1
|
Ander SE, Fish ER, da Silva MOL, Davenport BJ, Parks MG, Morrison TE. Basic patches on the E2 glycoprotein of eastern equine encephalitis virus influence viral vascular clearance and dissemination in mice. J Virol 2025:e0060225. [PMID: 40387358 DOI: 10.1128/jvi.00602-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025] Open
Abstract
Previously, we found that chimeric Sindbis-eastern equine encephalitis virus (SINV-EEEV) particles can be removed from the murine blood circulation in a phagocyte-dependent manner which can be disrupted by either transient depletion of vascular heparan sulfate (HS) glycosaminoglycans (GAGs), or mutation of the viral E2 glycoprotein (K71/74/77A) associated with decreased GAG binding in vitro. Here, we further investigate the viral determinants of EEEV vascular clearance and evaluate their role in viremia development. We identified two large basic patches on the EEEV E2 glycoprotein which contain two known GAG-binding sites (K71/74/77 and K156/R157) and six additional basic residues (K10, R13, K56, R152, K231, and K232). We find that disruption of either basic patch by single alanine substitutions promotes prolonged retention of SINV-EEEV particles in the murine blood circulation in an experimental viremia model. Furthermore, we observed that the K156/R157A, K10A, and K231A mutations are also associated with similar viral dissemination in a mouse infection model as the attenuated K71/74/77A mutant. Surprisingly, despite known differences in GAG binding and potential alteration in receptor interactions, we find the initial dispersal of wild-type (WT) and mutant SINV-EEEV virions from the inoculation site to the draining lymph node to be equivalent at 1 hour post-subcutaneous inoculation. Moreover, our data suggest the higher viremia associated with mutation of the E2 basic patches may be attributed to evasion of viremic control by blood-filtering phagocytes. Overall, this study defines viral features of the EEEV E2 glycoprotein that influence tissue-specific viral dissemination and highlights the capacity of blood-filtering phagocytes to modulate EEEV viremia.IMPORTANCEVirus-GAG interactions have long been studied in vitro; however, investigating the impact of these interactions in vivo has been challenging. Previously, we showed that blood-filtering phagocytes and vascular HS mediate the removal of enhanced GAG-binding WT SINV-EEEV virions from the blood circulation in a reductionist, experimental viremia model. Here, we demonstrate that single-residue, charge-neutralizing mutations within basic patches of the E2 glycoprotein are sufficient both to promote viral evasion of vascular clearance and viral dissemination in an infection model. We also find that the WT and decreased GAG-binding SINV-EEEV virions traffic similarly from a subcutaneous inoculation until drainage into the bloodstream, upon which the WT virus is selectively depleted. These observations suggest viral dissemination is influenced by tissue-specific, virion-GAG interactions.
Collapse
Affiliation(s)
- Stephanie E Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Erin R Fish
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mariana O L da Silva
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - M Guston Parks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
2
|
Ander SE, Parks MG, Davenport BJ, Li FS, Bosco-Lauth A, Carpentier KS, Sun C, Lucas CJ, Klimstra WB, Ebel GD, Morrison TE. Phagocyte-expressed glycosaminoglycans promote capture of alphaviruses from the blood circulation in a host species-specific manner. PNAS NEXUS 2024; 3:pgae119. [PMID: 38560529 PMCID: PMC10978064 DOI: 10.1093/pnasnexus/pgae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya, eastern- (EEEV), and Venezuelan- (VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology.
Collapse
Affiliation(s)
- Stephanie E Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - M Guston Parks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Frances S Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela Bosco-Lauth
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathryn S Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chengqun Sun
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cormac J Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Ander SE, Parks MG, Davenport BJ, Li FS, Bosco-Lauth A, Carpentier KS, Sun C, Lucas CJ, Klimstra WB, Ebel GD, Morrison TE. Phagocyte-expressed glycosaminoglycans promote capture of alphaviruses from the blood circulation in a host species-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552690. [PMID: 37609165 PMCID: PMC10441409 DOI: 10.1101/2023.08.09.552690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya (CHIKV), eastern-(EEEV), and Venezuelan-(VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate (HS) impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology. Significance Statement Previously, evidence of arbovirus-GAG interactions in vivo has been limited to associations between viral residues shown to promote enhanced GAG-binding phenotypes in vitro and in vivo phenotypes of viral dissemination and pathogenesis. By directly manipulating host GAG expression, we identified virion-GAG interactions in vivo and discovered a role for phagocyte-expressed GAGs in viral vascular clearance. Moreover, we observe species-specific differences in viral vascular clearance of enhanced GAG-binding virions between murine and avian hosts. These data suggest species-specific variation in GAG structure is a mechanism to distinguish amplifying from dead-end hosts for arbovirus transmission.
