaningfully retained between hosts. The transmission bottleneck is defined as the number of viral particles that transmit from one host to establish an infection in another. Genome sequence data have been used to evaluate the size of the transmission bottleneck between humans infected with the influenza virus; however, the methods used to make these estimates have some limitations. Specifically, viral allele frequencies, which form the basis of many calculations, may not fully capture a process which involves the transmission of entire viral genomes. Here, we set out a novel approach for inferring viral transmission bottlenecks; our method combines an algorithm for haplotype reconstruction with maximum likelihood methods for bottleneck inference. This approach allows for rapid calculation and performs well when applied to data from simulated transmission events; errors in the haplotype reconstruction step did not adversely affect inferences of the population bottleneck. Applied to data from a previous household transmission study of influenza A infection, we confirm the result that the majority of transmission events involve a small number of viruses, albeit with slightly looser bottlenecks being inferred, with between 1 and 13 particles transmitted in the majority of cases. While influenza A transmission involves a tight population bottleneck, the bottleneck is not so tight as to universally prevent the transmission of within-host viral diversity. IMPORTANCE Viral populations undergo a repeated cycle of within-host growth followed by transmission. Viral evolution is affected by each stage of this cycle. The number of viral particles transmitted from one host to another, known as the transmission bottleneck, is an important factor in determining how the evolutionary dynamics of the population play out, restricting the extent to which the evolved diversity of the population can be passed from one host to another. Previous study of viral sequence data has suggested that the transmission bottleneck size for influenza A transmission between human hosts is small. Reevaluating these data using a novel and improved method, we largely confirm this result, albeit that we infer a slightly higher bottleneck size in some cases, of between 1 and 13 virions. While a tight bottleneck operates in human influenza transmission, it is not extreme in nature; some diversity can be meaningfully retained between hosts.
Collapse
|
11
|
Islam W, Noman A, Naveed H, Alamri SA, Hashem M, Huang Z, Chen HYH. Plant-insect vector-virus interactions under environmental change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:135044. [PMID: 31726403 DOI: 10.1016/j.scitotenv.2019.135044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Insects play an important role in the spread of viruses from infected plants to healthy hosts through a variety of transmission strategies. Environmental factors continuously influence virus transmission and result in the establishment of infection or disease. Plant virus diseases become epidemic when viruses successfully dominate the surrounding ecosystem. Plant-insect vector-virus interactions influence each other; pushing each other for their benefit and survival. These interactions are modulated through environmental factors, though environmental influences are not readily predictable. This review focuses on exploiting the diverse relationships, embedded in the plant-insect vector-virus triangle by highlighting recent research findings. We examined the interactions between viruses, insect vectors, and host plants, and explored how these interactions affect their behavior.
Collapse
Affiliation(s)
- Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Hassan Naveed
- College of Life Science, Leshan Normal University, Leshan, Sichuan 614004, China
| | - Saad A Alamri
- King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321, Saudi Arabia; Prince Sultan Ben Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321, Saudi Arabia; Assiut University, Faculty of Science, Botany Department, Assiut 71516, Egypt
| | - Zhiqun Huang
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Han Y H Chen
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
12
|
Rubio L, Galipienso L, Ferriol I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:1092. [PMID: 32765569 PMCID: PMC7380168 DOI: 10.3389/fpls.2020.01092] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. The frequent emergence of new viral diseases is mainly due to international trade, climate change, and the ability of viruses for rapid evolution. Disease control is based on two strategies: i) immunization (genetic resistance obtained by plant breeding, plant transformation, cross-protection, or others), and ii) prophylaxis to restrain virus dispersion (using quarantine, certification, removal of infected plants, control of natural vectors, or other procedures). Disease management relies strongly on a fast and accurate identification of the causal agent. For known viruses, diagnosis consists in assigning a virus infecting a plant sample to a group of viruses sharing common characteristics, which is usually referred to as species. However, the specificity of diagnosis can also reach higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic procedures must be optimized for accuracy by detecting the maximum number of members within the group (sensitivity as the true positive rate) and distinguishing them from outgroup viruses (specificity as the true negative rate). This requires information on the genetic relationships within-group and with members of other groups. The influence of the genetic diversity of virus populations in diagnosis and disease management is well documented, but information on how to integrate the genetic diversity in the detection methods is still scarce. Here we review the techniques used for plant virus diagnosis and disease control, including characteristics such as accuracy, detection level, multiplexing, quantification, portability, and designability. The effect of genetic diversity and evolution of plant viruses in the design and performance of some detection and disease control techniques are also discussed. High-throughput or next-generation sequencing provides broad-spectrum and accurate identification of viruses enabling multiplex detection, quantification, and the discovery of new viruses. Likely, this technique will be the future standard in diagnostics as its cost will be dropping and becoming more affordable.
Collapse
Affiliation(s)
- Luis Rubio
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- *Correspondence: Luis Rubio,
| | - Luis Galipienso
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Inmaculada Ferriol
- Plant Responses to Stress Programme, Centre for Research in Agricultural Genomics (CRAG-CSIC_UAB-UB) Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
13
|
Koala and Wombat Gammaherpesviruses Encode the First Known Viral NTPDase Homologs and Are Phylogenetically Divergent from All Known Gammaherpesviruses. J Virol 2019; 93:JVI.01404-18. [PMID: 30567986 DOI: 10.1128/jvi.01404-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 11/20/2022] Open
Abstract
There is a large taxonomic gap in our understanding of mammalian herpesvirus genetics and evolution corresponding to those herpesviruses that infect marsupials, which diverged from eutherian mammals approximately 150 million years ago (mya). We compare the genomes of two marsupial gammaherpesviruses, Phascolarctid gammaherpesvirus 1 (PhaHV1) and Vombatid gammaherpesvirus 1 (VoHV1), which infect koalas (Phascolarc tos cinereus) and wombats (Vombatus ursinus), respectively. The core viral genomes were approximately 117 kbp and 110 kbp in length, respectively, sharing 69% pairwise nucleotide sequence identity. Phylogenetic analyses showed that PhaHV1 and VoHV1 formed a separate branch, which may indicate a new gammaherpesvirus genus. The genomes contained 60 predicted open reading frames (ORFs) homologous to those in eutherian herpesviruses and 20 ORFs not yet found in any other herpesvirus. Seven of these ORFs were shared by the two viruses, indicating that they were probably acquired prespeciation, approximately 30 to 40 mya. One of these shared genes encodes a putative nucleoside triphosphate diphosphohydrolase (NTPDase). NTPDases are usually found in mammals and higher-order eukaryotes, with a very small number being found in bacteria. This is the first time that an NTPDase has been identified in any viral genome. Interrogation of public transcriptomic data sets from two koalas identified PhaHV1-specific transcripts in multiple host tissues, including transcripts for the novel NTPDase. PhaHV1 ATPase activity was also demonstrated in vitro, suggesting that the encoded NTPDase is functional during viral infection. In mammals, NTPDases are important in downregulation of the inflammatory and immune responses, but the role of the PhaHV1 NTPDase during viral infection remains to be determined.IMPORTANCE The genome sequences of the koala and wombat gammaherpesviruses show that the viruses form a distinct branch, indicative of a novel genus within the Gammaherpesvirinae Their genomes contain several new ORFs, including ORFs encoding a β-galactoside α-2,6-sialyltransferase that is phylogenetically closest to poxvirus and insect homologs and the first reported viral NTPDase. NTPDases are ubiquitously expressed in mammals and are also present in several parasitic, fungal, and bacterial pathogens. In mammals, these cell surface-localized NTPDases play essential roles in thromboregulation, inflammation, and immune suppression. In this study, we demonstrate that the virus-encoded NTPDase is enzymatically active and is transcribed during natural infection of the host. Understanding how these enzymes benefit viruses can help to inform how they may cause disease or evade host immune defenses.
Collapse
|
14
|
Shannon Entropy to Evaluate Substitution Rate Variation Among Viral Nucleotide Positions in Datasets of Viral siRNAs. Methods Mol Biol 2019; 1746:187-195. [PMID: 29492896 DOI: 10.1007/978-1-4939-7683-6_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Next-generation sequencing has opened the door to the reconstruction of viral populations and examination of the composition of mutant spectra in infected cells, tissues, and host organisms. In this chapter we present details on the use of the Shannon entropy method to estimate the site-specific nucleotide relative variability of turnip crinkle virus, a positive (+) stranded RNA plant virus, in a large dataset of short RNAs of Cicer arietinum L., a natural reservoir of the virus. We propose this method as a viral metagenomics tool to provide a more detailed description of the viral quasispecies in infected plant tissue. Viral replicative fitness relates to an optimal composition of variants that provide the molecular basis of virus behavior in the complex environment of natural infections. A complete description of viral quasispecies may have implications in determining fitness landscapes for host-virus coexistence and help to design specific diagnostic protocols and antiviral strategies.
