1
|
Huérfano S, Šroller V, Bruštíková K, Horníková L, Forstová J. The Interplay between Viruses and Host DNA Sensors. Viruses 2022; 14:v14040666. [PMID: 35458396 PMCID: PMC9027975 DOI: 10.3390/v14040666] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
DNA virus infections are often lifelong and can cause serious diseases in their hosts. Their recognition by the sensors of the innate immune system represents the front line of host defence. Understanding the molecular mechanisms of innate immunity responses is an important prerequisite for the design of effective antivirotics. This review focuses on the present state of knowledge surrounding the mechanisms of viral DNA genome sensing and the main induced pathways of innate immunity responses. The studies that have been performed to date indicate that herpesviruses, adenoviruses, and polyomaviruses are sensed by various DNA sensors. In non-immune cells, STING pathways have been shown to be activated by cGAS, IFI16, DDX41, or DNA-PK. The activation of TLR9 has mainly been described in pDCs and in other immune cells. Importantly, studies on herpesviruses have unveiled novel participants (BRCA1, H2B, or DNA-PK) in the IFI16 sensing pathway. Polyomavirus studies have revealed that, in addition to viral DNA, micronuclei are released into the cytosol due to genotoxic stress. Papillomaviruses, HBV, and HIV have been shown to evade DNA sensing by sophisticated intracellular trafficking, unique cell tropism, and viral or cellular protein actions that prevent or block DNA sensing. Further research is required to fully understand the interplay between viruses and DNA sensors.
Collapse
|
2
|
VirPorters: Insights into the action of cationic and histidine-rich cell-penetrating peptides. Int J Pharm 2021; 611:121308. [PMID: 34800617 DOI: 10.1016/j.ijpharm.2021.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
The utilization of nanoparticles for the intracellular delivery of theranostic agents faces one substantial limitation. Sequestration in intracellular vesicles prevents them from reaching the desired location in the cytoplasm or nucleus to deliver their cargo. We investigated whether three different cell-penetrating peptides (CPPs), namely, octa-arginine R8, polyhistidine KH27K and histidine-rich LAH4, could promote cytosolic and/or nuclear transfer of unique model nanoparticles-pseudovirions derived from murine polyomavirus. Two types of CPP-modified pseudovirions that carry the luciferase reporter gene were created: VirPorters-IN with CPPs genetically attached to the capsid interior and VirPorters-EX with CPPs noncovalently associated with the capsid exterior. We tested their transduction ability by luciferase assay and monitored their presence in subcellular fractions. Our results confirmed the overall effect of CPPs on the intracellular destination of the particles and suggested that KH27K has the potential to improve the cytosolic release of pseudovirions. None of the VirPorters caused endomembrane damage detectable by the Galectin-3 assay. Remarkably, a noncovalent modification was required to promote high transduction of the reporter gene and cytosolic delivery of pseudovirions mediated by LAH4. Together, CPPs in different arrangements have demonstrated their potential to improve pseudovirion invasion into cells, and these findings could be useful for the development of other nanoparticle-based delivery systems.
Collapse
|
3
|
Huang YP, Hou PY, Chen IH, Hsu YH, Tsai CH, Cheng CP. Dissecting the role of a plant-specific Rab5 small GTPase NbRabF1 in Bamboo mosaic virus infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6932-6944. [PMID: 32926136 DOI: 10.1093/jxb/eraa422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
NbRabF1, a small GTPase from Nicotiana benthamiana and a homolog of Arabidopsis thaliana Ara6, plays a key role in regulating Bamboo mosaic virus (BaMV) movement by vesicle transport between endosomal membranes. Reducing the expression of NbRabF1 in N. benthamiana by virus-induced gene silencing decreased the accumulation of BaMV, and with smaller infection foci on inoculated leaves, but had no effect in protoplasts. Furthermore, transient expression of NbRabF1 increased the accumulation of BaMV in inoculated leaves. Thus, NbRabF1 may be involved in the cell-to-cell movement of BaMV. The potential acyl modification sites at the second and third amino acid positions of NbRabF1 were crucial for membrane targeting and BaMV accumulation. The localization of mutant forms of NbRabF1 with the GDP-bound (donor site) and GTP-bound (acceptor site) suggested that NbRabF1 might regulate vesicle trafficking between the Golgi apparatus and plasma membrane. Furthermore, GTPase activity could also be involved in BaMV cell-to-cell movement. Overall, in this study, we identified a small GTPase, NbRabF1, from N. benthamiana that interacts with its activation protein NbRabGAP1 and regulates vesicle transport from the Golgi apparatus to the plasma membrane. We suggest that the BaMV movement complex might move from cell to cell through this vesicle trafficking route.
Collapse
Affiliation(s)
- Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Yu Hou
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yau-Huei Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Ping Cheng
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Zackova Suchanova J, Hejtmankova A, Neburkova J, Cigler P, Forstova J, Spanielova H. The Protein Corona Does Not Influence Receptor-Mediated Targeting of Virus-like Particles. Bioconjug Chem 2020; 31:1575-1585. [DOI: 10.1021/acs.bioconjchem.0c00240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jirina Zackova Suchanova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Alzbeta Hejtmankova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jitka Neburkova
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jitka Forstova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Hana Spanielova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
5
|
Influence of cell-penetrating peptides on the activity and stability of virus-based nanoparticles. Int J Pharm 2020; 576:119008. [DOI: 10.1016/j.ijpharm.2019.119008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023]
|
6
|
Horníková L, Bruštíková K, Forstová J. Microtubules in Polyomavirus Infection. Viruses 2020; 12:E121. [PMID: 31963741 PMCID: PMC7019765 DOI: 10.3390/v12010121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Microtubules, part of the cytoskeleton, are indispensable for intracellular movement, cell division, and maintaining cell shape and polarity. In addition, microtubules play an important role in viral infection. In this review, we summarize the role of the microtubules' network during polyomavirus infection. Polyomaviruses usurp microtubules and their motors to travel via early and late acidic endosomes to the endoplasmic reticulum. As shown for SV40, kinesin-1 and microtubules are engaged in the release of partially disassembled virus from the endoplasmic reticulum to the cytosol, and dynein apparently assists in the further disassembly of virions prior to their translocation to the cell nucleus-the place of their replication. Polyomavirus gene products affect the regulation of microtubule dynamics. Early T antigens destabilize microtubules and cause aberrant mitosis. The role of these activities in tumorigenesis has been documented. However, its importance for productive infection remains elusive. On the other hand, in the late phase of infection, the major capsid protein, VP1, of the mouse polyomavirus, counteracts T-antigen-induced destabilization. It physically binds microtubules and stabilizes them. The interaction results in the G2/M block of the cell cycle and prolonged S phase, which is apparently required for successful completion of the viral replication cycle.
