1
|
Zhu F, Wang M, Zhang X, Zhao G, Gao H, Zhou L. Contradictory Mechanisms of rheumatoid arthritis and hepatitis B virus infection activation. Heliyon 2025; 11:e41444. [PMID: 39850429 PMCID: PMC11755052 DOI: 10.1016/j.heliyon.2024.e41444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/07/2024] [Accepted: 12/22/2024] [Indexed: 01/25/2025] Open
Abstract
Rheumatoid arthritis (RA) is associated with a high rate of hepatitis B virus (HBV) infection. A large proportion of HBV reactivation may occur in RA patients after immunosuppression treatment, while fulminant hepatitis may occur in severe cases. Immunosuppressants are fundamental medications for the treatment of RA but carry the risk of inducing HBV reactivation. This inherent contradiction poses challenges throughout the immunosuppressive treatment process in patients with RA. Recently, numerous studies have been conducted on the contradictory therapeutic mechanisms between RA treatment and HBV infection, including aspects of innate immunity, adaptive immunity, and related signalling pathways. In this article, we review the immunological mechanisms underlying the onset of RA and HBV infections, providing a reference for determining appropriate treatment plans to reduce therapeutic contradictions and thereby reduce the risk of HBV reactivation in patients with RA combined with HBV infection.
Collapse
Affiliation(s)
- Fenglin Zhu
- Department of Rheumatology, The First Affiliated Hostipal of Chonqqing University of Chinese Medicine, Chongqing, Jiangbei, 410000, China
| | - Miao Wang
- Department of Rheumatology, The First Affiliated Hostipal of Chonqqing University of Chinese Medicine, Chongqing, Jiangbei, 410000, China
| | - Xuhong Zhang
- Department of Rheumatology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, Jiangsu, China
| | - Guoqing Zhao
- Department of Rheumatology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, Jiangsu, China
| | - Hongyan Gao
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, The First Affiliated Hostipal of Chonqqing University of Chinese Medicine, Chongqing, Jiangbei, 410000, China
| | - Lamei Zhou
- Department of Rheumatology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, Jiangsu, China
| |
Collapse
|
2
|
Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley L, Striz I. M1/M2 macrophages and their overlaps - myth or reality? Clin Sci (Lond) 2023; 137:1067-1093. [PMID: 37530555 PMCID: PMC10407193 DOI: 10.1042/cs20220531] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
Macrophages represent heterogeneous cell population with important roles in defence mechanisms and in homoeostasis. Tissue macrophages from diverse anatomical locations adopt distinct activation states. M1 and M2 macrophages are two polarized forms of mononuclear phagocyte in vitro differentiation with distinct phenotypic patterns and functional properties, but in vivo, there is a wide range of different macrophage phenotypes in between depending on the microenvironment and natural signals they receive. In human infections, pathogens use different strategies to combat macrophages and these strategies include shaping the macrophage polarization towards one or another phenotype. Macrophages infiltrating the tumours can affect the patient's prognosis. M2 macrophages have been shown to promote tumour growth, while M1 macrophages provide both tumour-promoting and anti-tumour properties. In autoimmune diseases, both prolonged M1 activation, as well as altered M2 function can contribute to their onset and activity. In human atherosclerotic lesions, macrophages expressing both M1 and M2 profiles have been detected as one of the potential factors affecting occurrence of cardiovascular diseases. In allergic inflammation, T2 cytokines drive macrophage polarization towards M2 profiles, which promote airway inflammation and remodelling. M1 macrophages in transplantations seem to contribute to acute rejection, while M2 macrophages promote the fibrosis of the graft. The view of pro-inflammatory M1 macrophages and M2 macrophages suppressing inflammation seems to be an oversimplification because these cells exploit very high level of plasticity and represent a large scale of different immunophenotypes with overlapping properties. In this respect, it would be more precise to describe macrophages as M1-like and M2-like.
Collapse
Affiliation(s)
- Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Robin Bartolini
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, U.K
| | - Rene Novysedlak
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Eva Cecrdlova
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, U.K
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Abdelkareem Abakar MA, Hussein Ali AA, Ahmed Elhassan ED, Hamuda Altaher EA, Abdalbasit Musa NH, Kafi SK, Fawzi Osman AE, Waggiallah HA. Association of TNF-α, IFN-γ, IL-6, and IL-10 with different clinical manifestations of hepatitis B infection. ITALIAN JOURNAL OF MEDICINE 2023; 17. [DOI: 10.4081/itjm.2023.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Cytokines have a crucial part in the pathogenesis, persistence of infection, and prognosis of hepatitis B virus (HBV) infection as HBV does not cause direct liver destruction; rather, disease-related complications and prognosis are more associated with immune system action, specifically cytokines such as TNF-α, IFN-γ, IL-6, IL-10, and other cytokines. This study sought to link TNF-, IFN-, IL-6, and IL-10 to various clinical manifestations of HBV infection. Ninety sera were taken from HBV-infected patients, 30 (33.3%) of whom had liver cirrhosis, 30 (33.3%) were HBV carriers, 19 (21.2%) were acute HBV patients, and 11 (12.2%) were recently HBV infected. ELISA was used to determine the serum levels of TNF-α, IFN-γ, IL-6, and IL-10. HBV-infected patients with liver cirrhosis had considerably higher mean serum levels of IFN-γ (P=0.005) and IL-10 (P=0.003), but TNF-α and IL-6 were significantly higher in recent HBV-infected patients (P values 0.034 and 0.004, respectively). There were substantial changes in mean serum levels of TNF-α, IFN-γ, IL-6, and IL-10 at different phases of HBV infection, implying a role for cytokines in HBV etiology, chronicity, and consequences.
Collapse
|
4
|
Patil VS, Harish DR, Sampat GH, Roy S, Jalalpure SS, Khanal P, Gujarathi SS, Hegde HV. System Biology Investigation Revealed Lipopolysaccharide and Alcohol-Induced Hepatocellular Carcinoma Resembled Hepatitis B Virus Immunobiology and Pathogenesis. Int J Mol Sci 2023; 24:11146. [PMID: 37446321 DOI: 10.3390/ijms241311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemically induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1. About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis, HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly activated these pathways more than other chemicals, with higher gene counts and lower FDR scores. In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Pukar Khanal
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Swarup S Gujarathi
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| |
Collapse
|
5
|
Tran NT, Chen L, Zhou Y, Zhang M, Wang Y, Li S. SpTNF regulates apoptosis and antimicrobial peptide synthesis in mud crab (Scylla paramamosain) during white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2023:108881. [PMID: 37279830 DOI: 10.1016/j.fsi.2023.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023]
Abstract
Tumor necrosis factor (TNF) is an inflammatory cytokine that is important in cell survival, proliferation, differentiation, and death. However, the functions of TNF in the immune responses of invertebrates have been less studied. In this study, SpTNF was cloned and characterized from mud crab (Scylla paramamosain) for the first time. SpTNF contains an open reading frame of 354 bp encoding 117 deduced amino acids, with a conserved C-terminal TNF homology domain (THD) domain. RNAi knockdown of SpTNF reduced hemocyte apoptosis and antimicrobial peptide (AMP) synthesis. Expression of SpTNF was initially down-regulated but subsequently up-regulated after 48 h in hemocytes of mud crabs after WSSV infection. Results of RNAi knockdown and overexpression showed that SpTNF inhibits the WSSV infection through activating apoptosis, NF-κB pathway, and AMP synthesis. Furthermore, the lipopolysaccharide-induced TNF-α factor (SpLITAF) can regulate the expression of SpTNF, induction of apoptosis, and activation of the NF-κB pathway and AMP synthesis. The expression and nuclear translocation of SpLITAF were regulated by WSSV infection. SpLITAF knockdown increased the WSSV copy number and VP28 gene expression. Taken together, these results proved the protective function of SpTNF, which is regulated by SpLITAF, in the immune response of mud crabs against WSSV through the regulation of apoptosis and activation of AMP synthesis.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Lianjie Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yanlian Zhou
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
6
|
Xie Z, Shen S, Huang K, Wang W, Liu Z, Zhang H, Lu M, Sun J, Hou J, Liu H, Guo H, Zhang X. Mitochondrial HIGD1A inhibits hepatitis B virus transcription and replication through the cellular PNKD-NF-κB-NR2F1 nexus. J Med Virol 2023; 95:e28749. [PMID: 37185850 DOI: 10.1002/jmv.28749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Hepatitis B Virus (HBV) replication has been reported to be restricted by the intrahepatic host restriction factors and antiviral signaling pathways. The intracellular mechanisms underlying the significant viremia difference among different phases of the natural history chronic HBV infection remain elusive. We herein report that the hypoxia-induced gene domain protein-1a (HIGD1A) was highly expressed in the liver of inactive HBV carriers with low viremia. Ectopic expression of HIGD1A in hepatocyte-derived cells significantly inhibited HBV transcription and replication in a dose-dependent manner, while silence of HIGD1A promoted HBV gene expression and replication. Similar results were also observed in both de novo HBV-infected cell culture model and HBV persistence mouse model. Mechanistically, HIGD1A is located on the mitochondrial inner membrane and activates nuclear factor kappa B (NF-κB) signaling pathway through binding to paroxysmal nonkinesigenic dyskinesia (PNKD), which further enhances the expression of a transcription factor NR2F1 to inhibit HBV transcription and replication. Consistently, knockdown of PNKD or NR2F1 and blockage of NF-κB signaling pathway abrogated the inhibitory effect of HIGD1A on HBV replication. Mitochondrial HIGD1A exploits the PNKD-NF-κB-NR2F1 nexus to act as a host restriction factor of HBV infection. Our study thus shed new lights on the regulation of HBV by hypoxia-related genes and related antiviral strategies.
Collapse
Affiliation(s)
- Zhanglian Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sheng Shen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kuiyuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weibin Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziying Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixing Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Karabay O, Guney Eskiler G, Alkurt U, Hamarat KF, Deveci Ozkan A, Aydin A. The predictive role of NF-κB-mediated pro-inflammatory cytokine expression levels in hepatitis B vaccine response. J Immunoassay Immunochem 2023; 44:192-203. [PMID: 36656054 DOI: 10.1080/15321819.2022.2164507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hepatitis B virus (HBV) infection is a global health problem leading to cirrhosis, hepatocellular carcinoma, and liver failure. The Hepatitis B vaccine plays a significant role in reducing the incidence of HBV worldwide. Approximately 5-10% of vaccinated people do not produce protective antibody levels. Nuclear factor kappa B (NF‑κB) mediates inflammatory responses through pro-inflammatory cytokines. However, the role of the NF‑κB signaling pathway and its association with pro-inflammatory cytokines in hepatitis B vaccine response is unclear. We aimed to assess changes in the IL1A, IL6, IL12A, TNF-α, and NFκB1 expression levels in the non-responder and responder. A total of 32 non-responders and 36 responders were included in the study. The expression level of determined genes was analyzed by RT-PCR. Our results showed that IL1A, IL6, IL12A, and NFκB1 mRNA levels significantly increased in the non-responders compared to the responders (p < .01). Furthermore, there was a significant correlation between IL1A, IL6, TNF-α, and NFκB1 in the non-responder and responders. In conclusion, inflammatory signaling pathways may play an important role in response to HBV vaccine. Therefore, NF‑κB signaling and associated pro-inflammatory cytokine mRNA levels could predict hepatitis B vaccine response. However, the underlying molecular mechanisms of hepatitis B vaccine immunity need further investigation.