Collapse
|
15
|
Rousseau E, Tamisier L, Fabre F, Simon V, Szadkowski M, Bouchez O, Zanchetta C, Girardot G, Mailleret L, Grognard F, Palloix A, Moury B. Impact of genetic drift, selection and accumulation level on virus adaptation to its host plants. MOLECULAR PLANT PATHOLOGY 2018; 19:2575-2589. [PMID: 30074299 PMCID: PMC6638063 DOI: 10.1111/mpp.12730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The efficiency of plant major resistance genes is limited by the emergence and spread of resistance-breaking mutants. Modulation of the evolutionary forces acting on pathogen populations constitutes a promising way to increase the durability of these genes. We studied the effect of four plant traits affecting these evolutionary forces on the rate of resistance breakdown (RB) by a virus. Two of these traits correspond to virus effective population sizes (Ne ) at either plant inoculation or during infection. The third trait corresponds to differential selection exerted by the plant on the virus population. Finally, the fourth trait corresponds to within-plant virus accumulation (VA). These traits were measured experimentally on Potato virus Y (PVY) inoculated to a set of 84 pepper doubled-haploid lines, all carrying the same pvr23 resistance gene, but having contrasting genetic backgrounds. The lines showed extensive variation for the rate of pvr23 RB by PVY and for the four other traits of interest. A generalized linear model showed that three of these four traits, with the exception of Ne at inoculation, and several pairwise interactions between them had significant effects on RB. RB increased with increasing values of Ne during plant infection or VA. The effect of differential selection was more complex because of a strong interaction with VA. When VA was high, RB increased as the differential selection increased. An opposite relationship between RB and differential selection was observed when VA was low. This study provides a framework to select plants with appropriate virus evolution-related traits to avoid or delay RB.
Collapse
Affiliation(s)
- Elsa Rousseau
- Pathologie VégétaleINRA84140MontfavetFrance
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne UniversitéBiocore TeamSophia AntipolisFrance
- Université Côte d'Azur, INRA, CNRS, ISAFrance
- Present address:
IBM Almaden Research CenterSan Jose, CA 95120–6099USA
| | - Lucie Tamisier
- Pathologie VégétaleINRA84140MontfavetFrance
- GAFL, INRA84140MontfavetFrance
- Present address:
Université de Liège, Terra‐Gembloux Agro-Bio Tech, PlantPathology Laboratory, Passage des Déportés2, GemblouxBelgium, 5030
| | | | - Vincent Simon
- Pathologie VégétaleINRA84140MontfavetFrance
- UMR BFPINRA33882Villenave d'OrnonFrance
| | | | - Olivier Bouchez
- INRAGeT‐PlaGe, US 1426, Genotoul, 31326 Castanet‐TolosanFrance
| | | | | | - Ludovic Mailleret
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne UniversitéBiocore TeamSophia AntipolisFrance
- Université Côte d'Azur, INRA, CNRS, ISAFrance
| | - Frederic Grognard
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne UniversitéBiocore TeamSophia AntipolisFrance
| | | | | |
Collapse
|
16
|
Lumby CK, Nene NR, Illingworth CJR. A novel framework for inferring parameters of transmission from viral sequence data. PLoS Genet 2018; 14:e1007718. [PMID: 30325921 PMCID: PMC6203404 DOI: 10.1371/journal.pgen.1007718] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/26/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
Transmission between hosts is a critical part of the viral lifecycle. Recent studies of viral transmission have used genome sequence data to evaluate the number of particles transmitted between hosts, and the role of selection as it operates during the transmission process. However, the interpretation of sequence data describing transmission events is a challenging task. We here present a novel and comprehensive framework for using short-read sequence data to understand viral transmission events, designed for influenza virus, but adaptable to other viral species. Our approach solves multiple shortcomings of previous methods for this purpose; for example, we consider transmission as an event involving whole viruses, rather than sets of independent alleles. We demonstrate how selection during transmission and noisy sequence data may each affect naive inferences of the population bottleneck, accounting for these in our framework so as to achieve a correct inference. We identify circumstances in which selection for increased viral transmission may or may not be identified from data. Applying our method to experimental data in which transmission occurs in the presence of strong selection, we show that our framework grants a more quantitative insight into transmission events than previous approaches, inferring the bottleneck in a manner that accounts for selection, both for within-host virulence, and for inherent viral transmissibility. Our work provides new opportunities for studying transmission processes in influenza, and by extension, in other infectious diseases.
Collapse
Affiliation(s)
- Casper K. Lumby
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nuno R. Nene
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Christopher J. R. Illingworth
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Abstract
The study of tobacco mosaic virus and other tobamovirus species has greatly contributed to the development of all areas of virology, including virus evolution. Research with tobamoviruses has been pioneer, or particularly significant, in all major areas of research in this field, including: the characterization of the genetic diversity of virus populations, the mechanisms and rates of generation of genetic diversity, the analysis of the genetic structure of virus populations and of the factors that shape it, the adaptation of viruses to hosts and the evolution of host range, and the evolution of virus taxa and of virus-host interactions. Many of these continue to be hot topics in evolutionary biology, or have been identified recently as such, including (i) host-range evolution, (ii) predicting the overcoming of resistance in crops, (iii) trade-offs between virus life-history traits in virus evolution, and (iv) the codivergence of viruses and hosts at different taxonomical and spatial scales. Tobamoviruses may be particularly appropriate to address these topics with plant viruses, as they provide convenient experimental systems, and as the detailed knowledge on their molecular and structural biology allows the analysis of the mechanisms behind evolutionary processes. Also, the extensive information on parameters related to infection dynamics and population structure may facilitate the development of realistic models to predict virus evolution. Certainly, tobamoviruses will continue to be favorite system for the study of virus evolution.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
18
|
Pagán I. The diversity, evolution and epidemiology of plant viruses: A phylogenetic view. INFECTION GENETICS AND EVOLUTION 2018; 65:187-199. [PMID: 30055330 DOI: 10.1016/j.meegid.2018.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
During the past four decades, the scientific community has seen an exponential advance in the number, sophistication, and quality of molecular techniques and bioinformatics tools for the genetic characterization of plant virus populations. Predating these advances, the field of Phylogenetics has significantly contributed to understand important aspects of plant virus evolution. This review aims at summarizing the impact of Phylogenetics in the current knowledge on three major aspects of plant virus evolution that have benefited from the development of phylogenetic inference: (1) The identification and classification of plant virus diversity. (2) The mechanisms and forces shaping the evolution of plant virus populations. (3) The understanding of the interaction between plant virus evolution, epidemiology and ecology. The work discussed here highlights the important role of phylogenetic approaches in the study of the dynamics of plant virus populations.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain.
| |
Collapse
|
19
|
Díaz-Martínez L, Brichette-Mieg I, Pineño-Ramos A, Domínguez-Huerta G, Grande-Pérez A. Lethal mutagenesis of an RNA plant virus via lethal defection. Sci Rep 2018; 8:1444. [PMID: 29362502 PMCID: PMC5780445 DOI: 10.1038/s41598-018-19829-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Lethal mutagenesis is an antiviral therapy that relies on increasing the viral mutation rate with mutagenic nucleoside or base analogues. Currently, the molecular mechanisms that lead to virus extinction through enhanced mutagenesis are not fully understood. Increasing experimental evidence supports the lethal defection model of lethal mutagenesis of RNA viruses, where replication-competent-defectors drive infective virus towards extinction. Here, we address lethal mutagenesis in vivo using 5-fluorouracil (5-FU) during the establishment of tobacco mosaic virus (TMV) systemic infections in N. tabacum. The results show that 5-FU decreased the infectivity of TMV without affecting its viral load. Analysis of molecular clones spanning two genomic regions showed an increase of the FU-related base transitions A → G and U → C. Although the mutation frequency or the number of mutations per molecule did not increase, the complexity of the mutant spectra and the distribution of the mutations were altered. Overall, our results suggest that 5-FU antiviral effect on TMV is associated with the perturbation of the mutation-selection balance in the genomic region of the RNA-dependent RNA polymerase (RdRp). Our work supports the lethal defection model for lethal mutagenesis in vivo in a plant RNA virus and opens the way to study lethal mutagens in plant-virus systems.