Collapse
|
4
|
Chikungunya Virus Strains from Each Genetic Clade Bind Sulfated Glycosaminoglycans as Attachment Factors. J Virol 2020; 94:JVI.01500-20. [PMID: 32999033 PMCID: PMC7925169 DOI: 10.1128/jvi.01500-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step. Chikungunya virus (CHIKV) is an arthritogenic alphavirus that causes debilitating musculoskeletal disease. CHIKV displays broad cell, tissue, and species tropism, which may correlate with the attachment factors and entry receptors used by the virus. Cell surface glycosaminoglycans (GAGs) have been identified as CHIKV attachment factors. However, the specific types of GAGs and potentially other glycans to which CHIKV binds and whether there are strain-specific differences in GAG binding are not fully understood. To identify the types of glycans bound by CHIKV, we conducted glycan microarray analyses and discovered that CHIKV preferentially binds GAGs. Microarray results also indicate that sulfate groups on GAGs are essential for CHIKV binding and that CHIKV binds most strongly to longer GAG chains of heparin and heparan sulfate. To determine whether GAG binding capacity varies among CHIKV strains, a representative strain from each genetic clade was tested. While all strains directly bound to heparin and chondroitin sulfate in enzyme-linked immunosorbent assays (ELISAs) and depended on heparan sulfate for efficient cell binding and infection, we observed some variation by strain. Enzymatic removal of cell surface GAGs and genetic ablation that diminishes GAG expression reduced CHIKV binding and infectivity of all strains. Collectively, these data demonstrate that GAGs are the preferred glycan bound by CHIKV, enhance our understanding of the specific GAG moieties required for CHIKV binding, define strain differences in GAG engagement, and provide further evidence for a critical function of GAGs in CHIKV cell attachment and infection. IMPORTANCE Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step.
Collapse
|
5
|
Rossi SL, Russell-Lodrigue KE, Plante KS, Bergren NA, Gorchakov R, Roy CJ, Weaver SC. Rationally Attenuated Vaccines for Venezuelan Equine Encephalitis Protect Against Epidemic Strains with a Single Dose. Vaccines (Basel) 2020; 8:E497. [PMID: 32887313 PMCID: PMC7563393 DOI: 10.3390/vaccines8030497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a re-emerging virus of human, agriculture, and bioweapon threat importance. No FDA-approved treatment is available to combat Venezuelan equine encephalitis in humans, prompting the need to create a vaccine that is safe, efficacious, and cannot be replicated in the mosquito vector. Here we describe the use of a serotype ID VEEV (ZPC-738) vaccine with an internal ribosome entry site (IRES) to alter gene expression patterns. This ZPC/IRES vaccine was genetically engineered in two ways based on the position of the IRES insertion to create a vaccine that is safe and efficacious. After a single dose, both versions of the ZPC/IRES vaccine elicited neutralizing antibody responses in mice and non-human primates after a single dose, with more robust responses produced by version 2. Further, all mice and primates were protected from viremia following VEEV challenge. These vaccines were also safer in neonatal mice than the current investigational new drug vaccine, TC-83. These results show that IRES-based attenuation of alphavirus genomes consistently produce promising vaccine candidates, with VEEV/IRES version 2 showing promise for further development.
Collapse
Affiliation(s)
- Shannan L. Rossi
- Department of Pathology and Microbiology and Immunology, Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Kenneth S. Plante
- Department of Microbiology and Immunology and World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Nicholas A. Bergren
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Rodion Gorchakov
- Department of Health, Safety and Environment, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia;
| | - Chad J. Roy
- Tulane National Primate Research Center, Covington, LA 70433, USA; (K.E.R.-L.); (C.J.R.)
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA 70112, USA
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Duggal NK, McDonald EM, Weger-Lucarelli J, Hawks SA, Ritter JM, Romo H, Ebel GD, Brault AC. Mutations present in a low-passage Zika virus isolate result in attenuated pathogenesis in mice. Virology 2019; 530:19-26. [PMID: 30763872 DOI: 10.1016/j.virol.2019.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Zika virus (ZIKV) infection can result in neurological disorders including Congenital Zika Syndrome in infants exposed to the virus in utero. Pregnant women can be infected by mosquito bite as well as by sexual transmission from infected men. Herein, the variants of ZIKV within the male reproductive tract and ejaculates were assessed in inoculated mice. We identified two non-synonymous variants at positions E-V330L and NS1-W98G. These variants were also present in the passage three PRVABC59 isolate and infectious clone relative to the patient serum PRVABC59 sequence. In subsequent studies, ZIKV E-330L was less pathogenic in mice than ZIKV E-330V as evident by increased average survival times. In Vero cells, ZIKV E-330L/NS1-98G outcompeted ZIKV E-330V/NS1-98W within 3 passages. These results suggest that the E-330L/NS1-98G variants are attenuating in mice and were enriched during cell culture passaging. Cell culture propagation of ZIKV could significantly affect animal model development and vaccine efficacy studies.