Collapse
Affiliation(s)
| | | | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic; (L.H.); (K.B.)
| |
Collapse
|
7
|
Interaction of the Mouse Polyomavirus Capsid Proteins with Importins Is Required for Efficient Import of Viral DNA into the Cell Nucleus. Viruses 2018; 10:v10040165. [PMID: 29614718 PMCID: PMC5923459 DOI: 10.3390/v10040165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/22/2018] [Accepted: 03/30/2018] [Indexed: 12/26/2022] Open
Abstract
The mechanism used by mouse polyomavirus (MPyV) to overcome the crowded cytosol to reach the nucleus has not been fully elucidated. Here, we investigated the involvement of importin α/β1 mediated transport in the delivery of MPyV genomes into the nucleus. Interactions of the virus with importin β1 were studied by co-immunoprecipitation and proximity ligation assay. For infectivity and nucleus delivery assays, the virus and its capsid proteins mutated in the nuclear localization signals (NLSs) were prepared and produced. We found that at early times post infection, virions bound importin β1 in a time dependent manner with a peak of interactions at 6 h post infection. Mutation analysis revealed that only when the NLSs of both VP1 and VP2/3 were disrupted, virus did not bind efficiently to importin β1 and its infectivity remarkably decreased (by 80%). Nuclear targeting of capsid proteins was improved when VP1 and VP2 were co-expressed. VP1 and VP2 were effectively delivered into the nucleus, even when one of the NLS, either VP1 or VP2, was disrupted. Altogether, our results showed that MPyV virions can use VP1 and/or VP2/VP3 NLSs in concert or individually to bind importins to deliver their genomes into the cell nucleus.
Collapse
|
8
|
Abstract
Viruses are obligate intracellular parasites that utilize cellular machinery for many aspects of their replication cycles. Enveloped viruses generally rely upon host vesicular trafficking machinery to direct their structural proteins and genomes to sites of virus replication, assembly, and budding. Rab GTPases have been implicated in the replication of many important viral pathogens infecting humans. This review provides a summary of virus-Rab protein interactions, with a particular focus on the role of Rab-related trafficking pathways on late events in the lifecycle of herpesviruses and of HIV-1.
Collapse
Affiliation(s)
- Paul Spearman
- a Infectious Diseases, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
9
|
Identification of Rab18 as an Essential Host Factor for BK Polyomavirus Infection Using a Whole-Genome RNA Interference Screen. mSphere 2017; 2:mSphere00291-17. [PMID: 28815213 PMCID: PMC5555678 DOI: 10.1128/mspheredirect.00291-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022] Open
Abstract
Polyomaviruses bind to a group of specific gangliosides on the plasma membrane of the cell prior to being endocytosed. They then follow a retrograde trafficking pathway to reach the endoplasmic reticulum (ER). The viruses begin to disassemble in the ER and then exit the ER and move to the nucleus. However, the details of intracellular trafficking between the endosome and the ER are largely unknown. By implementing a whole human genome small interfering RNA screen, we identified Rab18, syntaxin 18, and the NRZ complex as key components in endosome-ER trafficking of the human polyomavirus BKPyV. These results serve to further elucidate the route BKPyV takes from outside the cell to its site of replication in the nucleus. BK polyomavirus (BKPyV) is a human pathogen first isolated in 1971. BKPyV infection is ubiquitous in the human population, with over 80% of adults worldwide being seropositive for BKPyV. BKPyV infection is usually asymptomatic; however, BKPyV reactivation in immunosuppressed transplant patients causes two diseases, polyomavirus-associated nephropathy and hemorrhagic cystitis. To establish a successful infection in host cells, BKPyV must travel in retrograde transport vesicles to reach the nucleus. To make this happen, BKPyV requires the cooperation of host cell proteins. To further identify host factors associated with BKPyV entry and intracellular trafficking, we performed a whole-genome small interfering RNA screen on BKPyV infection of primary human renal proximal tubule epithelial cells. The results revealed the importance of Ras-related protein Rab18 and syntaxin 18 for BKPyV infection. Our subsequent experiments implicated additional factors that interact with this pathway and suggest a more detailed model of the intracellular trafficking process, indicating that BKPyV reaches the endoplasmic reticulum (ER) lumen through a retrograde transport pathway between the late endosome and the ER. IMPORTANCE Polyomaviruses bind to a group of specific gangliosides on the plasma membrane of the cell prior to being endocytosed. They then follow a retrograde trafficking pathway to reach the endoplasmic reticulum (ER). The viruses begin to disassemble in the ER and then exit the ER and move to the nucleus. However, the details of intracellular trafficking between the endosome and the ER are largely unknown. By implementing a whole human genome small interfering RNA screen, we identified Rab18, syntaxin 18, and the NRZ complex as key components in endosome-ER trafficking of the human polyomavirus BKPyV. These results serve to further elucidate the route BKPyV takes from outside the cell to its site of replication in the nucleus.
Collapse
|
10
|
Zackova Suchanova J, Neburkova J, Spanielova H, Forstova J, Cigler P. Retargeting Polyomavirus-Like Particles to Cancer Cells by Chemical Modification of Capsid Surface. Bioconjug Chem 2017; 28:307-313. [DOI: 10.1021/acs.bioconjchem.6b00622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jirina Zackova Suchanova
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Jitka Neburkova
- Institute of Organic Chemistry and Biochemistry of the CAS, v.v.i., Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
- First
Faculty of Medicine, Charles University, Katerinska 32, 121 08, Prague 2, Czech Republic
| | - Hana Spanielova
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the CAS, v.v.i., Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Jitka Forstova
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, v.v.i., Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| |
Collapse
|
11
|
Abstract
Endocytosis can be separated into the categories of phagocytosis and pinocytosis. Phagocytosis can be distinguished from pinocytosis primarily by the size of particle ingested and by its dependence on actin polymerization as a key step in particle ingestion. Several specific forms of pinocytosis have been identified that can be distinguished based on their dependence on clathrin or caveolin. Both clathrin and caveolin-dependent pinocytosis appear to require the participation of dynamin to internalize the plasma membrane. Other, less well-characterized forms of pinocytosis have also been described. Although endocytosis has long been known to affect receptor density, recent studies have demonstrated that endocytosis through clathrin- and caveolin-dependent processes plays a key role in receptor-mediated signal transduction. In some cases, blockade of these processes attenuates, or even prevents, signal transduction from taking place. This information, coupled with a better understanding of endocytosis mechanisms, will help advance the field of cell biology as well as present new targets for drug development and disease treatment.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Medicine, Room 12, Ruppert Center, 3120 Glendale Avenue, Toledo, OH 43614, USA.
| | | |
Collapse
|
12
|
Abstract
Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
13
|
JC polyomavirus attachment, entry, and trafficking: unlocking the keys to a fatal infection. J Neurovirol 2014; 21:601-13. [PMID: 25078361 DOI: 10.1007/s13365-014-0272-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/05/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
Abstract
The human JC polyomavirus (JCPyV) causes a lifelong persistent infection in the reno-urinary tract in the majority of the adult population worldwide. In healthy individuals, infection is asymptomatic, while in immunocompromised individuals, the virus can spread to the central nervous system and cause a fatal demyelinating disease known as progressive multifocal leukoencephalopathy (PML). There are currently very few treatment options for this rapidly progressing and devastating disease. Understanding the basic biology of JCPyV-host cell interactions is critical for the development of therapeutic strategies to prevent or treat PML. Research in our laboratory has focused on gaining a detailed mechanistic understanding of the initial steps in the JCPyV life cycle in order to define how JCPyV selectively targets cells in the kidney and brain. JCPyV requires sialic acids to attach to host cells and initiate infection, and JCPyV demonstrates specificity for the oligosaccharide lactoseries tetrasaccharide c (LSTc) with an α2,6-linked sialic acid. Following viral attachment, JCPyV entry is facilitated by the 5-hydroxytryptamine (5-HT)2 family of serotonin receptors via clathrin-dependent endocytosis. JCPyV then undergoes retrograde transport to the endoplasmic reticulum (ER) where viral disassembly begins. A novel retrograde transport inhibitor termed Retro-2(cycl) prevents trafficking of JCPyV to the ER and inhibits both initial virus infection and infectious spread in cell culture. Understanding the molecular mechanisms by which JCPyV establishes infection will open up new avenues for the prevention or treatment of virus-induced disease.
