1
|
Candor K, Ding L, Balchand S, Hammonds JE, Spearman P. The CLIC/GEEC pathway regulates particle uptake and formation of the virus-containing compartment (VCC) in HIV-1-infected macrophages. PLoS Pathog 2025; 21:e1012564. [PMID: 40067817 PMCID: PMC11925468 DOI: 10.1371/journal.ppat.1012564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/20/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
HIV-1 particles are captured by the immunoglobulin superfamily member Siglec-1 on the surface of macrophages and dendritic cells, leading to particle internalization and facilitating trans-infection of CD4+ T cells. HIV-1-infected macrophages develop a unique intracellular compartment termed the virus-containing compartment (VCC) that exhibits characteristic markers of the late endosome and is enriched in components of the plasma membrane (PM). The VCC has been proposed as the major site of particle assembly in macrophages. Depleting Siglec-1 from macrophages significantly reduces VCC formation, implying a link between the capture and uptake of external HIV-1 particles and the development of VCCs within HIV-infected cells. We found that internalization of particles to the VCC was independent of clathrin, but required dynamin-2. CD98 and CD44, classical markers of the CLIC/GEEC pathway, colocalized with Siglec-1 and HIV-1 particles within the VCC. Virus-like particles (VLPs) were taken up within CD98 and Siglec-1-enriched tubular membranes that migrated centripetally over time to form VCC-like structures. Inhibition of CLIC/GEEC-mediated endocytosis resulted in the arrest of captured HIV-1 particles on the macrophage cell surface, prevented VCC formation, and significantly reduced the efficiency of trans-infection of T cells. These findings indicate that following capture of virus by Siglec-1, particles follow an endocytic route to the VCC that requires both the CLIC/GEEC pathway and dynamin-2. We propose a model in which internalization of HIV-1 particles together with CLIC/GEEC membranes leads to the formation of the VCC in HIV-infected macrophages, creating an intracellular platform that facilitates further particle assembly and budding.
Collapse
Affiliation(s)
- Kathleen Candor
- Immunology Graduate Program, University of Cincinnati, and Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Lingmei Ding
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Sai Balchand
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Jason E. Hammonds
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Paul Spearman
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| |
Collapse
|
2
|
Kulsuptrakul J, Emerman M, Mitchell PS. CARD8 inflammasome activation during HIV-1 cell-to-cell transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.21.608981. [PMID: 39229127 PMCID: PMC11370340 DOI: 10.1101/2024.08.21.608981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Our previous work demonstrated that CARD8 detects HIV-1 infection by sensing the enzymatic activity of the HIV protease, resulting in CARD8-dependent inflammasome activation (Kulsuptrakul et al., 2023). CARD8 harbors a motif in its N-terminus that functions as a HIV protease substrate mimic, permitting innate immune recognition of HIV-1 protease activity, which when cleaved by HIV protease triggers CARD8 inflammasome activation. Here, we sought to understand CARD8 responses in the context of HIV-1 cell-to-cell transmission via a viral synapse. We observed that cell-to-cell transmission of HIV-1 between infected T cells and primary human monocyte-derived macrophages induces CARD8 inflammasome activation in a manner that is dependent on viral protease activity and largely independent of the NLRP3 inflammasome. Additionally, to further evaluate the viral determinants of CARD8 sensing, we tested a panel of HIV protease inhibitor resistant clones to establish how variation in HIV protease affects CARD8 activation. We identified mutant HIV-1 proteases that differentially cleave and activate CARD8 compared to wildtype HIV-1, thus indicating that natural variation in HIV protease affects not only the cleavage of the viral Gag-Pol polyprotein but also likely impacts innate sensing and inflammation.
Collapse
Affiliation(s)
- Jessie Kulsuptrakul
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Patrick S. Mitchell
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
3
|
Laguía F, Chojnacki J, Erkizia I, Geli MI, Enrich C, Martinez-Picado J, Resa-Infante P. Massive endocytosis mechanisms are involved in uptake of HIV-1 particles by monocyte-derived dendritic cells. Front Immunol 2025; 15:1505840. [PMID: 39867902 PMCID: PMC11757119 DOI: 10.3389/fimmu.2024.1505840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin. Here, we investigate the potential involvement of massive endocytosis (MEND) in this process. Methods We used live cell confocal imaging to measure the dimensions and dynamics of the compartment. We assessed the role of actin and cholesterol in fixed and live cells using confocal microscopy and evaluated the effect of PI3K and protein palmytoilation inhibitors during viral uptake. Results Our data demonstrate extensive plasma membrane invagination based on sac-like compartment dimensions (2.9 μm in diameter and 20 μm3 in volume). We showed that the cholesterol concentration doubles within the regions of viral uptake, suggesting lipid-phase separation, and that development of the sac-like compartment is accompanied by transient depolarization of cortical actin. Moreover, we observed that protein palmitoylation and PI3K inhibition reduce the sac-like compartment formation rate from 70% to 20% and 40%, respectively. Conclusions Our results indicate the involvement of MEND mechanisms during sac-like compartment formation.
Collapse
Affiliation(s)
| | - Jakub Chojnacki
- IrsiCaixa, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | - María Isabel Geli
- Department of Cell Biology, Institute for Molecular Biology of Barcelona (IBMB, CSIC), Barcelona, Spain
| | - Carlos Enrich
- Cell Compartments and Signaling Group, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Patricia Resa-Infante
- IrsiCaixa, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| |
Collapse
|
4
|
Kulsuptrakul J, Turcotte EA, Emerman M, Mitchell PS. A human-specific motif facilitates CARD8 inflammasome activation after HIV-1 infection. eLife 2023; 12:e84108. [PMID: 37417868 PMCID: PMC10359095 DOI: 10.7554/elife.84108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Inflammasomes are cytosolic innate immune complexes that assemble upon detection of diverse pathogen-associated cues and play a critical role in host defense and inflammatory pathogenesis. Here, we find that the human inflammasome-forming sensor CARD8 senses HIV-1 infection via site-specific cleavage of the CARD8 N-terminus by the HIV protease (HIV-1PR). HIV-1PR cleavage of CARD8 induces pyroptotic cell death and the release of pro-inflammatory cytokines from infected cells, processes regulated by Toll-like receptor stimulation prior to viral infection. In acutely infected cells, CARD8 senses the activity of both de novo translated HIV-1PR and packaged HIV-1PR that is released from the incoming virion. Moreover, our evolutionary analyses reveal that the HIV-1PR cleavage site in human CARD8 arose after the divergence of chimpanzees and humans. Although chimpanzee CARD8 does not recognize proteases from HIV or simian immunodeficiency viruses from chimpanzees (SIVcpz), SIVcpz does cleave human CARD8, suggesting that SIVcpz was poised to activate the human CARD8 inflammasome prior to its cross-species transmission into humans. Our findings suggest a unique role for CARD8 inflammasome activation in response to lentiviral infection of humans.
Collapse
Affiliation(s)
- Jessie Kulsuptrakul
- Molecular and Cellular Biology Graduate Program, University of WashingtonSeattleUnited States
| | - Elizabeth A Turcotte
- Division of Immunology and Pathogenesis, University of California, BerkeleyBerkeleyUnited States
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Patrick S Mitchell
- Department of Microbiology, University of WashingtonSeattleUnited States
| |
Collapse
|
5
|
Prenzler S, Rudrawar S, Waespy M, Kelm S, Anoopkumar-Dukie S, Haselhorst T. The role of sialic acid-binding immunoglobulin-like-lectin-1 (siglec-1) in immunology and infectious disease. Int Rev Immunol 2023; 42:113-138. [PMID: 34494938 DOI: 10.1080/08830185.2021.1931171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Siglec-1, also known as Sialoadhesin (Sn) and CD169 is highly conserved among vertebrates and with 17 immunoglobulin-like domains is Siglec-1 the largest member of the Siglec family. Expression of Siglec-1 is found primarily on dendritic cells (DCs), macrophages and interferon induced monocyte. The structure of Siglec-1 is unique among siglecs and its function as a receptor is also different compared to other receptors in this class as it contains the most extracellular domains out of all the siglecs. However, the ability of Siglec-1 to internalize antigens and to pass them on to lymphocytes by allowing dendritic cells and macrophages to act as antigen presenting cells, is the main reason that has granted Siglec-1's key role in multiple human disease states including atherosclerosis, coronary artery disease, autoimmune diseases, cell-cell signaling, immunology, and more importantly bacterial and viral infections. Enveloped viruses for example have been shown to manipulate Siglec-1 to increase their virulence by binding to sialic acids present on the virus glycoproteins allowing them to spread or evade immune response. Siglec-1 mediates dissemination of HIV-1 in activated tissues enhancing viral spread via infection of DC/T-cell synapses. Overall, the ability of Siglec-1 to bind a variety of target cells within the immune system such as erythrocytes, B-cells, CD8+ granulocytes and NK cells, highlights that Siglec-1 is a unique player in these essential processes.
Collapse
Affiliation(s)
- Shane Prenzler
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
6
|
New Targets for Antiviral Therapy: Inhibitory Receptors and Immune Checkpoints on Myeloid Cells. Viruses 2022; 14:v14061144. [PMID: 35746616 PMCID: PMC9230063 DOI: 10.3390/v14061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
Immune homeostasis is achieved by balancing the activating and inhibitory signal transduction pathways mediated via cell surface receptors. Activation allows the host to mount an immune response to endogenous and exogenous antigens; suppressive modulation via inhibitory signaling protects the host from excessive inflammatory damage. The checkpoint regulation of myeloid cells during immune homeostasis raised their profile as important cellular targets for treating allergy, cancer and infectious disease. This review focuses on the structure and signaling of inhibitory receptors on myeloid cells, with particular attention placed on how the interplay between viruses and these receptors regulates antiviral immunity. The status of targeting inhibitory receptors on myeloid cells as a new therapeutic approach for antiviral treatment will be analyzed.
