1
|
Endothelial Cell Infection by Guinea Pig Cytomegalovirus Is a Lytic or Persistent Infection Depending on Tissue Origin but Requires Viral Pentamer Complex and pp65 Tegument Protein. J Virol 2022; 96:e0083122. [PMID: 36000848 PMCID: PMC9472625 DOI: 10.1128/jvi.00831-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The guinea pig is the only small animal model for congenital cytomegalovirus (CMV) but requires species-specific guinea pig cytomegalovirus (GPCMV). Infection of epithelial cells and trophoblasts by GPCMV requires the viral glycoprotein pentamer complex (PC) and endocytic entry because of the absence of platelet-derived growth factor receptor alpha (PDGFRA). Endothelial cells represent an important cell type for infection, dissemination in the host, and disease but have been poorly evaluated for GPCMV. Novel endothelial cell lines were established from animal vascular systems, including aorta (EndoC) and placental umbilical cord vein (GPUVEC). Cell lines were characterized for endothelial cell protein markers (PECAM1, vWF, and FLI1) and evaluated for GPCMV infection. Only PC-positive virus was capable of infecting endothelial cells. Individual knockout mutants for unique PC components (GP129, GP131, and GP133) were unable to infect endothelial cells without impacting fibroblast infection. Ectopic expression of PDGFRA in EndoC cells enabled GPCMV(PC-) infection via direct cell entry independent of the PC. Neutralizing antibodies to the essential viral gB glycoprotein were insufficient to prevent endothelial cell infection, which also required antibodies to gH/gL and the PC. Endothelial cell infection was also dependent upon viral tegument pp65 protein (GP83) to counteract the IFI16/cGAS-STING innate immune pathway, similar to epithelial cell infection. GPCMV endothelial cells were lytically (EndoC) or persistently (GPUVEC) infected dependent on tissue origin. The ability to establish a persistent infection in the umbilical cord could potentially enable sustained and more significant infection of the fetus in utero. Overall, results demonstrate the importance of this translationally relevant model for CMV research. IMPORTANCE Congenital CMV is a leading cause of cognitive impairment and deafness in newborns, and a vaccine is a high priority. The only small animal model for congenital CMV is the guinea pig and guinea pig cytomegalovirus (GPCMV) encoding functional HCMV homolog viral glycoprotein complexes necessary for cell entry that are neutralizing-antibody vaccine targets. Endothelial cells are important in HCMV for human disease and viral dissemination. GPCMV endothelial cell infection requires the viral pentamer complex (PC), which further increases the importance of this complex as a vaccine target, as antibodies to the immunodominant and essential viral glycoprotein gB fail to prevent endothelial cell infection. GPCMV endothelial cell infection established either a fully lytic or a persistent infection, depending on tissue origin. The potential for persistent infection in the umbilical cord potentially enables sustained infection of the fetus in utero, likely increasing the severity of congenital disease.
Collapse
|
2
|
Choi KY, El-Hamdi NS, McGregor A. Cross Strain Protection against Cytomegalovirus Reduces DISC Vaccine Efficacy against CMV in the Guinea Pig Model. Viruses 2022; 14:760. [PMID: 35458490 PMCID: PMC9031936 DOI: 10.3390/v14040760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
Congenital cytomegalovirus (CMV) is a leading cause of disease in newborns and a vaccine is a high priority. The guinea pig is the only small animal model for congenital CMV but requires guinea pig cytomegalovirus (GPCMV). Previously, a disabled infectious single cycle (DISC) vaccine strategy demonstrated complete protection against congenital GPCMV (22122 strain) and required neutralizing antibodies to various viral glycoprotein complexes. This included gB, essential for all cell types, and the pentamer complex (PC) for infection of non-fibroblast cells. All GPCMV research has utilized prototype strain 22122 limiting the translational impact, as numerous human CMV strains exist allowing re-infection and congenital CMV despite convalescent immunity. A novel GPCMV strain isolate (designated TAMYC) enabled vaccine cross strain protection studies. A GPCMV DISC (PC+) vaccine (22122 strain) induced a comprehensive immune response in animals, but vaccinated animals challenged with the TAMYC strain virus resulted in sustained viremia and the virus spread to target organs (liver, lung and spleen) with a significant viral load in the salivary glands. Protection was better than natural convalescent immunity, but the results fell short of previous DISC vaccine sterilizing immunity against the homologous 22122 virus challenge, despite a similarity in viral glycoprotein sequences between strains. The outcome suggests a limitation of the current DISC vaccine design against heterologous infection.