Collapse
Affiliation(s)
- Oguz Karabay
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Umut Alkurt
- Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | | | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Ayhan Aydin
- Department of Internal Sciences, Sakarya University Training and Research Hospital, Sakarya, Turkey
| |
Collapse
|
8
|
Long P, Xia Y, Yang Y, Cao J. Network-based pharmacology and molecular docking exploring the "Bupleuri Radix-Scutellariae Radix" mechanism of action in the viral hepatitis B treatment. Medicine (Baltimore) 2022; 101:e31835. [PMID: 36482557 PMCID: PMC9726313 DOI: 10.1097/md.0000000000031835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viral hepatitis B is caused by the hepatitis B virus, which is characterized by liver lesions. Bupleuri Radix and Scutellariae Radix are the main traditional medicine pairs with remarkable efficacy in hepatitis B. However, their molecular mechanisms are incompletely understood. The main active components of Bupleuri Radix and Scutellariae Radix, as well as therapeutic targets for the treatment of hepatitis B, were identified through network pharmacology techniques. We identified viral hepatitis B targets using the GeneCards, online mendelian inheritance in man, and therapeutic target databases. We discovered the active components of Bupleuri Radix and Scutellariae Radix as well as therapeutic targets using the encyclopedia of traditional Chinese medicine, HERB, traditional Chinese medicine systems pharmacology database, and a bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine databases. VENNY obtained the intersections. Cytoscape and STRING were used to create the "active ingredient-potential target" network and protein interaction network. The DAVID database was used to enrich GO and KEGG pathways. The results were confirmed using the molecular docking method. There were 1827 viral hepatitis B targets, and 37 active ingredients for Bupleuri and Scutellariae Radix, with the main components being quercetin, wogonin, baicalein, and kaempferol. Tumor necrosis factor (TNF), mitogen-activated protein kinase 3 (MAPK3), interleukin-6 (IL-6), vascular endothelial growth factor A, cysteinyl aspartate specific proteinase 3, transcription factor AP-1 (JUN), RAC-alpha serine/threonine-protein kinase, and cellular tumor antigen p53 are among the 78 common targets of Bupleuri Radix and Scutellariae Radix intervention in viral hepatitis B. KEGG enrichment resulted in 107 pathways, including cancer, hepatitis B, and TNF signaling pathways. According to the molecular docking technique, quercetin, wogonin, baicalein, and kaempferol had strong binding activities with TNF, MAPK3, and IL-6. In this study, we initially identified various molecular targets and multiple pathways involved in hepatitis B treatment with Bupleuri Radix and Scutellariae Radix.
Collapse
Affiliation(s)
- Piao Long
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan, China
| | - Yu Xia
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan, China
| | - Yuying Yang
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan, China
| | - Jianzhong Cao
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan, China
- * Correspondence: Jianzhong Cao, Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, No. 300, Xueshi Road, Yuelu District, Changsha 410208, Hunan, China (e-mail: )
| |
Collapse
|
9
|
Hepatitis B virus polymerase restricts LINE-1 mobility. Gene 2022; 850:146943. [PMID: 36198378 DOI: 10.1016/j.gene.2022.146943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Long interspersed element-1 (LINE-1, L1) transposable element (TE) composes about 17% of the human genome. However, genetic and biochemical interactions between L1 and hepatitis B virus (HBV) remain poorly understood. In this study, I found that HBV restricts L1 retrotransposition in a reverse transcriptase (RT)-independent manner. Notably, HBV polymerase (Pol) strongly inhibited L1 retrotransposition. Indeed, the ribonuclease H (RNase H) domain was essential for inhibition of L1 retrotransposition. The L1 ORF1p RNA-binding protein predominantly localized into cytoplasmic RNA granule termed P-body. However, HBV Pol hijacked L1 ORF1p from P-body through an interaction with L1 ORF1p, when both proteins were co-expressed. Furthermore, HBV Pol repressed the L1 5' untranslated region (UTR). Altogether, HBV seems to restrict L1 mobility at multiple steps. Thus, these results suggest a novel function or activity of HBV Pol in regulation of L1 retrotransposition.
Collapse
|
10
|
Host Factors in the Natural History of Chronic Hepatitis B: Role of Genetic Determinants. Int J Hepatol 2022; 2022:6046677. [PMID: 36052277 PMCID: PMC9427277 DOI: 10.1155/2022/6046677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The host immune system plays an important role in hepatitis B virus (HBV) infection manifestation. Genetic polymorphisms of several inflammatory cytokines, including TNF-α and IL-10, have been associated with chronic hepatitis B (CHB) progression, although with contradicting results. CHB progression can be categorized into four phases, immune tolerance (IT), immune clearance (IC), low/no replicative (LR), and e-negative hepatitis (ENH), with HBeAg seroconversion as an important milestone. Here, we determined the association of TNF-α (rs1800629) and IL-10 (rs1800896 and rs1800872) SNPs in the context of CHB natural history progression, particularly to HBeAg seroconversion, in Indonesian CHB patients. METHODS A total of 287 subjects were recruited and categorized into distinct CHB phases based on HBeAg, viral load, and ALT levels. TNF-α and IL-10 SNPs were determined using PCR-RFLP and confirmed with direct sequencing. The association between SNP genotypes with CHB dynamics was determined using logistic regression presented as odds ratio (OR) with 95% CI. RESULTS No significant association was found between IL-10 -592A/C polymorphism and progression of IT and IC to LR, IT and IC to ENH, and LR to ENH phases in all the gene models. IL-10 rs1800896 and TNF-α rs1800629 could not be analyzed using logistic regression. Subjects' age (≥40 years old) was significantly associated with IT and IC to LR (OR: 2.191, 95% CI 1.067-4.578, P = 0.034), IT and IC to ENH (OR: 7.460, 95% CI 3.316-18.310, P < 0.001), and LR to ENH (OR: 5.252, 95% CI 2.010-14.858, P = 0.001). Male gender was associated with LR to ENH (OR: 4.077, 95% CI 1.605-11.023, P = 0.004). CONCLUSIONS Age and male gender were associated with CHB phase progression instead of the TNF-α and IL-10 polymorphisms. It would be beneficial to study not only the effect of host determinants but also the viral factor to understand the mechanisms of CHB phase progression.
Collapse
|
11
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
Affiliation(s)
- Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
| | - Wei-Lin Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China.
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
12
|
Pantazica AM, Dobrica MO, Lazar C, Scurtu C, Tucureanu C, Caras I, Ionescu I, Costache A, Onu A, Clarke JL, Stavaru C, Branza-Nichita N. Efficient cellular and humoral immune response and production of virus-neutralizing antibodies by the Hepatitis B Virus S/preS116-42 antigen. Front Immunol 2022; 13:941243. [PMID: 35935966 PMCID: PMC9354405 DOI: 10.3389/fimmu.2022.941243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the availability of improved antiviral therapies, infection with Hepatitis B virus (HBV) remains a3 significant health issue, as a curable treatment is yet to be discovered. Current HBV vaccines relaying on the efficient expression of the small (S) envelope protein in yeast and the implementation of mass vaccination programs have clearly contributed to containment of the disease. However, the lack of an efficient immune response in up to 10% of vaccinated adults, the controversies regarding the seroprotection persistence in vaccine responders and the emergence of vaccine escape virus mutations urge for the development of better HBV immunogens. Due to the critical role played by the preS1 domain of the large (L) envelope protein in HBV infection and its ability to trigger virus neutralizing antibodies, including this protein in novel vaccine formulations has been considered a promising strategy to overcome the limitations of S only-based vaccines. In this work we aimed to combine relevant L and S epitopes in chimeric antigens, by inserting preS1 sequences within the external antigenic loop of S, followed by production in mammalian cells and detailed analysis of their antigenic and immunogenic properties. Of the newly designed antigens, the S/preS116–42 protein assembled in subviral particles (SVP) showed the highest expression and secretion levels, therefore, it was selected for further studies in vivo. Analysis of the immune response induced in mice vaccinated with S/preS116–42- and S-SVPs, respectively, demonstrated enhanced immunogenicity of the former and its ability to activate both humoral and cellular immune responses. This combined activation resulted in production of neutralizing antibodies against both wild-type and vaccine-escape HBV variants. Our results validate the design of chimeric HBV antigens and promote the novel S/preS1 protein as a potential vaccine candidate for administration in poor-responders to current HBV vaccines.
Collapse
Affiliation(s)
- Ana-Maria Pantazica
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Mihaela-Olivia Dobrica
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Catalin Lazar
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Cristina Scurtu
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Catalin Tucureanu
- Immunology Laboratory, “Cantacuzino” Medico-Military National Research Institute, Bucharest, Romania
| | - Iuliana Caras
- Immunology Laboratory, “Cantacuzino” Medico-Military National Research Institute, Bucharest, Romania
| | - Irina Ionescu
- Immunology Laboratory, “Cantacuzino” Medico-Military National Research Institute, Bucharest, Romania
| | - Adriana Costache
- Immunology Laboratory, “Cantacuzino” Medico-Military National Research Institute, Bucharest, Romania
| | - Adrian Onu
- Immunology Laboratory, “Cantacuzino” Medico-Military National Research Institute, Bucharest, Romania
| | - Jihong Liu Clarke
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute for Bioeconomy Research, Ås, Norway
| | - Crina Stavaru
- Immunology Laboratory, “Cantacuzino” Medico-Military National Research Institute, Bucharest, Romania
- *Correspondence: Norica Branza-Nichita, ; Crina Stavaru,
| | - Norica Branza-Nichita
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- *Correspondence: Norica Branza-Nichita, ; Crina Stavaru,
| |
Collapse
|
13
|
Tiegs G, Horst AK. TNF in the liver: targeting a central player in inflammation. Semin Immunopathol 2022; 44:445-459. [PMID: 35122118 PMCID: PMC9256556 DOI: 10.1007/s00281-022-00910-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
Tumour necrosis factor-α (TNF) is a multifunctional cytokine. First recognized as an endogenous soluble factor that induces necrosis of solid tumours, TNF became increasingly important as pro-inflammatory cytokine being involved in the immunopathogenesis of several autoimmune diseases. In the liver, TNF induces numerous biological responses such as hepatocyte apoptosis and necroptosis, liver inflammation and regeneration, and autoimmunity, but also progression to hepatocellular carcinoma. Considering these multiple functions of TNF in the liver, we propose anti-TNF therapies that specifically target TNF signalling at the level of its specific receptors.