Collapse
|
7
|
Perez-Zsolt D, Raïch-Regué D, Muñoz-Basagoiti J, Aguilar-Gurrieri C, Clotet B, Blanco J, Izquierdo-Useros N. HIV-1 trans-Infection Mediated by DCs: The Tip of the Iceberg of Cell-to-Cell Viral Transmission. Pathogens 2021; 11:39. [PMID: 35055987 PMCID: PMC8778849 DOI: 10.3390/pathogens11010039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-1 cell-to-cell transmission is key for an effective viral replication that evades immunity. This highly infectious mechanism is orchestrated by different cellular targets that utilize a wide variety of processes to efficiently transfer HIV-1 particles. Dendritic cells (DCs) are the most potent antigen presenting cells that initiate antiviral immune responses, but are also the cells with highest capacity to transfer HIV-1. This mechanism, known as trans-infection, relies on the capacity of DCs to capture HIV-1 particles via lectin receptors such as the sialic acid-binding I-type lectin Siglec-1/CD169. The discovery of the molecular interaction of Siglec-1 with sialylated lipids exposed on HIV-1 membranes has enlightened how this receptor can bind to several enveloped viruses. The outcome of these interactions can either mount effective immune responses, boost the productive infection of DCs and favour innate sensing, or fuel viral transmission via trans-infection. Here we review these scenarios focusing on HIV-1 and other enveloped viruses such as Ebola virus or SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Jordana Muñoz-Basagoiti
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Carmen Aguilar-Gurrieri
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| |
Collapse
|
8
|
Soayfane Z, Houshaymi B, Kedees MH, Belec L, Nasreddine N. Cell Proteins Interacting with the Human Immunodeficiency Virus in Immunoblotting can be Detected by R5- or X4- Tropic Human Immunodeficiency Virus Particles. Int J Appl Basic Med Res 2020; 10:81-85. [PMID: 32566522 PMCID: PMC7289202 DOI: 10.4103/ijabmr.ijabmr_398_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 01/06/2020] [Indexed: 12/01/2022] Open
Abstract
Introduction: The present study reported a new immunoblot assay, with revelation by R5- or X4-whole free human immunodeficiency virus (HIV) particles or recombinant gp160. Materials and Methods: The assay was optimized to identify cell proteins interacting with HIV. Whole cell lysates were prepared from peripheral blood lymphocytes (PBLs), dendritic cells (DC), monocyte-derived macrophage (MDM), and Henrietta Lacks (Hela, wild-type or transfected with DC-specific intracellular adhesion molecule-3-Grabbing Non-Integrin, HeLa) and Human endometrial cells (HEC-1A) lines; HIV particles used were the R5-tropic HIV-1JRCSF and the X4-tropic HIV-1NDK. Results: Experiments with PBL lysates and both viruses demonstrated different bands, including a unique band at 105–117 kDa in addition to nonspecific bands. The 105–117 kDa band migrated at the same level of that observed in controls using total PBL lysate and anti-CD4 mAb for detection and thus likely corresponds to the cluster difference (CD) 4 complex. Blots using lysates of DCs, MDM, HeLa cell line, and HEC-1A cell line allowed identifying several bands that positions were similar to that seen by recombinant gp160 or whole R5- or X4-HIV particles. Conclusion: Blot of whole lysates of various HIV target cells is recognized by free HIV particles and allows identifying a wide range of HIV-interacting cell proteins. Such optimized assay could be useful to recognize new cellular HIV attachment proteins.
Collapse
Affiliation(s)
- Zeina Soayfane
- Department of Cell Biology, Faculty of Science, Lebanese University, Beirut, Lebanon
| | - Bilal Houshaymi
- Department of Microbiology, Faculty of Health, Lebanese University, Beirut, Lebanon
| | - Mamdouh H Kedees
- Department of Cell Biology, State University of New York, New York, NY, USA
| | - Laurent Belec
- Virology Lab, Georges Pompidou European Hospital, and University of Paris Descartes, Paris, France
| | - Nadine Nasreddine
- Department of Microbiology, Faculty of Health, Lebanese University, Beirut, Lebanon
| |
Collapse
|
9
|
Arokiasamy S, Balderstone MJM, De Rossi G, Whiteford JR. Syndecan-3 in Inflammation and Angiogenesis. Front Immunol 2020; 10:3031. [PMID: 31998313 PMCID: PMC6962229 DOI: 10.3389/fimmu.2019.03031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023] Open
Abstract
Syndecans are a four member multifunctional family of cell surface molecules with diverse biological roles. Syndecan-3 (SDC3) is the largest of these, but in comparison to the other family members relatively little is known about this molecule. SDC3 null mice grow and develop normally, all be it with subtle anatomical phenotypes in the brain. Roles for this molecule in both neuronal and brain tissue have been identified, and is associated with altered satiety responses. Recent studies suggest that SDC3 expression is not restricted to neuronal tissues and has important roles in inflammatory disorders such as rheumatoid arthritis, disease associated processes such as angiogenesis and in the facilitation of infection of dendritic cells by HIV. The purpose of this review article is to explore these new biological insights into SDC3 functions in inflammatory disease.
Collapse
Affiliation(s)
- Samantha Arokiasamy
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michaela J. M. Balderstone
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Giulia De Rossi
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - James R. Whiteford
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Perez-Zsolt D, Cantero-Pérez J, Erkizia I, Benet S, Pino M, Serra-Peinado C, Hernández-Gallego A, Castellví J, Tapia G, Arnau-Saz V, Garrido J, Tarrats A, Buzón MJ, Martinez-Picado J, Izquierdo-Useros N, Genescà M. Dendritic Cells From the Cervical Mucosa Capture and Transfer HIV-1 via Siglec-1. Front Immunol 2019; 10:825. [PMID: 31114569 PMCID: PMC6503733 DOI: 10.3389/fimmu.2019.00825] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023] Open
Abstract
Antigen presenting cells from the cervical mucosa are thought to amplify incoming HIV-1 and spread infection systemically without being productively infected. Yet, the molecular mechanism at the cervical mucosa underlying this viral transmission pathway remains unknown. Here we identified a subset of HLA-DR+ CD14+ CD11c+ cervical DCs at the lamina propria of the ectocervix and the endocervix that expressed the type-I interferon inducible lectin Siglec-1 (CD169), which promoted viral uptake. In the cervical biopsy of a viremic HIV-1+ patient, Siglec-1+ cells harbored HIV-1-containing compartments, demonstrating that in vivo, these cells trap viruses. Ex vivo, a type-I interferon antiviral environment enhanced viral capture and trans-infection via Siglec-1. Nonetheless, HIV-1 transfer via cervical DCs was effectively prevented with antibodies against Siglec-1. Our findings contribute to decipher how cervical DCs may boost HIV-1 replication and promote systemic viral spread from the cervical mucosa, and highlight the importance of including inhibitors against Siglec-1 in microbicidal strategies.
Collapse
Affiliation(s)
- Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jon Cantero-Pérez
- Department of Infectious Diseases, Vall d'Hebron Institut de Recerca, Barcelona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | | | - Susana Benet
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Pino
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Carla Serra-Peinado
- Department of Infectious Diseases, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Alba Hernández-Gallego
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Josep Castellví
- Pathology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Morphological Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gustavo Tapia
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Morphological Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicent Arnau-Saz
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Infectious Diseases, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | | | - Antoni Tarrats
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Maria J Buzón
- Department of Infectious Diseases, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Meritxell Genescà
- Department of Infectious Diseases, Vall d'Hebron Institut de Recerca, Barcelona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
11
|
Mediouni S, Jablonski JA, Tsuda S, Richard A, Kessing C, Andrade MV, Biswas A, Even Y, Tellinghuisen T, Choe H, Cameron M, Stevenson M, Valente ST. Potent suppression of HIV-1 cell attachment by Kudzu root extract. Retrovirology 2018; 15:64. [PMID: 30236131 PMCID: PMC6149077 DOI: 10.1186/s12977-018-0446-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
There is a constant need to improve antiretrovirals against HIV since therapy is limited by cost, side effects and the emergence of drug resistance. Kudzu is a climbing vine from which the root extract (Pueraria lobata), rich in isoflavones and saponins, has long been used in traditional Chinese medicine for a variety of purposes, from weight loss to alcoholism prevention. Here we show that Kudzu root extract significantly inhibits HIV-1 entry into cell lines, primary human CD4+T lymphocytes and macrophages, without cell-associated toxicity. Specifically, Kudzu inhibits the initial attachment of the viral particle to the cell surface, a mechanism that depends on the envelope glycoprotein gp120 but is independent from the HIV-1 cell receptor CD4 and co-receptors CXCR4/CCR5. This activity seems selective to lentiviruses since Kudzu inhibits HIV-2 and simian immunodeficiency virus, but does not interfere with Hepatitis C, Influenza, Zika Brazil and adenovirus infection. Importantly, depending on the dose, Kudzu can act synergistically or additively with the current antiretroviral cocktails against HIV-1 and can block viruses resistant to the fusion inhibitor Enfuvirtide. Together our results highlight Kudzu's root extract value as a supplement to current antiretroviral therapy against HIV.