Collapse
Affiliation(s)
| | | | - Alistair McGregor
- Department Microbial Pathogenesis & Immunology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (K.Y.C.); (N.S.E.-H.)
| |
Collapse
|
3
|
Choi KY, McGregor A. A Fully Protective Congenital CMV Vaccine Requires Neutralizing Antibodies to Viral Pentamer and gB Glycoprotein Complexes but a pp65 T-Cell Response Is Not Necessary. Viruses 2021; 13:v13081467. [PMID: 34452332 PMCID: PMC8402731 DOI: 10.3390/v13081467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
A vaccine against congenital cytomegalovirus infection is a high priority. Guinea pig cytomegalovirus (GPCMV) is the only congenital CMV small animal model. GPCMV encodes essential glycoprotein complexes for virus entry (gB, gH/gL/gO, gM/gN) including a pentamer complex (gH/gL/GP129/GP131/GP133 or PC) for endocytic cell entry. The cohorts for protection against congenital CMV are poorly defined. Neutralizing antibodies to the viral glycoprotein complexes are potentially more important than an immunodominant T-cell response to the pp65 protein. In GPCMV, GP83 (pp65 homolog) is an evasion factor, and the GP83 mutant GPCMV has increased sensitivity to type I interferon. Although GP83 induces a cell-mediated response, a GP83-only-based vaccine strategy has limited efficacy. GPCMV attenuation via GP83 null deletion mutant in glycoprotein PC positive or negative virus was evaluated as live-attenuated vaccine strains (GP83dPC+/PC-). Vaccinated animals induced antibodies to viral glycoprotein complexes, and PC+ vaccinated animals had sterilizing immunity against wtGPCMV challenge. In a pre-conception vaccine (GP83dPC+) study, dams challenged mid-2nd trimester with wtGPCMV had complete protection against congenital CMV infection without detectable virus in pups. An unvaccinated control group had 80% pup transmission rate. Overall, gB and PC antibodies are key for protection against congenital CMV infection, but a response to pp65 is not strictly necessary.
Collapse
|
4
|
Guinea pig cytomegalovirus protective T cell antigen GP83 is a functional pp65 homolog for innate immune evasion and pentamer dependent virus tropism. J Virol 2021; 95:JVI.00324-21. [PMID: 33658350 PMCID: PMC8139670 DOI: 10.1128/jvi.00324-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The guinea pig is the only small animal model for congenital CMV but requires species-specific guinea pig cytomegalovirus (GPCMV). Tegument protein GP83 is the presumed homolog of HCMV pp65 but gene duplication in the UL82-UL84 homolog locus in various animal CMV made it unclear if GP83 was a functional homolog. A GP83 null deletion mutant GPCMV (GP83dPC+) generated in the backdrop of glycoprotein pentamer complex (PC) positive virus, required for non-fibroblast infection, had normal growth kinetics on fibroblasts but was highly impaired on epithelial and trophoblast cells. GP83dPC+ virus was highly sensitive to IFN-I suggesting GP83 had an innate immune evasion function. GP83 interacted with cellular DNA sensors guinea pig IFI16 and cGAS indicating a role in the cGAS/STING pathway. Ectopically expressed GP83 in trophoblast cells restored GP83dPC+ virus growth. Additionally, mutant virus growth was restored in epithelial cells by expression of bovine viral diarrhea virus (BVDV) NPRO protein targeting IRF3 as part of the cGAS/STING pathway or alternatively by expression of fibroblast cell receptor PDGFRA. HCMV pp65 is a T cell target antigen and a recombinant adenovirus encoding GP83 was evaluated as a vaccine. In GPCMV challenge studies, vaccinated animals had varying levels of protection against wild type virus with a protective response against 22122 prototype strain but little protection against a novel clinical strain of GPCMV (TAMYC), despite 100% identity in GP83 protein sequences. Overall, GP83 is a functional pp65 homolog with novel importance for epithelial cell infection but a GP83 T cell response provides limited vaccine efficacy.ImportanceCongenital CMV (cCMV) is a leading cause of cognitive impairment and deafness in newborns and a vaccine is a high priority. The guinea pig is the only small animal model for cCMV but requires guinea pig cytomegalovirus (GPCMV). The translational impact of GPCMV research is potentially reduced if the virus does not encode functional HCMV homolog proteins. This study demonstrates that tegument protein GP83 (pp65 homolog) is involved in innate immune evasion and highly important for infection of non-fibroblast cells via the viral glycoprotein pentamer complex (PC)-dependent endocytic entry pathway. The PC pathway is highly significant for virus dissemination and disease in the host, including cCMV. A GP83 candidate Ad-vaccine strategy in animals induced a cell-mediated response but failed to provide cross strain protection against a novel clinical strain of GPCMV. Results suggest that the pp65 antigen provides very limited efficacy as a stand-alone vaccine, especially in cross strain protection.
Collapse
|
5
|
Choi KY, El-Hamdi NS, McGregor A. Convalescent Immunity to Guinea Pig Cytomegalovirus Induces Limited Cross Strain Protection against Re-Infection but High-Level Protection against Congenital Disease. Int J Mol Sci 2020; 21:ijms21175997. [PMID: 32825429 PMCID: PMC7504201 DOI: 10.3390/ijms21175997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
The guinea pig is the only small animal model for congenital cytomegalovirus (cCMV) but requires guinea pig cytomegalovirus (GPCMV). Current GPCMV research utilizes prototype strain 22122, which limits the translational impact of GPCMV as numerous human CMV strains exist and cCMV is possible in the setting of re-infection. A novel strain of GPCMV (TAMYC) exhibited differences to 22122 in various glycoproteins with GP74 (gO homolog) the most variable (25% difference). Antibody ELISAs for TAMYC-convalescent animals evoked similar immune response to viral glycoprotein complexes (gB, gH/gL, gM/gN, pentamer) and cell-mediated response to pp65 homolog (GP83). Convalescent sera from TAMYC-infected animals neutralized GPCMV infection on fibroblasts but was less effective on epithelial cells. TAMYC-convalescent animals were not protected from dissemination of heterogenous virus challenge (22122). However, in a cCMV protection study, TAMYC-convalescent animals challenged mid-pregnancy (22122) exhibited high-level protection against cCMV compared to seronegative animals with pup transmission reduced from 80% (control) to 12%. Overall, pre-existing immunity in guinea pigs provides limited ability to prevent GPCMV re-infection by a different viral strain but provides a high level of protection against cCMV in heterogenous strain challenge. This level of cross protection against cCMV should be a prerequisite of any CMV vaccine.