Collapse
Affiliation(s)
- Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Andrea K Horst
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Robbins M, Doucette K. Hepatitis Viruses. INFECTIOUS COMPLICATIONS IN BIOLOGIC AND TARGETED THERAPIES 2022:431-450. [DOI: 10.1007/978-3-031-11363-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Lin J, Li J, Xie P, Han Y, Yu D, Chen J, Zhang X. Hepatitis B virus middle surface antigen loss promotes clinical variant persistence in mouse models. Virulence 2021; 12:2868-2882. [PMID: 34738866 PMCID: PMC8632123 DOI: 10.1080/21505594.2021.1999130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hepatitis B virus (HBV) middle surface antigen (MHBs) mutation or deletion occurs in patients with chronic HBV infection. However, the functional role of MHBs in HBV infection is still an enigma. Here, we reported that 7.33% (11/150) isolates of CHB patients had MHBs start codon mutations compared with 0.00% (0/146) in acute hepatitis B (AHB) patients. Interestingly, MHBs loss accounted for 11.88% (126/1061) isolates from NCBI GenBank, compared with 0.09% (1/1061) and 0.00% (0/1061) for HBV large surface antigen (LHBs) loss and HBV small surface antigen (SHBs) loss, respectively. One persistent HBV clone of genotype B (B56, MHBs loss) from a CHB patient was hydrodynamically injected into BALB/c mice. B56 persisted for >70 weeks in BALB/c mice, whereas B56 with restored MHBs (B56M+) was quickly cleared within 28 days. Serum cytokine assays demonstrated that CXCL1, CXCL2, IL-6 and IL-33 were significantly increased during rapid HBV clearance in B56M+ mice. Furthermore, the enhancers and promoters of B56 were proved to be required for B56 persistence in mice. Ablating MHBs expression improved the persistence of a new clone (HBV1.3, genotype B) which was recreated by using enhancers and promoters of B56. These data demonstrated that MHBs deletion can promote the persistence of specific HBV variants in a hydrodynamic mouse model. MHBs re-expression restored a rapid clearance of HBV, which was accompanied by cytokine responses including the elevation of CXCL1, CXCL2, IL-6 and IL-33.
Collapse
Affiliation(s)
- Junyu Lin
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Xie
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Han
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Demin Yu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Chen
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Li X, Xu Z, Mitra B, Wang M, Guo H, Feng Z. Elevated NTCP expression by an iPSC-derived human hepatocyte maintenance medium enhances HBV infection in NTCP-reconstituted HepG2 cells. Cell Biosci 2021; 11:123. [PMID: 34225786 PMCID: PMC8256212 DOI: 10.1186/s13578-021-00641-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor for hepatitis B virus (HBV). NTCP-reconstituted human hepatoma cells support HBV infection, but the infection is suboptimal and no apparent HBV spread has been observed in this system. RESULTS We found that NTCP-reconstituted HepG2 cells were highly susceptible to HBV infection after cells were cultured in a commercial human inducible pluripotent stem cell (iPSC)-derived hepatocyte maintenance medium (HMM). The enhanced HBV infection coincided with increased NTCP expression, and was observed in six different clones of HepG2-NTCP cells. Promoter assays indicated that HMM activated the cytomegalovirus immediate-early (IE) promoter that drives the NTCP expression in the HepG2-NTCP cells. RNA-Seq analysis revealed that HMM upregulated multiple metabolic pathways. Despite highly upregulated NTCP expression by HMM, no obvious HBV spread was observed even in the presence of PEG 8000. CONCLUSIONS Our data suggest that this particular medium could be used to enhance HBV infection in NTCP-reconstituted hepatocytes in vitro.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Zhaohui Xu
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Bidisha Mitra
- Department of Microbiology and Molecular Genetics and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Minghang Wang
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
17
|
Immunopathology of Chronic Hepatitis B Infection: Role of Innate and Adaptive Immune Response in Disease Progression. Int J Mol Sci 2021; 22:ijms22115497. [PMID: 34071064 PMCID: PMC8197097 DOI: 10.3390/ijms22115497] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
More than 250 million people are living with chronic hepatitis B despite the availability of highly effective vaccines and oral antivirals. Although innate and adaptive immune cells play crucial roles in controlling hepatitis B virus (HBV) infection, they are also accountable for inflammation and subsequently cause liver pathologies. During the initial phase of HBV infection, innate immunity is triggered leading to antiviral cytokines production, followed by activation and intrahepatic recruitment of the adaptive immune system resulting in successful virus elimination. In chronic HBV infection, significant alterations in both innate and adaptive immunity including expansion of regulatory cells, overexpression of co-inhibitory receptors, presence of abundant inflammatory mediators, and modifications in immune cell derived exosome release and function occurs, which overpower antiviral response leading to persistent viral infection and subsequent immune pathologies associated with disease progression towards fibrosis, cirrhosis, and hepatocellular carcinoma. In this review, we discuss the current knowledge of innate and adaptive immune cells transformations that are associated with immunopathogenesis and disease outcome in CHB patients.
Collapse
|
18
|
The Potential Role of Probiotics in Protection against Influenza a Virus Infection in Mice. Foods 2021; 10:foods10040902. [PMID: 33924002 PMCID: PMC8073107 DOI: 10.3390/foods10040902] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus induces severe respiratory tract infection and results in a serious global health problem. Influenza infection disturbs the cross-talk connection between lung and gut. Probiotic treatment can inhibit influenza virus infection; however, the mechanism remains to be explored. The mice received Lactobacillus mucosae 1025, Bifidobacterium breve CCFM1026, and their mixture MIX for 19 days. Effects of probiotics on clinical symptoms, immune responses, and gut microbial alteration were evaluated. L. mucosae 1025 and MIX significantly reduced the loss of body weight, pathological symptoms, and viral loading. B. breve CCFM1026 significantly reduced the proportion of neutrophils and increased lymphocytes, the expressions of TLR7, MyD88, TRAF6, and TNF-α to restore the immune disorders. MIX increased the antiviral protein MxA expression, the relative abundances of Lactobacillus, Mucispirillum, Adlercreutzia, Bifidobacterium, and further regulated SCFA metabolism resulting in an enhancement of butyrate. The correlation analysis revealed that the butyrate was positively related to MxA expression (p < 0.001) but was negatively related to viral loading (p < 0.05). The results implied the possible antiviral mechanisms that MIX decreased viral loading and increased the antiviral protein MxA expression, which was closely associated with the increased butyrate production resulting from gut microbial alteration.
Collapse
|
19
|
Chua C, Salimzadeh L, Gehring AJ. Immunopathogenesis of Hepatitis B Virus Infection. HEPATITIS B VIRUS AND LIVER DISEASE 2021:73-97. [DOI: 10.1007/978-981-16-3615-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
20
|
Xu J, Zhan Q, Fan Y, Yu Y, Zeng Z. Human genetic susceptibility to hepatitis B virus infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 87:104663. [PMID: 33278635 DOI: 10.1016/j.meegid.2020.104663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection is still a serious health threat worldwide. The outcomes of HBV infection consist of spontaneous HBV clearance and chronic HBV infection. Multiple factors contribute to the disparity of HBV infection outcomes, including host factors, viral factors and environmental factors. The present review comprehends the current researches mainly focusing on the relationships between genetic determinants, including single nucleotide polymorphisms (SNPs) and haplotypes, and susceptibility of HBV infection, namely chronic (persistent) HBV infection and HBV clearance. A number of determinants in the chromosomes, including mutations in human leukocyte antigens (HLAs), cytokines genes, toll-like receptors (TLRs), and other genes are related to the human susceptibility to HBV infection. Among the above variants, some of those in HLAs have been studied and replicated in multiple-ethnic populations and came to consistent conclusions, while some others are novel and need to be evaluated further.
Collapse
Affiliation(s)
- Jinghang Xu
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China
| | - Qiao Zhan
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China
| | - Yanan Fan
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China.
| | - Zheng Zeng
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China.
| |
Collapse
|
21
|
Sui B, Chen D, Liu W, Tian B, Lv L, Pei J, Wu Q, Zhou M, Fu ZF, Zhang Y, Zhao L. Comparison of lncRNA and mRNA expression in mouse brains infected by a wild-type and a lab-attenuated Rabies lyssavirus. J Gen Virol 2020; 102. [PMID: 33284098 DOI: 10.1099/jgv.0.001538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a lethal disease caused by Rabies lyssavirus, commonly known as rabies virus (RABV), and results in nearly 100 % death once clinical symptoms occur in human and animals. Long non-coding RNAs (lncRNAs) have been reported to be associated with viral infection. But the role of lncRNAs involved in RABV infection is still elusive. In this study, we performed global transcriptome analysis of both of lncRNA and mRNA expression profiles in wild-type (WT) and lab-attenuated RABV-infected mouse brains by using next-generation sequencing. The differentially expressed lncRNAs and mRNAs were analysed by using the edgeR package. We identified 1422 differentially expressed lncRNAs and 4475 differentially expressed mRNAs by comparing WT and lab-attenuated RABV-infected brains. Then we predicted the enriched biological pathways by the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) database based on the differentially expressed lncRNAs and mRNAs. Our analysis revealed the relationships between lncRNAs and RABV-infection-associated immune response and ion transport-related pathways, which provide a fresh insight into the potential role of lncRNA in immune evasion and neuron injury induced by WT RABV.
Collapse
Affiliation(s)
- Baokun Sui
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dong Chen
- ABLife BioBigData Institute, Wuhan, 430075, PR China
| | - Wei Liu
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Bin Tian
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lei Lv
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jie Pei
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qiong Wu
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ming Zhou
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhen F Fu
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, 430075, PR China
| | - Ling Zhao
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
22
|
Rashidi S, Farhadi L, Ghasemi F, Sheikhesmaeili F, Mohammadi A. The potential role of HLA-G in the pathogenesis of HBV infection: Immunosuppressive or immunoprotective? INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104580. [PMID: 33022425 DOI: 10.1016/j.meegid.2020.104580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
The non-classical human leukocyte antigens (HLA)-G could be generally considered as a potent tolerogenic molecule, which modulates immune responses. HLA-G due to the immunosuppressive properties may play an important role in the pathogenesis of infections related to the liver. HLA-G may display two distinct activities in the pathological conditions so that it could be protective in the autoimmune and inflammatory diseases or could be suppressive of the immune system in the infections or cancers. HLA-G might be used as a novel therapeutic target for liver diseases in the future. Indeed, new therapeutic agents targeting HLA-G expression or antibodies which block HLA-G activity are being developed and tested. However, further consideration of the HLA-G function in liver disease is required. This review aims to summarize the role of HLA-G in the liver of patients with HBV infection.
Collapse
Affiliation(s)
- Saadyeh Rashidi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Farhadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Farshad Sheikhesmaeili
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
23
|
Pant K, Chandrasekaran A, Chang CJ, Vageesh A, Popkov AJ, Weinberg JB. Effects of tumor necrosis factor on viral replication and pulmonary inflammation during acute mouse adenovirus type 1 respiratory infection. Virology 2020; 547:12-19. [PMID: 32560900 DOI: 10.1016/j.virol.2020.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/22/2023]
Abstract
CD8 T cells contribute to effective clearance of mouse adenovirus type 1 (MAV-1) and to virus-induced pulmonary inflammation. We characterized effects of a CD8 T cell effector, TNF, on MAV-1 pathogenesis. TNF inhibited MAV-1 replication in vitro. TNF deficiency or immunoneutralization had no effect on lung viral loads or viral gene expression in mice infected intranasally with MAV-1. Absence of TNF delayed virus-induced weight loss and reduced histological evidence of pulmonary inflammation, although concentrations of proinflammatory cytokines and chemokines in bronchoalveolar lavage fluid (BALF) were not significantly affected. BALF concentrations of IL-10 were greater in TNF-deficient mice compared to controls. Our data indicate that TNF is not essential for control of viral replication in vivo, but virus-induced TNF contributes to some aspects of immunopathology and disease. Redundant CD8 T cell effectors and other aspects of immune function are sufficient for antiviral and pro-inflammatory responses to acute MAV-1 respiratory infection.