Collapse
|
14
|
Bilkova E, Forstova J, Abrahamyan L. Coat as a dagger: the use of capsid proteins to perforate membranes during non-enveloped DNA viruses trafficking. Viruses 2014; 6:2899-937. [PMID: 25055856 PMCID: PMC4113798 DOI: 10.3390/v6072899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 01/24/2023] Open
Abstract
To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection.
Collapse
Affiliation(s)
- Eva Bilkova
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844, Prague 2, Czech Republic.
| | - Jitka Forstova
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844, Prague 2, Czech Republic.
| | - Levon Abrahamyan
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844, Prague 2, Czech Republic.
| |
Collapse
|
15
|
Involvement of microtubular network and its motors in productive endocytic trafficking of mouse polyomavirus. PLoS One 2014; 9:e96922. [PMID: 24810588 PMCID: PMC4014599 DOI: 10.1371/journal.pone.0096922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/14/2014] [Indexed: 12/18/2022] Open
Abstract
Infection of non-enveloped polyomaviruses depends on an intact microtubular network. Here we focus on mouse polyomavirus (MPyV). We show that the dynamics of MPyV cytoplasmic transport reflects the characteristics of microtubular motor-driven transport with bi-directional saltatory movements. In cells treated with microtubule-disrupting agents, localization of MPyV was significantly perturbed, the virus was retained at the cell periphery, mostly within membrane structures resembling multicaveolar complexes, and at later times post-infection, only a fraction of the virus was found in Rab7-positive endosomes and multivesicular bodies. Inhibition of cytoplasmic dynein-based motility by overexpression of dynamitin affected perinuclear translocation of the virus, delivery of virions to the ER and substantially reduced the numbers of infected cells, while overexpression of dominant-negative form of kinesin-1 or kinesin-2 had no significant impact on virus localization and infectivity. We also found that transport along microtubules was important for MPyV-containing endosome sequential acquisition of Rab5, Rab7 and Rab11 GTPases. However, in contrast to dominant-negative mutant of Rab7 (T22N), overexpression of dominant-negative mutant Rab11 (S25N) did not affect the virus infectivity. Altogether, our study revealed that MPyV cytoplasmic trafficking leading to productive infection bypasses recycling endosomes, does not require the function of kinesin-1 and kinesin-2, but depends on functional dynein-mediated transport along microtubules for translocation of the virions from peripheral, often caveolin-positive compartments to late endosomes and ER – a prerequisite for efficient delivery of the viral genome to the nucleus.
Collapse
|
16
|
Simon C, Klose T, Herbst S, Han BG, Sinz A, Glaeser RM, Stubbs MT, Lilie H. Disulfide linkage and structure of highly stable yeast-derived virus-like particles of murine polyomavirus. J Biol Chem 2014; 289:10411-10418. [PMID: 24567335 DOI: 10.1074/jbc.m113.484162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
VP1 is the major coat protein of murine polyomavirus and forms virus-like particles (VLPs) in vitro. VLPs consist of 72 pentameric VP1 subunits held together by a terminal clamp structure that is further stabilized by disulfide bonds and chelation of calcium ions. Yeast-derived VLPs (yVLPs) assemble intracellularly in vivo during recombinant protein production. These in vivo assembled yVLPs differ in several properties from VLPs assembled in vitro from bacterially produced pentamers. We found several intermolecular disulfide linkages in yVLPs involving 5 of the 6 cysteines of VP1 (Cys(115)-Cys(20), Cys(12)-Cys(20), Cys(16)-Cys(16), Cys(12)/ Cys(16)-Cys(115), and Cys(274)-Cys(274)), indicating a highly coordinated disulfide network within the in vivo assembled particles involving the N-terminal region of VP1. Cryoelectron microscopy revealed structured termini not resolved in the published crystal structure of the bacterially expressed VLP that appear to clamp the pentameric subunits together. These structural features are probably the reason for the observed higher stability of in vivo assembled yVLPs compared with in vitro assembled bacterially expressed VLPs as monitored by increased thermal stability, higher resistance to trypsin cleavage, and a higher activation enthalpy of the disassembly reaction. This high stability is decreased following disassembly of yVLPs and subsequent in vitro reassembly, suggesting a role for cellular components in optimal assembly.
Collapse
Affiliation(s)
- Claudia Simon
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Strasse 03, 06120 Halle, Germany
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Sabine Herbst
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Strasse 04, 06120 Halle, Germany
| | - Bong Gyoon Han
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Andrea Sinz
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Strasse 04, 06120 Halle, Germany
| | - Robert M Glaeser
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Milton T Stubbs
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Strasse 03, 06120 Halle, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Strasse 03, 06120 Halle, Germany.
| |
Collapse
|
17
|
Regulation of hepatitis B virus infection by Rab5, Rab7, and the endolysosomal compartment. J Virol 2013; 87:6415-27. [PMID: 23536683 DOI: 10.1128/jvi.00393-13] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite important progress toward deciphering human hepatitis B virus (HBV) entry into host cells, many aspects of the early steps of the life cycle remained completely obscure. Following endocytosis, HBV must travel through the complex network of the endocytic pathway to reach the cell nucleus and initiate replication. In addition to guiding the viral particles to the replication site, the endosomal vesicles may play a crucial role in infection, providing the appropriate environment for virus uncoating and nucleocapsid release. In this work, we investigated the trafficking of HBV particles internalized in permissive cells. Expression of key Rab proteins, involved in specific pathways leading to different intracellular locations, was modulated in HepaRG cells, using a stable and inducible short hairpin RNA (shRNA) expression system. The trafficking properties of the newly developed cells were demonstrated by confocal microscopy and flow cytometry using specific markers. The results showed that HBV infection strongly depends on Rab5 and Rab7 expression, indicating that HBV transport from early to mature endosomes is required for a step in the viral life cycle. This may involve reduction of disulfide bond-linked envelope proteins, as alteration of the redox potential of the endocytic pathway resulted in inhibition of infection. Subcellular fractionation of HBV-infected cells showed that viral particles are further transported to lysosomes. Intriguingly, infection was not dependent on the lysosomal activity, suggesting that trafficking to this compartment is a "dead-end" route. Together, these data add to our understanding of the HBV-host cell interactions controlling the early stages of infection.