Collapse
Affiliation(s)
- Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States.
| | - Erin M McDonald
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Seth A Hawks
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jana M Ritter
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Hannah Romo
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Aaron C Brault
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States.
| |
Collapse
|
7
|
Glycan-dependent chikungunya viral infection divulged by antiviral activity of NAG specific chi-like lectin. Virology 2019; 526:91-98. [DOI: 10.1016/j.virol.2018.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022]
|
8
|
Acharya D, Paul AM, Anderson JF, Huang F, Bai F. Loss of Glycosaminoglycan Receptor Binding after Mosquito Cell Passage Reduces Chikungunya Virus Infectivity. PLoS Negl Trop Dis 2015; 9:e0004139. [PMID: 26484530 PMCID: PMC4615622 DOI: 10.1371/journal.pntd.0004139] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause fever and chronic arthritis in humans. CHIKV that is generated in mosquito or mammalian cells differs in glycosylation patterns of viral proteins, which may affect its replication and virulence. Herein, we compare replication, pathogenicity, and receptor binding of CHIKV generated in Vero cells (mammal) or C6/36 cells (mosquito) through a single passage. We demonstrate that mosquito cell-derived CHIKV (CHIKVmos) has slower replication than mammalian cell-derived CHIKV (CHIKVvero), when tested in both human and murine cell lines. Consistent with this, CHIKVmos infection in both cell lines produce less cytopathic effects and reduced antiviral responses. In addition, infection in mice show that CHIKVmos produces a lower level of viremia and less severe footpad swelling when compared with CHIKVvero. Interestingly, CHIKVmos has impaired ability to bind to glycosaminoglycan (GAG) receptors on mammalian cells. However, sequencing analysis shows that this impairment is not due to a mutation in the CHIKV E2 gene, which encodes for the viral receptor binding protein. Moreover, CHIKVmos progenies can regain GAG receptor binding capability and can replicate similarly to CHIKVvero after a single passage in mammalian cells. Furthermore, CHIKVvero and CHIKVmos no longer differ in replication when N-glycosylation of viral proteins was inhibited by growing these viruses in the presence of tunicamycin. Collectively, these results suggest that N-glycosylation of viral proteins within mosquito cells can result in loss of GAG receptor binding capability of CHIKV and reduction of its infectivity in mammalian cells. Chikungunya virus (CHIKV) is a chronic arthritis-causing pathogen in humans, for which no licensed vaccine or specific antiviral drug is currently available. Due to the global spread of its mosquito vectors, CHIKV is now becoming a public health threat worldwide. CHIKV can replicate in both mammalian and mosquito cells, however it does not cause apparent damage to mosquito cells, yet it rapidly kills mammalian cells within a day after infection. In addition, mosquito and mammalian cells have different mechanism of protein glycosylation, which can result in different glycan structures of viral glycoproteins. In this study, we report that mosquito cell-generated CHIKV has lower infectivity in cell culture and causes less severe disease in mice, when compared to mammalian cell-generated CHIKV. We demonstrate that only mammalian cell-generated CHIKV, but not mosquito-cell generated CHIKV, binds to mammalian cell surface glycosaminoglycan receptors. Interestingly, mosquito-cell generated CHIKV can re-acquire glycosaminoglycan receptor binding capability after a single passage in mammalian cells and replicate at similar levels with mammalian cell-generated CHIKV, suggesting that passage of CHIKV in mosquito cells can reduce its infectivity.
Collapse
Affiliation(s)
- Dhiraj Acharya
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Amber M. Paul
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - John F. Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Fengwei Bai
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.