Collapse
|
6
|
Guinea pig cytomegalovirus trimer complex gH/gL/gO uses PDGFRA as universal receptor for cell fusion and entry. Virology 2020; 548:236-249. [PMID: 32791352 DOI: 10.1016/j.virol.2020.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Species-specific guinea pig cytomegalovirus (GPCMV) causes congenital CMV and the virus encodes homolog glycoprotein complexes to human CMV, including gH-based trimer (gH/gL/gO) and pentamer-complex (PC). Platelet-derived growth factor receptor alpha (gpPDGFRA), only present on fibroblast cells, was identified via CRISPR as the putative receptor for PC-independent GPCMV infection. Immunoprecipitation assays demonstrated direct interaction of gH/gL/gO with gpPDGFRA but not in absence of gO. Expression of viral gB also resulted in precipitation of gB/gH/gL/gO/gpPDGFRA complex. Cell-cell fusion assays determined that expression of gpPDGFRA and gH/gL/gO in adjacent cells enabled cell fusion, which was not enhanced by gB. N-linked gpPDGFRA glycosylation inhibition had limited effect and blocking tyrosine kinase (TK) transduction had no impact on infection. Ectopically expressed gpPDGFRA or TK-domain mutant in trophoblast or epithelial cells previously non-susceptible to GPCMV(PC-) enabled viral infection. In contrast, transient human PDGFRA expression did not complement GPCMV(PC-) infection, a potential basis for viral species specificity.
Collapse
|
7
|
Roark HK, Jenks JA, Permar SR, Schleiss MR. Animal Models of Congenital Cytomegalovirus Transmission: Implications for Vaccine Development. J Infect Dis 2020; 221:S60-S73. [PMID: 32134481 PMCID: PMC7057791 DOI: 10.1093/infdis/jiz484] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although cytomegaloviruses (CMVs) are species-specific, the study of nonhuman CMVs in animal models can help to inform and direct research aimed at developing a human CMV (HCMV) vaccine. Because the driving force behind the development of HCMV vaccines is to prevent congenital infection, the animal model in question must be one in which vertical transmission of virus occurs to the fetus. Fortunately, two such animal models-the rhesus macaque CMV and guinea pig CMV-are characterized by congenital infection. Hence, each model can be evaluated in "proof-of-concept" studies of preconception vaccination aimed at blocking transplacental transmission. This review focuses on similarities and differences in the respective model systems, and it discusses key insights from each model germane to the study of HCMV vaccines.
Collapse
Affiliation(s)
- Hunter K Roark
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Inclusion of the Viral Pentamer Complex in a Vaccine Design Greatly Improves Protection against Congenital Cytomegalovirus in the Guinea Pig Model. J Virol 2019; 93:JVI.01442-19. [PMID: 31484753 DOI: 10.1128/jvi.01442-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
A vaccine against congenital cytomegalovirus (cCMV) is a high priority. The guinea pig is a small-animal model for cCMV. A disabled infectious single-cycle (DISC) viral vaccine strain based on a guinea pig cytomegalovirus (GPCMV) capsid mutant was evaluated. A previous version of this vaccine did not express the gH/gL-based pentamer complex (PC) and failed to fully protect against cCMV. The PC is necessary for GPCMV epithelial cell/trophoblast tropism and congenital infection and is a potentially important neutralizing antigen. Here, we show that a second-generation PC-positive (PC+) DISC (DISCII) vaccine induces neutralizing antibodies to the PC and other glycoproteins and a cell-mediated response to pp65 (GP83). Additionally, a CRISPR/Cas9 strategy identified guinea pig platelet-derived growth factor receptor alpha (PDGFRA) to be the receptor for PC-independent infection of fibroblast cells. Importantly, PDGFRA was absent in epithelial and trophoblast cells, which were dependent upon the viral PC for infection. Virus neutralization by DISCII antibodies on epithelial and trophoblast cells was similar to that in sera from wild-type virus-infected animals and dependent in part on PC-specific antibodies. In contrast, sera from PC-negative virus-infected animals poorly neutralized virus on non-fibroblast cells. DISCII-vaccinated animals were protected against congenital infection, in contrast to a nonvaccinated group. The target organs of pups in the vaccine group were negative for wild-type virus, unlike those of pups in the control group, with GPCMV transmission being approximately 80%. Overall, the DISCII vaccine had 97% efficacy against cCMV. The complete protection provided by this PC+ DISC vaccine makes the possibility of the use of this approach against human cCMV attractive.IMPORTANCE Cytomegalovirus (CMV) is a leading cause of congenital disease in newborns, and an effective vaccine remains an elusive goal. The guinea pig is the only small-animal model for cCMV. Guinea pig cytomegalovirus (GPCMV) encodes a glycoprotein pentamer complex (PC) for entry into non-fibroblast cells, including placental trophoblasts, to enable cCMV. As with human cytomegalovirus (HCMV), GPCMV uses a specific cell receptor (PDGFRA) for fibroblast entry, but other receptors are required for non-fibroblast cells. A disabled infectious single-cycle (DISC) GPCMV vaccine strain induced an antibody immune response to the viral pentamer to enhance virus neutralization on non-fibroblast cells, and vaccinated animals were fully protected against cCMV. Inclusion of the PC as part of a vaccine design dramatically improved vaccine efficacy, and this finding underlines the importance of the immune response to the PC in contributing toward protection against cCMV. This vaccine represents an important milestone in the development of a vaccine against cCMV.