Collapse
Affiliation(s)
- S Mediouni
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - J A Jablonski
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - S Tsuda
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - A Richard
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - C Kessing
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - M V Andrade
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - A Biswas
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - Y Even
- The Botanist's Beach Farm, Jupiter, FL, USA
| | - T Tellinghuisen
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA.,Roche, Basel, Switzerland
| | - H Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA
| | - M Cameron
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - M Stevenson
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - S T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL, 33458, USA.
| |
Collapse
|
12
|
Inefficient HIV-1 trans Infection of CD4 + T Cells by Macrophages from HIV-1 Nonprogressors Is Associated with Altered Membrane Cholesterol and DC-SIGN. J Virol 2018; 92:JVI.00092-18. [PMID: 29643243 PMCID: PMC6002718 DOI: 10.1128/jvi.00092-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Professional antigen-presenting cells (APC; myeloid dendritic cells [DC] and macrophages [MΦ]; B lymphocytes) mediate highly efficient HIV-1 infection of CD4+ T cells, termed trans infection, that could contribute to HIV-1 pathogenesis. We have previously shown that lower cholesterol content in DC and B lymphocytes is associated with a lack of HIV-1 trans infection in HIV-1-infected nonprogressors (NP). Here, we assessed whether HIV-1 trans infection mediated by another major APC, MΦ, is deficient in NP due to altered cholesterol metabolism. When comparing healthy HIV-1 seronegatives (SN), rapid progressors (PR), and NP, we found that monocyte-derived MΦ from NP did not mediate HIV-1 trans infection of autologous CD4+ T cells, in contrast to efficient trans infection mediated by SN and PR MΦ. MΦ trans infection efficiency was directly associated with the number of DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-expressing MΦ. Significantly fewer NP MΦ expressed DC-SIGN. Unesterified (free) cholesterol in MΦ cell membranes and lipid rafting was significantly lower in NP than PR, as was virus internalization in early endosomes. Furthermore, simvastatin (SIMV) decreased the subpopulation of DC-SIGN+ MΦ as well as cis and trans infection. Notably, SIMV decreased cell membrane cholesterol and led to lipid raft dissociation, effectively mimicking the incompetent APC trans infection environment characteristic of NP. Our data support that DC-SIGN and membrane cholesterol are central to MΦ trans infection, and a lack of these limits HIV-1 disease progression. Targeting the ability of MΦ to drive HIV-1 dissemination in trans could enhance HIV-1 therapeutic strategies. IMPORTANCE Despite the success of combination antiretroviral therapy, neither a vaccine nor a cure for HIV infection has been developed, demonstrating a need for novel prophylactic and therapeutic strategies. Here, we show that efficiency of MΦ-mediated HIV trans infection of CD4+ T cells is a unique characteristic associated with control of disease progression, and it is impaired in HIV-infected NP. In vitro treatment of MΦ from healthy donors with SIMV lowers their cholesterol content, which results in a strongly reduced trans infection ability, similar to the levels of MΦ from NP. Taken together, our data support the hypothesis that MΦ-mediated HIV-1 trans infection plays a role in HIV infection and disease progression and demonstrate that the use of SIMV to decrease this mechanism of virus transfer should be considered for future HIV therapeutic development.
Collapse
|
13
|
The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses 2018; 10:v10020065. [PMID: 29415518 PMCID: PMC5850372 DOI: 10.3390/v10020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells such as monocytes, dendritic cells (DC) and macrophages (MΦ) are key components of the innate immune system contributing to the maintenance of tissue homeostasis and the development/resolution of immune responses to pathogens. Monocytes and DC, circulating in the blood or infiltrating various lymphoid and non-lymphoid tissues, are derived from distinct bone marrow precursors and are typically short lived. Conversely, recent studies revealed that subsets of tissue resident MΦ are long-lived as they originate from embryonic/fetal precursors that have the ability to self-renew during the life of an individual. Pathogens such as the human immunodeficiency virus type 1 (HIV-1) highjack the functions of myeloid cells for viral replication (e.g., MΦ) or distal dissemination and cell-to-cell transmission (e.g., DC). Although the long-term persistence of HIV reservoirs in CD4+ T-cells during viral suppressive antiretroviral therapy (ART) is well documented, the ability of myeloid cells to harbor replication competent viral reservoirs is still a matter of debate. This review summarizes the current knowledge on the biology of monocytes and DC during homeostasis and in the context of HIV-1 infection and highlights the importance of future studies on long-lived resident MΦ to HIV persistence in ART-treated patients.
Collapse
|
14
|
Abstract
Retroviruses are genome invaders that have shared a long history of coevolution with vertebrates and their immune system. Found endogenously in genomes as traces of past invasions, retroviruses are also considerable threats to human health when they exist as exogenous viruses such as HIV. The immune response to retroviruses is engaged by germline-encoded sensors of innate immunity that recognize viral components and damage induced by the infection. This response develops with the induction of antiviral effectors and launching of the clonal adaptive immune response, which can contribute to protective immunity. However, retroviruses efficiently evade the immune response, owing to their rapid evolution. The failure of specialized immune cells to respond, a form of neglect, may also contribute to inadequate antiretroviral immune responses. Here, we discuss the mechanisms by which immune responses to retroviruses are mounted at the molecular, cellular, and organismal levels. We also discuss how intrinsic, innate, and adaptive immunity may cooperate or conflict during the generation of immune responses.
Collapse
Affiliation(s)
- Asier Sáez-Cirión
- HIV Inflammation and Persistence, Institut Pasteur, 75015 Paris, France;
| | - Nicolas Manel
- Immunity and Cancer Department, INSERM U932, Institut Curie, PSL Research University, 75005 Paris, France;
| |
Collapse
|
15
|
Dendritic cells efficiently transmit HIV to T Cells in a tenofovir and raltegravir insensitive manner. PLoS One 2018; 13:e0189945. [PMID: 29293546 PMCID: PMC5749731 DOI: 10.1371/journal.pone.0189945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Dendritic cell (DC)-to-T cell transmission is an example of infection in trans, in which the cell transmitting the virus is itself uninfected. During this mode of DC-to-T cell transmission, uninfected DCs concentrate infectious virions, contact T cells and transmit these virions to target cells. Here, we investigated the efficiency of DC-to-T cell transmission on the number of cells infected and the sensitivity of this type of transmission to the antiretroviral drugs tenofovir (TFV) and raltegravir (RAL). We observed activated monocyte-derived and myeloid DCs amplified T cell infection, which resulted in drug insensitivity. This drug insensitivity was dependent on cell-to-cell contact and ratio of DCs to T cells in coculture. DC-mediated amplification of HIV-1 infection was efficient regardless of virus tropism or origin. The DC-to-T cell transmission of the T/F strain CH077.t/2627 was relatively insensitive to TFV compared to DC-free T cell infection. The input of virus modulated the drug sensitivity of DC-to-T cell infection, but not T cell infection by cell-free virus. At high viral inputs, DC-to-T cell transmission reduced the sensitivity of infection to TFV. Transmission of HIV by DCs in trans may have important implications for viral persistence in vivo in environments, where residual replication may persist in the face of antiretroviral therapy.
Collapse
|
16
|
Abstract
The modulation of tuberculosis (TB)-induced immunopathology caused by human immunodeficiency virus (HIV)-1 coinfection remains incompletely understood but underlies the change seen in the natural history, presentation, and prognosis of TB in such patients. The deleterious combination of these two pathogens has been dubbed a "deadly syndemic," with each favoring the replication of the other and thereby contributing to accelerated disease morbidity and mortality. HIV-1 is the best-recognized risk factor for the development of active TB and accounts for 13% of cases globally. The advent of combination antiretroviral therapy (ART) has considerably mitigated this risk. Rapid roll-out of ART globally and the recent recommendation by the World Health Organization (WHO) to initiate ART for everyone living with HIV at any CD4 cell count should lead to further reductions in HIV-1-associated TB incidence because susceptibility to TB is inversely proportional to CD4 count. However, it is important to note that even after successful ART, patients with HIV-1 are still at increased risk for TB. Indeed, in settings of high TB incidence, the occurrence of TB often remains the first presentation of, and thereby the entry into, HIV care. As advantageous as ART-induced immune recovery is, it may also give rise to immunopathology, especially in the lower-CD4-count strata in the form of the immune reconstitution inflammatory syndrome. TB-immune reconstitution inflammatory syndrome will continue to impact the HIV-TB syndemic.
Collapse
|
17
|
Akiyama H, Ramirez NGP, Gudheti MV, Gummuluru S. CD169-mediated trafficking of HIV to plasma membrane invaginations in dendritic cells attenuates efficacy of anti-gp120 broadly neutralizing antibodies. PLoS Pathog 2015; 11:e1004751. [PMID: 25760631 PMCID: PMC4356592 DOI: 10.1371/journal.ppat.1004751] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/17/2015] [Indexed: 01/12/2023] Open
Abstract
Myeloid dendritic cells (DCs) can capture HIV-1 via the receptor CD169/Siglec-1 that binds to the ganglioside, GM3, in the virus particle membrane. In turn, HIV-1 particles captured by CD169, an I-type lectin, whose expression on DCs is enhanced upon maturation with LPS, are protected from degradation in CD169+ virus-containing compartments (VCCs) and disseminated to CD4+ T cells, a mechanism of DC-mediated HIV-1 trans-infection. In this study, we describe the mechanism of VCC formation and its role in immune evasion mechanisms of HIV-1. We find HIV-1-induced formation of VCCs is restricted to myeloid cells, and that the cytoplasmic tail of CD169 is dispensable for HIV-1 trafficking and retention within VCCs and subsequent trans-infection to CD4+ T cells. Interestingly, introduction of a di-aromatic endocytic motif in the cytoplasmic tail of CD169 that results in endocytosis of HIV-1 particles, suppressed CD169-mediated HIV-1 trans-infection. Furthermore, super-resolution microscopy revealed close association of CD169 and HIV-1 particles in surface-accessible but deep plasma membrane invaginations. Intriguingly, HIV-1 particles in deep VCCs were inefficiently accessed by anti-gp120 broadly neutralizing antibodies, VRC01 and NIH45-46 G54W, and thus were less susceptible to neutralization. Our study suggests that HIV-1 capture by CD169 can provide virus evasion from both innate (phagocytosis) and adaptive immune responses. Dendritic cells (DCs) are professional antigen presenting cells, and their sentinel roles are important to elicit a potent antiviral immunity. However, HIV-1 has exploited DCs to spread infection by several mechanisms. One such mechanism is the DC-mediated trans-infection pathway, whereby DCs transmit captured virus to CD4+ T cells. We have recently identified the type I interferon (IFN-I) inducible protein, CD169, as a receptor on DCs which mediates HIV-1 capture and trans-infection. We have also demonstrated extensive co-localization of HIV-1 with CD169 within peripheral non-lysosomal compartments in DCs, although the mechanism and biological importance of the compartment formation remain unclear. Here in this study, we report that a myeloid cell specific co-factor interacts with CD169 following virus capture leading to compartment formation. This co-factor is induced in DCs by an IFN-I-inducing TLR ligand LPS, but not by IFN-I itself. Though the CD169+ HIV-1 containing compartments are surface-accessible, these compartments have considerable depth and are connected to the surface, such that captured virus particles localized within these unique structures are protected from detection by anti-gp120 broadly neutralizing antibodies. Our study suggests that CD169–HIV-1 interaction provides an evasion mechanism from degradation by phagocytosis and neutralization by anti-viral humoral responses.