Collapse
|
10
|
Arias-Goeta C, Moutailler S, Mousson L, Zouache K, Thiberge JM, Caro V, Rougeon F, Failloux AB. Chikungunya virus adaptation to a mosquito vector correlates with only few point mutations in the viral envelope glycoprotein. INFECTION GENETICS AND EVOLUTION 2014; 24:116-26. [PMID: 24681263 DOI: 10.1016/j.meegid.2014.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/27/2014] [Accepted: 03/17/2014] [Indexed: 01/06/2023]
Abstract
Like most arthropod-borne viruses (arboviruses), chikungunya virus (CHIKV) is a RNA virus maintained in nature in an alternating cycle of replication between invertebrate and vertebrate hosts. It has been assumed that host alternation restricts arbovirus genome evolution and imposes fitness trade-offs. Despite their slower rates of evolution, arboviruses still have the capacity to produce variants capable to exploit new environments. To test whether the evolution of the newly emerged epidemic variant of CHIKV (E1-226V) is constrained by host alternation, the virus was alternately-passaged in hamster-derived BHK-21 cells and Aedes aegypti-derived Aag-2 cells. It was also serially-passaged in BHK-21 or Aag-2 cells to promote adaptation to one cell type and presumably, fitness cost in the bypassed cell type. After 30 passages, obtained CHIKV strains were genetically and phenotypically characterized using in vitro and in vivo systems. Serially- and alternately-passaged strains can be distinguished by amino-acid substitutions in the E2 glycoprotein, responsible for receptor binding. Two substitutions at positions E2-64 and E2-208 only lower the dissemination of the variant E1-226V in Ae. aegypti. These amino-acid changes in the E2 glycoprotein might affect viral infectivity by altering the interaction between CHIKV E1-226V and the cellular receptor on the midgut epithelial cells in Ae. aegypti but not in Aedesalbopictus.
Collapse
Affiliation(s)
- Camilo Arias-Goeta
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France; Cellule Pasteur UPMC, Université Pierre et Marie Curie, Paris, France.
| | - Sara Moutailler
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Laurence Mousson
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Karima Zouache
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Jean-Michel Thiberge
- Department of Infection and Epidemiology, Genotyping of Pathogens and Public Health, Institut Pasteur, Paris, France
| | - Valérie Caro
- Department of Infection and Epidemiology, Genotyping of Pathogens and Public Health, Institut Pasteur, Paris, France
| | - François Rougeon
- URA 2581, Genetic and Molecular Interactions Cell-eucaryote, Institut Pasteur, Paris, France
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
11
|
A single-amino-acid polymorphism in Chikungunya virus E2 glycoprotein influences glycosaminoglycan utilization. J Virol 2013; 88:2385-97. [PMID: 24371059 DOI: 10.1128/jvi.03116-13] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a reemerging arbovirus responsible for outbreaks of infection throughout Asia and Africa, causing an acute illness characterized by fever, rash, and polyarthralgia. Although CHIKV infects a broad range of host cells, little is known about how CHIKV binds and gains access to the target cell interior. In this study, we tested whether glycosaminoglycan (GAG) binding is required for efficient CHIKV replication using CHIKV vaccine strain 181/25 and clinical isolate SL15649. Preincubation of strain 181/25, but not SL15649, with soluble GAGs resulted in dose-dependent inhibition of infection. While parental Chinese hamster ovary (CHO) cells are permissive for both strains, neither strain efficiently bound to or infected mutant CHO cells devoid of GAG expression. Although GAGs appear to be required for efficient binding of both strains, they exhibit differential requirements for GAGs, as SL15649 readily infected cells that express excess chondroitin sulfate but that are devoid of heparan sulfate, whereas 181/25 did not. We generated a panel of 181/25 and SL15649 variants containing reciprocal amino acid substitutions at positions 82 and 318 in the E2 glycoprotein. Reciprocal exchange at residue 82 resulted in a phenotype switch; Gly(82) results in efficient infection of mutant CHO cells but a decrease in heparin binding, whereas Arg(82) results in reduced infectivity of mutant cells and an increase in heparin binding. These results suggest that E2 residue 82 is a primary determinant of GAG utilization, which likely mediates attenuation of vaccine strain 181/25. IMPORTANCE Chikungunya virus (CHIKV) infection causes a debilitating rheumatic disease that can persist for months to years, and yet there are no licensed vaccines or antiviral therapies. Like other alphaviruses, CHIKV displays broad tissue tropism, which is thought to be influenced by virus-receptor interactions. In this study, we determined that cell-surface glycosaminoglycans are utilized by both a vaccine strain and a clinical isolate of CHIKV to mediate virus binding. We also identified an amino acid polymorphism in the viral E2 attachment protein that influences utilization of glycosaminoglycans. These data enhance an understanding of the viral and host determinants of CHIKV cell entry, which may foster development of new antivirals that act by blocking this key step in viral infection.