Collapse
|
9
|
Marshall EE, Malouli D, Hansen SG, Gilbride RM, Hughes CM, Ventura AB, Ainslie E, Selseth AN, Ford JC, Burke D, Kreklywich CN, Womack J, Legasse AW, Axthelm MK, Kahl C, Streblow D, Edlefsen PT, Picker LJ, Früh K. Enhancing safety of cytomegalovirus-based vaccine vectors by engaging host intrinsic immunity. Sci Transl Med 2019; 11:eaaw2603. [PMID: 31316006 PMCID: PMC6830438 DOI: 10.1126/scitranslmed.aaw2603] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Abstract
Rhesus cytomegalovirus (RhCMV)-based vaccines maintain effector memory T cell responses (TEM) that protect ~50% of rhesus monkeys (RMs) challenged with simian immunodeficiency virus (SIV). Because human CMV (HCMV) causes disease in immunodeficient subjects, clinical translation will depend upon attenuation strategies that reduce pathogenic potential without sacrificing CMV's unique immunological properties. We demonstrate that "intrinsic" immunity can be used to attenuate strain 68-1 RhCMV vectors without impairment of immunogenicity. The tegument proteins pp71 and UL35 encoded by UL82 and UL35 of HCMV counteract cell-intrinsic restriction via degradation of host transcriptional repressors. When the corresponding RhCMV genes, Rh110 and Rh59, were deleted from 68-1 RhCMV (ΔRh110 and ΔRh59), we observed only a modest growth defect in vitro, but in vivo, these modified vectors manifested little to no amplification at the injection site and dissemination to distant sites, in contrast to parental 68-1 RhCMV. ΔRh110 was not shed at any time after infection and was not transmitted to naïve hosts either by close contact (mother to infant) or by leukocyte transfusion. In contrast, ΔRh59 was both shed and transmitted by leukocyte transfusion, indicating less effective attenuation than pp71 deletion. The T cell immunogenicity of ΔRh110 was essentially identical to 68-1 RhCMV with respect to magnitude, TEM phenotype, epitope targeting, and durability. Thus, pp71 deletion preserves CMV vector immunogenicity while stringently limiting vector spread, making pp71 deletion an attractive attenuation strategy for HCMV vectors.
Collapse
Affiliation(s)
- Emily E Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Colette M Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Abigail B Ventura
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Emily Ainslie
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Andrea N Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Julia C Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - David Burke
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Craig N Kreklywich
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jennie Womack
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Alfred W Legasse
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Christoph Kahl
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Daniel Streblow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Paul T Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
10
|
Liu X, Wei H, Liao S, Ye J, Zhu L, Xu Z. MicroRNA transcriptome analysis of porcine vital organ responses to immunosuppressive porcine cytomegalovirus infection. Virol J 2018; 15:16. [PMID: 29347945 PMCID: PMC5774105 DOI: 10.1186/s12985-018-0922-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
Background Porcine cytomegalovirus (PCMV) is an immunosuppressive virus that mainly inhibits T-lymphocyte and macrophage immune functions; it has significantly damaged the farming industry. Although recent studies have shown that miRNAs play important roles in immune responses, the regulatory mechanisms of miRNAs during immunosuppressive virus infection remain unclear. Methods In this study, porcine small-RNA transcriptomes of PCMV-infected and uninfected vital organs were first characterised by high-throughput sequencing. miRDeep2 software was used to predict novel pig-encoded miRNAs. To verify the accuracy of the high-throughput sequencing results, stem-loop qRT-PCR was performed on 12 significantly DE miRNAs. The physical and functional interactions between the immune-related target genes of the DE miRNAs in PCMV-infected organs were analysed using the STRING database. Results In total, 306 annotated and 295 novel miRNAs were identified from PCMV-infected and uninfected porcine organs, respectively, through alignment with known Sus scrofa pre-miRNAs. Overall, 92, 107, 95, 77 and 111 miRNAs were significantly differentially expressed in lung, liver, spleen, kidney and thymus after PCMV infection, respectively. According to Gene Ontology enrichment analysis, target genes of the differentially expressed miRNAs associated with immune system processes, regulation of biological processes and metabolic processes were enriched in every sample. Integrated expression analysis of the differentially expressed miRNAs and their target mRNAs in PCMV-infected thymus showed that the significant differential expression of specific miRNAs under the pressure of PCMV infection in central immune organs interfered with the expression of genes involved in important immune-related signalling pathways, thus promoting the viral infection. Conclusions This is the first comprehensive analysis of the responses of host small-RNA transcriptomes to PCMV infection in vital porcine organs. It provides new insights into the regulatory mechanisms of miRNAs during infection by immunosuppressive viruses. Electronic supplementary material The online version of this article (10.1186/s12985-018-0922-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Liu