Collapse
Affiliation(s)
- Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Isabel Brichette-Mieg
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Axier Pineño-Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Guillermo Domínguez-Huerta
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental "La Mayora", 29750, Algarrobo-Costa, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain.
| |
Collapse
|
20
|
Rousseau E, Moury B, Mailleret L, Senoussi R, Palloix A, Simon V, Valière S, Grognard F, Fabre F. Estimating virus effective population size and selection without neutral markers. PLoS Pathog 2017; 13:e1006702. [PMID: 29155894 PMCID: PMC5720836 DOI: 10.1371/journal.ppat.1006702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/07/2017] [Accepted: 10/19/2017] [Indexed: 12/04/2022] Open
Abstract
By combining high-throughput sequencing (HTS) with experimental evolution, we can observe the within-host dynamics of pathogen variants of biomedical or ecological interest. We studied the evolutionary dynamics of five variants of Potato virus Y (PVY) in 15 doubled-haploid lines of pepper. All plants were inoculated with the same mixture of virus variants and variant frequencies were determined by HTS in eight plants of each pepper line at each of six sampling dates. We developed a method for estimating the intensities of selection and genetic drift in a multi-allelic Wright-Fisher model, applicable whether these forces are strong or weak, and in the absence of neutral markers. This method requires variant frequency determination at several time points, in independent hosts. The parameters are the selection coefficients for each PVY variant and four effective population sizes Ne at different time-points of the experiment. Numerical simulations of asexual haploid Wright-Fisher populations subjected to contrasting genetic drift (Ne ∈ [10, 2000]) and selection (|s| ∈ [0, 0.15]) regimes were used to validate the method proposed. The experiment in closely related pepper host genotypes revealed that viruses experienced a considerable diversity of selection and genetic drift regimes. The resulting variant dynamics were accurately described by Wright-Fisher models. The fitness ranks of the variants were almost identical between host genotypes. By contrast, the dynamics of Ne were highly variable, although a bottleneck was often identified during the systemic movement of the virus. We demonstrated that, for a fixed initial PVY population, virus effective population size is a heritable trait in plants. These findings pave the way for the breeding of plant varieties exposing viruses to stronger genetic drift, thereby slowing virus adaptation. A growing number of experimental evolution studies are using an “evolve-and-resequence” approach to observe the within-host dynamics of pathogen variants of biomedical or ecological interest. The resulting data are particularly appropriate for studying the effects of evolutionary forces, such as selection and genetic drift, on the emergence of new pathogen variants. However, it remains challenging to unravel the effects of selection and genetic drift in the absence of neutral markers, a situation frequently encountered for microbes, such as viruses, due to their small constrained genomes. Using such an approach on a plant virus, we observed that the same set of virus variants displayed highly diverse dynamics in closely related plant genotypes. We developed and validated a method that does not require neutral markers, for estimating selection coefficients and effective population sizes from these experimental evolution data. We found that the viruses experienced considerable diversity in genetic drift regimes, depending on host genotype. Importantly, genetic drift experienced by virus populations was shown to be a heritable plant trait. These findings pave the way for the breeding of plant varieties exposing viruses to strong genetic drift, thereby slowing virus adaptation.
Collapse
Affiliation(s)
- Elsa Rousseau
- Université Côte d’Azur, Inria, INRA, CNRS, UPMC Univ Paris 06, Biocore team, Sophia Antipolis, France
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
- Pathologie Végétale, INRA, 84140 Montfavet, France
- * E-mail: (ER); (FF)
| | - Benoît Moury
- Pathologie Végétale, INRA, 84140 Montfavet, France
| | - Ludovic Mailleret
- Université Côte d’Azur, Inria, INRA, CNRS, UPMC Univ Paris 06, Biocore team, Sophia Antipolis, France
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | | | | | - Vincent Simon
- Pathologie Végétale, INRA, 84140 Montfavet, France
- UMR BFP, INRA, Villenave d’Ornon, France
| | - Sophie Valière
- GeT-PlaGe, INRA, Genotoul, Castanet-tolosan, France
- UAR DEPT GA, INRA, Castanet-Tolosan, France
| | - Frédéric Grognard
- Université Côte d’Azur, Inria, INRA, CNRS, UPMC Univ Paris 06, Biocore team, Sophia Antipolis, France
| | - Frédéric Fabre
- UMR SAVE, INRA, Villenave d’Ornon, France
- * E-mail: (ER); (FF)
| |
Collapse
|
21
|
Sobel Leonard A, Weissman DB, Greenbaum B, Ghedin E, Koelle K. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus. J Virol 2017; 91:e00171-17. [PMID: 28468874 PMCID: PMC5487570 DOI: 10.1128/jvi.00171-17] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022] Open
Abstract
The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors.IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent advances in sequencing technology have enabled bottleneck size estimation from pathogen genetic data, although there is not yet a consistency in the statistical methods used. Here, we introduce a new approach to infer the bottleneck size that accounts for variant identification protocols and noise during pathogen replication. We show that failing to account for these factors leads to an underestimation of bottleneck sizes. We apply this method to an existing data set of human influenza virus infections, showing that transmission is governed by a loose, but highly variable, transmission bottleneck whose size is positively associated with the severity of infection of the donor. Beyond advancing our understanding of influenza virus transmission, we hope that this work will provide a standardized statistical approach for bottleneck size estimation for viral pathogens.
Collapse
Affiliation(s)
| | | | - Benjamin Greenbaum
- Tisch Cancer Institute, Departments of Medicine, Oncological Sciences, and Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, and College of Global Public Health, New York University, New York, New York, USA
| | - Katia Koelle
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
22
|
Tamisier L, Rousseau E, Barraillé S, Nemouchi G, Szadkowski M, Mailleret L, Grognard F, Fabre F, Moury B, Palloix A. Quantitative trait loci in pepper control the effective population size of two RNA viruses at inoculation. J Gen Virol 2017; 98:1923-1931. [PMID: 28691663 DOI: 10.1099/jgv.0.000835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Infection of plants by viruses is a complex process involving several steps: inoculation into plant cells, replication in inoculated cells and plant colonization. The success of the different steps depends, in part, on the viral effective population size (Ne), defined as the number of individuals passing their genes to the next generation. During infection, the virus population will undergo bottlenecks, leading to drastic reductions in Ne and, potentially, to the loss of the fittest variants. Therefore, it is crucial to better understand how plants affect Ne. We aimed to (i) identify the plant genetic factors controlling Ne during inoculation, (ii) understand the mechanisms used by the plant to control Ne and (iii) compare these genetic factors with the genes controlling plant resistance to viruses. Ne was measured in a doubled-haploid population of Capsicum annuum. Plants were inoculated with either a Potato virus Y (PVY) construct expressing the green fluorescent protein or a necrotic variant of Cucumber mosaic virus (CMV). Newas assessed by counting the number of primary infection foci on cotyledons for PVY or the number of necrotic local lesions on leaves for CMV. The number of foci and lesions was correlated (r=0.57) and showed a high heritability (h2=0.93 for PVY and h2=0.98 for CMV). The Ne of the two viruses was controlled by both common quantitative trait loci (QTLs) and virus-specific QTLs, indicating the contribution of general and specific mechanisms. The PVY-specific QTL colocalizes with a QTL that reduces PVY accumulation and the capacity to break down a major-effect resistance gene.
Collapse
Affiliation(s)
- Lucie Tamisier
- INRA, UR1052 GAFL, Unité de Génétique et Amélioration des Fruits et Légumes, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France.,INRA, UR407 PV, Unité de Pathologie Végétale, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| | - Elsa Rousseau
- INRIA, Biocore Team, F-06902 Sophia Antipolis, France.,INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, Sophia Antipolis, France.,INRA, UR407 PV, Unité de Pathologie Végétale, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| | - Sebastien Barraillé
- INRA, UR407 PV, Unité de Pathologie Végétale, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| | - Ghislaine Nemouchi
- INRA, UR1052 GAFL, Unité de Génétique et Amélioration des Fruits et Légumes, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| | - Marion Szadkowski
- INRA, UR1052 GAFL, Unité de Génétique et Amélioration des Fruits et Légumes, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| | - Ludovic Mailleret
- INRIA, Biocore Team, F-06902 Sophia Antipolis, France.,INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | | | - Frederic Fabre
- INRA, UMR 1065 Santé et Agroécologie du Vignoble, BP 81, 33883 Villenave d'Ornon cedex, France
| | - Benoit Moury
- INRA, UR407 PV, Unité de Pathologie Végétale, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| | - Alain Palloix
- INRA, UR1052 GAFL, Unité de Génétique et Amélioration des Fruits et Légumes, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| |
Collapse
|
23
|
Zwart MP, Elena SF. Matters of Size: Genetic Bottlenecks in Virus Infection and Their Potential Impact on Evolution. Annu Rev Virol 2016; 2:161-79. [PMID: 26958911 DOI: 10.1146/annurev-virology-100114-055135] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For virus infections of multicellular hosts, narrow genetic bottlenecks during transmission and within-host spread appear to be widespread. These bottlenecks will affect the maintenance of genetic variation in a virus population and the prevalence of mixed-strain infections, thereby ultimately determining the strength with which different random forces act during evolution. Here we consider different approaches for estimating bottleneck sizes and weigh their merits. We then review quantitative estimates of bottleneck size during cellular infection, within-host spread, horizontal transmission, and finally vertical transmission. In most cases we find that bottlenecks do regularly occur, although in many cases they appear to be virion-concentration dependent. Finally, we consider the evolutionary implications of genetic bottlenecks during virus infection. Although on average strong bottlenecks will lead to declines in fitness, we consider a number of scenarios in which bottlenecks could also be advantageous for viruses.