Collapse
|
12
|
Sun S, Xiang Y, Akahata W, Holdaway H, Pal P, Zhang X, Diamond MS, Nabel GJ, Rossmann MG. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. eLife 2013; 2:e00435. [PMID: 23577234 PMCID: PMC3614025 DOI: 10.7554/elife.00435] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/18/2013] [Indexed: 01/07/2023] Open
Abstract
A 5.3 Å resolution, cryo-electron microscopy (cryoEM) map of Chikungunya virus-like particles (VLPs) has been interpreted using the previously published crystal structure of the Chikungunya E1-E2 glycoprotein heterodimer. The heterodimer structure was divided into domains to obtain a good fit to the cryoEM density. Differences in the T = 4 quasi-equivalent heterodimer components show their adaptation to different environments. The spikes on the icosahedral 3-fold axes and those in general positions are significantly different, possibly representing different phases during initial generation of fusogenic E1 trimers. CryoEM maps of neutralizing Fab fragments complexed with VLPs have been interpreted using the crystal structures of the Fab fragments and the VLP structure. Based on these analyses the CHK-152 antibody was shown to stabilize the viral surface, hindering the exposure of the fusion-loop, likely neutralizing infection by blocking fusion. The CHK-9, m10 and m242 antibodies surround the receptor-attachment site, probably inhibiting infection by blocking cell attachment. DOI:http://dx.doi.org/10.7554/eLife.00435.001.
Collapse
Affiliation(s)
- Siyang Sun
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Ye Xiang
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Wataru Akahata
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Heather Holdaway
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Pankaj Pal
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, United States
| | - Xinzheng Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, United States
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, United States,For correspondence:
| |
Collapse
|
13
|
Pandya J, Gorchakov R, Wang E, Leal G, Weaver SC. A vaccine candidate for eastern equine encephalitis virus based on IRES-mediated attenuation. Vaccine 2012; 30:1276-82. [PMID: 22222869 DOI: 10.1016/j.vaccine.2011.12.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/31/2022]
Abstract
To develop an effective vaccine against eastern equine encephalitis (EEE), we engineered a recombinant EEE virus (EEEV) that was attenuated and capable of replicating only in vertebrate cells, an important safety feature for live vaccines against mosquito-borne viruses. The subgenomic promoter was inactivated with 13 synonymous mutations and expression of the EEEV structural proteins was placed under the control of an internal ribosomal entry site (IRES) derived from encephalomyocarditis virus (EMCV). We tested this vaccine candidate for virulence, viremia and efficacy in the murine model. A single subcutaneous immunization with 10(4) infectious units protected 100% of mice against intraperitoneal challenge with a highly virulent North American EEEV strain. None of the mice developed any signs of disease or viremia after immunization or following challenge. Our findings suggest that the IRES-based attenuation approach can be used to develop a safe and effective vaccine against EEE and other alphaviral diseases.
Collapse
Affiliation(s)
- Jyotsna Pandya
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | | | | | | | | |
Collapse
|
14
|
Thomas RJ. Receptor mimicry as novel therapeutic treatment for biothreat agents. Bioeng Bugs 2011; 1:17-30. [PMID: 21327124 DOI: 10.4161/bbug.1.1.10049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 12/20/2022] Open
Abstract
The specter of intentional release of pathogenic microbes and their toxins is a real threat. This article reviews the literature on adhesins of biothreat agents, their interactions with oligosaccharides and the potential for anti-adhesion compounds as an alternative to conventional therapeutics. The minimal binding structure of ricin has been well characterised and offers the best candidate for successful anti-adhesion therapy based on the Galβ1-4GlcNAc structure. The botulinum toxin serotypes A-F bind to a low number of gangliosides (GT1b, GQ1b, GD1a and GD1b) hence it should be possible to determine the minimal structure for binding. The minimal disaccharide sequence of GalNAcβ1-4Gal found in the gangliosides asialo-GM1 and asialo-GM2 is required for adhesion for many respiratory pathogens. Although a number of adhesins have been identified in bacterial biothreat agents such as Yersinia pestis, Bacillus anthracis, Francisella tularensis, Brucella species and Burkholderia pseudomallei, specific information regarding their in vivo expression during pneumonic infection is lacking. Limited oligosaccharide inhibition studies indicate the potential of GalNAcβ1-4Gal, GalNAcβ-3Gal and the hydrophobic compound, para-nitrophenol as starting points for the rational design of generic anti-adhesion compounds. A cocktail of multivalent oligosaccharides based on the minimal binding structures of identified adhesins would offer the best candidates for anti-adhesion therapy.