Collapse
Affiliation(s)
- Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nora-Guadalupe Pina Ramirez
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Manasa V. Gudheti
- Bruker Nano Surfaces, Salt Lake City, Utah, United States of America
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kijewski SDG, Gummuluru S. A mechanistic overview of dendritic cell-mediated HIV-1 trans infection: the story so far. Future Virol 2015; 10:257-269. [PMID: 26213560 PMCID: PMC4508676 DOI: 10.2217/fvl.15.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite progress in antiretroviral therapy, HIV-1 rebound after cessation of antiretroviral therapy suggests that establishment of long-term cellular reservoirs of virus is a significant barrier to functional cure. There is considerable evidence that dendritic cells (DCs) play an important role in systemic virus dissemination. Although productive infection of DCs is inefficient, DCs capture HIV-1 and transfer-captured particles to CD4+ T cells, a mechanism of DC-mediated HIV-1 trans infection. Recent findings suggest that DC-mediated trans infection of HIV-1 is dependent on recognition of GM3, a virus-particle-associated host-derived ligand, by CD169 expressed on DCs. In this review, we describe mechanisms of DC-mediated HIV-1 trans infection and discuss specifically the role of CD169 in establishing infection in CD4+ T cells.
Collapse
Affiliation(s)
- Suzanne DG Kijewski
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
19
|
Gummuluru S, Pina Ramirez NG, Akiyama H. CD169-dependent cell-associated HIV-1 transmission: a driver of virus dissemination. J Infect Dis 2015; 210 Suppl 3:S641-7. [PMID: 25414418 DOI: 10.1093/infdis/jiu442] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sexual transmission of human immunodeficiency virus type 1 (HIV-1) occurs across mucosal surfaces of the genital and gastrointestinal tracts and accounts for the vast majority of newly acquired infections worldwide. In the absence of an effective vaccine, interventional strategies such as microbicides that target viral attachment and entry into mucosa-resident target cells are particularly attractive and might have the greatest impact on reducing the HIV-1 pandemic. Rational development of microbicides would be greatly aided with a better understanding of several key questions of mucosal HIV-1 transmission, including the molecular mechanism(s) of how HIV-1 traverses mucosal barriers, the type of cells that it initially infects to gain a foothold in the naive host, and how it is disseminated from local sites of infection to draining lymph nodes. In this review, we discuss the role of myeloid dendritic cells (DCs) in cell-associated HIV-1 transmission and in facilitating systemic HIV-1 dissemination. We will evaluate the role of CD169 as a DC-associated HIV-1 attachment factor, investigate the molecular mechanisms by which HIV-1 particles are transferred from DCs to CD4(+) T cells across virological synapses, and provide arguments for inclusion of molecules in microbicides that can effectively target HIV-1 attachment to DCs and DC-mediated virus transfer.
Collapse
Affiliation(s)
- Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Massachusetts
| | | | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Massachusetts
| |
Collapse
|
20
|
The role of human dendritic cells in HIV-1 infection. J Invest Dermatol 2014; 135:1225-1233. [PMID: 25407434 DOI: 10.1038/jid.2014.490] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/25/2014] [Accepted: 09/27/2014] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) and their subsets have multifaceted roles in the early stages of HIV-1 transmission and infection. DC studies have led to remarkable discoveries, including identification of restriction factors, cellular structures promoting viral transmission including the infectious synapse or the interplay of the C-type lectins, Langerin on Langerhans cells (LCs), and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin on other DC subsets, limiting or facilitating HIV transmission to CD4(+) T cells, respectively. LCs/DCs are also exposed to encountering HIV-1 and other sexually transmitted infections (herpes simplex virus-2, bacteria, fungi), which reprogram HIV-1 interaction with these cells. This review will summarize advances in the role of DCs during HIV-1 infection and discuss their potential involvement in the development of preventive strategies against HIV-1 and other sexually transmitted infections.
Collapse
|
21
|
Izquierdo-Useros N, Lorizate M, McLaren PJ, Telenti A, Kräusslich HG, Martinez-Picado J. HIV-1 capture and transmission by dendritic cells: the role of viral glycolipids and the cellular receptor Siglec-1. PLoS Pathog 2014; 10:e1004146. [PMID: 25033082 PMCID: PMC4102576 DOI: 10.1371/journal.ppat.1004146] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) are essential in order to combat invading viruses and trigger antiviral responses. Paradoxically, in the case of HIV-1, DCs might contribute to viral pathogenesis through trans-infection, a mechanism that promotes viral capture and transmission to target cells, especially after DC maturation. In this review, we highlight recent evidence identifying sialyllactose-containing gangliosides in the viral membrane and the cellular lectin Siglec-1 as critical determinants for HIV-1 capture and storage by mature DCs and for DC-mediated trans-infection of T cells. In contrast, DC-SIGN, long considered to be the main receptor for DC capture of HIV-1, plays a minor role in mature DC-mediated HIV-1 capture and trans-infection.
Collapse
Affiliation(s)
- Nuria Izquierdo-Useros
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- * E-mail: (NIU); (HGK); (JMP)
| | - Maier Lorizate
- Unidad de Biofisica (CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del Pais Vasco, Bilbao, Spain
| | - Paul J. McLaren
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Amalio Telenti
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
- * E-mail: (NIU); (HGK); (JMP)
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Universitat de Vic–Universitat Central de Catalunya (UVic-UCC), Vic, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (NIU); (HGK); (JMP)
| |
Collapse
|
22
|
Peng CY, Chen TH, Lim YP, Tsai FJ, Lin WY, Liao WL, Wan L. Association of MRC-1 and IL-28B with the treatment outcome of hepatitis C: a case control study. BMC Gastroenterol 2014; 14:113. [PMID: 24969847 PMCID: PMC4098956 DOI: 10.1186/1471-230x-14-113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/03/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The aim of this study was to evaluate whether polymorphisms of the mannose receptor C type 1 (MRC-1) and interleukin 28B (IL-28B) genes are associated with the treatment outcome of patients infected with hepatitis C virus genotypes 1 and 2 (HCV-1 and HCV-2, respectively) who are treated with peginterferon plus ribavirin (PEG-IFNα-RBV). METHODS We analyzed the association of the patients' sustained viral responses (SVRs) to PEG-IFNα-RBV therapy with 2 single nucleotide polymorphisms (SNPs) in MRC-1 and 3 SNPs in IL-28B. We selected patients infected with either HCV-1 (n = 265) or HCV-2 (n = 195) with or without SVR. RESULTS Among the MRC-1 SNPs, rs691005 was found to be associated with SVR in HCV-1-infected patients (P < 0.0001). The IL-28B rs8099917 SNP was found to be associated with SVR in HCV-1- and HCV-2-infected patients (HCV-1, P < 0.0001; HCV-2, P = 0.002), while IL-28B rs955155 and rs10853728 SNPs were found to be associated with SVR in HCV-1-infected patients (P = 0.003) and HCV-2-infected patients (P = 0.02), respectively. We also identified an interaction between MRC-1 rs691005 and IL-28B rs8099917 (P = 0.001). The C-T haplotype was shown to have a positive effect on SVR in HCV-1-infected patients (OR = 1.77, 95% CI = 1.2, 2.62), whereas the T-G haplotype was shown to have a negative effect on SVR in HCV-1-infected patients (OR = 0.28, 95% CI = 0.14, 0.58). CONCLUSIONS These results suggest that SNPs of IL-28B and MRC-1 can be used as genetic markers for predicting the outcome of PEG-IFNα-RBV treatment of HCV infections.
Collapse
Affiliation(s)
- Cheng-Yuan Peng
- Department of Internal Medicine, China Medical University Hospital, 40402 Taichung, Taiwan
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, 40402 Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, 40402 Taichung, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, China Medical University, 40402 Taichung, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, 40402 Taichung, Taiwan
| | - Lei Wan
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, 40402 Taichung, Taiwan
- Department of Gynecology, China Medical University Hospital, 40447 Taichung, Taiwan
- Department of Biotechnology, Asia University, 41354 Taichung, Taiwan
| |
Collapse
|
23
|
Glycosphingolipid-functionalized nanoparticles recapitulate CD169-dependent HIV-1 uptake and trafficking in dendritic cells. Nat Commun 2014; 5:4136. [PMID: 24947940 PMCID: PMC4109413 DOI: 10.1038/ncomms5136] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/16/2014] [Indexed: 12/20/2022] Open
Abstract
Ganglioside GM3, a host-derived glycosphingolipid incorporated in the membrane of human immunodeficiency virus-1 (HIV-1) viral particles, mediates interactions between HIV-1 and Siglec1/CD169, a protein expressed on dendritic cells (DCs). Such interactions, which seem to be independent of viral envelope glycoprotein gp120, are poorly understood. Here we develop a model system consisting of self-assembled artificial virus nanoparticles (AVNs) that are free of viral glycoproteins or other host-derived glycolipids and glycoproteins. These plasmonic AVNs contain a membrane of defined composition wrapped around a solid metal core. GM3-containing AVNs are captured by CD169-expressing HeLa cells or mature DCs, and are sequestered within non-lysosomal tetraspanin-positive compartments. This distribution is reminiscent of CD169-dependent HIV-1 sequestration in mature DCs. Our results highlight GM3-CD169 binding as a gp120-independent signal for sequestration and preservation of HIV-1 infectivity. They also indicate that plasmonic AVNs offer improved features over liposome-based systems and represent a versatile tool for probing specific virus-cell interactions.