- Southwest University, College of Animal Science and technology, Chongqing, 400715, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province and Animal Biotechnology Center, College of Veterinary Medicine of Sichuan Agricultural University, 211#Huimin Road, Wenjiang District, Chengdu, Sichuan Province, 610000, China
| | - Haoche Wei
- College of Life Sciences, Sichuan University, Chengdu, 610000, China
| | - Shan Liao
- Southwest University, College of Animal Science and technology, Chongqing, 400715, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province and Animal Biotechnology Center, College of Veterinary Medicine of Sichuan Agricultural University, 211#Huimin Road, Wenjiang District, Chengdu, Sichuan Province, 610000, China
| | - Jianheng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province and Animal Biotechnology Center, College of Veterinary Medicine of Sichuan Agricultural University, 211#Huimin Road, Wenjiang District, Chengdu, Sichuan Province, 610000, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province and Animal Biotechnology Center, College of Veterinary Medicine of Sichuan Agricultural University, 211#Huimin Road, Wenjiang District, Chengdu, Sichuan Province, 610000, China.
| |
Collapse
|
11
|
Hornig J, Choi KY, McGregor A. The essential role of guinea pig cytomegalovirus (GPCMV) IE1 and IE2 homologs in viral replication and IE1-mediated ND10 targeting. Virology 2017; 504:122-140. [PMID: 28189970 DOI: 10.1016/j.virol.2017.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/02/2023]
Abstract
Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234-474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection.
Collapse
Affiliation(s)
- Julia Hornig
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - K Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States.
| |
Collapse
|
12
|
Choi KY, Root M, McGregor A. A Novel Non-Replication-Competent Cytomegalovirus Capsid Mutant Vaccine Strategy Is Effective in Reducing Congenital Infection. J Virol 2016; 90:7902-19. [PMID: 27334585 PMCID: PMC4988156 DOI: 10.1128/jvi.00283-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Congenital cytomegalovirus (CMV) infection is a leading cause of mental retardation and deafness in newborns. The guinea pig is the only small animal model for congenital CMV infection. A novel CMV vaccine was investigated as an intervention strategy against congenital guinea pig cytomegalovirus (GPCMV) infection. In this disabled infectious single-cycle (DISC) vaccine strategy, a GPCMV mutant virus was used that lacked the ability to express an essential capsid gene (the UL85 homolog GP85) except when grown on a complementing cell line. In vaccinated animals, the GP85 mutant virus (GP85 DISC) induced an antibody response to important glycoprotein complexes considered neutralizing target antigens (gB, gH/gL/gO, and gM/gN). The vaccine also generated a T cell response to the pp65 homolog (GP83), determined via a newly established guinea pig gamma interferon enzyme-linked immunosorbent spot assay. In a congenital infection protection study, GP85 DISC-vaccinated animals and a nonvaccinated control group were challenged during pregnancy with wild-type GPCMV (10(5) PFU). The pregnant animals carried the pups to term, and viral loads in target organs of pups were analyzed. Based on live pup births in the vaccinated and control groups (94.1% versus 63.6%), the vaccine was successful in reducing mortality (P = 0.0002). Additionally, pups from the vaccinated group had reduced CMV transmission, with 23.5% infected target organs versus 75.9% in the control group. Overall, these preliminary studies indicate that a DISC CMV vaccine strategy has the ability to induce an immune response similar to that of natural virus infection but has the increased safety of a non-replication-competent virus, which makes this approach attractive as a CMV vaccine strategy. IMPORTANCE Congenital CMV infection is a leading cause of mental retardation and deafness in newborns. An effective vaccine against CMV remains an elusive goal despite over 50 years of CMV research. The guinea pig, with a placenta structure similar to that in humans, is the only small animal model for congenital CMV infection and recapitulates disease symptoms (e.g., deafness) in newborn pups. In this report, a novel vaccine strategy against congenital guinea pig cytomegalovirus (GPCMV) infection was developed, characterized, and tested for efficacy. This disabled infectious single-cycle (DISC) vaccine strategy induced a neutralizing antibody or a T cell response to important target antigens. In a congenital infection protection study, animals were protected against CMV in comparison to the nonvaccinated group (52% reduction of transmission). This novel vaccine was more effective than previously tested gB-based vaccines and most other strategies involving live virus vaccines. Overall, the DISC vaccine is a safe and promising approach against congenital CMV infection.