Collapse
|
18
|
Acosta EG, Castilla V, Damonte EB. Differential requirements in endocytic trafficking for penetration of dengue virus. PLoS One 2012; 7:e44835. [PMID: 22970315 PMCID: PMC3436767 DOI: 10.1371/journal.pone.0044835] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/13/2012] [Indexed: 11/22/2022] Open
Abstract
The entry of DENV into the host cell appears to be a very complex process which has been started to be studied in detail. In this report, the route of functional intracellular trafficking after endocytic uptake of dengue virus serotype 1 (DENV-1) strain HW, DENV-2 strain NGC and DENV-2 strain 16681 into Vero cells was studied by using a susceptibility to ammonium chloride assay, dominant negative mutants of several members of the family of cellular Rab GTPases that participate in regulation of transport through endosome vesicles and immunofluorescence colocalization. Together, the results presented demonstrate that in spite of the different internalization route among viral serotypes in Vero cells and regardless of the viral strain, DENV particles are first transported to early endosomes in a Rab5-dependent manner. Then a Rab7-dependent pathway guides DENV-2 16681 to late endosomes, whereas a yet unknown sorting event controls the transport of DENV-2 NGC, and most probably DENV-1 HW, to the perinuclear recycling compartments where fusion membrane would take place releasing nucleocapsid into the cytoplasm. Besides the demonstration of a different intracellular trafficking for two DENV-2 strains that shared the initial clathrin-independent internalization route, these studies proved for the first time the involvement of the slow recycling pathway for DENV-2 productive infection.
Collapse
Affiliation(s)
- Eliana G. Acosta
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elsa B. Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
19
|
Kuksin D, Norkin LC. Disassociation of the SV40 genome from capsid proteins prior to nuclear entry. Virol J 2012; 9:158. [PMID: 22882793 PMCID: PMC3487934 DOI: 10.1186/1743-422x-9-158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 07/09/2012] [Indexed: 11/15/2022] Open
Abstract
Background Previously, we demonstrated that input SV40 particles undergo a partial disassembly in the endoplasmic reticulum, which exposes internal capsid proteins VP2 and VP3 to immunostaining. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection, as well as to detection by an ethynyl-2-deoxyuridine (EdU)-based chemical reaction. The cytoplasmic partially disassembled SV40 particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Findings In the current study, we asked where in the cell the SV40 genome might disassociate from capsid components. We observed partially disassembled input SV40 particles around the nucleus and, beginning at 12 hours post-infection, 5-Bromo-2-deoxyuridine (BrdU)-labeled parental SV40 DNA in the nucleus, as detected using anti-BrdU antibodies. However, among the more than 1500 cells examined, we never detected input VP2/VP3 in the nucleus. Upon translocation of the BrdU-labeled SV40 genomes into nuclei, they were transcribed and, thus, are representative of productive infection. Conclusions Our findings imply that the SV40 genome disassociates from the capsid proteins before or at the point of entry into the nucleus, and then enters the nucleus devoid of VP2/3.
Collapse
Affiliation(s)
- Dmitry Kuksin
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
20
|
Nonnenmacher M, Weber T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther 2012; 19:649-58. [PMID: 22357511 PMCID: PMC4465241 DOI: 10.1038/gt.2012.6] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 12/16/2022]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) have been widely used for gene delivery in animal models, and are currently evaluated for human gene therapy after successful clinical trials in the treatment of inherited, degenerative or acquired diseases, such as Leber congenital amaurosis, Parkinson disease or heart failure. However, limitations in vector tropism, such as limited tissue specificity and insufficient transduction efficiencies of particular tissues and cell types, still preclude therapeutic applications in certain tissues. Wild-type adeno-associated viruses (AAVs) are defective viruses that require the presence of a helper virus to complete their life cycle. On the one hand, this unique property makes AAV vectors one of the safest available viral vectors for gene delivery. On the other, it also represents a potential obstacle because rAAV vectors have to overcome several biological barriers in the absence of a helper virus to transduce successfully a cell. Consequently, a better understanding of the cellular roadblocks that limit rAAV gene delivery is crucial and, during the last 15 years, numerous studies resulted in an expanding body of knowledge of the intracellular trafficking pathways of rAAV vectors. This review describes our current understanding of the mechanisms involved in rAAV attachment to target cells, endocytosis, intracellular trafficking, capsid processing, nuclear import and genome release with an emphasis on the most recent discoveries in the field and the emerging strategies used to improve the efficiency of AAV-derived vectors.
Collapse
Affiliation(s)
- M Nonnenmacher
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
21
|
Nuclear actin and lamins in viral infections. Viruses 2012; 4:325-47. [PMID: 22590674 PMCID: PMC3347030 DOI: 10.3390/v4030325] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/11/2022] Open
Abstract
Lamins are the best characterized cytoskeletal components of the cell nucleus that help to maintain the nuclear shape and participate in diverse nuclear processes including replication or transcription. Nuclear actin is now widely accepted to be another cytoskeletal protein present in the nucleus that fulfills important functions in the gene expression. Some viruses replicating in the nucleus evolved the ability to interact with and probably utilize nuclear actin for their replication, e.g., for the assembly and transport of capsids or mRNA export. On the other hand, lamins play a role in the propagation of other viruses since nuclear lamina may represent a barrier for virions entering or escaping the nucleus. This review will summarize the current knowledge about the roles of nuclear actin and lamins in viral infections.
Collapse
|
22
|
Disassembly of simian virus 40 during passage through the endoplasmic reticulum and in the cytoplasm. J Virol 2011; 86:1555-62. [PMID: 22090139 DOI: 10.1128/jvi.05753-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nonenveloped polyomavirus simian virus 40 (SV40) is taken up into cells by a caveola-mediated endocytic process that delivers the virus to the endoplasmic reticulum (ER). Within the ER lumen, the capsid undergoes partial disassembly, which exposes its internal capsid proteins VP2 and VP3 to immunostaining with antibodies. We demonstrate here that the SV40 genome does not become accessible to detection while the virus is in the ER. Instead, the genome becomes accessible two distinct detection procedures, one using anti-bromodeoxyuridine antibodies and the other using a 5-ethynyl-2-deoxyuridine-based chemical reaction, only after the emergence of partially disassembled SV40 particles in the cytoplasm. These cytoplasmic particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Thus, SV40 particles undergo discrete disassembly steps during entry that are separated temporally and topologically. First, a partial disassembly of the particles occurs in the ER, which exposes internal capsid proteins VP2 and VP3. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection.
Collapse
|
23
|
Liu X, Hein J, Richardson SCW, Basse PH, Toptan T, Moore PS, Gjoerup OV, Chang Y. Merkel cell polyomavirus large T antigen disrupts lysosome clustering by translocating human Vam6p from the cytoplasm to the nucleus. J Biol Chem 2011; 286:17079-90. [PMID: 21454559 PMCID: PMC3089552 DOI: 10.1074/jbc.m110.192856] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Merkel cell polyomavirus (MCV) has been recently described as the cause for most human Merkel cell carcinomas. MCV is similar to simian virus 40 (SV40) and encodes a nuclear large T (LT) oncoprotein that is usually mutated to eliminate viral replication among tumor-derived MCV. We identified the hVam6p cytoplasmic protein involved in lysosomal processing as a novel interactor with MCV LT but not SV40 LT. hVam6p binds through its clathrin heavy chain homology domain to a unique region of MCV LT adjacent to the retinoblastoma binding site. MCV LT translocates hVam6p to the nucleus, sequestering it from involvement in lysosomal trafficking. A naturally occurring, tumor-derived mutant LT (MCV350) lacking a nuclear localization signal binds hVam6p but fails to inhibit hVam6p-induced lysosomal clustering. MCV has evolved a novel mechanism to target hVam6p that may contribute to viral uncoating or egress through lysosomal processing during virus replication.