Collapse
|
24
|
Jin W, Li C, Du T, Hu K, Huang X, Hu Q. DC-SIGN plays a stronger role than DCIR in mediating HIV-1 capture and transfer. Virology 2014; 458-459:83-92. [PMID: 24928041 DOI: 10.1016/j.virol.2014.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/11/2014] [Accepted: 04/12/2014] [Indexed: 10/25/2022]
Abstract
The C-type lectin receptors (CLRs) expressed on dendritic cells (DCs), in particular DC-SIGN and DCIR, likely play an important role in HIV-1 early infection. Here, we systematically compared the capture and transfer capability of DC-SIGN and DCIR using a wide range of HIV-1 isolates. Our results indicated that DC-SIGN plays a stronger role than DCIR in DC-mediated HIV-1 capture and transfer. This was further strengthened by the data from transient and stable transfectants, showing that DC-SIGN had better capability, compared with DCIR in HIV-1 capture and transfer. Following constructing and analyzing a series of soluble DC-SIGN and DCIR truncates and chimeras, we demonstrated that the neck domain, but not the CRD, renders DC-SIGN higher binding affinity to gp120 likely via the formation of tetramerization. Our findings provide insights into CLR-mediated HIV-1 capture and transfer, highlighting potential targets for intervention strategies against gp120-CLR interactions.
Collapse
Affiliation(s)
- Wei Jin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China
| | - Xin Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; Center for Infection and Immunity, St George׳s University of London, London SW17 0RE, UK.
| |
Collapse
|
25
|
Manches O, Frleta D, Bhardwaj N. Dendritic cells in progression and pathology of HIV infection. Trends Immunol 2013; 35:114-22. [PMID: 24246474 DOI: 10.1016/j.it.2013.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/24/2013] [Accepted: 10/09/2013] [Indexed: 01/08/2023]
Abstract
Although the major targets of HIV infection are CD4⁺ T cells, dendritic cells (DCs) represent a crucial subset in HIV infection because they influence viral transmission and target cell infection and presentation of HIV antigens. DCs are potent antigen-presenting cells that can modulate antiviral immune responses. Through secretion of inflammatory cytokines and interferons (IFNs), DCs also alter T cell proliferation and differentiation, participating in the immune dysregulation characteristic of chronic HIV infection. Their wide distribution in close proximity with the mucosal epithelia makes them one of the first cell types to encounter HIV during sexual transmission. We discuss here the multiple roles that DCs play at different stages of HIV infection, emphasizing their relevance to HIV pathology and progression.
Collapse
Affiliation(s)
- Olivier Manches
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Mount Sinai Hospital, New York, USA
| | - Davor Frleta
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Mount Sinai Hospital, New York, USA
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Mount Sinai Hospital, New York, USA.
| |
Collapse
|
26
|
Mercer J, Greber UF. Virus interactions with endocytic pathways in macrophages and dendritic cells. Trends Microbiol 2013; 21:380-8. [PMID: 23830563 DOI: 10.1016/j.tim.2013.06.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 12/20/2022]
Abstract
Macrophages and dendritic cells (DCs) are at the front line of defence against fungi, bacteria, and viruses. Together with physical barriers, such as mucus and a range of antimicrobial compounds, they constitute a major part of the intrinsic and innate immune systems. They have elaborate features, including pattern recognition receptors (PRRs) and specialized endocytic mechanisms, cytokines and chemokines, and the ability to call on reserves. As masters of manipulation and counter-attack, viruses shunt intrinsic and innate recognition, enter immune cells, and spread from these cells throughout an organism. Here, we review mechanisms by which viruses subvert endocytic and pathogen-sensing functions of macrophages and DCs, while highlighting possible strategic advantages of infecting cells normally tuned into pathogen destruction.
Collapse
Affiliation(s)
- Jason Mercer
- Eidgenössische Technische Hochschule (ETH) Zürich, Institute of Biochemistry, Schafmattstr. 18, CH-8093, Zürich, Switzerland.
| | | |
Collapse
|
27
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
28
|
Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on Siglec-1/CD169. PLoS Pathog 2013; 9:e1003291. [PMID: 23593001 PMCID: PMC3623718 DOI: 10.1371/journal.ppat.1003291] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/21/2013] [Indexed: 01/12/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) interactions with myeloid dendritic cells (DCs) can result in virus dissemination to CD4+ T cells via a trans infection pathway dependent on virion incorporation of the host cell derived glycosphingolipid (GSL), GM3. The mechanism of DC-mediated trans infection is extremely efficacious and can result in infection of multiple CD4+ T cells as these cells make exploratory contacts on the DC surface. While it has long been appreciated that activation of DCs with ligands that induce type I IFN signaling pathway dramatically enhances DC-mediated T cell trans infection, the mechanism by which this occurs has remained unclear until now. Here, we demonstrate that the type I IFN-inducible Siglec-1, CD169, is the DC receptor that captures HIV in a GM3-dependent manner. Selective downregulation of CD169 expression, neutralizing CD169 function, or depletion of GSLs from virions, abrogated DC-mediated HIV-1 capture and trans infection, while exogenous expression of CD169 in receptor-naïve cells rescued GSL-dependent capture and trans infection. HIV-1 particles co-localized with CD169 on DC surface immediately following capture and subsequently within non-lysosomal compartments that redistributed to the DC – T cell infectious synapses upon initiation of T cell contact. Together, these findings describe a novel mechanism of pathogen parasitization of host encoded cellular recognition machinery (GM3 – CD169 interaction) for DC-dependent HIV dissemination. Dendritic cells (DCs) are one of the initial cellular targets of HIV-1 and can play a crucial role in determining the course of virus infection in vivo. While sentinel functions of DCs are essential for establishment of an antiviral state, HIV-1 can subvert DC function for its dissemination. One of the mechanisms by which DCs can mediate virus spread is via the trans infection pathway whereby DCs capture HIV-1 particles and retain them in an infectious state without getting infected, and pass these infectious particles to CD4+ T cells upon initiation of cellular contacts. In this report, we demonstrate that expression of Siglec-1or CD169, on DC surface is responsible for capture of HIV-1 particles by binding the ganglioside, GM3, present in the virion lipid bilayer. This interaction between CD169 and GM3 targets captured virus particles to non-degradative compartments and resulted in retention of virus particle infectivity within DCs. Upon initiation of T cell contacts with virus-laden DCs, HIV-1 particles were trafficked to the DC – T synaptic junctions and transferred to T cells for establishment of productive infection. These studies define a novel host-encoded receptor – ligand interaction that drives HIV-1 dissemination and can be used for development of novel anti-viral therapeutics.
Collapse
|
29
|
Abstract
Defining the virus-host interactions responsible for HIV-1 transmission, including the phenotypic requirements of viruses capable of establishing de novo infections, could be important for AIDS vaccine development. Previous analyses have failed to identify phenotypic properties other than chemokine receptor 5 (CCR5) and CD4+ T-cell tropism that are preferentially associated with viral transmission. However, most of these studies were limited to examining envelope (Env) function in the context of pseudoviruses. Here, we generated infectious molecular clones of transmitted founder (TF; n = 27) and chronic control (CC; n = 14) viruses of subtypes B (n = 18) and C (n = 23) and compared their phenotypic properties in assays specifically designed to probe the earliest stages of HIV-1 infection. We found that TF virions were 1.7-fold more infectious (P = 0.049) and contained 1.9-fold more Env per particle (P = 0.048) compared with CC viruses. TF viruses were also captured by monocyte-derived dendritic cells 1.7-fold more efficiently (P = 0.035) and more readily transferred to CD4+ T cells (P = 0.025). In primary CD4+ T cells, TF and CC viruses replicated with comparable kinetics; however, when propagated in the presence of IFN-α, TF viruses replicated to higher titers than CC viruses. This difference was significant for subtype B (P = 0.000013) but not subtype C (P = 0.53) viruses, possibly reflecting demographic differences of the respective patient cohorts. Together, these data indicate that TF viruses are enriched for higher Env content, enhanced cell-free infectivity, improved dendritic cell interaction, and relative IFN-α resistance. These viral properties, which likely act in concert, should be considered in the development and testing of AIDS vaccines.
Collapse
|
30
|
Fenard D, Genries S, Scherman D, Galy A, Martin S, Kichler A. Infectivity enhancement of different HIV-1-based lentiviral pseudotypes in presence of the cationic amphipathic peptide LAH4-L1. J Virol Methods 2013; 189:375-8. [PMID: 23454800 DOI: 10.1016/j.jviromet.2013.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/02/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
Lentiviral vectors (LVs) are promising delivery systems for gene therapy. To enhance the efficiency of target cell transduction by LVs, protocols often include the addition of culture additives. In this study, the cationic amphipathic peptide LAH4-L1 (KKALLAHALHLLALLALHLAHALKKA), a DNA transfection agent, was evaluated for its capacity to improve LV infectivity in cell lines and primary cells. Results show that LAH4-L1 enhances infectivity of all LV pseudotypes tested, particularly GALVTR-LVs. More importantly, LAH4-L1 promotes the transduction of CD34+ hematopoietic stem cells with GALVTR-LVs as efficiently as Retronectin, a culture additive used in ex vivo clinical protocols involving LVs. The action of LAH4-L1 relies both on the GALVTR-LV adhesion and post-adhesion steps. LAH4-L1 represents a new and attractive transduction enhancer for hematopoietic gene therapy protocols.