Collapse
Affiliation(s)
- Krittika Pant
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Christine J Chang
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Aditya Vageesh
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Mackman RL, Mish M, Chin G, Perry JK, Appleby T, Aktoudianakis V, Metobo S, Pyun P, Niu C, Daffis S, Yu H, Zheng J, Villasenor AG, Zablocki J, Chamberlain J, Jin H, Lee G, Suekawa-Pirrone K, Santos R, Delaney WE, Fletcher SP. Discovery of GS-9688 (Selgantolimod) as a Potent and Selective Oral Toll-Like Receptor 8 Agonist for the Treatment of Chronic Hepatitis B. J Med Chem 2020; 63:10188-10203. [DOI: 10.1021/acs.jmedchem.0c00100] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Richard L. Mackman
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Michael Mish
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Gregory Chin
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jason K. Perry
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Todd Appleby
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Sammy Metobo
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Peter Pyun
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Congrong Niu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Stephane Daffis
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Helen Yu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jim Zheng
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Armando G. Villasenor
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jeff Zablocki
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jason Chamberlain
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Haolun Jin
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Gary Lee
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Rex Santos
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - William E. Delaney
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Simon P. Fletcher
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| |
Collapse
|
25
|
Wang J, Chen J, Liu Y, Zeng X, Wei M, Wu S, Xiong Q, Song F, Yuan X, Xiao Y, Cao Y, Li C, Chen L, Guo M, Shi Y, Sun G, Guo D. Hepatitis B Virus Induces Autophagy to Promote its Replication by the Axis of miR-192-3p-XIAP Through NF kappa B Signaling. Hepatology 2019; 69:974-992. [PMID: 30180281 PMCID: PMC6519203 DOI: 10.1002/hep.30248] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) is a major risk factor for the development and progression of hepatocellular carcinoma. It has been reported that viral infection can interfere with cellular microRNA (miRNA) expression and participate in the pathogenesis of oncogenicity. Here, we report that decreasing levels of the expression of the miRNA miR-192-3p is associated with rising levels of HBV DNA in the serum of HBV patients. We revealed that HBV infection repressed the expression of miR-192-3p through hepatitis B x protein interaction with c-myc. We further showed that miR-192-3p was repressed by HBV transfection in vitro and in a mouse model, leading to cellular autophagy. Using an miRNA target prediction database miRBase, we identified X-linked inhibitor of apoptosis protein (XIAP) as a target gene of miR-192-3p and demonstrated that miR-192-3p directly targeted the XIAP 3'-untranslated region of XIAP messenger RNA. Importantly, we discovered that HBV promoted autophagy through miR-192-3p-XIAP axis and that this process was important for HBV replication in vitro and in vivo. We demonstrated that miR-192-3p functioned through the nuclear factor kappa B signaling pathway to inhibit autophagy, thereby reducing HBV replication. Conclusions: Our findings indicate that miR-192-3p is a regulator of HBV infection and may play a potential role in hepatocellular carcinoma. It may also serve as a biomarker or therapeutic target for HBV patients.
Collapse
Affiliation(s)
- Jingwen Wang
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Jianwen Chen
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yang Liu
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Xianhuang Zeng
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Mingcong Wei
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Shaoshuai Wu
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | | | - Feifei Song
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Xu Yuan
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yu Xiao
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yun Cao
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Changyong Li
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Lang Chen
- School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life SciencesWuhan UniversityWuhanChina
| | - Yun‐Bo Shi
- Section on Molecular MorphogenesisEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaMD
| | - Guihong Sun
- School of Basic Medical SciencesWuhan UniversityWuhanChina,Hubei Provincial Key Laboratory of Allergy and ImmunologyWuhanChina
| | - Deyin Guo
- Laboratory of Medical Virology, School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
26
|
Lin CT, Hsieh YT, Yang YJ, Chen SH, Wu CH, Hwang LH. B-Cell Lymphoma 6 (BCL6) Is a Host Restriction Factor That Can Suppress HBV Gene Expression and Modulate Immune Responses. Front Microbiol 2019; 9:3253. [PMID: 30687256 PMCID: PMC6335256 DOI: 10.3389/fmicb.2018.03253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/14/2018] [Indexed: 01/12/2023] Open
Abstract
Hepatitis B virus (HBV) infection causes acute and chronic liver inflammation. Recent studies have demonstrated that some viral antigens can suppress host innate and adaptive immunity, and thus lead to HBV liver persistency. However, the cellular factors that can help host cells to clear HBV during acute infection remain largely unknown. Here, we used HBV-cleared and HBV-persistent mouse models to seek for cellular factors that might participate in HBV clearance. HBV replicon DNA was delivered into the mouse liver by hydrodynamic injection. RNA-Seq analysis was conducted to identify immune-related genes that were differentially expressed in HBV-persistent and HBV-cleared mouse models. A cellular factor, B cell lymphoma 6 (BCL6), was found to be significantly upregulated in the liver of HBV-cleared mice upon HBV clearance. Co-expression of BCL6 and a persistent HBV clone rendered the clone largely cleared, implicating an important role of BCL6 in controlling HBV clearance. Mechanistic studies demonstrated that BCL6 functioned as a repressor, binding to and suppressing the activities of the four HBV promoters. Correspondingly, BCL6 expression significantly reduced the levels of HBV viral RNA, DNA, and proteins. BCL6 expression could be stimulated by inflammatory cytokines such as TNF-α; the BCL6 in turn synergized TNF-α signaling to produce large amounts of CXCL9 and CXCL10, leading to increased infiltrating immune cells and elevated cytokine levels in the liver. Thus, positive feedback loops on BCL6 expression and immune responses could be produced. Together, our results demonstrate that BCL6 is a novel host restriction factor that exerts both anti-HBV and immunomodulatory activities. Induction of BCL6 in the liver may ultimately assist host immune responses to clear HBV.
Collapse
Affiliation(s)
- Chun-Ta Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei, Taiwan
| | - Yue-Ting Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yeng-Jey Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hui Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Hsuan Wu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Lih-Hwa Hwang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
27
|
Kim DH, Park ES, Lee AR, Park S, Park YK, Ahn SH, Kang HS, Won JH, Ha YN, Jae B, Kim DS, Chung WC, Song MJ, Kim KH, Park SH, Kim SH, Kim KH. Intracellular interleukin-32γ mediates antiviral activity of cytokines against hepatitis B virus. Nat Commun 2018; 9:3284. [PMID: 30115930 PMCID: PMC6095909 DOI: 10.1038/s41467-018-05782-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Cytokines are involved in early host defense against pathogen infections. In particular, tumor necrosis factor (TNF) and interferon-gamma (IFN-γ) have critical functions in non-cytopathic elimination of hepatitis B virus (HBV) in hepatocytes. However, the molecular mechanisms and mediator molecules are largely unknown. Here we show that interleukin-32 (IL-32) is induced by TNF and IFN-γ in hepatocytes, and inhibits the replication of HBV by acting intracellularly to suppress HBV transcription and replication. The gamma isoform of IL-32 (IL-32γ) inhibits viral enhancer activities by downregulating liver-enriched transcription factors. Our data are validated in both an in vivo HBV mouse model and primary human hepatocytes. This study thus suggests that IL-32γ functions as intracellular effector in hepatocytes for suppressing HBV replication to implicate a possible mechanism of non-cytopathic viral clearance. Cytokines such as TNF and IFN-γ are important for immunity against hepatitis B virus (HBV). Here the authors show that interleukin-32 gamma (IL-32γ) acts downstream of TNF and IFN-γ as an intracellular effector, and that IL-32γ negatively regulates host factors contributing to HBV transcription to promote HBV clearance.
Collapse
Affiliation(s)
- Doo Hyun Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ah Ram Lee
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Soree Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong Kwang Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Hyun Ahn
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong Seok Kang
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ju Hee Won
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea Na Ha
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - ByeongJune Jae
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Sik Kim
- Division of HBP Surgery and Liver Transplantation, Department of Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woo-Chang Chung
- Virus-Host Interactions Laboratory, Division of Biotechnology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Division of Biotechnology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary's Hospital, Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Seung Hwa Park
- Department of Anatomy, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Hyun Kim
- Laboratory of Cytokine Immunology, Veterinary School, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea. .,KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
28
|
Nie H, Mei Z, Wang R, Zhao B, Gao Y, Chen J, Wang L. Bushen recipe and its disassembled prescriptions inhibit inflammation of liver injury associated with Concanavalin A through Toll‑like receptor 3/9 signaling pathway. Mol Med Rep 2018; 18:1682-1691. [PMID: 29845244 DOI: 10.3892/mmr.2018.9082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 03/27/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to explore the effect of Bushen recipe and its disassembled prescriptions on liver injury and chronic hepatitis B. Liver injury was induced in normal and hepatitis B virus (HBV)‑transgenic mice through injection of Concanavalin A, followed by treatment with Bushen recipe and its disassembled prescriptions including the Bushen‑yang, the Bushen‑yin and the QingHua groups as well as the GanYanLing group (positive control). Subsequently, their liver function indexes were investigated by a microplate method and liver sections were blindly evaluated using an optical microscope by a pathologist. Subsequently, the activation state of Toll‑like receptor (TLR)3/9 signaling pathway in liver tissues was analyzed by western blotting. Additionally, the inflammatory factors produced following liver injury in peripheral blood were detected via ELISA. Following intervention with the Bushen recipe and its disassembled prescriptions, the liver function indexe alanine aminotransferase had declined, whereas cholinesterase increased. The pathological alterations of liver tissue in HBV transgenic mice were reversed by Bushen recipe and its disassembled prescriptions. In addition, the TLR3/9 signaling pathway in liver tissues of HBV transgenic mice was inhibited and inflammatory factors such as interleukin (IL)‑6, IL‑1, tumor necrosis factor‑α and interferon‑γ were reduced significantly. In conclusion, the present study demonstrated that Bushen recipe and its disassembled prescriptions repaired liver injury induced by Concanavalin A through inhibition of TLR3/9 signaling pathway.
Collapse
Affiliation(s)
- Hongming Nie
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhaohe Mei
- Department of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Rong Wang
- Department of Pathology, Shanghai Pudong New Area Traditional Chinese Medicine Hospital, Shanghai 201203, P.R. China
| | - Binbin Zhao
- Department of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jianjie Chen
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Lingtai Wang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
29
|
Friedman A, Siewe N. Chronic hepatitis B virus and liver fibrosis: A mathematical model. PLoS One 2018; 13:e0195037. [PMID: 29634771 PMCID: PMC5892900 DOI: 10.1371/journal.pone.0195037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a liver disorder that can result in cirrhosis, liver failure and hepatocellular carcinoma. HBV infection remains a major global health problem, as it affects more 350 million people chronically and kills roughly 600,000 people annually. Drugs currently used against HBV include IFN-α that decreases viremia, inflammation and the growth of liver fibrosis, and adefovir that decreases the viral load. Each of these drugs can have severe side-effects. In the present paper, we consider the treatment of chronic HBV by a combination of IFN-α and adefovir, and raise the following question: What should be the optimal ratio between IFN-α and adefovir in order to achieve the best 'efficacy' under constraints on the total amount of the drugs; here the efficacy is measured by the reduction of the levels of inflammation and of fibrosis? We develop a mathematical model of HBV pathogenesis by a system of partial differential equations (PDEs) and use the model to simulate a 'synergy map' which addresses the above question.