Collapse
Affiliation(s)
- K Yeon Choi
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, Texas, USA
| | - Matthew Root
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, Texas, USA
| | - Alistair McGregor
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, Texas, USA
| |
Collapse
|
13
|
A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus. PLoS Pathog 2016; 12:e1005755. [PMID: 27387220 PMCID: PMC4936736 DOI: 10.1371/journal.ppat.1005755] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022] Open
Abstract
In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107-179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model.
Collapse
|
14
|
Coleman S, Hornig J, Maddux S, Choi KY, McGregor A. Viral Glycoprotein Complex Formation, Essential Function and Immunogenicity in the Guinea Pig Model for Cytomegalovirus. PLoS One 2015; 10:e0135567. [PMID: 26267274 PMCID: PMC4534421 DOI: 10.1371/journal.pone.0135567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
Abstract
Development of a cytomegalovirus (CMV) vaccine is a major public health priority due to the risk of congenital infection. A key component of a vaccine is thought to be an effective neutralizing antibody response against the viral glycoproteins necessary for cell entry. Species specificity of human CMV (HCMV) precludes direct studies in an animal model. The guinea pig is the only small animal model for congenital cytomegalovirus infection. Analysis of the guinea pig CMV (GPCMV) genome indicates that it potentially encodes homologs to the HCMV glycoproteins (including gB, gH, gL, gM, gN and gO) that form various cell entry complexes on the outside of the virus: gCI (gB); gCII (gH/gL/gO); gCIII (gM/gN). The gB homolog (GP55) has been investigated as a candidate subunit vaccine but little is known about the other homolog proteins. GPCMV glycoproteins were investigated by transient expression studies which indicated that homolog glycoproteins to gN and gM, or gH, gL and gO were able to co-localize in cells and generate respective homolog complexes which could be verified by immunoprecipitation assays. ELISA studies demonstrated that the individual complexes were highly immunogenic in guinea pigs. The gO (GP74) homolog protein has 13 conserved N-glycosylation sites found in HCMV gO. In transient expression studies, only the glycosylated protein is detected but in virus infected cells both N-glycosylated and non-glycosylated gO protein were detected. In protein interaction studies, a mutant gO that lacked N-glycosylation sites had no impact on the ability of the protein to interact with gH/gL which indicated a potential alternative function associated with these sites. Knockout GPCMV BAC mutagenesis of the respective glycoprotein genes (GP55 for gB, GP75 for gH, GP115 for gL, GP100 for gM, GP73 for gN and GP74 for gO) in separate reactions was lethal for virus regeneration on fibroblast cells which demonstrated the essential nature of the GPCMV glycoproteins. The gene knockout results were similar to HCMV, except in the case of the gO homolog, which was non-essential in epithelial tropic virus but essential in lab adapted GPCMV. Overall, the findings demonstrate the similarity between HCMV and GPCMV glycoproteins and strengthen the relevance of this model for development of CMV intervention strategies.
Collapse
Affiliation(s)
- Stewart Coleman
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - Julia Hornig
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - Sarah Maddux
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - K. Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
15
|
Li T, Chen J, Cristea IM. Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion. Cell Host Microbe 2014; 14:591-9. [PMID: 24237704 DOI: 10.1016/j.chom.2013.10.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/13/2013] [Accepted: 10/08/2013] [Indexed: 12/31/2022]
Abstract
Nuclear sensing of viral DNA has emerged as an essential step in innate immune responses against herpesviruses. Here, we provide mechanistic insight into host recognition of human cytomegalovirus (HCMV) and subsequent immune evasion by this prominent DNA virus. We establish that the interferon-inducible protein IFI16 acts as a nuclear DNA sensor following HCMV infection, binding viral DNA and triggering expression of antiviral cytokines via the STING-TBK1-IRF3 signaling pathway. The HCMV tegument protein pUL83 inhibits this response by interacting with the IFI16 pyrin domain, blocking its oligomerization upon DNA sensing and subsequent immune signals. pUL83 disrupts IFI16 by concerted action of its N- and C-terminal domains, in which an evolutionarily conserved N-terminal pyrin association domain (PAD) binds IFI16. Additionally, phosphorylation of the N-terminal domain modulates pUL83-mediated inhibition of pyrin aggregation. Collectively, our data elucidate the interplay between host DNA sensing and HCMV immune evasion, providing targets for restoring antiviral immunity.