Collapse
Affiliation(s)
- Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politècnica de València, 46022 València, Spain; .,Institute of Theoretical Physics, University of Cologne, 50937 Cologne, Germany;
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politècnica de València, 46022 València, Spain; .,The Santa Fe Institute, Santa Fe, New Mexico 87501
| |
Collapse
|
24
|
Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. MOLECULAR PLANT PATHOLOGY 2016; 17:1140-1153. [PMID: 26808139 DOI: 10.1111/mpp.123757:1140-1153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 05/28/2023]
Abstract
Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N' and C' termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off-target sites. Non-transgenic heterozygous eif4e mutant plants were selected for the production of non-transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus-W. In contrast, heterozygous mutant and non-mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non-transgenically, not visibly affecting plant development and without long-term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants.
Collapse
Affiliation(s)
| | - Marina Brumin
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Dalia Wolf
- Department of Vegetable Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Chen Klap
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Mali Pearlsman
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Amir Sherman
- Department of Fruit Tree Sciences, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Tzahi Arazi
- Department of Ornamental Plants and Agricultural Biotechnology, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Amit Gal-On
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| |
Collapse
|
25
|
Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. MOLECULAR PLANT PATHOLOGY 2016; 17:1140-53. [PMID: 26808139 PMCID: PMC6638350 DOI: 10.1111/mpp.12375] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 05/17/2023]
Abstract
Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N' and C' termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off-target sites. Non-transgenic heterozygous eif4e mutant plants were selected for the production of non-transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus-W. In contrast, heterozygous mutant and non-mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non-transgenically, not visibly affecting plant development and without long-term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants.
Collapse
Affiliation(s)
| | - Marina Brumin
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Dalia Wolf
- Department of Vegetable Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Chen Klap
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Mali Pearlsman
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Amir Sherman
- Department of Fruit Tree Sciences, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Tzahi Arazi
- Department of Ornamental Plants and Agricultural Biotechnology, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| | - Amit Gal-On
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet-Dagan, 50250, Israel
| |
Collapse
|
26
|
Cervera H, Elena SF. Genetic variation in fitness within a clonal population of a plant RNA virus. Virus Evol 2016; 2:vew006. [PMID: 27774299 PMCID: PMC4989883 DOI: 10.1093/ve/vew006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 01/01/2023] Open
Abstract
A long-standing observation in evolutionary virology is that RNA virus populations are highly polymorphic, composed by a mixture of genotypes whose abundances in the population depend on complex interaction between fitness differences, mutational coupling and genetic drift. It was shown long ago, though in cell cultures, that most of these genotypes had lower fitness than the population they belong, an observation that explained why single-virion passages turned on Muller’s ratchet while very large population passages resulted in fitness increases in novel environments. Here we report the results of an experiment specifically designed to evaluate in vivo the fitness differences among the subclonal components of a clonal population of the plant RNA virus tobacco etch potyvirus (TEV). Over 100 individual biological subclones from a TEV clonal population well adapted to the natural tobacco host were obtained by infectivity assays on a local lesion host. The replicative fitness of these subclones was then evaluated during infection of tobacco relative to the fitness of large random samples taken from the starting clonal population. Fitness was evaluated at increasing number of days post-inoculation. We found that at early days, the average fitness of subclones was significantly lower than the fitness of the clonal population, thus confirming previous observations that most subclones contained deleterious mutations. However, as the number of days of viral replication increases, population size expands exponentially, more beneficial and compensatory mutations are produced, and selection becomes more effective in optimizing fitness, the differences between subclones and the population disappeared.
Collapse
Affiliation(s)
- Héctor Cervera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain; The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
27
|
Bartels M, French R, Graybosch RA, Tatineni S. Triticum mosaic virus exhibits limited population variation yet shows evidence of parallel evolution after replicated serial passage in wheat. Virology 2016; 492:92-100. [PMID: 26914507 DOI: 10.1016/j.virol.2016.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 10/22/2022]
Abstract
An infectious cDNA clone of Triticum mosaic virus (TriMV) (genus Poacevirus; family Potyviridae) was used to establish three independent lineages in wheat to examine intra-host population diversity levels within protein 1 (P1) and coat protein (CP) cistrons over time. Genetic variation was assessed at passages 9, 18 and 24 by single-strand conformation polymorphism, followed by nucleotide sequencing. The founding P1 region genotype was retained at high frequencies in most lineage/passage populations, while the founding CP genotype disappeared after passage 18 in two lineages. We found that rare TriMV genotypes were present only transiently and lineages followed independent evolutionary trajectories, suggesting that genetic drift dominates TriMV evolution. These results further suggest that experimental populations of TriMV exhibit lower mutant frequencies than that of Wheat streak mosaic virus (genus Tritimovirus; family Potyviridae) in wheat. Nevertheless, there was evidence for parallel evolution at a synonymous site in the TriMV CP cistron.
Collapse
Affiliation(s)
- Melissa Bartels
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Roy French
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Robert A Graybosch
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
28
|
Random Plant Viral Variants Attain Temporal Advantages During Systemic Infections and in Turn Resist other Variants of the Same Virus. Sci Rep 2015; 5:15346. [PMID: 26481091 PMCID: PMC4612314 DOI: 10.1038/srep15346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023] Open
Abstract
Infection of plants with viruses containing multiple variants frequently leads to dominance by a few random variants in the systemically infected leaves (SLs), for which a plausible explanation is lacking. We show here that SL dominance by a given viral variant is adequately explained by its fortuitous lead in systemic spread, coupled with its resistance to superinfection by other variants. We analyzed the fate of a multi-variant turnip crinkle virus (TCV) population in Arabidopsis and N. benthamiana plants. Both wild-type and RNA silencing-defective plants displayed a similar pattern of random dominance by a few variant genotypes, thus discounting a prominent role for RNA silencing. When introduced to plants sequentially as two subpopulations, a twelve-hour head-start was sufficient for the first set to dominate. Finally, SLs of TCV-infected plants became highly resistant to secondary invasions of another TCV variant. We propose that random distribution of variant foci on inoculated leaves allows different variants to lead systemic movement in different plants. The leading variants then colonize large areas of SLs, and resist the superinfection of lagging variants in the same areas. In conclusion, superinfection resistance is the primary driver of random enrichment of viral variants in systemically infected plants.
Collapse
|
29
|
Murray GGR, Wang F, Harrison EM, Paterson GK, Mather AE, Harris SR, Holmes MA, Rambaut A, Welch JJ. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol Evol 2015; 7:80-89. [PMID: 27110344 PMCID: PMC4832290 DOI: 10.1111/2041-210x.12466] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/23/2015] [Indexed: 12/23/2022]
Abstract
‘Dated‐tip’ methods of molecular dating use DNA sequences sampled at different times, to estimate the age of their most recent common ancestor. Several tests of ‘temporal signal’ are available to determine whether data sets are suitable for such analysis. However, it remains unclear whether these tests are reliable. We investigate the performance of several tests of temporal signal, including some recently suggested modifications. We use simulated data (where the true evolutionary history is known), and whole genomes of methicillin‐resistant Staphylococcus aureus (to show how particular problems arise with real‐world data sets). We show that all of the standard tests of temporal signal are seriously misleading for data where temporal and genetic structures are confounded (i.e. where closely related sequences are more likely to have been sampled at similar times). This is not an artefact of genetic structure or tree shape per se, and can arise even when sequences have measurably evolved during the sampling period. More positively, we show that a ‘clustered permutation’ approach introduced by Duchêne et al. (Molecular Biology and Evolution, 32, 2015, 1895) can successfully correct for this artefact in all cases and introduce techniques for implementing this method with real data sets. The confounding of temporal and genetic structures may be difficult to avoid in practice, particularly for outbreaks of infectious disease, or when using ancient DNA. Therefore, we recommend the use of ‘clustered permutation’ for all analyses. The failure of the standard tests may explain why different methods of dating pathogen origins have reached such wildly different conclusions.