Collapse
Affiliation(s)
- David Fenard
- INSERM, UMR_S951, Généthon, Evry F-91002, France.
| | | | | | | | | | | |
Collapse
|
31
|
Sehgal M, Khan ZK, Talal AH, Jain P. Dendritic Cells in HIV-1 and HCV Infection: Can They Help Win the Battle? Virology (Auckl) 2013; 4:1-25. [PMID: 25512691 PMCID: PMC4222345 DOI: 10.4137/vrt.s11046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Persistent infections with human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are a major cause of morbidity and mortality worldwide. As sentinels of our immune system, dendritic cells (DCs) play a central role in initiating and regulating a potent antiviral immune response. Recent advances in our understanding of the role of DCs during HIV-1 and HCV infection have provided crucial insights into the mechanisms employed by these viruses to impair DC functions in order to evade an effective immune response against them. Modulation of the immunological synapse between DC and T-cell, as well as dysregulation of the crosstalk between DCs and natural killer (NK) cells, are emerging as two crucial mechanisms. This review focuses on understanding the interaction of HIV-1 and HCV with DCs not only to understand the immunopathogenesis of chronic HIV-1 and HCV infection, but also to explore the possibilities of DC-based immunotherapeutic approaches against them. Host genetic makeup is known to play major roles in infection outcome and rate of disease progression, as well as response to anti-viral therapy in both HIV-1 and HCV-infected individuals. Therefore, we highlight the genetic variations that can potentially affect DC functions, especially in the setting of chronic viral infection. Altogether, we address if DCs’ potential as critical effectors of antiviral immune response could indeed be utilized to combat chronic infection with HIV-1 and HCV.
Collapse
Affiliation(s)
- Mohit Sehgal
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew H Talal
- Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, NY
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Puryear WB, Gummuluru S. Role of glycosphingolipids in dendritic cell-mediated HIV-1 trans-infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 762:131-53. [PMID: 22975874 PMCID: PMC3686569 DOI: 10.1007/978-1-4614-4433-6_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycosphingolipids (GSLs) are components of the cell membrane that comprise a membrane bound lipid, ceramide, coupled to an extracellular carbohydrate. GSLs impact numerous aspects of membrane biology, including membrane fluidity, curvature, and organization. The role of these molecules in both chronic inflammation and infectious disease and underlying pathogenic mechanisms are just starting to be recognized. As a component of the cell membrane, GSLs are also incorporated into lipid bilayers of diverse enveloped viruses as they bud out from the host cell and can go on to have a significant influence on viral pathogenesis. Dendritic cell (DC) subsets located in the peripheral mucosal tissues are proposed to be one of the earliest cell types that encounter transmitted viruses and help initiate adaptive immune responses against the invading pathogen by interacting with T cells. In turn, viruses, as obligatory intracellular parasites, rely on host cells for completing their replication cycle, and not surprisingly, HIV has evolved to exploit DC biology for the initial transmission event as well as for its dissemination and propagation within the infected host. In this review, we describe the mechanisms by which GSLs impact DC-mediated HIV trans-infection by either modulating virus infectivity, serving as a direct virus particle-associated host-derived ligand for specific interactions with DCs, or modulating the T cell membrane in such a way as to impact viral entry and thereby productive infection of CD4(+) T cells.
Collapse
Affiliation(s)
- Wendy Blay Puryear
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
33
|
Molecular mechanisms of HIV immune evasion of the innate immune response in myeloid cells. Viruses 2012; 5:1-14. [PMID: 23344558 PMCID: PMC3564108 DOI: 10.3390/v5010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 12/13/2022] Open
Abstract
The expression of intrinsic antiviral factors by myeloid cells is a recently recognized mechanism of restricting lentiviral replication. Viruses that enter these cells must develop strategies to evade cellular antiviral factors to establish a productive infection. By studying the cellular targets of virally encoded proteins that are necessary to infect myeloid cells, a better understanding of cellular intrinsic antiviral strategies has now been achieved. Recent findings have provided insight into how the lentiviral accessory proteins, Vpx, Vpr and Vif counteract antiviral factors found in myeloid cells including SAMHD1, APOBEC3G, APOBEC3A, UNG2 and uracil. Here we review our current understanding of the molecular basis of how cellular antiviral factors function and the viral countermeasures that antagonize them to promote viral transmission and spread.
Collapse
|
34
|
Pillay V, Mashingaidze F, Choonara YE, Du Toit LC, Buchmann E, Maharaj V, Ndesendo VM, Kumar P. Qualitative and Quantitative Intravaginal Targeting: Key to Anti-HIV-1 Microbicide Delivery from Test Tube to In Vivo Success. J Pharm Sci 2012; 101:1950-68. [DOI: 10.1002/jps.23098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/27/2011] [Accepted: 02/09/2012] [Indexed: 12/20/2022]
|
35
|
HIV-1 incorporation of host-cell-derived glycosphingolipid GM3 allows for capture by mature dendritic cells. Proc Natl Acad Sci U S A 2012; 109:7475-80. [PMID: 22529395 DOI: 10.1073/pnas.1201104109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction between HIV and dendritic cells (DCs) is an important early event in HIV-1 pathogenesis that leads to efficient viral dissemination. Here we demonstrate a HIV gp120-independent DC capture mechanism that uses virion-incorporated host-derived gangliosides with terminal α2-3-linked sialic acid linkages. Using exogenously enriched virus and artificial liposome particles, we demonstrate that both α2-3 gangliosides GM1 and GM3 are capable of mediating this interaction when present in the particle at high levels. In the absence of overexpression, GM3 is the primary ligand responsible for this capture mechanism, because siRNA depletion of GM3 but not GM1 from the producer cell and hence virions, resulted in a dramatic decrease in DC capture. Furthermore, HIV-1 capture by DCs was competitively inhibited by targeting virion-associated GM3, but was unchanged by targeting GM1. Finally, virions were derived from monocytoid THP-1 cells that constitutively display low levels of GM1 and GM3, or from THP-1 cells induced to express high surface levels of GM1 and GM3 upon stimulation with the TLR2/1 ligand Pam3CSK4. Compared with untreated THP-1 cells, virus produced from Pam3CSK4-stimulated THP-1 cells incorporated higher levels of GM3, but not GM1, and showed enhanced DC capture and trans-infection. Our results identify a unique HIV-1 DC attachment mechanism that is dependent on a host-cell-derived ligand, GM3, and is a unique example of pathogen mimicry of host-cell recognition pathways that drive virus capture and dissemination in vivo.
Collapse
|
36
|
St. Gelais C, Coleman CM, Wang JH, Wu L. HIV-1 Nef enhances dendritic cell-mediated viral transmission to CD4+ T cells and promotes T-cell activation. PLoS One 2012; 7:e34521. [PMID: 22479639 PMCID: PMC3316695 DOI: 10.1371/journal.pone.0034521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/02/2012] [Indexed: 02/06/2023] Open
Abstract
HIV-1 Nef enhances dendritic cell (DC)-mediated viral transmission to CD4(+) T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+) T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+) T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+) T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+) T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+) T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+) T cells and in the activation and proliferation of resting CD4(+) T cells, which likely contribute to viral pathogenesis.
Collapse
Affiliation(s)
- Corine St. Gelais
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher M. Coleman
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Jian-Hua Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
37
|
Ahmed Z, Czubala M, Blanchet F, Piguet V. HIV impairment of immune responses in dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:201-38. [PMID: 22975877 DOI: 10.1007/978-1-4614-4433-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Dendritic cells and their subsets are diverse populations of immune cells in the skin and mucous membranes that possess the ability to sense the presence of microbes and orchestrate an efficient and adapted immune response. Dendritic cells (DC) have the unique ability to act as a bridge between the innate and adaptive immune responses. These cells are composed of a number of subsets behaving with preferential and specific features depending on their location and surrounding environment. Langerhans cells (LC) or dermal DC (dDC) are readily present in mucosal areas. Other DC subsets such as plasmacytoid DC (pDC), myeloid DC (myDC), or monocyte-derived DC (MDDC) are thought to be recruited or differentiated in sites of pathogenic challenge. Upon HIV infection, DC and their subsets are likely among the very first immune cells to encounter incoming pathogens and initiate innate and adaptive immune responses. However, as evidenced during HIV infection, some pathogens have evolved subtle strategies to hijack key cellular machineries essential to generate efficient antiviral responses and subvert immune responses for spread and survival.In this chapter, we review recent research aimed at investigating the involvement of DC subtypes in HIV transmission at mucosal sites, concentrating on HIV impact on cellular signalling and trafficking pathways in DC leading to DC-mediated immune response alterations and viral immune evasion. We also address some aspects of DC functions during the chronic immune pathogenesis and conclude with an overview of the current and novel therapeutic and prophylactic strategies aimed at improving DC-mediated immune responses, thus to potentially tackle the early events of mucosal HIV infection and spread.
Collapse
Affiliation(s)
- Zahra Ahmed
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine, Cardiff, Wales, UK
| | | | | | | |
Collapse
|
38
|
Silvin A, Manel N. Interactions between HIV-1 and innate immunity in dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:183-200. [PMID: 22975876 DOI: 10.1007/978-1-4614-4433-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dendritic cells couple pathogen sensing with induction of innate and adaptive immune responses. Pathogen sensing in dendritic cells relies on interactions between molecular patterns of the pathogens and germline-encoded, also referred to as innate, receptors. In this chapter, we analyze some of the interactions between HIV-1 and the innate immune system in dendritic cells. The HIV-1 replication cycle is constituted by an extracellular and an intracellular phase. The two phases of the cycle provide distinct opportunities for interactions with cell-extrinsic and cell-intrinsic mechanisms in dendritic cells. According to the types of dendritic cells, the mechanisms of innate interactions between dendritic cells and HIV-1 lead to specific responses. These innate interactions may contribute to influencing and shaping the adaptive immune response against the virus.