Collapse
Affiliation(s)
- Avner Friedman
- Mathematical Biosciences Institute & Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| | - Nourridine Siewe
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
30
|
Dou Y, van Montfoort N, van den Bosch A, de Man RA, Zom GG, Krebber WJ, Melief CJM, Buschow SI, Woltman AM. HBV-Derived Synthetic Long Peptide Can Boost CD4+ and CD8+ T-Cell Responses in Chronic HBV Patients Ex Vivo. J Infect Dis 2018; 217:827-839. [PMID: 29220492 PMCID: PMC5853453 DOI: 10.1093/infdis/jix614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022] Open
Abstract
Background Vaccination with synthetic long peptides (SLP) is a promising new treatment strategy for chronic hepatitis B virus (CHB). SLP can induce broad T-cell responses for all HLA types. Here we investigated the ability of a prototype HBV-core (HBc)-sequence-derived SLP to boost HBV-specific T cells in CHB patients ex vivo. Methods HBc-SLP was used to assess cross-presentation by monocyte-derived dendritic cells (moDC) and BDCA1+ blood myeloid DC (mDC) to engineered HBV-specific CD8+ T cells. Autologous SLP-loaded and toll-like receptor (TLR)-stimulated DC were used to activate patient HBc-specific CD8+ and CD4+ T cells. Results HBV-SLP was cross-presented by moDC, which was further enhanced by adjuvants. Patient-derived SLP-loaded moDC significantly increased autologous HBcAg18-27-specific CD8+ T cells and CD4+ T cells ex vivo. HBV-specific T cells were functional as they synthesized tumor necrosis factor-alpha and interferon-gamma. In 6/7 of patients blockade of PD-L1 further increased SLP effects. Also, importantly, patient-derived BDCA1+ mDC cross-presented and activated autologous T-cell responses ex vivo. Conclusions As a proof of concept, we showed a prototype HBc-SLP can boost T-cell responses in patients ex vivo. These results pave the way for the development of a therapeutic SLP-based vaccine to induce effective HBV-specific adaptive immune responses in CHB patients.
Collapse
Affiliation(s)
- Yingying Dou
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Aniek van den Bosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Gijs G Zom
- ISA Pharmaceuticals BV, Leiden, the Netherlands
| | | | | | - Sonja I Buschow
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Andrea M Woltman
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
31
|
Chyuan IT, Hsu PN. Tumor necrosis factor: The key to hepatitis B viral clearance. Cell Mol Immunol 2018; 15:731-733. [PMID: 29375133 DOI: 10.1038/cmi.2017.139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/05/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan, China.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, China. .,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, China.
| |
Collapse
|
32
|
Downregulation of miR-200a-3p induced by hepatitis B Virus X (HBx) Protein promotes cell proliferation and invasion in HBV-infection-associated hepatocarcinoma. Pathol Res Pract 2017; 213:1464-1469. [PMID: 29103765 DOI: 10.1016/j.prp.2017.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis B Virus X (HBx) Protein encoded by HBV is believed to be the major player in the process of HBV-induced oncogenesis. Ectopic expression of miR-200a-3p was reported to be associated with diverse tumorigenesis. This study aimed to better understand the role of miR-200a-3p and its correlation with HBx in HBV-induced hepatocellular carcinoma (HCC). METHODS In this report, we examined the gene expression using quantitative RT-PCR and protein expression using Western blotting analysis. Cells were transfected with miR-200a-3p mimics or empty vector, and HBx-carrying vector or empty vector. Cell viability was tested using CCK-8 assay. Wound healing assay was performed to assess cell migration while Transwell assay was performed to evaluate cell invasion. RESULTS miR-200a-3p was downregulated in HBV-positive tissue samples compared with HBV-negative tissue samples. This result was further confirmed with HBV-positive and - negative cell lines. HBx protein was overexpressed in HBV-positive cells where expression of miR-200a-3p was significantly suppressed. Increased cell viability, altered cell cycle progression, increased cell migration and invasion occurred in HBx-overexpressed cells compared to its controls. In forced expressed miR-200a-3p cells, cell viability, cell migration and invasion were significantly decreased, and cell cycle status was altered compared to its controls. CONCLUSIONS Taken together, pathogenetic function of HBx is negatively correlated with miR-200a-3p in HBV-cased HCC through regulating cell viability, cell cycle arrest, cell migration and cell invasion.
Collapse
|
33
|
Sornpet B, Potha T, Tragoolpua Y, Pringproa K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. ASIAN PAC J TROP MED 2017; 10:871-876. [PMID: 29080615 DOI: 10.1016/j.apjtm.2017.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/16/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To study the antiviral properties of the five Asian medicinal plants against in vitro infection by the highly pathogenic avian influenza virus (H5N1). METHODS Crude extracts of Andrographis paniculata, Curcuma longa (C. longa), Gynostemma pentaphyllum, Kaempferia parviflora (K. parviflora), and Psidium guajava obtained by both water and ethanol extractions were investigated for their cytotoxicity in the Madin-Darby canine kidney cells. Thereafter, they were investigated in vitro for antiviral activity and cytokine response upon H5N1 virus infection. RESULTS The results revealed that both water and ethanol extracts of all the five studied plants showed significant antiviral activity against H5N1 virus. Among these plants, C. longa and K. parviflora showed strong anti-H5N1 activity. Thus, they were selected for further studies on their cytokine response upon virus infection. It was found that ethanol and water crude extracts of C. longa and K. parviflora induced significant upregulation of TNF-α and IFN-β mRNA expressions, suggesting their roles in the inhibition of H5N1 virus replication. CONCLUSIONS To the best of the authors' knowledge, this study is among the earliest reports to illustrate the antiviral property of these Asian medicinal plants against the highly pathogenic avian H5N1 influenza virus. The results of this study shed light on alternative therapeutic sources for treatment of H5N1 influenza virus infection in the future.
Collapse
Affiliation(s)
- Benjaporn Sornpet
- Central Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Teerapong Potha
- Central Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
34
|
Ortega-Prieto AM, Dorner M. Immune Evasion Strategies during Chronic Hepatitis B and C Virus Infection. Vaccines (Basel) 2017; 5:E24. [PMID: 28862649 PMCID: PMC5620555 DOI: 10.3390/vaccines5030024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are a major global healthcare problem with more than 240 million and 70 million infected, respectively. Both viruses persist within the liver and result in progressive liver disease, resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma. Strikingly, this pathogenesis is largely driven by immune responses, unable to clear an established infection, rather than by the viral pathogens themselves. Even though disease progression is very similar in both infections, HBV and HCV have evolved distinct mechanisms, by which they ensure persistence within the host. Whereas HCV utilizes a cloak-and-dagger approach, disguising itself as a lipid-like particle and immediately crippling essential pattern-recognition pathways, HBV has long been considered a "stealth" virus, due to the complete absence of innate immune responses during infection. Recent developments and access to improved model systems, however, revealed that even though it is among the smallest human-tropic viruses, HBV may, in addition to evading host responses, employ subtle immune evasion mechanisms directed at ensuring viral persistence in the absence of host responses. In this review, we compare the different strategies of both viruses to ensure viral persistence by actively interfering with viral recognition and innate immune responses.
Collapse
Affiliation(s)
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
35
|
Li N, Shi Y, Zhang P, Sang J, Li F, Deng H, Lv Y, Han Q, Liu Z. Association of the tandem polymorphisms (rs148314165, rs200820567) in TNFAIP3 with chronic hepatitis B virus infection in Chinese Han population. Virol J 2017; 14:148. [PMID: 28784141 PMCID: PMC5547518 DOI: 10.1186/s12985-017-0814-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection remains an important public health issue. A20, a ubiquitin-editing protein encoded by tumor necrosis factor alpha-inducible protein 3 (TNFAIP3) gene, is complicated in HBV infection and liver injury. The tandem polymorphisms (rs148314165, rs200820567), deletion T followed by a T to A transversion and collectively referred to as TT > A in TNFAIP3, may attenuate A20 expression. METHODS The rs148314165 and rs200820567 polymorphisms were examined using PCR amplification followed by direct sequencing in 419 patients with chronic HBV infection, 77 HBV infection resolvers and 175 healthy controls of Chinese Han ethnicity. RESULTS The genotypes and alleles of rs148314165 and rs200820567 polymorphisms determined and the haplotypes constructed were consistently identical, confirming the reliable determination of the TT > A variant. The genotypes of rs148314165 and rs200820567 in HBV patients, HBV infection resolvers and healthy controls are in Hardy-Weinberg equilibrium (P > 0. 05). The patients with chronic HBV infection had higher frequency of TT > A variant than healthy controls (6.6% vs. 3.4%; OR, 1.979; 95% CI, 1.046-3.742; P = 0.033). The frequency of TT > A variant between patients with chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma had no significant differences. CONCLUSIONS The TT > A variant of TNFAIP3 may be associated with the susceptibility of chronic HBV infection but not the clinical diseases. Studies in large sample size of HBV patient and control populations are required to further clarify the role of this important variant in chronic HBV infection and the disease progression related to the infection.