Collapse
Affiliation(s)
- Gemma G R Murray
- Department of Genetics University of Cambridge Downing Street Cambridge CB2 3EH UK
| | - Fang Wang
- Department of Genetics University of Cambridge Downing Street Cambridge CB2 3EH UK
| | - Ewan M Harrison
- Department of Veterinary Medicine University of Cambridge Madingley Road Cambridge CB3 0ES UK
| | - Gavin K Paterson
- Department of Veterinary Medicine University of Cambridge Madingley Road Cambridge CB3 0ESUK; School of Biological, Biomedical and Environmental Sciences University of Hull Cottingham Road Hull HU6 7RX UK
| | - Alison E Mather
- Department of Veterinary Medicine University of Cambridge Madingley Road Cambridge CB3 0ESUK; Wellcome Trust Sanger Institute Hinxton CB10 1SA UK
| | | | - Mark A Holmes
- Department of Veterinary Medicine University of Cambridge Madingley Road Cambridge CB3 0ES UK
| | - Andrew Rambaut
- Institute of Evolutionary Biology University of Edinburgh King's Buildings Edinburgh EH9 3FL UK
| | - John J Welch
- Department of Genetics University of Cambridge Downing Street Cambridge CB2 3EH UK
| |
Collapse
|
30
|
Seabloom EW, Borer ET, Gross K, Kendig AE, Lacroix C, Mitchell CE, Mordecai EA, Power AG. The community ecology of pathogens: coinfection, coexistence and community composition. Ecol Lett 2015; 18:401-15. [PMID: 25728488 DOI: 10.1111/ele.12418] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/20/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Disease and community ecology share conceptual and theoretical lineages, and there has been a resurgence of interest in strengthening links between these fields. Building on recent syntheses focused on the effects of host community composition on single pathogen systems, we examine pathogen (microparasite) communities using a stochastic metacommunity model as a starting point to bridge community and disease ecology perspectives. Such models incorporate the effects of core community processes, such as ecological drift, selection and dispersal, but have not been extended to incorporate host-pathogen interactions, such as immunosuppression or synergistic mortality, that are central to disease ecology. We use a two-pathogen susceptible-infected (SI) model to fill these gaps in the metacommunity approach; however, SI models can be intractable for examining species-diverse, spatially structured systems. By placing disease into a framework developed for community ecology, our synthesis highlights areas ripe for progress, including a theoretical framework that incorporates host dynamics, spatial structuring and evolutionary processes, as well as the data needed to test the predictions of such a model. Our synthesis points the way for this framework and demonstrates that a deeper understanding of pathogen community dynamics will emerge from approaches working at the interface of disease and community ecology.
Collapse
Affiliation(s)
- Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zwart MP, Elena SF. Testing the independent action hypothesis of plant pathogen mode of action: a simple and powerful new approach. PHYTOPATHOLOGY 2015; 105:18-25. [PMID: 25098495 DOI: 10.1094/phyto-04-14-0111-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The independent action hypothesis is a simple model of pathogen infection that can make many useful predictions on infection kinetics and, therefore, a number of different tests of independent action have been developed. However, some of these analyses are rather sophisticated, limiting their appeal to experimentalists, and it is also unclear how well the different tests perform. Here, we developed and evaluated a simple and robust new test of independent action. Our new test is based on using a constant inoculum dose of one pathogen variant, varying the dose of a second variant, and then quantifying the infection response for the first variant. We simulated infection data in which we introduced deviations from independent action, experimental variation, or both. Simulations showed that our new procedure has many advantages over the existing tests of independent action, especially if only systemic-infection data are available. We also performed experimental tests of our new procedure using two marked Tobacco etch virus (TEV) variants. We found minor deviations from the independent action model, which were not detected by previous tests using existing methods, exemplifying the utility of this approach. We discuss the implications for TEV infection kinetics and consider how to reconcile different dose-dependent effects.
Collapse
|
32
|
Arboviral bottlenecks and challenges to maintaining diversity and fitness during mosquito transmission. Viruses 2014; 6:3991-4004. [PMID: 25341663 PMCID: PMC4213574 DOI: 10.3390/v6103991] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022] Open
Abstract
The term arbovirus denotes viruses that are transmitted by arthropods, such as ticks, mosquitoes, and other biting arthropods. The infection of these vectors produces a certain set of evolutionary pressures on the virus; involving migration from the midgut, where the blood meal containing the virus is processed, to the salivary glands, in order to transmit the virus to the next host. During this process the virus is subject to numerous bottlenecks, stochastic events that significantly reduce the number of viral particles that are able to infect the next stage. This article reviews the latest research on the bottlenecks that occur in arboviruses and the way in which these affect the evolution and fitness of these viruses. In particular we focus on the latest research on three important arboviruses, West Nile virus, Venezuelan equine encephalitis virus and Chikungunya viruses and compare the differing effects of the mosquito bottlenecks on these viruses as well as other evolutionary pressures that affect their evolution and transmission.
Collapse
|
33
|
Dunham JP, Simmons HE, Holmes EC, Stephenson AG. Analysis of viral (zucchini yellow mosaic virus) genetic diversity during systemic movement through a Cucurbita pepo vine. Virus Res 2014; 191:172-179. [PMID: 25107623 PMCID: PMC4176823 DOI: 10.1016/j.virusres.2014.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/23/2014] [Accepted: 07/26/2014] [Indexed: 01/04/2023]
Abstract
Determining the extent and structure of intra-host genetic diversity and the magnitude and impact of population bottlenecks is central to understanding the mechanisms of viral evolution. To determine the nature of viral evolution following systemic movement through a plant, we performed deep sequencing of 23 leaves that grew sequentially along a single Cucurbita pepo vine that was infected with zucchini yellow mosaic virus (ZYMV), and on a leaf that grew in on a side branch. Strikingly, of 112 genetic (i.e. sub-consensus) variants observed in the data set as a whole, only 22 were found in multiple leaves. Similarly, only three of the 13 variants present in the inoculating population were found in the subsequent leaves on the vine. Hence, it appears that systemic movement is characterized by sequential population bottlenecks, although not sufficient to reduce the population to a single virion as multiple variants were consistently transmitted between leaves. In addition, the number of variants within a leaf increases as a function of distance from the inoculated (source) leaf, suggesting that the circulating sap may serve as a continual source of virus. Notably, multiple mutational variants were observed in the cylindrical inclusion (CI) protein (known to be involved in both cell-to-cell and systemic movement of the virus) that were present in multiple (19/24) leaf samples. These mutations resulted in a conformational change, suggesting that they might confer a selective advantage in systemic movement within the vine. Overall, these data reveal that bottlenecks occur during systemic movement, that variants circulate in the phloem sap throughout the infection process, and that important conformational changes in CI protein may arise during individual infections.
Collapse
Affiliation(s)
- J P Dunham
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - H E Simmons
- Seed Science Center, Iowa State University, Ames, IA 50011, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - E C Holmes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Marie Bashir Institute for Emerging Diseases & Biosecurity, Charles Perkins Centre, School of Biological Sciences and Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - A G Stephenson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
34
|
Abstract
Viruses are common agents of plant infectious diseases. During last decades, worldwide agriculture production has been compromised by a series of epidemics caused by new viruses that spilled over from reservoir species or by new variants of classic viruses that show new pathogenic and epidemiological properties. Virus emergence has been generally associated with ecological change or with intensive agronomical practices. However, the complete picture is much more complex since the viral populations constantly evolve and adapt to their new hosts and vectors. This chapter puts emergence of plant viruses into the framework of evolutionary ecology, genetics, and epidemiology. We will stress that viral emergence begins with the stochastic transmission of preexisting genetic variants from the reservoir to the new host, whose fate depends on their fitness on each hosts, followed by adaptation to new hosts or vectors, and finalizes with an efficient epidemiological spread.