Collapse
Affiliation(s)
- Tuo Li
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
16
|
Malouli D, Hansen SG, Nakayasu ES, Marshall EE, Hughes CM, Ventura AB, Gilbride RM, Lewis MS, Xu G, Kreklywich C, Whizin N, Fischer M, Legasse AW, Viswanathan K, Siess D, Camp DG, Axthelm MK, Kahl C, DeFilippis VR, Smith RD, Streblow DN, Picker LJ, Früh K. Cytomegalovirus pp65 limits dissemination but is dispensable for persistence. J Clin Invest 2014; 124:1928-44. [PMID: 24691437 DOI: 10.1172/jci67420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/13/2014] [Indexed: 11/17/2022] Open
Abstract
The most abundantly produced virion protein in human cytomegalovirus (HCMV) is the immunodominant phosphoprotein 65 (pp65), which is frequently included in CMV vaccines. Although it is nonessential for in vitro CMV growth, pp65 displays immunomodulatory functions that support a potential role in primary and/or persistent infection. To determine the contribution of pp65 to CMV infection and immunity, we generated a rhesus CMV lacking both pp65 orthologs (RhCMVΔpp65ab). While deletion of pp65ab slightly reduced growth in vitro and increased defective particle formation, the protein composition of secreted virions was largely unchanged. Interestingly, pp65 was not required for primary and persistent infection in animals. Immune responses induced by RhCMVΔpp65ab did not prevent reinfection with rhesus CMV; however, reinfection with RhCMVΔUS2-11, which lacks viral-encoded MHC-I antigen presentation inhibitors, was prevented. Unexpectedly, induction of pp65b-specific T cells alone did not protect against RhCMVΔUS2-11 challenge, suggesting that T cells targeting multiple CMV antigens are required for protection. However, pp65-specific immunity was crucial for controlling viral dissemination during primary infection, as indicated by the marked increase of RhCMVΔpp65ab genome copies in CMV-naive, but not CMV-immune, animals. Our data provide rationale for inclusion of pp65 into CMV vaccines but also demonstrate that pp65-induced T cell responses alone do not recapitulate the protective effect of natural infection.
Collapse
|
17
|
Abstract
Although human cytomegalovirus (HCMV) primary infection is generally asymptomatic, in immune-compromised patients HCMV increases morbidity and mortality. As a member of the betaherpesvirus family, in vivo studies of HCMV are limited due to its species specificity. CMVs from other species are often used as surrogates to express HCMV genes/proteins or used as models for inferring HCMV protein function in humans. Using innovative experiments, these animal models have answered important questions about CMV's life cycle, dissemination, pathogenesis, immune evasion, and host immune response. This chapter provides CMV biologists with an overview of the insights gained using these animal models. Subsequent chapters will provide details of the specifics of the experimental methods developed for each of the animal models discussed here.
Collapse
Affiliation(s)
- Pranay Dogra
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
18
|
Schleiss MR, Buus R, Choi KY, McGregor A. An Attenuated CMV Vaccine with a Deletion in Tegument Protein GP83 (pp65 Homolog) Protects against Placental Infection and Improves Pregnancy Outcome in a Guinea Pig Challenge Model. Future Virol 2013; 8:1151-1160. [PMID: 24465269 DOI: 10.2217/fvl.13.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIMS Congenital human cytomegalovirus (HCMV) infection can lead to long-term neurodevelopmental sequelae, including mental retardation and sensorineural hearing loss. Preconception vaccine strategies relevant to prevention of HCMV-mediated injury to the newborn can be studied in the guinea pig cytomegalovirus (GPCMV) model. The objectives of this study were: 1) to assess in guinea pigs the protective efficacy against congenital infection and disease of a recombinant live, attenuated vaccine with a targeted deletion of the GPCMV homolog of the HCMV pUL83 tegument protein, GP83; and, 2) to compare the extent of placental infection in vaccine and control groups, using an in situ hybridization (ISH) assay. MATERIALS AND METHODS Outbred Hartley guinea pigs were vaccinated prior to pregnancy with a two-dose series of 5×104 pfu of vAM409, a GP83 deletion virus. Deletion of the GP83 gene resulted in an attenuated virus, and vAM409 vaccinated animals did not demonstrate evidence of DNAemia following vaccination, although ELISA antibody responses were comparable to those observed in natural infection. After mating, pregnant animals were challenged with salivary gland-adapted (SG) GPCMV (1×106 pfu) in the second trimester, and pregnancy outcomes were compared to controls. RESULTS Compared to placebo-immunized controls, vaccination resulted in significantly reduced maternal DNAemia following SG challenge, and there was significantly decreased pup mortality in litters born to vaccinated dams (3/29; 10%), compared to control (35/50; 70%; p<0.001). By in situ hybridization study, recovered placentas in the vAM409 vaccine group demonstrated reduced infection and fewer infectious foci compared to the control group. CONCLUSIONS In summary, preconception immunization with a GP83 deletion vaccine reduced maternal DNAemia and results in protection against congenital GPCMV-associated pup mortality compared to unvaccinated controls. Vaccination resulted in reduced placental infection, probably related to the reduction in maternal DNAemia. Although the pp65 homolog in GPCMV, GP83, is a known target of protective T cell immune responses, it is nevertheless dispensable for effective vaccination against maternal and fetal CMV disease in this model.