Collapse
|
15
|
Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J Virol 2010; 84:6497-504. [PMID: 20410280 DOI: 10.1128/jvi.01603-09] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, has traditionally circulated in Africa and Asia, causing human febrile illness accompanied by severe, chronic joint pain. In Africa, epidemic emergence of CHIKV involves the transition from an enzootic, sylvatic cycle involving arboreal mosquito vectors and nonhuman primates, into an urban cycle where peridomestic mosquitoes transmit among humans. In Asia, however, CHIKV appears to circulate only in the endemic, urban cycle. Recently, CHIKV emerged into the Indian Ocean and the Indian subcontinent to cause major epidemics. To examine patterns of CHIKV evolution and the origins of these outbreaks, as well as to examine whether evolutionary rates that vary between enzootic and epidemic transmission, we sequenced the genomes of 40 CHIKV strains and performed a phylogenetic analysis representing the most comprehensive study of its kind to date. We inferred that extant CHIKV strains evolved from an ancestor that existed within the last 500 years and that some geographic overlap exists between two main enzootic lineages previously thought to be geographically separated within Africa. We estimated that CHIKV was introduced from Africa into Asia 70 to 90 years ago. The recent Indian Ocean and Indian subcontinent epidemics appear to have emerged independently from the mainland of East Africa. This finding underscores the importance of surveillance to rapidly detect and control African outbreaks before exportation can occur. Significantly higher rates of nucleotide substitution appear to occur during urban than during enzootic transmission. These results suggest fundamental differences in transmission modes and/or dynamics in these two transmission cycles.
Collapse
|
16
|
Morrill JC, Ikegami T, Yoshikawa-Iwata N, Lokugamage N, Won S, Terasaki K, Zamoto-Niikura A, Peters CJ, Makino S. Rapid accumulation of virulent rift valley Fever virus in mice from an attenuated virus carrying a single nucleotide substitution in the m RNA. PLoS One 2010; 5:e9986. [PMID: 20376320 PMCID: PMC2848673 DOI: 10.1371/journal.pone.0009986] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 03/10/2010] [Indexed: 12/17/2022] Open
Abstract
Background Rift Valley fever virus (RVFV), a member of the genus Phlebovirus within the family Bunyaviridae, is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, while in livestock it causes fever and high abortion rates. Methodology/Principal Findings Sequence analysis showed that a wild-type RVFV ZH501 preparation consisted of two major viral subpopulations, with a single nucleotide heterogeneity at nucleotide 847 of M segment (M847); one had a G residue at M847 encoding glycine in a major viral envelope Gn protein, while the other carried A residue encoding glutamic acid at the corresponding site. Two ZH501-derived viruses, rZH501-M847-G and rZH501-M847-A, carried identical genomic sequences, except that the former and the latter had G and A, respectively, at M847 were recovered by using a reverse genetics system. Intraperitoneal inoculation of rZH501-M847-A into mice caused a rapid and efficient viral accumulation in the sera, livers, spleens, kidneys and brains, and killed most of the mice within 8 days, whereas rZH501-M847-G caused low viremia titers, did not replicate as efficiently as did rZH501-M847-A in these organs, and had attenuated virulence to mice. Remarkably, as early as 2 days postinfection with rZH501-M847-G, the viruses carrying A at M847 emerged and became the major virus population thereafter, while replicating viruses retained the input A residue at M847 in rZH501-M847-A-infected mice. Conclusions/Significance These data demonstrated that the single nucleotide substitution in the Gn protein substantially affected the RVFV mouse virulence and that a virus population carrying the virulent viral genotype quickly emerged and became the major viral population within a few days in mice that were inoculated with the attenuated virus.
Collapse
Affiliation(s)
- John C. Morrill
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tetsuro Ikegami
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Naoko Yoshikawa-Iwata
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Sungyong Won
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Aya Zamoto-Niikura
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - C. J. Peters
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail: (CJP); (SM)
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail: (CJP); (SM)
| |
Collapse
|
17
|
Abstract
The study of enveloped animal viruses has greatly advanced our understanding of the general properties of membrane fusion and of the specific pathways that viruses use to infect the host cell. The membrane fusion proteins of the alphaviruses and flaviviruses have many similarities in structure and function. As reviewed here, alphaviruses use receptor-mediated endocytic uptake and low pH-triggered membrane fusion to deliver their RNA genomes into the cytoplasm. Recent advances in understanding the biochemistry and structure of the alphavirus membrane fusion protein provide a clearer picture of this fusion reaction, including the protein’s conformational changes during fusion and the identification of key domains. These insights into the alphavirus fusion mechanism suggest new areas for experimental investigation and potential inhibitor strategies for anti-viral therapy.