Collapse
Affiliation(s)
- Xi Liu
- Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
After binding to its cell surface receptor ganglioside GM1, simian virus 40 (SV40) is endocytosed by lipid raft-mediated endocytosis and slowly transported to the endoplasmic reticulum, where partial uncoating occurs. We analyzed the intracellular pathway taken by the virus in HeLa and CV-1 cells by using a targeted small interfering RNA (siRNA) silencing screen, electron microscopy, and live-cell imaging as well as by testing a variety of cellular inhibitors and other perturbants. We found that the virus entered early endosomes, late endosomes, and probably endolysosomes before reaching the endoplasmic reticulum and that this pathway was part of the infectious route. The virus was especially sensitive to a variety of perturbations that inhibited endosome acidification and maturation. Contrary to our previous models, which postulated the passage of the virus through caveolin-rich organelles that we called caveosomes, we conclude that SV40 depends on the classical endocytic pathway for infectious entry.
Collapse
|
25
|
Abstract
Although viruses are simple in structure and composition, their interactions with host cells are complex. Merely to gain entry, animal viruses make use of a repertoire of cellular processes that involve hundreds of cellular proteins. Although some viruses have the capacity to penetrate into the cytosol directly through the plasma membrane, most depend on endocytic uptake, vesicular transport through the cytoplasm, and delivery to endosomes and other intracellular organelles. The internalization may involve clathrin-mediated endocytosis (CME), macropinocytosis, caveolar/lipid raft-mediated endocytosis, or a variety of other still poorly characterized mechanisms. This review focuses on the cell biology of virus entry and the different strategies and endocytic mechanisms used by animal viruses.
Collapse
Affiliation(s)
- Jason Mercer
- ETH Zurich, Institute of Biochemistry, CH-8093 Zurich, Switzerland.
| | | | | |
Collapse
|
26
|
Abstract
Polyomaviruses (Pys) are nonenveloped DNA tumor viruses that include the murine polyomavirus (mPy), simian virus 40 (SV40), and the human BK, JC, KI, WU, and Merkel Cell viruses. To cause infection, Pys must enter host cells and navigate through various intracellular compartments, where they undergo sequential conformational changes enabling them to uncoat and deliver the DNA genome into the nucleus. The ensuing transcription and replication of the genome leads to lytic infection or cell transformation. In recent years, a more coherent understanding of how Pys are transported from the plasma membrane to the nucleus is starting to emerge. This review will focus on the decisive steps of Py entry, including engagement of the host cell receptor, targeting to the endoplasmic reticulum (ER), penetration across the ER membrane, nuclear entry, and genome release. Strikingly, a number of these steps resemble the intoxication pathway of the AB(5) bacterial toxins. Thus, as Pys and bacterial toxins hijack similar cellular machineries during infection, a general principle appears to guide their entry into host cells.
Collapse
Affiliation(s)
- Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | | |
Collapse
|
27
|
Qian M, Cai D, Verhey KJ, Tsai B. A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog 2009; 5:e1000465. [PMID: 19503604 PMCID: PMC2685006 DOI: 10.1371/journal.ppat.1000465] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 05/05/2009] [Indexed: 11/30/2022] Open
Abstract
The mechanisms by which receptors guide intracellular virus transport are poorly characterized. The murine polyomavirus (Py) binds to the lipid receptor ganglioside GD1a and traffics to the endoplasmic reticulum (ER) where it enters the cytosol and then the nucleus to initiate infection. How Py reaches the ER is unclear. We show that Py is transported initially to the endolysosome where the low pH imparts a conformational change that enhances its subsequent ER-to-cytosol membrane penetration. GD1a stimulates not viral binding or entry, but rather sorting of Py from late endosomes and/or lysosomes to the ER, suggesting that GD1a binding is responsible for ER targeting. Consistent with this, an artificial particle coated with a GD1a antibody is transported to the ER. Our results provide a rationale for transport of Py through the endolysosome, demonstrate a novel endolysosome-to-ER transport pathway that is regulated by a lipid, and implicate ganglioside binding as a general ER targeting mechanism.
Collapse
Affiliation(s)
- Mengding Qian
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Dawen Cai
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
28
|
Moriyama T, Sorokin A. Intracellular trafficking pathway of BK Virus in human renal proximal tubular epithelial cells. Virology 2008; 371:336-49. [PMID: 17976677 PMCID: PMC2674336 DOI: 10.1016/j.virol.2007.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 07/31/2007] [Accepted: 09/21/2007] [Indexed: 01/04/2023]
Abstract
Intracellular trafficking of BK Virus (BKV) in human renal proximal tubular epithelial cells (HRPTEC) is critical for BKV nephritis. However, the major trafficking components utilized by BKV remain unknown. Coincubation of HRPTEC with BKV and microtubule disrupting agents prevented BKV infection as detected by immunofluorescence and western blot analysis with antibodies which recognize BKV large T antigen. However, inhibition of a dynein, cellular motor protein, did not interfere with BKV infection in HRPTEC. A colocalization study of BKV with the markers of the endoplasmic reticulum (ER) and the Golgi apparatus (GA), indicated that BKV reached the ER from 6 to 10 h, while bypassing the GA or passing through the GA too transiently to be detected. This study contributes to the understanding of mechanisms of intracellular trafficking used by BKV in the infection of HRPTEC.
Collapse
Affiliation(s)
- Takahito Moriyama
- Division of Nephrology and Kidney Disease Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andrey Sorokin
- Division of Nephrology and Kidney Disease Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
29
|
Abstract
Although the precise mechanism by which nonenveloped viruses penetrate biological membranes is unclear, a more coherent understanding of this process is starting to emerge. To initiate membrane penetration, nonenveloped viruses engage host cell factors that impart conformational changes on the viral particles, resulting in the exposure of a hydrophobic moiety or the release of a lytic factor. The viruses' interactions with the limiting membrane subsequently compromise the bilayer integrity. This reaction presumably perforates the bilayer to enable the virus to cross the membrane and reach the cytosol. Valuable insights into this process can be gleaned from the membrane transport mechanisms of enveloped viruses and bacterial toxins. To identify systematically the cellular components that facilitate nonenveloped virus membrane penetration, sensitive assays that monitor the transport event directly must first be established. Moreover, higher-resolution structures of penetration intermediates, particularly those solved in complex with membranes, would provide important molecular details into this process.