Collapse
Affiliation(s)
- Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’ an, Shaanxi Province 710061 China
| | - Ying Shi
- Maternal and Children Health Hospital of Tongchuan, Tongchuan, Shaanxi 727000 China
| | - Pingping Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’ an, Shaanxi Province 710061 China
| | - Jiao Sang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’ an, Shaanxi Province 710061 China
| | - Fang Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’ an, Shaanxi Province 710061 China
| | - Huan Deng
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’ an, Shaanxi Province 710061 China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 China
- Institute of Advanced Surgical Technology and Engineering, Xi’an Jiaotong University, Xi’ an, Shaanxi 710061 China
| | - Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’ an, Shaanxi Province 710061 China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’ an, Shaanxi Province 710061 China
- Institute of Advanced Surgical Technology and Engineering, Xi’an Jiaotong University, Xi’ an, Shaanxi 710061 China
| |
Collapse
|
36
|
Tavakolpour S, Mirsafaei HS, Elkaei Behjati S, Ghasemiadl M, Akhlaghdoust M, Sali S. Toward cure chronic hepatitis B infection and hepatocellular carcinoma prevention: Lessons learned from nucleos(t)ide analogues therapy. Immunol Lett 2017; 190:206-212. [PMID: 28827021 DOI: 10.1016/j.imlet.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
Abstract
Nucleos(t)ide analogues (NAs) could successfully suppress hepatitis B virus (HBV) replication in patients with chronic hepatitis B (CHB). However, due to probable development of drug resistance or low/delayed response, these treatments may not be satisfactory. In addition to the HBV DNA polymerase inhibiting activity, these drugs could lead to changes in cytokines profiles. It is important to monitor these changes so that they could be used as target of treatment. Evaluating the previously reported immune responses due to NAs treatments, it was concluded that interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), interleukin-4 (IL-4), and IL-12 increase after the treatment. This will be followed by the improved capacity of immune cells for eliminating HBV. In contrast, regulatory responses including IL-10 and transforming growth factor-beta (TGF-β) significantly decreased as the result of NAs therapy. Unexpectedly, T helper (Th) 17-associated cytokines also decreased significantly. These results could be used to employ the new strategies to suppress viral replication, minimize HBV DNA levels, inducing hepatitis B e antigen (HBeAg) seroconversion or even hepatitis B surface antigen (HBsAg) seroclearance. In order to accomplish these goals, extended treatment with high dose of both IL-12 and IFN in combination with high barrier to resistance NA might significantly improve the HBsAg seroclearance rate. Considering the danger of emerging aberrant immune responses, determining the optimum dosage as well as close monitoring of patients during the treatment is strongly advised. In order to make HBV immunotherapy practical, further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Soheil Tavakolpour
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Somayeh Elkaei Behjati
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ghasemiadl
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Pars Advanced and Minimally Invasive Manners Research Center, Pars Hospital, Tehran, Iran
| | - Shahnaz Sali
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Laidlaw SM, Marukian S, Gilmore RH, Cashman SB, Nechyporuk-Zloy V, Rice CM, Dustin LB. Tumor Necrosis Factor Inhibits Spread of Hepatitis C Virus Among Liver Cells, Independent From Interferons. Gastroenterology 2017; 153:566-578.e5. [PMID: 28456632 PMCID: PMC5627365 DOI: 10.1053/j.gastro.2017.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Tumor necrosis factor (TNF) is an inflammatory cytokine expressed by human fetal liver cells (HFLCs) after infection with cell culture-derived hepatitis C virus (HCV). TNF has been reported to increase entry of HCV pseudoparticles into hepatoma cells and inhibit signaling by interferon alpha (IFNα), but have no effect on HCV-RNA replication. We investigated the effects of TNF on HCV infection of and spread among Huh-7 hepatoma cells and primary HFLCs. METHODS Human hepatoma (Huh-7 and Huh-7.5) and primary HFLCs were incubated with TNF and/or recombinant IFNA2A, IFNB, IFNL1, and IFNL2 before or during HCV infection. We used 2 fully infectious HCV chimeric viruses of genotype 2A in these studies: J6/JFH (clone 2) and Jc1(p7-nsGluc2A) (Jc1G), which encodes a secreted luciferase reporter. We measured HCV replication, entry, spread, production, and release in hepatoma cells and HFLCs. RESULTS TNF inhibited completion of the HCV infectious cycle in hepatoma cells and HFLCs in a dose-dependent and time-dependent manner. This inhibition required TNF binding to its receptor. Inhibition was independent of IFNα, IFNβ, IFNL1, IFNL2, or Janus kinase signaling via signal transducer and activator of transcription. TNF reduced production of infectious viral particles by Huh-7 and HFLC, and thereby reduced the number of infected cells and focus size. TNF had little effect on HCV replicons and increased entry of HCV pseudoparticles. When cells were incubated with TNF before infection, the subsequent antiviral effects of IFNs were increased. CONCLUSIONS In a cell culture system, we found TNF to have antiviral effects independently of, as well as in combination with, IFNs. TNF inhibits HCV infection despite increased HCV envelope glycoprotein-mediated infection of liver cells. These findings contradict those from other studies, which have reported that TNF blocks signal transduction in response to IFNs. The destructive inflammatory effects of TNF must be considered along with its antiviral effects.
Collapse
Affiliation(s)
- Stephen M. Laidlaw
- Kennedy Institute of Rheumatology, The University of Oxford, Oxford,
UK,Peter Medawar Building for Pathogen Research, The University of
Oxford, Oxford, UK
| | - Svetlana Marukian
- Laboratory of Virology and Infectious Disease, The Rockefeller
University, New York, NY, USA
| | - Rachel H. Gilmore
- Laboratory of Virology and Infectious Disease, The Rockefeller
University, New York, NY, USA
| | - Siobhán B. Cashman
- Kennedy Institute of Rheumatology, The University of Oxford, Oxford,
UK,Peter Medawar Building for Pathogen Research, The University of
Oxford, Oxford, UK
| | | | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller
University, New York, NY, USA
| | - Lynn B. Dustin
- Kennedy Institute of Rheumatology, The University of Oxford, Oxford,
UK,Peter Medawar Building for Pathogen Research, The University of
Oxford, Oxford, UK,Laboratory of Virology and Infectious Disease, The Rockefeller
University, New York, NY, USA,Corresponding author:
, Peter Medawar Building for
Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK
| |
Collapse
|
38
|
Li X, Gu Y, Guo X, Gu L, Zhou L, Wu X, Wang X, Stamataki Z, Huang Y. A Practical Model Evaluating Antiviral Cytokines by Natural Killer Cells in Treatment Naïve Patients with Chronic Hepatitis B Virus Infection. Sci Rep 2017; 7:5866. [PMID: 28725030 PMCID: PMC5517634 DOI: 10.1038/s41598-017-06192-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/21/2017] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells play a major role in anti-viral immunity as first line defense during hepatitis B infection, particularly in untreated patients whose T cells functions are profoundly impaired. Cytokine interferon (IFN)-γ and tumor necrosis factor (TNF)-α produced by NK cells are important anti-viral factors. However, there is lack of a quantifiable model to evaluate cytokine responses by NK cells. In this study, almost half of the patients (47.9%) beyond treatment criteria had high cytokine activity, although it was lower than those recommended for antiviral therapy (78.2%). Moreover, we developed a model that low levels of HBsAg, HBcAb, and albumin and high fibrosis values predicted strong antiviral cytokine production by NK cells. Based on the cut-off score (0.361) obtained from the multivariable model, patients with 67%, 8%, 92%, and 74% in immune-active (IA), immune-tolerant (IT), immune-inactive (IC), and grey zone (GZ), respectively, showed active antiviral cytokines produced by NK cells. These results suggest that those who possess activated cytokine responses beyond the current treatment criteria may have potential implications for the timing of antiviral therapy to achieve better virus control.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yurong Gu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Guo
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China.,Southern China Center for Statistical Science, Sun Yat-Sen University, Guangzhou, China.,Department of Ophthalmology, University of Melbourne, Melbourne, Australia
| | - Lin Gu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Zhou
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueqin Wang
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China.,Southern China Center for Statistical Science, Sun Yat-Sen University, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zania Stamataki
- Institute for Immunology and Immunotherapy and NIHR Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Yuehua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
39
|
Zheng NQ, Zheng ZH, Xu HX, Huang MX, Peng XM. Glucose-regulated protein 78 demonstrates antiviral effects but is more suitable for hepatocellular carcinoma prevention in hepatitis B. Virol J 2017; 14:77. [PMID: 28407787 PMCID: PMC5390389 DOI: 10.1186/s12985-017-0747-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis B virus (HBV) is the leading cause of liver cirrhosis and hepatocellular carcinoma in Asia and Africa. Existing antivirals cannot cure HBV or eliminate risk of hepatocellular carcinoma. Glucose-regulated protein 78 (GRP78) can inhibit HBV replication, but promote virion secretion and hepatocellular cancer cell invasion. For these reasons, the overall effect of GRP78 on HBV production and whether to utilize the HBV replication-inhibitory effect of GRP78 up-regulation or the hepatocellular cancer cell invasion-inhibitory effect of its down-regulation were further investigated in order to improve the efficacy of current antiviral therapy. Methods GRP78 regulations in HepG2.2.15 cells were conducted by transfections of expressing vector and small interfering RNA, respectively. The changes in HBV replication, hepatitis B e antigen (HBeAg) synthesis and hepatoma cell motility were monitored. Results GRP78 overall decreased HBV production due to its HBV replication-inhibitory effect time-dependently overwhelming virion secretion-promoting effect in HepG2.2.15 cells. Unlike the parental cells (HepG2), HepG2.2.15 cells demonstrated decreased expressions of the major genes in the interferon-β1-dependent pathway. Moreover, the expressions of these genes were not affected by GRP78 regulations. However, GRP78 was found to inhibit HBeAg secretion and to increase the retro-transportation of capsid assembly-interfering HBeAg precursor from the endoplasmic reticulum into the cytosol where new viral nucleocapsids formed. Furthermore, GRP78 overexpression promoted wound healing process (the motility) of HepG2.2.15 cells. In contrast, GRP78 knockdown enhanced HBV replication and HBeAg secretion, but they were abolished by entecavir and furin inhibitor, respectively. Conclusions GRP78 mainly demonstrates anti-HBV effects, reducing HBV production and HBeAg secretion. With due regard to the hepatocellular cancer invasion risk of the overexpression and the rectifiability of the unpleasant effects of the knockdown, GRP78 down-regulation may be more suitable to serve as an additive strategy to cover the hepatocellular cancer prevention shortage of current antiviral therapy in the future.
Collapse
Affiliation(s)
- Nai Q Zheng
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi H Zheng
- Jinan University Clinic, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hai X Xu
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ming X Huang
- Center of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-Sen University, 52 Meihua East Road, Zhuhai, 519000, Guangdong, China
| | - Xiao M Peng
- Center of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-Sen University, 52 Meihua East Road, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
40
|
Lin J, Gu C, Shen Z, Liu Y, Wang W, Tao S, Cui X, Liu J, Xie Y. Hepatocyte nuclear factor 1α downregulates HBV gene expression and replication by activating the NF-κB signaling pathway. PLoS One 2017; 12:e0174017. [PMID: 28319127 PMCID: PMC5358864 DOI: 10.1371/journal.pone.0174017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
The role of hepatocyte nuclear factor 1α (HNF1α) in the regulation of gene expression and replication of hepatitis B virus (HBV) is not fully understood. Previous reports have documented the induction of the expression of viral large surface protein (LHBs) by HNF1α through activating viral Sp1 promoter. Large amount of LHBs can block the secretion of hepatitis B surface antigen (HBsAg). Here we found that HNF1α overexpression inhibited HBV gene expression and replication in Huh7 cells, resulting in marked decreases in HBsAg, hepatitis B e antigen (HBeAg) and virion productions. In contrast, knockdown of endogenous HNF1α expression enhanced viral gene expression and replication. This HNF1α-mediated inhibition did not depend on LHBs. Instead, HNF1α promoted the expression of NF-κB p65 and slowed p65 protein degradation, leading to nuclear accumulation of p65 and activation of the NF-κB signaling, which in turn inhibited HBV gene expression and replication. The inhibitor of the NF-κB signaling, IκBα-SR, could abrogate this HNF1α-mediated inhibition. While the dimerization domain of HNF1α was dispensable for the induction of LHBs expression, all the domains of HNF1α was required for the inhibition of HBV gene expression. Our findings identify a novel role of HNF1α in the regulation of HBV gene expression and replication.