Collapse
Affiliation(s)
- Margaret Kielian
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-3638; Fax: +1-718-430-8574
| | | | | |
Collapse
|
18
|
Vasilakis N, Deardorff ER, Kenney JL, Rossi SL, Hanley KA, Weaver SC. Mosquitoes put the brake on arbovirus evolution: experimental evolution reveals slower mutation accumulation in mosquito than vertebrate cells. PLoS Pathog 2009; 5:e1000467. [PMID: 19503824 PMCID: PMC2685980 DOI: 10.1371/journal.ppat.1000467] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 05/07/2009] [Indexed: 01/24/2023] Open
Abstract
Like other arthropod-borne viruses (arboviruses), mosquito-borne dengue virus (DENV) is maintained in an alternating cycle of replication in arthropod and vertebrate hosts. The trade-off hypothesis suggests that this alternation constrains DENV evolution because a fitness increase in one host usually diminishes fitness in the other. Moreover, the hypothesis predicts that releasing DENV from host alternation should facilitate adaptation. To test this prediction, DENV was serially passaged in either a single human cell line (Huh-7), a single mosquito cell line (C6/36), or in alternating passages between Huh-7 and C6/36 cells. After 10 passages, consensus mutations were identified and fitness was assayed by evaluating replication kinetics in both cell types as well as in a novel cell type (Vero) that was not utilized in any of the passage series. Viruses allowed to specialize in single host cell types exhibited fitness gains in the cell type in which they were passaged, but fitness losses in the bypassed cell type, and most alternating passages, exhibited fitness gains in both cell types. Interestingly, fitness gains were observed in the alternately passaged, cloned viruses, an observation that may be attributed to the acquisition of both host cell-specific and amphi-cell-specific adaptations or to recovery from the fitness losses due to the genetic bottleneck of biological cloning. Amino acid changes common to both passage series suggested convergent evolution to replication in cell culture via positive selection. However, intriguingly, mutations accumulated more rapidly in viruses passed in Huh-7 cells than in those passed in C6/36 cells or in alternation. These results support the hypothesis that releasing DENV from host alternation facilitates adaptation, but there is limited support for the hypothesis that such alternation necessitates a fitness trade-off. Moreover, these findings suggest that patterns of genetic evolution may differ between viruses replicating in mammalian and mosquito cells.
Collapse
Affiliation(s)
- Nikos Vasilakis
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Eleanor R. Deardorff
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Joan L. Kenney
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shannan L. Rossi
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Scott C. Weaver
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
A two-phase innate host response to alphavirus infection identified by mRNP-tagging in vivo. PLoS Pathog 2008; 3:e199. [PMID: 18215114 PMCID: PMC2151086 DOI: 10.1371/journal.ppat.0030199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 11/08/2007] [Indexed: 01/11/2023] Open
Abstract
A concept fundamental to viral pathogenesis is that infection induces specific changes within the host cell, within specific tissues, or within the entire animal. These changes are reflected in a cascade of altered transcription patterns evident during infection. However, elucidation of this cascade in vivo has been limited by a general inability to distinguish changes occurring in the minority of infected cells from those in surrounding uninfected cells. To circumvent this inherent limitation of traditional gene expression profiling methods, an innovative mRNP-tagging technique was implemented to isolate host mRNA specifically from infected cells in vitro as well as in vivo following Venezuelan equine encephalitis virus (VEE) infection. This technique facilitated a direct characterization of the host defense response specifically within the first cells infected with VEE, while simultaneous total RNA analysis assessed the collective response of both the infected and uninfected cells. The result was a unique, multifaceted profile of the early response to VEE infection in primary dendritic cells, as well as in the draining lymph node, the initially targeted tissue in the mouse model. A dynamic environment of complex interactions was revealed, and suggested a two-step innate response in which activation of a subset of host genes in infected cells subsequently leads to activation of the surrounding uninfected cells. Our findings suggest that the application of viral mRNP-tagging systems, as introduced here, will facilitate a much more detailed understanding of the highly coordinated host response to infectious agents.