Collapse
Affiliation(s)
- Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Ramqvist T, Andreasson K, Dalianis T. Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert Opin Biol Ther 2007; 7:997-1007. [PMID: 17665989 DOI: 10.1517/14712598.7.7.997] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Virus-like particles (VLPs) are self-assembling, non-replicating particles lacking the viral genome that are formed by one or several viral structural proteins. VLPs can be purified after expression in yeast cells, insect cells using baculoviruses, Escherichia coli or mammalian cells. Recently, vaccines based on VLPs have come into focus with the FDA approval of a VLP-based vaccine against human papilloma viruses. However, this application of VLPs is just one of many developments within the VLP field. Other potential applications under development besides vaccines against viruses or cancers also include gene delivery and treatment of different disorders.
Collapse
Affiliation(s)
- Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Centrum Karolinska, Stockholm, Sweden.
| | | | | |
Collapse
|
31
|
Li PP, Nguyen AP, Qu Q, Jafri QH, Aungsumart S, Cheng RH, Kasamatsu H. Importance of calcium-binding site 2 in simian virus 40 infection. J Virol 2007; 81:6099-105. [PMID: 17360742 PMCID: PMC1900253 DOI: 10.1128/jvi.02195-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The exposure of molecular signals for simian virus 40 (SV40) cell entry and nuclear entry has been postulated to involve calcium coordination at two sites on the capsid made of Vp1. The role of calcium-binding site 2 in SV40 infection was examined by analyzing four single mutants of site 2, the Glu160Lys, Glu160Arg, Glu157Lys (E157K), and Glu157Arg mutants, and an E157K-E330K combination mutant. The last three mutants were nonviable. All mutants replicated viral DNA normally, and all except the last two produced particles containing all three capsid proteins and viral DNA. The defect of the site 1-site 2 E157K-E330K double mutant implies that at least one of the sites is required for particle assembly in vivo. The nonviable E157K particles, about 10% larger in diameter than the wild type, were able to enter cells but did not lead to T-antigen expression. Cell-internalized E157K DNA effectively coimmunoprecipitated with anti-Vp1 antibody, but little of the DNA did so with anti-Vp3 antibody, and none was detected in anti-importin immunoprecipitate. Yet, a substantial amount of Vp3 was present in anti-Vp1 immune complexes, suggesting that internalized E157K particles are ineffective at exposing Vp3. Our data show that E157K mutant infection is blocked at a stage prior to the interaction of the Vp3 nuclear localization signal with importins, consistent with a role for calcium-binding site 2 in postentry steps leading to the nuclear import of the infecting SV40.
Collapse
Affiliation(s)
- Peggy P Li
- Molecular Biology Institute, 456 Boyer Hall, University of California at Los Angeles, 611 East Charles E. Young Dr., Box 951570, Los Angeles, CA 90095-1570, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Nakanishi A, Itoh N, Li PP, Handa H, Liddington RC, Kasamatsu H. Minor capsid proteins of simian virus 40 are dispensable for nucleocapsid assembly and cell entry but are required for nuclear entry of the viral genome. J Virol 2007; 81:3778-85. [PMID: 17267496 PMCID: PMC1866110 DOI: 10.1128/jvi.02664-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the roles of simian virus 40 capsid proteins in the viral life cycle by analyzing point mutants in Vp1 and Vp2/3, as well as a deletion mutant lacking the Vp2/3 coding sequence. The Vp1 mutants (V243E and L245E) and the Vp2/3 mutants (F157E-I158E and P164R-G165E-G166R) were previously shown to be defective in Vp1-Vp2/3 interaction and to be noninfectious or poorly infectious, respectively. Here, we show that all these point mutants form stable particles following DNA transfection into cells. The Vp2/3-mutant particles contained very low levels of Vp2/3, whereas the Vp1 mutant particles contained no detectable Vp2/3. As expected, the deletion mutant also formed particles that were noninfectious. We further characterized the two Vp1 point mutants and the deletion mutant. All three mutant particles comprised Vp1 and histone-associated viral DNA, and all were able to enter cells. However, the mutant complexes failed to associate with host importins (owing to the loss of the Vp2/3 nuclear localization signal), and the mutant viral DNAs prematurely dissociated from the Vp1s, suggesting that the nucleocapsids did not enter the nucleus. Consistently, all three mutant particles failed to express large T antigen. Together, our results demonstrate unequivocally that Vp2/3 is dispensable for the formation of nucleocapsids. Further, the nucleocapsids' ability to enter cells implies that Vp1 contains the major determinants for cell attachment and entry. We propose that the major role of Vp2/3 in infectivity is to mediate the nuclear entry of viral DNA.
Collapse
Affiliation(s)
- Akira Nakanishi
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, 456 Boyer Hall, University of California, Los Angeles, 611 East Charles E. Young Dr., Box 951570, Los Angeles, CA 90095-1570, USA
| | | | | | | | | | | |
Collapse
|
33
|
Nakanishi A, Li PP, Qu Q, Jafri QH, Kasamatsu H. Molecular dissection of nuclear entry-competent SV40 during infection. Virus Res 2006; 124:226-30. [PMID: 17112617 PMCID: PMC1847345 DOI: 10.1016/j.virusres.2006.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/04/2006] [Accepted: 10/05/2006] [Indexed: 11/23/2022]
Abstract
To establish viral infection, SV40 must expose nuclear localization signals (NLSs) that are internal in the virion architecture in order to enter the nucleus via interaction with the host's nuclear import machinery, which includes importin alpha and importin beta. The time course for SV40 association with the importins in infected cells was examined. The viral DNA associated with importin alpha by 1.5h post infection, before associating with the importin beta nuclear import receptor, by 3h post infection. Only a small fraction of cell-internalized SV40 that contained viral DNA was bound by the two importins. This fraction, termed "nuclear entry-competent SV40," was slightly smaller than the virion but, importantly, was larger than the viral chromatin and contained both Vp1 and Vp3. Furthermore, the internalized viral DNA in either anti-importin or anti-Vp3 immune complexes was sensitive to DNase I, whereas the viral DNA in mature virions was resistant. All these results suggest that once SV40 enters the cytoplasm, it undergoes an architectural modification that exposes the virion's NLSs for nuclear entry.
Collapse
Affiliation(s)
- Akira Nakanishi
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Peggy P. Li
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Qiumin Qu
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Qumber H. Jafri
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Harumi Kasamatsu
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- *Corresponding author. Mailing address: Molecular Biology Institute, 456 Boyer Hall, University of California, Los Angeles, 611 East Charles E. Young Dr., Box 951570, Los Angeles, CA 90095-1570. Phone: (310) 825-3048. Fax: (310) 206-7286. E-mail:
| |
Collapse
|
34
|
Abstract
Productive viral infection is dependent upon post-entry migration of viruses/viral components to sites within a host cell that complement viral deficiencies. Delivery of virions or component proteins to appropriate sites within an infected cell is critical for completing successive stages in viral replication, including release into the cytoplasm, uncoating, genome replication, viral gene expression, assembly and budding. Vesicular transport is essential for steady-state cellular trafficking of membrane-associated proteins. Rab GTPases and their associated effectors are key regulators of vesicular transport pathways. In recent years, Rab proteins have been implicated in the endocytic or exocytic sorting of component viral proteins or intact viruses, most of which are known to be membrane-encapsulated and enveloped. This review will discuss the current understanding of how Rab GTPases and their effectors may regulate individual vesicular transport steps, and detail emerging discoveries examining how specific Rabs and effectors support viral replication.