Collapse
Affiliation(s)
- Aymeric Silvin
- Department of Immunity and Cancer, Institut Curie-INSERM U932, Paris, France
| | | |
Collapse
|
39
|
Hijazi K, Wang Y, Scala C, Jeffs S, Longstaff C, Stieh D, Haggarty B, Vanham G, Schols D, Balzarini J, Jones IM, Hoxie J, Shattock R, Kelly CG. DC-SIGN increases the affinity of HIV-1 envelope glycoprotein interaction with CD4. PLoS One 2011; 6:e28307. [PMID: 22163292 PMCID: PMC3233575 DOI: 10.1371/journal.pone.0028307] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/05/2011] [Indexed: 11/30/2022] Open
Abstract
Mannose-binding C-type lectin receptors, expressed on Langerhans cells and subepithelial dendritic cells (DCs) of cervico-vaginal tissues, play an important role in HIV-1 capture and subsequent dissemination to lymph nodes. DC-SIGN has been implicated in both productive infection of DCs and the DC-mediated trans infection of CD4+ T cells that occurs in the absence of replication. However, the molecular events that underlie this efficient transmission have not been fully defined. In this study, we have examined the effect of the extracellular domains of DC-SIGN and Langerin on the stability of the interaction of the HIV-1 envelope glycoprotein with CD4 and also on replication in permissive cells. Surface plasmon resonance analysis showed that DC-SIGN increases the binding affinity of trimeric gp140 envelope glycoproteins to CD4. In contrast, Langerin had no effect on the stability of the gp140:CD4 complex. In vitro infection experiments to compare DC-SIGN enhancement of CD4-dependent and CD4-independent strains demonstrated significantly lower enhancement of the CD4-independent strain. In addition DC-SIGN increased the relative rate of infection of the CD4-dependent strain but had no effect on the CD4-independent strain. DC-SIGN binding to the HIV envelope protein effectively increases exposure of the CD4 binding site, which in turn contributes to enhancement of infection.
Collapse
Affiliation(s)
- Karolin Hijazi
- King's College London, Dental Institute, Oral Immunology, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Yufei Wang
- King's College London, Dental Institute, Oral Immunology, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Carlo Scala
- King's College London, Dental Institute, Oral Immunology, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Simon Jeffs
- Jefferiss Trust Research Laboratories, Wright-Fleming Institute, Division of Medicine, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Colin Longstaff
- Biotherapeutics Section, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Daniel Stieh
- Centre for Infection, Department of Cellular and Molecular Medicine, St George's, University of London, London, United Kingdom
| | - Beth Haggarty
- Penn Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guido Vanham
- Virology Unit, Division of Microbiology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Faculty of Medicine and Pharmacy Free University of Brussels, Brussels, Belgium
| | - Dominique Schols
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - James Hoxie
- Penn Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robin Shattock
- Centre for Infection, Department of Cellular and Molecular Medicine, St George's, University of London, London, United Kingdom
| | - Charles G. Kelly
- King's College London, Dental Institute, Oral Immunology, Tower Wing, Guy's Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Abstract
The human immune system is under constant challenge from many viruses, some of which the body is successfully able to clear. Other viruses have evolved to escape the host immune responses and thus persist, leading to the development of chronic diseases. Dendritic cells are professional antigen-presenting cells that play a major role in both innate and adaptive immunity against different pathogens. This review focuses on the interaction of different chronic viruses with dendritic cells and the viruses' ability to exploit this critical cell type to their advantage so as to establish persistence within the host.
Collapse
Affiliation(s)
- Saifur Rahman
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | | | | |
Collapse
|
41
|
Interaction between the HTLV-1 envelope and cellular proteins: impact on virus infection and restriction. Future Med Chem 2011; 2:1651-68. [PMID: 21428837 DOI: 10.4155/fmc.10.255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first human retrovirus, human T-lymphotropic virus 1 (HTLV-1), was discovered 30 years ago. Despite intensive study, the cell surface molecules involved in virus entry have only been identified over the past few years. Three molecules form the receptor complex for HTLV-1: glucose transporter 1, neuropilin 1 and heparan sulfate proteoglycans. Another molecule on the surface of dendritic cells, DC-SIGN, may play a role in dendritic cell-mediated infection of cells. In addition to the cell surface molecules used for entry, the HTLV-1 envelope interacts with cellular proteins, enabling the virus to traffic by exploiting cellular delivery pathways. To facilitate both these steps, HTLV-1 encodes motifs that mimic cellular binding partners for the trafficking system and ligands for the receptors. Here we review the interactions between the HTLV-1 envelope and cellular proteins.
Collapse
|
42
|
Dolganiuc A. Role of lipid rafts in liver health and disease. World J Gastroenterol 2011; 17:2520-35. [PMID: 21633657 PMCID: PMC3103810 DOI: 10.3748/wjg.v17.i20.2520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are an increasingly common cause of morbidity and mortality; new approaches for investigation of mechanisms of liver diseases and identification of therapeutic targets are emergent. Lipid rafts (LRs) are specialized domains of cellular membranes that are enriched in saturated lipids; they are small, mobile, and are key components of cellular architecture, protein partition to cellular membranes, and signaling events. LRs have been identified in the membranes of all liver cells, parenchymal and non-parenchymal; more importantly, LRs are active participants in multiple physiological and pathological conditions in individual types of liver cells. This article aims to review experimental-based evidence with regard to LRs in the liver, from the perspective of the liver as a whole organ composed of a multitude of cell types. We have gathered up-to-date information related to the role of LRs in individual types of liver cells, in liver health and diseases, and identified the possibilities of LR-dependent therapeutic targets in liver diseases.
Collapse
|
43
|
Ines F, Melissa R. Attachment and fusion inhibitors potently prevent dendritic cell-driven HIV infection. J Acquir Immune Defic Syndr 2011; 56:204-12. [PMID: 21084994 PMCID: PMC3039069 DOI: 10.1097/qai.0b013e3181ff2aa5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dendritic cells (DCs) efficiently transfer captured (trans) or de novo-produced (cis) virus to CD4 T cells. Using monocyte-derived DCs, we evaluated entry inhibitors targeting HIV envelope (BMS-C, T-1249) or CCR5 (CMPD167) for their potency to prevent DC infection, DC-driven infection in T cells in trans and cis, and direct infection of DC-T-cell mixtures. Immature DC-T-cell cultures with distinct mechanisms of viral transfer yielded similar levels of infection and produced more proviral DNA compared with matched mature DC-T-cell cultures or infected immature DCs. Although all compounds completely blocked HIV replication, 16 times more of each inhibitor (250 vs 15.6 nM) was required to prevent low-level infection of DCs compared with the productive DC-T-cell cocultures. Across all cell systems tested, BMS-C blocked infection most potently. BMS-C was significantly more effective than CMPD167 at preventing DC infection. In fact, low doses of CMPD167 significantly enhanced DC infection. Elevated levels of CCL4 were observed when immature DCs were cultured with CMPD167. Viral entry inhibitors did not interfere with Candida albicans-specific DC cytokine/chemokine responses. These findings indicate that an envelope-binding small molecule is a promising tool for topical microbicide design to prevent the infection of early targets needed to establish and disseminate HIV infection.
Collapse
Affiliation(s)
- Frank Ines
- Center for Biomedical Research, Population Council, New York, NY 10065
| | - Robbiani Melissa
- Center for Biomedical Research, Population Council, New York, NY 10065
| |
Collapse
|
44
|
Teixeira C, Gomes JRB, Gomes P, Maurel F, Barbault F. Viral surface glycoproteins, gp120 and gp41, as potential drug targets against HIV-1: brief overview one quarter of a century past the approval of zidovudine, the first anti-retroviral drug. Eur J Med Chem 2011; 46:979-92. [PMID: 21345545 DOI: 10.1016/j.ejmech.2011.01.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/15/2011] [Accepted: 01/25/2011] [Indexed: 12/15/2022]
Abstract
The first anti-HIV drug, zidovudine (AZT), was approved by the FDA a quarter of a century ago, in 1985. Currently, anti-HIV drug-combination therapies only target HIV-1 protease and reverse transcriptase. Unfortunately, most of these molecules present numerous shortcomings such as viral resistances and adverse effects. In addition, these drugs are involved in later stages of infection. Thus, it is necessary to develop new drugs that are able to block the first steps of viral life cycle. Entry of HIV-1 is mediated by its two envelope glycoproteins: gp120 and gp41. Upon gp120 binding to cellular receptors, gp41 undergoes a series of conformational changes from a non-fusogenic to a fusogenic conformation. The fusogenic core of gp41 is a trimer-of-hairpins structure in which three C-terminal helices pack against a central trimeric-coiled coil formed by three N-terminal helices. The formation of this fusogenic structure brings the viral and cellular membranes close together, a necessary condition for membrane fusion to occur. As gp120 and gp41 are attractive targets, the development of entry inhibitors represents an important avenue of anti-HIV drug therapy. The present review will focus on some general considerations about HIV, the main characteristics of gp120, gp41 and their inhibitors, with special emphasis on the advances of computational approaches employed in the development of bioactive compounds against HIV-1 entry process.