Collapse
Affiliation(s)
- Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Campus UPV, València, Spain; The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, and ETSI Agrónomos, UPM, Campus de Montegancedo, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, and ETSI Agrónomos, UPM, Campus de Montegancedo, Madrid, Spain.
| |
Collapse
|
35
|
Transcriptomic analysis of Prunus domestica undergoing hypersensitive response to plum pox virus infection. PLoS One 2014; 9:e100477. [PMID: 24959894 PMCID: PMC4069073 DOI: 10.1371/journal.pone.0100477] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/25/2014] [Indexed: 12/03/2022] Open
Abstract
Plum pox virus (PPV) infects Prunus trees around the globe, posing serious fruit production problems and causing severe economic losses. One variety of Prunus domestica, named ‘Jojo’, develops a hypersensitive response to viral infection. Here we compared infected and non-infected samples using next-generation RNA sequencing to characterize the genetic complexity of the viral population in infected samples and to identify genes involved in development of the resistance response. Analysis of viral reads from the infected samples allowed reconstruction of a PPV-D consensus sequence. De novo reconstruction showed a second viral isolate of the PPV-Rec strain. RNA-seq analysis of PPV-infected ‘Jojo’ trees identified 2,234 and 786 unigenes that were significantly up- or downregulated, respectively (false discovery rate; FDR≤0.01). Expression of genes associated with defense was generally enhanced, while expression of those related to photosynthesis was repressed. Of the total of 3,020 differentially expressed unigenes, 154 were characterized as potential resistance genes, 10 of which were included in the NBS-LRR type. Given their possible role in plant defense, we selected 75 additional unigenes as candidates for further study. The combination of next-generation sequencing and a Prunus variety that develops a hypersensitive response to PPV infection provided an opportunity to study the factors involved in this plant defense mechanism. Transcriptomic analysis presented an overview of the changes that occur during PPV infection as a whole, and identified candidates suitable for further functional characterization.
Collapse
|
36
|
Phylogenetic analysis of New Zealand tomato spotted wilt virus isolates suggests likely incursion history scenarios and mechanisms for population evolution. Arch Virol 2014; 159:993-1003. [PMID: 24232914 DOI: 10.1007/s00705-013-1909-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/27/2013] [Indexed: 10/26/2022]
Abstract
Tomato spotted wilt virus (TSWV) is an internationally significant pathogen with a wide host range, vectored by thrips. We have studied the sequence variation and evolutionary mechanisms at play in parts of the L, M and S subgenomes of 23 New Zealand TSWV isolates collected between 1992 and 2009, aiming to identify the possible geographic origins of isolates. Maximum-likelihood-based phylogenetic analyses of New Zealand and overseas TSWV isolates placed the L and M subgenome sequences of two isolates (MAF04 and PFR04) in distinct clades composed primarily of Korean, Japanese and Chinese isolates, in contrast to the remaining 21 isolates, which clustered with a cosmopolitan group of isolates. The nucleocapsid (N) gene sequences of MAF04 and PFR04 plus MAF02 clustered with Japanese isolates. Consequently, we postulate that these isolates may represent a distinct incursion into New Zealand, but we do not have enough evidence to indicate an incursion pathway. Alternately, these isolates may have arrived with an incursion that included a mixture of TSWV isolates of diverse international origins. The sequences of four of the TSWV isolates contained a number of sites with a mixture of nucleotides, suggesting that these isolates either consisted of several sequence variants or were from plants with mixed infections. One isolate (MAF02) was shown to be a either a reassortant or an S subgenome recombinant. Large amounts of low-level polymorphism were detected with low amino acid change fixation rates (purifying selection). Negative selection was indicated at four amino acid sites in the New Zealand TSWV N gene sequences.
Collapse
|
37
|
Abstract
ABSTRACT: It is well established that RNA viruses show extremely high mutation rates, but less attention has been paid to the fact that their mutation rates also vary strongly, from 10-6 to 10-4 substitutions per nucleotide per cell infection. The causes explaining this variability are still poorly understood, but candidate factors are the viral genome size and polarity, host-specific gene expression patterns, or the intracellular environment. Differences between animal and plant viruses, or between arthropod-borne and directly transmitted viruses have also been postulated. Finally, RNA viruses may be able to regulate the rate at which new mutations spread in the population by modifying features of the viral infection cycle, such as lysis time.
Collapse
Affiliation(s)
- Marine Combe
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Valencia, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Valencia, Spain
- Departament de Genetica, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
38
|
Alabi OJ, Al Rwahnih M, Mekuria TA, Naidu RA. Genetic diversity of Grapevine virus A in Washington and California vineyards. PHYTOPATHOLOGY 2014; 104:548-560. [PMID: 24168043 DOI: 10.1094/phyto-06-13-0179-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Grapevine virus A (GVA; genus Vitivirus, family Betaflexiviridae) has been implicated with the Kober stem grooving disorder of the rugose wood disease complex. In this study, 26 isolates of GVA recovered from wine grape (Vitis vinifera) cultivars from California and Washington were analyzed for their genetic diversity. An analysis of a portion of the RNA-dependent RNA polymerase (RdRp) and complete coat protein (CP) sequences revealed intra- and inter-isolate sequence diversity. Our results indicated that both RdRp and CP are under strong negative selection based on the normalized values for the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site. A global phylogenetic analysis of CP sequences revealed segregation of virus isolates into four major clades with no geographic clustering. In contrast, the RdRp-based phylogenetic tree indicated segregation of GVA isolates from California and Washington into six clades, independent of geographic origin or cultivar. Phylogenetic network coupled with recombination analyses showed putative recombination events in both RdRp and CP sequence data sets, with more of these events located in the CP sequence. The preponderance of divergent variants of GVA co-replicating within individual grapevines could increase viral genotypic complexity with implications for phylogenetic analysis and evolutionary history of the virus. The knowledge of genetic diversity of GVA generated in this study will provide a foundation for elucidating the epidemiological characteristics of virus populations at different scales and implementing appropriate management strategies for minimizing the spread of genetic variants of the virus by vectors and via planting materials supplied to nurseries and grape growers.
Collapse
|
39
|
Gerlini A, Colomba L, Furi L, Braccini T, Manso AS, Pammolli A, Wang B, Vivi A, Tassini M, van Rooijen N, Pozzi G, Ricci S, Andrew PW, Koedel U, Moxon ER, Oggioni MR. The role of host and microbial factors in the pathogenesis of pneumococcal bacteraemia arising from a single bacterial cell bottleneck. PLoS Pathog 2014; 10:e1004026. [PMID: 24651834 PMCID: PMC3961388 DOI: 10.1371/journal.ppat.1004026] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 02/10/2014] [Indexed: 01/27/2023] Open
Abstract
The pathogenesis of bacteraemia after challenge with one million pneumococci of three isogenic variants was investigated. Sequential analyses of blood samples indicated that most episodes of bacteraemia were monoclonal events providing compelling evidence for a single bacterial cell bottleneck at the origin of invasive disease. With respect to host determinants, results identified novel properties of splenic macrophages and a role for neutrophils in early clearance of pneumococci. Concerning microbial factors, whole genome sequencing provided genetic evidence for the clonal origin of the bacteraemia and identified SNPs in distinct sub-units of F0/F1 ATPase in the majority of the ex vivo isolates. When compared to parental organisms of the inoculum, ex-vivo pneumococci with mutant alleles of the F0/F1 ATPase had acquired the capacity to grow at low pH at the cost of the capacity to grow at high pH. Although founded by a single cell, the genotypes of pneumococci in septicaemic mice indicate strong selective pressure for fitness, emphasising the within-host complexity of the pathogenesis of invasive disease.
Collapse
Affiliation(s)
- Alice Gerlini
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Leonarda Colomba
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Leonardo Furi
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Tiziana Braccini
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Ana Sousa Manso
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Andrea Pammolli
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
| | - Bo Wang
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | | | | | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Gianni Pozzi
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Susanna Ricci
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Peter W. Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Uwe Koedel
- Department of Neurology, Ludwig-Maximilians University of Munich, München, Germany
| | - E. Richard Moxon
- Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Marco R. Oggioni
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
40
|
Tromas N, Zwart MP, Lafforgue G, Elena SF. Within-host spatiotemporal dynamics of plant virus infection at the cellular level. PLoS Genet 2014; 10:e1004186. [PMID: 24586207 PMCID: PMC3937225 DOI: 10.1371/journal.pgen.1004186] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/06/2014] [Indexed: 11/27/2022] Open
Abstract
A multicellular organism is not a monolayer of cells in a flask; it is a complex, spatially structured environment, offering both challenges and opportunities for viruses to thrive. Whereas virus infection dynamics at the host and within-cell levels have been documented, the intermediate between-cell level remains poorly understood. Here, we used flow cytometry to measure the infection status of thousands of individual cells in virus-infected plants. This approach allowed us to determine accurately the number of cells infected by two virus variants in the same host, over space and time as the virus colonizes the host. We found a low overall frequency of cellular infection (<0.3), and few cells were coinfected by both virus variants (<0.1). We then estimated the cellular contagion rate (R), the number of secondary infections per infected cell per day. R ranged from 2.43 to values not significantly different from zero, and generally decreased over time. Estimates of the cellular multiplicity of infection (MOI), the number of virions infecting a cell, were low (<1.5). Variance of virus-genotype frequencies increased strongly from leaf to cell levels, in agreement with a low MOI. Finally, there were leaf-dependent differences in the ease with which a leaf could be colonized, and the number of virions effectively colonizing a leaf. The modeling of infection patterns suggests that the aggregation of virus-infected cells plays a key role in limiting spread; matching the observation that cell-to-cell movement of plant viruses can result in patches of infection. Our results show that virus expansion at the between-cell level is restricted, probably due to the host environment and virus infection itself.