Collapse
Affiliation(s)
- Thomas W Hodge
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA 30602, USA, and, Hudson–Alpha Institute for Biotechnology Investigator, Huntsville, AL, USA
| | - James L Murray
- University of Georgia, Animal Health Research Center, 111 Carlton Street, Room 113, Athens, GA 30602, USA
| |
Collapse
|
35
|
Lilley BN, Gilbert JM, Ploegh HL, Benjamin TL. Murine polyomavirus requires the endoplasmic reticulum protein Derlin-2 to initiate infection. J Virol 2006; 80:8739-44. [PMID: 16912321 PMCID: PMC1563856 DOI: 10.1128/jvi.00791-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathways by which viruses enter cells are diverse, but in all cases, infection necessitates the transfer of the viral genome across a cellular membrane. Polyomavirus (Py) particles, after binding to glycolipid and glycoprotein receptors at the cell surface, are delivered to the lumen of the endoplasmic reticulum (ER). The nature and extent of virus disassembly in the ER, how the viral genome is transported to the cytosol and subsequently to the nucleus, and whether any cellular proteins are involved are not known. Here, we identify an ER-resident protein, Derlin-2, a factor implicated in the removal of misfolded proteins from the ER for cytosolic degradation, as a component of the machinery required for mouse Py to establish an infection. Inhibition of Derlin-2 function by expression of either a dominant-negative form of Derlin-2 or a short hairpin RNA that reduces Derlin-2 levels blocks Py infection by 50 to 75%. The block imposed by Derlin-2 inhibition occurs after the virus reaches the ER and can be bypassed by the introduction of Py DNA into the cytosol. These findings suggest a mode of Py entry that involves cytosolic access via the quality control machinery in the ER.
Collapse
Affiliation(s)
- Brendan N Lilley
- Department of Pathology, Havard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
36
|
Chromy LR, Oltman A, Estes PA, Garcea RL. Chaperone-mediated in vitro disassembly of polyoma- and papillomaviruses. J Virol 2006; 80:5086-91. [PMID: 16641302 PMCID: PMC1472060 DOI: 10.1128/jvi.80.10.5086-5091.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hsp70 chaperones play a role in polyoma- and papillomavirus assembly, as evidenced by their interaction in vivo with polyomavirus capsid proteins at late times after virus infection and by their ability to assemble viral capsomeres into capsids in vitro. We studied whether Hsp70 chaperones might also participate in the uncoating reaction. In vivo, Hsp70 co-immunoprecipitated with polyomavirus virion VP1 at 3 h after infection of mouse cells. In vitro, prokaryotic and eukaryotic Hsp70 chaperones efficiently disassembled polyoma- and papillomavirus-like particles and virions in energy-dependent reactions. These observations support a role for cell chaperones in the disassembly of these viruses.
Collapse
Affiliation(s)
- Laura R Chromy
- University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
37
|
Liebl D, Difato F, Horníková L, Mannová P, Stokrová J, Forstová J. Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in Rab11-positive endosomes. J Virol 2006; 80:4610-22. [PMID: 16611921 PMCID: PMC1472029 DOI: 10.1128/jvi.80.9.4610-4622.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments.
Collapse
Affiliation(s)
- David Liebl
- Department of Genetics and Microbiology, Faculty of Medicine, Charles University in Prague, Vinicná 5, 128 44 Prague 2, Czech Republic
| | | | | | | | | | | |
Collapse
|
38
|
Bishop CL, Ramalho M, Nadkarni N, May Kong W, Higgins CF, Krauzewicz N. Role for centromeric heterochromatin and PML nuclear bodies in the cellular response to foreign DNA. Mol Cell Biol 2006; 26:2583-94. [PMID: 16537904 PMCID: PMC1430340 DOI: 10.1128/mcb.26.7.2583-2594.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear spatial positioning plays an important role in the epigenetic regulation of eukaryotic gene expression. Here we show a role for nuclear spatial positioning in regulating episomal transgenes that are delivered by virus-like particles (VLPs). VLPs mediate the delivery of plasmid DNA (pDNA) to cell nuclei but lack viral factors involved in initiating and regulating transcription. By tracking single fluorescently labeled VLPs, coupled with luciferase reporter gene assays, we found that VLPs transported pDNA to cell nuclei efficiently but transgenes were immediately silenced by the cell. An investigation of the nuclear location of fluorescent VLPs revealed that the pDNAs were positioned next to centromeric heterochromatin. The activation of transcription by providing viral factors or inhibiting histone deacetylase activity resulted in the localization to euchromatin regions. Further, the activation of transcription induced the recruitment of PML nuclear bodies (PML-NBs) to the VLPs. This association did not play a role in regulating transgene expression, but PML protein was necessary for the inhibition of transgene expression with alpha interferon (IFN-alpha). These results support a model whereby cells can prevent foreign gene expression at two levels: by positioning transgenes next to centromeric heterochromatin or, if that is overcome, via the type I IFN response facilitated by PML-NB recruitment.
Collapse
Affiliation(s)
- Cleo L Bishop
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
39
|
Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord JM. Retrograde transport pathways utilised by viruses and protein toxins. Virol J 2006; 3:26. [PMID: 16603059 PMCID: PMC1524934 DOI: 10.1186/1743-422x-3-26] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/07/2006] [Indexed: 11/15/2022] Open
Abstract
A model has been presented for retrograde transport of certain toxins and viruses from the cell surface to the ER that suggests an obligatory interaction with a glycolipid receptor at the cell surface. Here we review studies on the ER trafficking cholera toxin, Shiga and Shiga-like toxins, Pseudomonas exotoxin A and ricin, and compare the retrograde routes followed by these protein toxins to those of the ER trafficking SV40 and polyoma viruses. We conclude that there is in fact no obligatory requirement for a glycolipid receptor, nor even with a protein receptor in a lipid-rich environment. Emerging data suggests instead that there is no common pathway utilised for retrograde transport by all of these pathogens, the choice of route being determined by the particular receptor utilised.
Collapse
Affiliation(s)
- Robert A Spooner
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel C Smith
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew J Easton
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Lynne M Roberts
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - J Michael Lord
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
40
|
Bossis I, Roden RBS, Gambhira R, Yang R, Tagaya M, Howley PM, Meneses PI. Interaction of tSNARE syntaxin 18 with the papillomavirus minor capsid protein mediates infection. J Virol 2005; 79:6723-31. [PMID: 15890910 PMCID: PMC1112158 DOI: 10.1128/jvi.79.11.6723-6731.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus capsid mediates binding to the cell surface and passage of the virion to the perinuclear region during infection. To better understand how the virus traffics across the cell, we sought to identify cellular proteins that bind to the minor capsid protein L2. We have identified syntaxin 18 as a protein that interacts with bovine papillomavirus type 1 (BPV1) L2. Syntaxin 18 is a target membrane-associated soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (tSNARE) that resides in the endoplasmic reticulum (ER). The ectopic expression of FLAG-tagged syntaxin 18, which disrupts ER trafficking, blocked BPV1 pseudovirion infection. Furthermore, the expression of FLAG-syntaxin 18 prevented the passage of BPV1 pseudovirions to the perinuclear region that is consistent with the ER. Genetic studies identified a highly conserved L2 domain, DKILK, comprising residues 40 to 44 that mediated BPV1 trafficking through the ER during infection via an interaction with the tSNARE syntaxin 18. Mutations within the DKILK motif of L2 that did not significantly impact virion morphogenesis or binding at the cell surface prevented the L2 interaction with syntaxin 18 and disrupted BPV1 infection.