Collapse
|
20
|
Dinglasan RR, Jacobs-Lorena M. Insight into a conserved lifestyle: protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect Immun 2006; 73:7797-807. [PMID: 16299269 PMCID: PMC1307025 DOI: 10.1128/iai.73.12.7797-7807.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rhoel R Dinglasan
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, W4008, Baltimore, MD 21205, USA.
| | | |
Collapse
|
21
|
Palmer CA, Watts RA, Gregg RG, McCall MA, Houck LD, Highton R, Arnold SJ. Lineage-specific differences in evolutionary mode in a salamander courtship pheromone. Mol Biol Evol 2005; 22:2243-56. [PMID: 16033988 DOI: 10.1093/molbev/msi219] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functionally equivalent genes may evolve heterogeneously across closely related taxa as a consequence of lineage-specific selective pressures. Such disparate evolutionary modes are especially prevalent in genes that encode postcopulatory reproductive proteins, presumably as a result of sexual selection. We might therefore expect genes that mediate reproduction prior to insemination to evolve in a similar manner. Plethodontid receptivity factor (PRF), a proteinaceous salamander pheromone produced by the male, increases female receptivity during courtship interactions. To test for lineage-specific differences in PRF's evolution, we intensively sampled PRF genes across the eastern Plethodon phylogeny (27 spp.; 34 populations) to compare gene diversification, rates of evolution, modes of selection, and types of amino acid substitution. Our analyses indicate that PRF evolutionary dynamics vary considerably from lineage to lineage. Underlying this heterogeneity, however, are two well-defined transitions in evolutionary mode. The first mode is representative of a typical protein profile, wherein neutral divergence and purifying selection are the dominant features. The second mode is characterized by incessant, cyclical evolution driven by positive selection. In this mode, the positively selected sites are bound by a limited assortment of acceptable amino acids that appear to evolve independently of other sites, resulting in a tremendous number of unique PRF alleles. Several of these selected sites are implicated in receptor binding. These sites are apparently involved in a molecular tango in which the male signal and female receptors coevolve within a confined molecular space. PRF's lineage-specific evolutionary dynamics, in combination with evidence of a molecular tango, highlight the molecular action of sexual selection on a chemical signal that is used during courtship.
Collapse
|
22
|
Weaver SC, Anishchenko M, Bowen R, Brault AC, Estrada-Franco JG, Fernandez Z, Greene I, Ortiz D, Paessler S, Powers AM. Genetic determinants of Venezuelan equine encephalitis emergence. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 2004:43-64. [PMID: 15119762 DOI: 10.1007/978-3-7091-0572-6_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Following a period of inactivity from 1973-1991, Venezuelan equine encephalitis (VEE) reemerged during the past decade in South America and Mexico. Experimental studies of VEE virus (VEEV) infection of horses with virus strains isolated during these outbreaks have revealed considerable variation in the ability of equine-virulent, epizootic strains to exploit horses as efficient amplification hosts. Subtype IC strains from recent outbreaks in Venezuela and Colombia amplify efficiently in equines, with a correlation between maximum viremia titers and the extent of the outbreak from which the virus strain was isolated. Studies of enzootic VEEV strains that are believed to represent progenitors of the epizootic subtypes support the hypothesis that adaptation to efficient replication in equines is a major determinant of emergence and the ability of VEEV to spread geographically. Correlations between the ability of enzootic and epizootic VEEV strains to infect abundant, equiphilic mosquitoes, and the location and extent of these outbreaks, also suggest that specific adaptation to Ochlerotatus taeniorhynchus mosquitoes is a determinant of some but not all emergence events. Genetic studies imply that mutations in the E2 envelope glycoprotein gene are major determinants of adaptation to both equines and mosquito vectors.
Collapse
Affiliation(s)
- S C Weaver
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Weaver SC, Ferro C, Barrera R, Boshell J, Navarro JC. Venezuelan equine encephalitis. ANNUAL REVIEW OF ENTOMOLOGY 2004; 49:141-74. [PMID: 14651460 DOI: 10.1146/annurev.ento.49.061802.123422] [Citation(s) in RCA: 301] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) remains a naturally emerging disease threat as well as a highly developed biological weapon. Recently, progress has been made in understanding the complex ecological and viral genetic mechanisms that coincide in time and space to generate outbreaks. Enzootic, equine avirulent, serotype ID VEEV strains appear to alter their serotype to IAB or IC, and their vertebrate and mosquito host range, to mediate repeated VEE emergence via mutations in the E2 envelope glycoprotein that represent convergent evolution. Adaptation to equines results in highly efficient amplification, which results in human disease. Although epizootic VEEV strains are opportunistic in their use of mosquito vectors, the most widespread outbreaks appear to involve specific adaptation to Ochlerotatus taeniorhynchus, the most common vector in many coastal areas. In contrast, enzootic VEEV strains are highly specialized and appear to utilize vectors exclusively in the Spissipes section of the Culex (Melanoconion) subgenus.
Collapse
Affiliation(s)
- Scott C Weaver
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA.
| | | | | | | | | |
Collapse
|