Collapse
Affiliation(s)
- Nicolas Tromas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Guillaume Lafforgue
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
41
|
Zwart MP, Willemsen A, Daròs JA, Elena SF. Experimental evolution of pseudogenization and gene loss in a plant RNA virus. Mol Biol Evol 2014; 31:121-34. [PMID: 24109604 PMCID: PMC3879446 DOI: 10.1093/molbev/mst175] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Viruses have evolved highly streamlined genomes and a variety of mechanisms to compress them, suggesting that genome size is under strong selection. Horizontal gene transfer has, on the other hand, played an important role in virus evolution. However, evolution cannot integrate initially nonfunctional sequences into the viral genome if they are rapidly purged by selection. Here we report on the experimental evolution of pseudogenization in virus genomes using a plant RNA virus expressing a heterologous gene. When long 9-week passages were performed, the added gene was lost in all lineages, whereas viruses with large genomic deletions were fixed in only two out of ten 3-week lineages and none in 1-week lineages. Illumina next-generation sequencing revealed considerable convergent evolution in the 9- and 3-week lineages with genomic deletions. Genome size was correlated to within-host competitive fitness, although there was no correlation with virus accumulation or virulence. Within-host competitive fitness of the 3-week virus lineages without genomic deletions was higher than for the 1-week lineages. Our results show that the strength of selection for a reduced genome size and the rate of pseudogenization depend on demographic conditions. Moreover, for the 3-week passage condition, we observed increases in within-host fitness, whereas selection was not strong enough to quickly remove the nonfunctional heterologous gene. These results suggest a demographically determined "sweet spot" might exist, where heterologous insertions are not immediately lost while evolution can act to integrate them into the viral genome.
Collapse
Affiliation(s)
- Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
- The Santa Fe Institute
| |
Collapse
|
42
|
Fabre F, Moury B, Johansen EI, Simon V, Jacquemond M, Senoussi R. Narrow bottlenecks affect Pea seedborne mosaic virus populations during vertical seed transmission but not during leaf colonization. PLoS Pathog 2014; 10:e1003833. [PMID: 24415934 PMCID: PMC3887104 DOI: 10.1371/journal.ppat.1003833] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
The effective size of populations (Ne) determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Populations having high Ne adapt faster, as selection acts more intensely, than populations having low Ne, where random effects of genetic drift dominate. Estimating Ne for various steps of plant virus life cycle has been the focus of several studies in the last decade, but no estimates are available for the vertical transmission of plant viruses, although virus seed transmission is economically significant in at least 18% of plant viruses in at least one plant species. Here we study the co-dynamics of two variants of Pea seedborne mosaic virus (PSbMV) colonizing leaves of pea plants (Pisum sativum L.) during the whole flowering period, and their subsequent transmission to plant progeny through seeds. Whereas classical estimators of Ne could be used for leaf infection at the systemic level, as virus variants were equally competitive, dedicated stochastic models were needed to estimate Ne during vertical transmission. Very little genetic drift was observed during the infection of apical leaves, with Ne values ranging from 59 to 216. In contrast, a very drastic genetic drift was observed during vertical transmission, with an average number of infectious virus particles contributing to the infection of a seedling from an infected mother plant close to one. A simple model of vertical transmission, assuming a cumulative action of virus infectious particles and a virus density threshold required for vertical transmission to occur fitted the experimental data very satisfactorily. This study reveals that vertically-transmitted viruses endure bottlenecks as narrow as those imposed by horizontal transmission. These bottlenecks are likely to slow down virus adaptation and could decrease virus fitness and virulence.
Collapse
Affiliation(s)
- Frédéric Fabre
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | - Benoît Moury
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | - Elisabeth Ida Johansen
- University of Copenhagen, Department of Plant and Environmental Sciences, Frederiksberg C, Denmark
| | - Vincent Simon
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | | | - Rachid Senoussi
- INRA, UR546 Biostatistique et Processus Spatiaux, Domaine Saint-Paul, Site Agroparc, Avignon, France
| |
Collapse
|
43
|
Simmons HE, Dunham JP, Zinn KE, Munkvold GP, Holmes EC, Stephenson AG. Zucchini yellow mosaic virus (ZYMV, Potyvirus): vertical transmission, seed infection and cryptic infections. Virus Res 2013; 176:259-64. [PMID: 23845301 PMCID: PMC3774540 DOI: 10.1016/j.virusres.2013.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 12/31/2022]
Abstract
The role played by seed transmission in the evolution and epidemiology of viral crop pathogens remains unclear. We determined the seed infection and vertical transmission rates of zucchini yellow mosaic virus (ZYMV), in addition to undertaking Illumina sequencing of nine vertically transmitted ZYMV populations. We previously determined the seed-to-seedling transmission rate of ZYMV in Cucurbita pepo ssp. texana (a wild gourd) to be 1.6%, and herein observed a similar rate (1.8%) in the subsequent generation. We also observed that the seed infection rate is substantially higher (21.9%) than the seed-to-seedling transmission rate, suggesting that a major population bottleneck occurs during seed germination and seedling growth. In contrast, that two thirds of the variants present in the horizontally transmitted inoculant population were also present in the vertically transmitted populations implies that the bottleneck at vertical transmission may not be particularly severe. Strikingly, all of the vertically infected plants were symptomless in contrast to those infected horizontally, suggesting that vertical infection may be cryptic. Although no known virulence determining mutations were observed in the vertically infected samples, the 5' untranslated region was highly variable, with at least 26 different major haplotypes in this region compared to the two major haplotypes observed in the horizontally transmitted population. That the regions necessary for vector transmission are retained in the vertically infected populations, combined with the cryptic nature of vertical infection, suggests that seed transmission may be a significant contributor to the spread of ZYMV.
Collapse
Affiliation(s)
- H E Simmons
- Seed Science Center, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Niehl A, Peña EJ, Amari K, Heinlein M. Microtubules in viral replication and transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:290-308. [PMID: 23379770 DOI: 10.1111/tpj.12134] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 05/05/2023]
Abstract
Viruses use and subvert host cell mechanisms to support their replication and spread between cells, tissues and organisms. Microtubules and associated motor proteins play important roles in these processes in animal systems, and may also play a role in plants. Although transport processes in plants are mostly actin based, studies, in particular with Tobacco mosaic virus (TMV) and its movement protein (MP), indicate direct or indirect roles of microtubules in the cell-to-cell spread of infection. Detailed observations suggest that microtubules participate in the cortical anchorage of viral replication complexes, in guiding their trafficking along the endoplasmic reticulum (ER)/actin network, and also in developing the complexes into virus factories. Microtubules also play a role in the plant-to-plant transmission of Cauliflower mosaic virus (CaMV) by assisting in the development of specific virus-induced inclusions that facilitate viral uptake by aphids. The involvement of microtubules in the formation of virus factories and of other virus-induced inclusions suggests the existence of aggresomal pathways by which plant cells recruit membranes and proteins into localized macromolecular assemblies. Although studies related to the involvement of microtubules in the interaction of viruses with plants focus on specific virus models, a number of observations with other virus species suggest that microtubules may have a widespread role in viral pathogenesis.
Collapse
Affiliation(s)
- Annette Niehl
- Zürich-Basel Plant Science Center, Botany, Department of Environmental Sciences, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
45
|
Rubio L, Guerri J, Moreno P. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front Microbiol 2013; 4:151. [PMID: 23805130 PMCID: PMC3693128 DOI: 10.3389/fmicb.2013.00151] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/29/2013] [Indexed: 11/15/2022] Open
Abstract
RNA viruses have a great potential for genetic variation, rapid evolution and adaptation. Characterization of the genetic variation of viral populations provides relevant information on the processes involved in virus evolution and epidemiology and it is crucial for designing reliable diagnostic tools and developing efficient and durable disease control strategies. Here we performed an updated analysis of sequences available in Genbank and reviewed present knowledge on the genetic variability and evolutionary processes of viruses of the family Closteroviridae. Several factors have shaped the genetic structure and diversity of closteroviruses. (I) A strong negative selection seems to be responsible for the high genetic stability in space and time for some viruses. (2) Long distance migration, probably by human transport of infected propagative plant material, have caused that genetically similar virus isolates are found in distant geographical regions. (3) Recombination between divergent sequence variants have generated new genotypes and plays an important role for the evolution of some viruses of the family Closteroviridae. (4) Interaction between virus strains or between different viruses in mixed infections may alter accumulation of certain strains. (5) Host change or virus transmission by insect vectors induced changes in the viral population structure due to positive selection of sequence variants with higher fitness for host-virus or vector-virus interaction (adaptation) or by genetic drift due to random selection of sequence variants during the population bottleneck associated to the transmission process.