Collapse
Affiliation(s)
- Ioannis Bossis
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Gilbert J, Dahl J, Riney C, You J, Cui C, Holmes R, Lencer W, Benjamin T. Ganglioside GD1a restores infectibility to mouse cells lacking functional receptors for polyomavirus. J Virol 2005; 79:615-8. [PMID: 15596855 PMCID: PMC538744 DOI: 10.1128/jvi.79.1.615-618.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent investigations on the pathway of cell entry by polyomavirus (Py) and simian virus 40 (SV40) have defined specific gangliosides as functional receptors mediating virus binding and transport from the plasma membrane to the endoplasmic reticulum (B. Tsai et al., EMBO J. 22:4346-4355, 2003; Gilbert and Benjamin, in press). These studies were carried out with C6 rat glioma cells, a heterologous host chosen for its known deficiency in ganglioside biosynthesis. Here, a cell genetic approach was undertaken to identify components required for the early steps of infection using mouse cells as the natural host for Py. Receptor-negative (R-) mouse cells, screened based on resistance to Py infection, were shown to bind Py but failed to allow entry of the virus. R- cells were also found to be resistant to SV40. Infectibility was restored or enhanced by the addition of the same specific gangliosides found in earlier studies with C6 cells. In one R- line, overexpression of caveolin-1 also increased infectibility. These results support and extend findings on gangliosides in lipid rafts as functional receptors and mediators of internalization for Py and SV40.
Collapse
Affiliation(s)
- Joanna Gilbert
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The pathway of entry of polyomavirus (Py) has been investigated with glycolipid-deficient C6 cells and added ganglioside GD1a as a specific virus receptor. Unsupplemented C6 cells show a low basal level of infection but become highly infectable by Py following preincubation with the sialic acid-containing ganglioside GD1a (38). Addition of GD1a has no effect on the overall level of virus binding but mediates the internalization and transit of virus to the endoplasmic reticulum (ER). This pathway of entry is cholesterol and caveola dependent and requires intact microtubules as well as a dynamic state of the microfilament system. In contrast to vesicular transport of other cargo via glycolipids, Py particles do not appear to pass through the Golgi apparatus. Colcemid and brefeldin A block transport of the virus to the ER in GD1a-supplemented cells and lead to accumulation of virus in a caveolin-1-containing environment. Several features distinguish the efficient GD1a-mediated pathway of virus uptake from the less-efficient pathway of basal infection in C6 cells.
Collapse
Affiliation(s)
- Joanna Gilbert
- Department of Pathology, Harvard Medical School, 77 Louis Pasteur Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
43
|
Vidricaire G, Imbeault M, Tremblay MJ. Endocytic host cell machinery plays a dominant role in intracellular trafficking of incoming human immunodeficiency virus type 1 in human placental trophoblasts. J Virol 2004; 78:11904-15. [PMID: 15479831 PMCID: PMC523271 DOI: 10.1128/jvi.78.21.11904-11915.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vertical transmission of human immunodeficiency virus type 1 (HIV-1) is the primary cause of infection by this retrovirus in infants. In this study, we report for the first time that there is a correlation between endocytic uptake of HIV-1 and virus gene expression in polarized trophoblasts. To shed light on the relationship between endocytosis and the fate of HIV-1 in polarized trophoblasts, the step-by-step movements of HIV-1 within the endocytic compartments were tracked by confocal imaging. Incoming virions were initially located in early endosomes. As time progressed, virions accumulated in late endosomes. HIV-1 was also found in apical recycling endosomes and at the basolateral pole. Experiments performed with indicator cells revealed that HIV-1 is recycled and transcytosed. These data indicate that the intracellular trafficking of HIV-1 upon entry into polarized human trophoblasts is a complex process which requires the active participation of the endocytic host cell machinery.
Collapse
Affiliation(s)
- Gaël Vidricaire
- Research Center in Infectious Diseases, RC709, CHUL Research Center, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | |
Collapse
|
44
|
Querbes W, Benmerah A, Tosoni D, Di Fiore PP, Atwood WJ. A JC virus-induced signal is required for infection of glial cells by a clathrin- and eps15-dependent pathway. J Virol 2004; 78:250-6. [PMID: 14671106 PMCID: PMC303400 DOI: 10.1128/jvi.78.1.250-256.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 09/22/2003] [Indexed: 11/20/2022] Open
Abstract
Infectious entry of JC virus (JCV) into human glial cells occurs by receptor-mediated clathrin-dependent endocytosis. In this report we demonstrate that the tyrosine kinase inhibitor genistein blocks virus entry and inhibits infection. Transient expression of dominant-negative eps15 mutants, including a phosphorylation-defective mutant, inhibited both virus entry and infection. We also show that the JCV-induced signal activates the mitogen-activated protein kinases ERK1 and ERK2. These data demonstrate that JC virus binding to human glial cells induces an intracellular signal that is critical for entry and infection by a ligand-inducible clathrin-dependent mechanism.
Collapse
Affiliation(s)
- W Querbes
- Graduate Program in Pathobiology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
45
|
Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 2003; 22:4346-55. [PMID: 12941687 PMCID: PMC202381 DOI: 10.1093/emboj/cdg439] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polyoma virus (Py) and simian virus 40 (SV40) travel from the plasma membrane to the endoplasmic reticulum (ER) from where they enter the cytosol and then the nucleus to initiate infection. Here we demonstrate that specific gangliosides can serve as plasma membrane receptors for these viruses, GD1a and GT1b for Py and GM1 for SV40. Binding and flotation assays were used to show that addition of these gangliosides to phospholipid vesicles allowed specific binding of the respective viruses. The crystal structure of polyoma VP1 with a sialic acid-containing oligosaccharide was used to derive a model of how the two terminal sugars (sialic acid-alpha2,3-galactose) in one branch of GD1a and GT1b are recognized by the virus. A rat cell line deficient in ganglioside synthesis is poorly infectible by polyoma and SV40, but addition of the appropriate gangliosides greatly facilitates virus uptake, transport to the ER and infection. Lipid binding sites for polyoma are shown to be present in rough ER membranes, suggesting that the virus travel with the ganglioside(s) from the plasma membranes to the ER.
Collapse
Affiliation(s)
- Billy Tsai
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Viruses have long served as tools in molecular and cellular biology to study a variety of complex cellular processes. Currently, there is a revived interest in virus entry into animal cells because it is evident that incoming viruses make use of numerous endocytic pathways that are otherwise difficult to study. Besides the classical clathrin-mediated uptake route, viruses use caveolae-mediated endocytosis, lipid-raft-mediated endocytic pathways, and macropinocytosis. Some of these are subject to regulation, involve novel endocytic organelles, and some of them connect organelles that were previously not known to communicate by membrane traffic.
Collapse
Affiliation(s)
- Lucas Pelkmans
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|