Collapse
Affiliation(s)
- Junyu Lin
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanfeng Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuai Tao
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoxian Cui
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (YHX); (JL)
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (YHX); (JL)
| |
Collapse
|
41
|
Control of Hepatitis B Virus by Cytokines. Viruses 2017; 9:v9010018. [PMID: 28117695 PMCID: PMC5294987 DOI: 10.3390/v9010018] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health problem worldwide with more than 240 million individuals chronically infected. Current treatments can control HBV replication to a large extent, but cannot eliminate HBV infection. Cytokines have been shown to control HBV replication and contribute to HBV cure in different models. Cytokines play an important role in limiting acute HBV infection in patients and mediate a non-cytolytic clearance of the virus. In this review, we summarize the effects of cytokines and cytokine-induced cellular signaling pathways on different steps of the HBV life cycle, and discuss possible strategies that may contribute to the eradication of HBV through innate immune activation.
Collapse
|
42
|
MITA/STING and Its Alternative Splicing Isoform MRP Restrict Hepatitis B Virus Replication. PLoS One 2017; 12:e0169701. [PMID: 28056087 PMCID: PMC5215812 DOI: 10.1371/journal.pone.0169701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
An efficient clearance of hepatitis B virus (HBV) requires the coordinated work of both the innate and adaptive immune responses. MITA/STING, an adapter protein of the innate immune signaling pathways, plays a key role in regulating innate and adaptive immune responses to DNA virus infection. Previously, we identified an alternatively spliced isoform of MITA/STING, called MITA-related protein (MRP), and found that MRP could specifically block MITA-mediated interferon (IFN) induction while retaining the ability to activate NF-κB. Here, we asked whether MITA/STING and MRP were able to control the HBV replication. Both MITA/STING and MRP significantly inhibited HBV replication in vitro. MITA overexpression stimulated IRF3-IFN pathway; while MRP overexpression activated NF-κB pathway, suggesting these two isoforms may inhibit HBV replication through different ways. Using a hydrodynamic injection (HI) mouse model, we found that HBV replication was reduced following MITA/STING and MRP expression vectors in mice and was enhanced by the knockout of MITA/STING (MITA/STING-/-). The HBV specific humoral and CD8+ T cell responses were impaired in MITA/STING deficient mice, suggesting the participation of MITA/STING in the initiation of host adaptive immune responses. In summary, our data suggest that MITA/STING and MRP contribute to HBV control via modulation of the innate and adaptive responses.
Collapse
|
43
|
Valaydon Z, Pellegrini M, Thompson A, Desmond P, Revill P, Ebert G. The role of tumour necrosis factor in hepatitis B infection: Jekyll and Hyde. Clin Transl Immunology 2016; 5:e115. [PMID: 28090316 PMCID: PMC5192060 DOI: 10.1038/cti.2016.68] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B (CHB) is a major health problem worldwide and is associated with significant long-term morbidity and mortality. The hepatitis B virus (HBV) is a hepatotropic virus that is capable of integrating in the host nucleus permanently resulting in lifelong infection. To date, there is no definitive cure for HBV, as our current treatments cannot eradicate the viral reservoir that has integrated in the liver. Elucidating the immunopathogenesis is key to finding a therapeutic target for HBV as the virus is not in itself cytopathic but the immune response to the virus causes the majority of the cellular injury. In most cases, the virus reaches a state of equilibrium with low viral replication constrained by host immunity. Multiple cytokines have been implicated in the pathogenesis of CHB. Tumor necrosis factor (TNF) has emerged as a key player; on one hand it can facilitate immune-mediated virological control but on the other hand it can cause collateral hepatocyte damage, cirrhosis and possibly promote hepatocellular carcinoma. In this review, we discuss the current understanding of the immunopathogenesis of HBV, focusing on TNF and whether it can be harnessed in therapeutic strategies to cure HBV infection.
Collapse
Affiliation(s)
- Zina Valaydon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Gastroenterology, St Vincent's Hospital, Fitzroy,Victoria, Australia; Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia; Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Thompson
- Department of Gastroenterology, St Vincent's Hospital, Fitzroy,Victoria, Australia; Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia; Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Desmond
- Department of Gastroenterology, St Vincent's Hospital, Fitzroy,Victoria, Australia; Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia; Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Revill
- Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia; Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
44
|
Agnihothram S, Mullis L, Townsend TA, Watanabe F, Mustafa T, Biris A, Manjanatha MG, Azevedo MP. Titanium Dioxide Nanoparticles Evoke Proinflammatory Response during Murine Norovirus Infection Despite Having Minimal Effects on Virus Replication. INTERNATIONAL JOURNAL OF NANOTECHNOLOGY IN MEDICINE & ENGINEERING 2016; 1:63-73. [PMID: 29930994 DOI: 10.25141/2474-8811-2016-3.0063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Noroviruses (NoV) have enhanced tropism for the gastrointestinal (GI) tract and are the major cause of nonbacterial gastroenteritis in humans. Titanium dioxide (TiO2) nanoparticles (NPs) used as food additives, dietary supplements, and cosmetics accumulate in the GI tract. We investigated the effect anatase TiO2 NPs on NoV replication and host response during virus infection, using murine norovirus (MNV-1) infection of RAW 264.7 macrophages. Pretreatment with 20 μg/ml anatase NPs significantly reduced the viability of macrophages alone or during virus infection, but did not alter virus replication. In contrast, pre-incubation with 2 μg/ml anatase NPs reduced virus replication fivefold at 48 h. The presence of anatase NPs during MNV-1 infection evoked a pro-inflammatory response, as measured by a significant increase in expression of cytokines, including IL-6, IFN-γ, TNFα and the TGFβ1. No genotoxic insults due to anatase TiO2 NPs alone or to their presence during MNV-1 infection were detected. This study highlights important safety considerations related to NP exposure of the GI tract in individuals infected with noroviruses or other foodborne viruses.
Collapse
Affiliation(s)
| | - Lisa Mullis
- Division of Microbiology, Jefferson, Arkansas, 72079, USA
| | - Todd A Townsend
- Division of Genetic and Molecular Toxicology, Jefferson, Arkansas, 72079, USA
| | - Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas 72204
| | - Thikra Mustafa
- Department of Medical Bioscience, College of Veterinary Medicine, University of Kirkuk, Kirkuk, Iraq
| | - Alexandru Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas 72204
| | | | | | | |
Collapse
|
45
|
Zheng ZH, Yang HY, Gu L, Peng XM. Proteasomes regulate hepatitis B virus replication by degradation of viral core-related proteins in a two-step manner. Virus Genes 2016; 52:597-605. [PMID: 27105855 DOI: 10.1007/s11262-016-1341-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/11/2016] [Indexed: 01/13/2023]
Abstract
The cellular proteasomes presumably inhibit the replication of hepatitis B virus (HBV) due to degradation of the viral core protein (HBcAg). Common proteasome inhibitors, however, either enhance or inhibit HBV replication. In this study, the exact degradation process of HBcAg and its influences on HBV replication were further studied using bioinformatic analysis, protease digestion assays of recombinant HBcAg, and proteasome inhibitor treatments of HBV-producing cell line HepG2.2.15. Besides HBcAg and hepatitis B e antigen precursor, common hepatitis B core-related antigens (HBcrAgs), the small and the large degradation intermediates of these HBcrAgs (HBcrDIs), were regularly found in cytosol of HepG2.2.15 cells. Further, the results of investigation reveal that the degradation process of cytosolic HBcrAgs in proteasomes consists of two steps: the limited proteolysis into HBcrDIs by the trypsin-like (TL) activity and the complete degradation of HBcrDIs by the chymotrypsin-like (chTL) activity. Concordantly, HBcrAgs and the large HBcrDI or HBcrDIs (including the small HBcrDI) were accumulated when the TL or chTL activity was inhibited, which generally correlated with enhancement and inhibition of HBV replication, respectively. The small HBcrDI inhibited HBV replication by assembling into the nucleocapsids and preventing the victim particles from being mature enough for envelopment. The two-step degradation manner may highlight some new anti-HBV strategies.
Collapse
Affiliation(s)
- Zi-Hua Zheng
- Hepatology Laboratory, The Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
- Jinan University Clinic, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Hui-Ying Yang
- Hepatology Laboratory, The Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Lin Gu
- Liver Disease Key Laboratory of Guangdong Province, Guangzhou, 510630, Guangdong, China
| | - Xiao-Mou Peng
- Hepatology Laboratory, The Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
- Liver Disease Key Laboratory of Guangdong Province, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
46
|
Liang LB, Zhu X, Yan LB, Du LY, Liu C, Liao J, Tang H. Quantitative intrahepatic HBV cccDNA correlates with histological liver inflammation in chronic hepatitis B virus infection. Int J Infect Dis 2016; 52:77-82. [PMID: 27686728 DOI: 10.1016/j.ijid.2016.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The aim of this study was to determine the role of baseline hepatitis B virus (HBV) forming covalently closed circular DNA (HBV cccDNA) in liver inflammation in patients infected with HBV with serum alanine aminotransferase (ALT) levels under two times the upper limit of normal (2×ULN). METHODS After liver biopsy and serum virological and biochemical marker screening, patients diagnosed with chronic HBV infection with serum ALT levels under 2×ULN and histological liver inflammation of less than grade G2 were prospectively recruited into this study. Recruitment took place between March 2009 and November 2010 at the Center of Infectious Disease, Sichuan University. Patient virological and biochemical markers, as well as markers of liver inflammation, were monitored. RESULTS A total of 102 patients were recruited and 68 met the inclusion criteria; the median follow-up was 4.1 years (range 3.9-5.2 years). During follow-up, 41 patients (60.3%) exhibited signs of inflammation. Baseline HBV cccDNA >1 copy/cell (odds ratio 9.43, p=0.049) and liver inflammation grade ≥G1 (odds ratio 5.77, p=0.046) were both independent predictors of liver inflammation. CONCLUSIONS A higher baseline intrahepatic HBV cccDNA level may increase the risk of liver inflammation. Further investigations will be required to validate HBV cccDNA as an intrahepatic virological marker of patients who require extended outpatient management.