Collapse
Affiliation(s)
- Cátia Teixeira
- ITODYS, Université Paris Diderot, CNRS - UMR7086, 15 Rue Jean Antoine de Baif, 75205 Paris Cedex 13, France
| | | | | | | | | |
Collapse
|
45
|
Role of DC-SIGN and L-SIGN receptors in HIV-1 vertical transmission. Hum Immunol 2011; 72:305-11. [PMID: 21277928 PMCID: PMC7115691 DOI: 10.1016/j.humimm.2011.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/23/2010] [Accepted: 01/13/2011] [Indexed: 12/28/2022]
Abstract
The innate immune system acts in the first line of host defense against pathogens. One of the mechanisms used involves the early recognition and uptake of microbes by host professional phagocytes, through pattern recognition receptors (PRRs). These PRRs bind to conserved microbial ligands expressed by pathogens and initiate both innate and adaptative immune responses. Some PRRs located on the surface of dendritic cells (DCs) and other cells seem to play an important role in human immunodeficiency virus type 1 (HIV-1) transmission. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin, CD209 (DC-SIGN) and its homolog, DC-SIGN-related (DC-SIGNR or L-SIGN) receptors are PPRs able to bind the HIV-1 gp120 envelope protein and, because alterations in their expression patterns also occur, they might play a role in both horizontal and vertical transmission as well as in disseminating the virus within the host. This review aims to explore the involvement of the DC-SIGN and L-SIGN receptors in HIV-1 transmission from mother to child.
Collapse
|
46
|
Ochiel DO, Ochsenbauer C, Kappes JC, Ghosh M, Fahey JV, Wira CR. Uterine epithelial cell regulation of DC-SIGN expression inhibits transmitted/founder HIV-1 trans infection by immature dendritic cells. PLoS One 2010; 5:e14306. [PMID: 21179465 PMCID: PMC3001862 DOI: 10.1371/journal.pone.0014306] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 11/19/2010] [Indexed: 01/10/2023] Open
Abstract
Background Sexual transmission accounts for the majority of HIV-1 infections. In over 75% of cases, infection is initiated by a single variant (transmitted/founder virus). However, the determinants of virus selection during transmission are unknown. Host cell-cell interactions in the mucosa may be critical in regulating susceptibility to infection. We hypothesized in this study that specific immune modulators secreted by uterine epithelial cells modulate susceptibility of dendritic cells (DC) to infection with HIV-1. Methodology/Principal Findings Here we report that uterine epithelial cell secretions (i.e. conditioned medium, CM) decreased DC-SIGN expression on immature dendritic cells via a transforming growth factor beta (TGF-β) mechanism. Further, CM inhibited dendritic cell-mediated trans infection of HIV-1 expressing envelope proteins of prototypic reference. Similarly, CM inhibited trans infection of HIV-1 constructs expressing envelopes of transmitted/founder viruses, variants that are selected during sexual transmission. In contrast, whereas recombinant TGF- β1 inhibited trans infection of prototypic reference HIV-1 by dendritic cells, TGF-β1 had a minimal effect on trans infection of transmitted/founder variants irrespective of the reporter system used to measure trans infection. Conclusions/Significance Our results provide the first direct evidence for uterine epithelial cell regulation of dendritic cell transmission of infection with reference and transmitted/founder HIV-1 variants. These findings have immediate implications for designing strategies to prevent sexual transmission of HIV-1.
Collapse
Affiliation(s)
- Daniel O Ochiel
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Entry of enveloped viruses into host cells depends on the interactions of viral surface proteins with cell surface receptors. Many enveloped viruses maximize the efficiency of receptor engagement by first binding to attachment‐promoting factors, which concentrate virions on target cells and thus increase the likelihood of subsequent receptor engagement. Cellular lectins can recognize glycans on viral surface proteins and mediate viral uptake into immune cells for subsequent antigen presentation. Paradoxically, many viral and non‐viral pathogens target lectins to attach to immune cells and to subvert cellular functions to promote their spread. Thus, it has been proposed that attachment of HIV to the dendritic cell lectin DC‐SIGN enables the virus to hijack cellular transport processes to ensure its transmission to adjacent T cells. However, recent studies show that the consequences of viral capture by immune cell lectins can be diverse, and can entail negative and positive regulation of viral spread. Here, we will describe key concepts proposed for the role of lectins in HIV attachment to host cells, and we will discuss recent findings in this rapidly evolving area of research.
Collapse
|
48
|
Mikulak J, Teichberg S, Arora S, Kumar D, Yadav A, Salhan D, Pullagura S, Mathieson PW, Saleem MA, Singhal PC. DC-specific ICAM-3-grabbing nonintegrin mediates internalization of HIV-1 into human podocytes. Am J Physiol Renal Physiol 2010; 299:F664-73. [PMID: 20630938 PMCID: PMC2944299 DOI: 10.1152/ajprenal.00629.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 07/08/2010] [Indexed: 12/21/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 has been demonstrated to contribute to the pathogenesis of HIV-associated nephropathy. In renal biopsy studies, podocytes have been reported to be infected by HIV-1. However, the mechanism involved in HIV-1 internalization into podocytes is not clear. In the present study, we evaluated the occurrence of HIV-1 internalization into conditionally immortalized human podocytes and the mechanism involved. Human podocytes rapidly internalized R5 and X4 HIV-1 primary strains via an endocytosis-dependent pathway, without establishing a productive infection. The HIV-1 internalization was dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) receptor mediated. The role of DC-SIGN was confirmed by using specific blocking antibodies and transfection with small interfering (si) RNA/DC-SIGN. Since podocyte HIV-1 trafficking was not altered by pH-modulating agents, it appeared that HIV-1 routing occurred through nonacid vesicular compartments. Interestingly, transfection of podocytes with neither siRNA/caveolin-1 nor siRNA/clathrin heavy chain inhibited podocyte viral accumulation. Thus it appears that clathrin-coated vesicles and caveosomes may not be contributing to HIV-1-associated membrane traffic.
Collapse
Affiliation(s)
- J. Mikulak
- Departments of Medicine and Pathology, North Shore University Hospital and Long Island Jewish Medical Center, New Hyde Park
| | - S. Teichberg
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York; and
| | - S. Arora
- Departments of Medicine and Pathology, North Shore University Hospital and Long Island Jewish Medical Center, New Hyde Park
| | - D. Kumar
- Departments of Medicine and Pathology, North Shore University Hospital and Long Island Jewish Medical Center, New Hyde Park
| | - A. Yadav
- Departments of Medicine and Pathology, North Shore University Hospital and Long Island Jewish Medical Center, New Hyde Park
| | - D. Salhan
- Departments of Medicine and Pathology, North Shore University Hospital and Long Island Jewish Medical Center, New Hyde Park
| | - S. Pullagura
- Departments of Medicine and Pathology, North Shore University Hospital and Long Island Jewish Medical Center, New Hyde Park
| | - P. W. Mathieson
- Children's Renal Unit, University of Bristol, Bristol, United Kingdom
| | - M. A. Saleem
- Children's Renal Unit, University of Bristol, Bristol, United Kingdom
| | - P. C. Singhal
- Departments of Medicine and Pathology, North Shore University Hospital and Long Island Jewish Medical Center, New Hyde Park
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York; and
| |
Collapse
|
49
|
Hanley TM, Blay Puryear W, Gummuluru S, Viglianti GA. PPARgamma and LXR signaling inhibit dendritic cell-mediated HIV-1 capture and trans-infection. PLoS Pathog 2010; 6:e1000981. [PMID: 20617179 PMCID: PMC2895661 DOI: 10.1371/journal.ppat.1000981] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 06/02/2010] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) contribute to human immunodeficiency virus type 1 (HIV-1) transmission and dissemination by capturing and transporting infectious virus from the mucosa to draining lymph nodes, and transferring these virus particles to CD4+ T cells with high efficiency. Toll-like receptor (TLR)-induced maturation of DCs enhances their ability to mediate trans-infection of T cells and their ability to migrate from the site of infection. Because TLR-induced maturation can be inhibited by nuclear receptor (NR) signaling, we hypothesized that ligand-activated NRs could repress DC-mediated HIV-1 transmission and dissemination. Here, we show that ligands for peroxisome proliferator-activated receptor gamma (PPARgamma) and liver X receptor (LXR) prevented proinflammatory cytokine production by DCs and inhibited DC migration in response to the chemokine CCL21 by preventing the TLR-induced upregulation of CCR7. Importantly, PPARgamma and LXR signaling inhibited both immature and mature DC-mediated trans-infection by preventing the capture of HIV-1 by DCs independent of the viral envelope glycoprotein. PPARgamma and LXR signaling induced cholesterol efflux from DCs and led to a decrease in DC-associated cholesterol, which has previously been shown to be required for DC capture of HIV-1. Finally, both cholesterol repletion and the targeted knockdown of the cholesterol transport protein ATP-binding cassette A1 (ABCA1) restored the ability of NR ligand treated cells to capture HIV-1 and transfer it to T cells. Our results suggest that PPARgamma and LXR signaling up-regulate ABCA1-mediated cholesterol efflux from DCs and that this accounts for the decreased ability of DCs to capture HIV-1. The ability of NR ligands to repress DC mediated trans-infection, inflammation, and DC migration underscores their potential therapeutic value in inhibiting HIV-1 mucosal transmission.
Collapse
Affiliation(s)
- Timothy M. Hanley
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Wendy Blay Puryear
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory A. Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Duenas-Decamp MJ, Peters PJ, Repik A, Musich T, Gonzalez-Perez MP, Caron C, Brown R, Ball J, Clapham PR. Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis. Future Virol 2010; 5:435-451. [PMID: 20930940 PMCID: PMC2949073 DOI: 10.2217/fvl.10.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.
Collapse
Affiliation(s)
- Maria José Duenas-Decamp
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Paul J Peters
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Alexander Repik
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Thomas Musich
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Maria Paz Gonzalez-Perez
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Catherine Caron
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Richard Brown
- The Institute of Infection, Immunity & Inflammation & Division of Microbiology, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Jonathan Ball
- The Institute of Infection, Immunity & Inflammation & Division of Microbiology, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Paul R Clapham
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|