Collapse
Affiliation(s)
- Luis Rubio
- Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | | | | |
Collapse
|
46
|
Understanding barriers to Borrelia burgdorferi dissemination during infection using massively parallel sequencing. Infect Immun 2013; 81:2347-57. [PMID: 23608706 DOI: 10.1128/iai.00266-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Borrelia burgdorferi is an invasive spirochete that can cause acute and chronic infections in the skin, heart, joints, and central nervous system of infected mammalian hosts. Little is understood about where the bacteria encounter the strongest barriers to infection and how different components of the host immune system influence the population as the infection progresses. To identify population bottlenecks in a murine host, we utilized Tn-seq to monitor the composition of mixed populations of B. burgdorferi during infection. Both wild-type mice and mice lacking the Toll-like receptor adapter molecule MyD88 were infected with a pool of infectious B. burgdorferi transposon mutants with insertions in the same gene. At multiple time points postinfection, bacteria were isolated from the mice and the compositions of the B. burgdorferi populations at the injection site and in distal tissues determined. We identified a population bottleneck at the site of infection that significantly altered the composition of the population. The magnitude of this bottleneck was reduced in MyD88(-/-) mice, indicating a role for innate immunity in limiting early establishment of B. burgdorferi infection. There is not a significant bottleneck during the colonization of distal tissues, suggesting that founder effects are limited and there is not a strict limitation on the number of organisms able to initiate populations at distal sites. These findings further our understanding of the interactions between B. burgdorferi and its murine host in the establishment of infection and dissemination of the organism.
Collapse
|
47
|
Urbino C, Gutiérrez S, Antolik A, Bouazza N, Doumayrou J, Granier M, Martin DP, Peterschmitt M. Within-host dynamics of the emergence of Tomato yellow leaf curl virus recombinants. PLoS One 2013; 8:e58375. [PMID: 23472190 PMCID: PMC3589402 DOI: 10.1371/journal.pone.0058375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/04/2013] [Indexed: 11/18/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) is a highly damaging begomovirus native to the Middle East. TYLCV has recently spread worldwide, recombining with other begomoviruses. Recent analysis of mixed infections between TYLCV and Tomato leaf curl Comoros begomovirus (ToLCKMV) has shown that, although natural selection preserves certain co-evolved intra-genomic interactions, numerous and diverse recombinants are produced at 120 days post-inoculation (dpi), and recombinant populations from different tomato plants are very divergent. Here, we investigate the population dynamics that lead to such patterns in tomato plants co-infected with TYLCV and ToLCKMV either by agro-inoculation or using the natural whitefly vector Bemisia tabaci. We monitored the frequency of parental and recombinant genotypes independently in 35 plants between 18 and 330 dpi and identified 177 recombinants isolated at different times. Recombinants were detected from 18 dpi and their frequency increased over time to reach about 50% at 150 dpi regardless of the inoculation method. The distribution of breakpoints detected on 96 fully sequenced recombinants was consistent with a continuous generation of new recombinants as well as random and deterministic effects in their maintenance. A severe population bottleneck of around 10 genomes was estimated during early systemic infection–a phenomenon that could account partially for the heterogeneity in recombinant patterns observed among plants. The detection of the same recombinant genome in six of the thirteen plants analysed beyond 30 dpi supported the influence of selection on observed recombination patterns. Moreover, a highly virulent recombinant genotype dominating virus populations within one plant has, apparently, the potential to be maintained in the natural population according to its infectivity, within-host accumulation, and transmission efficiency - all of which were similar or intermediate to those of the parent genotypes. Our results anticipate the outcomes of natural encounters between TYLCV and ToLCKMV.
Collapse
|
48
|
Gutiérrez S, Michalakis Y, Munster M, Blanc S. Plant feeding by insect vectors can affect life cycle, population genetics and evolution of plant viruses. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12070] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Serafín Gutiérrez
- UMR BGPI, INRA‐CIRAD‐SupAgro, TA‐A54K Campus International de Baillarguet 34398 Montpellier Cedex 05 France
- UMR MIVEGEC 5290 CNRS‐IRD‐UM1‐UM2, IRD 911 Avenue Agropolis B.P. 64501 34394 Montpellier Cedex 05 France
| | - Yannis Michalakis
- UMR MIVEGEC 5290 CNRS‐IRD‐UM1‐UM2, IRD 911 Avenue Agropolis B.P. 64501 34394 Montpellier Cedex 05 France
| | - Manuella Munster
- UMR BGPI, INRA‐CIRAD‐SupAgro, TA‐A54K Campus International de Baillarguet 34398 Montpellier Cedex 05 France
| | - Stéphane Blanc
- UMR BGPI, INRA‐CIRAD‐SupAgro, TA‐A54K Campus International de Baillarguet 34398 Montpellier Cedex 05 France
| |
Collapse
|
49
|
Quenouille J, Montarry J, Palloix A, Moury B. Farther, slower, stronger: how the plant genetic background protects a major resistance gene from breakdown. MOLECULAR PLANT PATHOLOGY 2013; 14:109-18. [PMID: 23046402 PMCID: PMC6638760 DOI: 10.1111/j.1364-3703.2012.00834.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Genetic resistance provides efficient control of crop diseases, but is limited by pathogen evolution capacities which often result in resistance breakdown. It has been demonstrated recently, in three different pathosystems, that polygenic resistances combining a major-effect gene and quantitative resistance controlled by the genetic background are more durable than monogenic resistances (with the same major gene in a susceptible genetic background), but the underlying mechanisms are unknown. Using the pepper-Potato virus Y system, we examined three mechanisms that could account for the greater durability of the polygenic resistances: (i) the additional quantitative resistance conferred by the genetic background; (ii) the increase in the number of mutations required for resistance breakdown; and (iii) the slower selection of adapted resistance-breaking mutants within the viral population. The three mechanisms were experimentally validated. The first explained a large part of the variation in resistance breakdown frequency and is therefore expected to be a major determinant of resistance durability. Quantitative resistance factors also had an influence on the second mechanism by modifying the virus mutational pathways towards resistance breakdown and could also have an influence on the third mechanism by increasing genetic drift effects on the viral population. The relevance of these results for other plant-pathogen systems and their importance in plant breeding are discussed.
Collapse
|
50
|
Lafforgue G, Tromas N, Elena SF, Zwart MP. Dynamics of the establishment of systemic Potyvirus infection: independent yet cumulative action of primary infection sites. J Virol 2012; 86:12912-22. [PMID: 22993154 PMCID: PMC3497618 DOI: 10.1128/jvi.02207-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/11/2012] [Indexed: 11/20/2022] Open
Abstract
In the clinic, farm, or field, for many viruses there is a high prevalence of mixed-genotype infections, indicating that multiple virions have initiated infection and that there can be multiple sites of primary infection within the same host. The dynamic process by which multiple primary infection sites interact with each other and the host is poorly understood, undoubtedly due to its high complexity. In this study, we attempted to unravel the basic interactions underlying this process using a plant RNA virus, as removing the inoculated leaf can instantly and rigorously eliminate all primary infection sites. Effective population size in the inoculated leaf and time of removal of the inoculated leaf were varied in experiments, and it was found that both factors positively influenced if the plant became systemically infected and what proportion of cells in the systemic tissue were infected, as measured by flow cytometry. Fitting of probabilistic models of infection to our data demonstrated that a null model in which the action of each focus is independent of the presence of other foci was better supported than a dependent-action model. The cumulative effect of independently acting foci therefore determined when plants became infected and how many individual cells were infected. There was no evidence for interference between primary infection sites, which is surprising given the planar structure of leaves. By showing that a simple null model is supported, we experimentally confirmed--to our knowledge for the first time--the minimal components that dictate interactions of a conspecific virus population establishing systemic infection.
Collapse
Affiliation(s)
- Guillaume Lafforgue
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Nicolas Tromas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| |
Collapse
|