Collapse
Affiliation(s)
- Ling-Bo Liang
- Center of Infectious Disease, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, 37# Guoxue Lane, 610041 Chengdu, China; Division of General Practice, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xia Zhu
- Center of Infectious Disease, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, 37# Guoxue Lane, 610041 Chengdu, China
| | - Li-Bo Yan
- Center of Infectious Disease, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, 37# Guoxue Lane, 610041 Chengdu, China
| | - Ling-Yao Du
- Center of Infectious Disease, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, 37# Guoxue Lane, 610041 Chengdu, China
| | - Cong Liu
- Center of Infectious Disease, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, 37# Guoxue Lane, 610041 Chengdu, China
| | - Juan Liao
- Center of Infectious Disease, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, 37# Guoxue Lane, 610041 Chengdu, China
| | - Hong Tang
- Center of Infectious Disease, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, 37# Guoxue Lane, 610041 Chengdu, China.
| |
Collapse
|
47
|
Etzion O, Novack V, Perl Y, Abel O, Schwartz D, Munteanu D, Abufreha N, Ben-Yaakov G, Maoz ED, Moshaklo A, Dizingf V, Fich A. Sci-B-VacTM Vs ENGERIX-B Vaccines for Hepatitis B Virus in Patients with Inflammatory Bowel Diseases: A Randomised Controlled Trial. J Crohns Colitis 2016; 10:905-12. [PMID: 26928962 PMCID: PMC5007589 DOI: 10.1093/ecco-jcc/jjw046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/04/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Response rate to second-generation hepatitis B virus vaccines is relatively low in patients with inflammatory bowel diseases compared with the general healthy population. We compared the efficacy and safety of a third- vs a second-generation hepatitis B virus vaccine in a group of patients with inflammatory bowel diseases treated with immunosuppressive medications. METHODS Prospective, randomised, single-blind, controlled study. Eligible patients were randomly assigned to receive one of two vaccines, ENGERIX-B or Sci-B-Vac. The vaccines were administered in three doses at 0, 1, and 6 months. The primary endpoint was defined as the titre of anti-hepatitis B S [HBs] antibodies following the standard three-dose hepatitis B virus vaccination schedule. RESULTS A total of 72 patients complied with study protocol [37 and 35 patients in the ENGERIX-B and Sci-B-Vac groups, respectively]. Overall, 75% of the cohort seroconverted. The primary endpoint was met in 81.1% in the ENGERIX-B group and 68.6% in the Sci-B-Vac group [p = 0.22]. Patients in the Sci-B-Vac group showed a statistically significant decreased seroconversion rate compared with the ENGERIX-B group, with use of tumour necrosis factor [TNF] alpha inhibitors [p = 0.03], and higher degree of disease activity [p = 0.03]. CONCLUSIONS Overall seroconversion rate in our cohort was higher than in previous reports in the literature, possibly due to a low disease activity state in the majority of participants. Third-generation hepatitis B virus vaccines showed no apparent advantage over standard of care vaccine in this patient group.
Collapse
Affiliation(s)
- Ohad Etzion
- Liver Disease Branch, NIDDK, NIH, Bethesda, USA,Department of Gastroenterology and Hepatology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Victor Novack
- Clinical Research Center, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yael Perl
- Clinical Research Center, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Olga Abel
- Clinical Research Center, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Doron Schwartz
- Department of Gastroenterology and Hepatology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Daniella Munteanu
- Department of Gastroenterology and Hepatology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Naim Abufreha
- Department of Gastroenterology and Hepatology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Gil Ben-Yaakov
- Department of Gastroenterology and Hepatology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eyal D. Maoz
- Clinical Research Center, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alex Moshaklo
- Department of Gastroenterology and Hepatology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Vitaly Dizingf
- Department of Gastroenterology and Hepatology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alex Fich
- Department of Gastroenterology and Hepatology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
48
|
Real CI, Lu M, Liu J, Huang X, Trippler M, Hossbach M, Deckert J, Jahn-Hofmann K, Ickenstein LM, John MJ, Gibbert K, Dittmer U, Vornlocher HP, Schirmbeck R, Gerken G, Schlaak JF, Broering R. Hepatitis B virus genome replication triggers toll-like receptor 3-dependent interferon responses in the absence of hepatitis B surface antigen. Sci Rep 2016; 6:24865. [PMID: 27121087 PMCID: PMC4848479 DOI: 10.1038/srep24865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/06/2016] [Indexed: 12/22/2022] Open
Abstract
The hepatitis B virus (HBV) has been described as stealth virus subverting immune responses initially upon infection. Impaired toll-like receptor signaling by the HBV surface antigen (HBsAg) attenuates immune responses to facilitate chronic infection. This implies that HBV replication may trigger host innate immune responses in the absence of HBsAg. Here we tested this hypothesis, using highly replicative transgenic mouse models. An HBV replication-dependent expression of antiviral genes was exclusively induced in HBsAg-deficient mice. These interferon responses attributed to toll-like receptor 3 (TLR3)-activated Kupffer and liver sinusoidal endothelial cells and further controlled the HBV genome replication. However, activation of TLR3 with exogenous ligands indicated additional HBs-independent immune evasion events. Our data demonstrate that in the absence of HBsAg, hepatic HBV replication leads to Tlr3-dependent interferon responses in non-parenchymal liver cells. We hypothesize that HBsAg is a major HBV-mediated evasion mechanism controlling endogenous antiviral responses in the liver. Eradication of HBsAg as a therapeutic goal might facilitate the induction of endogenous antiviral immune responses in patients chronically infected with HBV.
Collapse
Affiliation(s)
- Catherine Isabell Real
- Department of Gastroenterology and Hepatology, University Hospital at the University Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital at the University Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Institute of Virology, University Hospital at the University Duisburg-Essen, Essen, Germany.,Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Huang
- Institute of Virology, University Hospital at the University Duisburg-Essen, Essen, Germany
| | - Martin Trippler
- Department of Gastroenterology and Hepatology, University Hospital at the University Duisburg-Essen, Essen, Germany
| | - Markus Hossbach
- Roche Kulmbach GmbH, Kulmbach, Germany.,Axolabs GmbH, Kulmbach, Germany
| | - Jochen Deckert
- Roche Kulmbach GmbH, Kulmbach, Germany.,Axolabs GmbH, Kulmbach, Germany
| | - Kerstin Jahn-Hofmann
- Roche Kulmbach GmbH, Kulmbach, Germany.,Sanofi-Aventis Deutschland GmbH, Nucleic Acid Therapeutics Frankfurt, Germany
| | - Ludger Markus Ickenstein
- Roche Kulmbach GmbH, Kulmbach, Germany.,Boehringer Ingelheim Pharma GmbH Biberach, Biberach an der Riß, Germany
| | - Matthias Johannes John
- Roche Kulmbach GmbH, Kulmbach, Germany.,Moderna Therapeutics, Cambridge, Massachusetts, USA
| | - Kathrin Gibbert
- Institute of Virology, University Hospital at the University Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital at the University Duisburg-Essen, Essen, Germany
| | | | - Reinhold Schirmbeck
- Department of Internal Medicine, University Hospital at the University of Ulm, Ulm, Germany
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital at the University Duisburg-Essen, Essen, Germany
| | - Joerg Friedrich Schlaak
- Department of Gastroenterology and Hepatology, University Hospital at the University Duisburg-Essen, Essen, Germany.,Evangelisches Klinikum Niederrhein gGmbH, Duisburg, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital at the University Duisburg-Essen, Essen, Germany
| |
Collapse
|
49
|
Cleaved c-FLIP mediates the antiviral effect of TNF-α against hepatitis B virus by dysregulating hepatocyte nuclear factors. J Hepatol 2016; 64:268-277. [PMID: 26409214 DOI: 10.1016/j.jhep.2015.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/31/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Cytokines are key molecules implicated in the defense against virus infection. Tumor necrosis factor-alpha (TNF-α) is well known to block the replication of hepatitis B virus (HBV). However, the molecular mechanism and the downstream effector molecules remain largely unknown. METHODS In this study, we investigated the antiviral effect and mechanism of p22-FLIP (FLICE-inhibitory protein) by ectopic expression in vitro and in vivo. In addition, to provide the biological relevance of our study, we examined that the p22-FLIP is involved in TNF-α-mediated suppression of HBV in primary human hepatocytes. RESULTS We found that p22-FLIP, a newly discovered c-FLIP cleavage product, inhibited HBV replication at the transcriptional level in both hepatoma cells and primary human hepatocytes, and that c-FLIP conversion to p22-FLIP was stimulated by the TNF-α/NF-κB pathway. p22-FLIP inhibited HBV replication through the upregulation of HNF3β but downregulation of HNF4α, thus inhibiting both HBV enhancer elements. Finally, p22-FLIP potently inhibited HBV DNA replication in a mouse model of HBV replication. CONCLUSIONS Taken together, these findings suggest that the anti-apoptotic p22-FLIP serves a novel function of inhibiting HBV transcription, and mediates the antiviral effect of TNF-α against HBV replication.
Collapse
|
50
|
Xia Y, Stadler D, Lucifora J, Reisinger F, Webb D, Hösel M, Michler T, Wisskirchen K, Cheng X, Zhang K, Chou WM, Wettengel JM, Malo A, Bohne F, Hoffmann D, Eyer F, Thimme R, Falk CS, Thasler WE, Heikenwalder M, Protzer U. Interferon-γ and Tumor Necrosis Factor-α Produced by T Cells Reduce the HBV Persistence Form, cccDNA, Without Cytolysis. Gastroenterology 2016; 150:194-205. [PMID: 26416327 DOI: 10.1053/j.gastro.2015.09.026] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 09/05/2015] [Accepted: 09/19/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Viral clearance involves immune cell cytolysis of infected cells. However, studies of hepatitis B virus (HBV) infection in chimpanzees have indicated that cytokines released by T cells also can promote viral clearance via noncytolytic processes. We investigated the noncytolytic mechanisms by which T cells eliminate HBV from infected hepatocytes. METHODS We performed a cytokine enzyme-linked immunosorbent assay of serum samples from patients with acute and chronic hepatitis B. Liver biopsy specimens were analyzed by in situ hybridization. HepG2-H1.3 cells, HBV-infected HepaRG cells, and primary human hepatocytes were incubated with interferon-γ (IFNγ) or tumor necrosis factor-α (TNF-α), or co-cultured with T cells. We measured markers of HBV replication, including the covalently closed circular DNA (cccDNA). RESULTS Levels of IFNγ and TNF-α were increased in serum samples from patients with acute vs chronic hepatitis B and controls. In human hepatocytes with stably replicating HBV, as well as in HBV-infected primary human hepatocytes or HepaRG cells, IFNγ and TNF-α each induced deamination of cccDNA and interfered with its stability; their effects were additive. HBV-specific T cells, through secretion of IFNγ and TNF-α, inhibited HBV replication and reduced cccDNA in infected cells without the direct contact required for cytolysis. Blocking IFNγ and TNF-α after T-cell stimulation prevented the loss of cccDNA. Deprivation of cccDNA required activation of nuclear APOBEC3 deaminases by the cytokines. In liver biopsy specimens from patients with acute hepatitis B, but not chronic hepatitis B or controls, hepatocytes expressed APOBEC3A and APOBEC3B. CONCLUSIONS IFNγ and TNF-α, produced by T cells, reduce levels of HBV cccDNA in hepatocytes by inducing deamination and subsequent cccDNA decay.
Collapse
Affiliation(s)
- Yuchen Xia
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Daniela Stadler
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Julie Lucifora
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research, Munich and Hannover, Germany
| | - Florian Reisinger
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Dennis Webb
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
| | - Marianna Hösel
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University Hospital Cologne, Cologne, Germany
| | - Thomas Michler
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Karin Wisskirchen
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research, Munich and Hannover, Germany
| | - Xiaoming Cheng
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Ke Zhang
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Wen-Min Chou
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Jochen M Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Antje Malo
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Felix Bohne
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Dieter Hoffmann
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Florian Eyer
- Medicine II, Department of Clinical Toxicology, University Hospital rechts der Isar of the Technical University of Munich, Munich, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Christine S Falk
- German Center for Infection Research, Munich and Hannover, Germany; Abt Transplantationsimmunologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Wolfgang E Thasler
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich, Germany
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research, Munich and Hannover, Germany.
| |
Collapse
|