Collapse
Affiliation(s)
- Mark R Schleiss
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| | - Ryan Buus
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| | - K Yeon Choi
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| | - Alistair McGregor
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| |
Collapse
|
19
|
Abstract
PML nuclear bodies and their associated functions are part of an intrinsic cellular mechanism aimed at maintaining transcriptional control over viral gene expression and preventing replication of invading viruses. To overcome these barriers, many viruses express early nonstructural, multifunctional proteins to support the viral replication cycle or modulate host immune responses. Virion proteins constituting the invading particle are traditionally investigated for their role in transport during entry or egress and in the assembly of new virions. The additional functions of virion proteins have largely been ignored, in contrast to those of their nonstructural counterparts. A number of recent reports suggest that several virion proteins may also play vital roles in gene activation processes, in particular by counteracting intrinsic immune mechanisms mediated by the PML nuclear body-associated cellular factors Daxx, ATRX, and Sp100. These virion proteins share several features with their more potent nonstructural counterparts, and they may serve to bridge the gap in the early phase of an infection until immediate early viral gene expression is established. In this review, we discuss how virion proteins are an integral part of gene regulation among several viral families and to what extent structural proteins of incoming virions may contribute to species barrier, latency, and oncogenesis.
Collapse
|
20
|
Liu X, Liao S, Zhu L, Xu Z, Zhou Y. Molecular epidemiology of porcine Cytomegalovirus (PCMV) in Sichuan Province, China: 2010-2012. PLoS One 2013; 8:e64648. [PMID: 23762243 PMCID: PMC3675093 DOI: 10.1371/journal.pone.0064648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/16/2013] [Indexed: 11/19/2022] Open
Abstract
Porcine cytomegalovirus (PCMV) is an immunosuppressive virus that mainly inhibits the immune function of the macrophage and T-cell lymphatic systems, and has caused huge economic losses to the porcine breeding industry. Molecular epidemiological investigation of PCMV is important for prevention and treatment, and this study is the first such investigation in Sichuan Province, Southwest China. A PCMV positive infection rate of 84.4% (865/1025) confirmed that PCMV is widely distributed in Sichuan Province. A phylogenetic tree was constructed based on the PCMV glycoprotein B gene (gB) nucleotide and amino acid sequences from 24 novel Sichuan isolates and 18 other PCMV gB sequences from Genbank. PCMV does not appear to have evolved into different serotypes, and two distinct sequence groups were identified (A and B). However, whether PCMV from this region has evolved into different genotypes requires further research. Analysis of the amino acid sequences confirmed the conservation of gB, but amino acid substitutions in the major epitope region have caused antigenic drift, which may have altered the immunogenicity of PCMV.
Collapse
Affiliation(s)
- Xiao Liu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, China
| | - Shan Liao
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, China
| | - Ling Zhu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, China
| | - Zhiwen Xu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, China
- Key Laboratory of Animal Disease and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, China
- * E-mail:
| | - Yuancheng Zhou
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, China
| |
Collapse
|
21
|
Liu X, Zhu L, Shi X, Xu Z, Mei M, Xu W, Zhou Y, Guo W, Wang X. Indirect-blocking ELISA for detecting antibodies against glycoprotein B (gB) of porcine cytomegalovirus (PCMV). J Virol Methods 2012; 186:30-5. [PMID: 22981981 DOI: 10.1016/j.jviromet.2012.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 08/22/2012] [Accepted: 08/30/2012] [Indexed: 11/29/2022]
Abstract
The major epitope region of the glycoprotein B (gB) gene of the porcine cytomegalovirus (PCMV), with a length of 270 bp, was cloned and expressed in Escherichia coli Rosetta (DE3). The major gB epitope was detected using an agar gel precipitation and Western blot analysis with the polyclonal antibodies specific for the major epitope. An indirect-blocking enzyme-linked immunosorbent assay (ELISA) was developed using the expressed major gB epitope as a coating antigen for the detection of PCMV antibodies. The results of the tests show that the indirect-blocking ELISA has 98% specificity and 97.8% sensitivity. No cross-reactions were observed between the major gB epitope and the antibodies against other virus, which indicates that the gB epitope is specific for PCMV antibodies. The indirect-blocking ELISA is a highly specific, sensitive method for detecting anti-PCMV gB antibodies.
Collapse
Affiliation(s)
- Xiao Liu
- Animal Biotechnology Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an 625014, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Paludan SR, Bowie AG, Horan KA, Fitzgerald KA. Recognition of herpesviruses by the innate immune system. Nat Rev Immunol 2011; 11:143-54. [PMID: 21267015 DOI: 10.1038/nri2937] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advances in innate immunity over the past decade have revealed distinct classes of pattern recognition receptors (PRRs) that detect pathogens at the cell surface and in intracellular compartments. This has shed light on how herpesviruses, which are large disease-causing DNA viruses that replicate in the nucleus, are initially recognized during cellular infection. Surprisingly, this involves multiple PRRs both on the cell surface and within endosomes and the cytosol. In this article we describe recent advances in our understanding of innate detection of herpesviruses, how this innate detection translates into anti-herpesvirus host defence, and how the viruses seek to evade this innate detection to establish persistent infections.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Medical Microbiology and Immunology, The Bartholin Building, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
23
|
McGregor A, Choi KY, Schleiss MR. Guinea pig cytomegalovirus GP84 is a functional homolog of the human cytomegalovirus (HCMV) UL84 gene that can complement for the loss of UL84 in a chimeric HCMV. Virology 2010; 410:76-87. [PMID: 21094510 DOI: 10.1016/j.virol.2010.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/23/2010] [Accepted: 10/15/2010] [Indexed: 01/01/2023]
Abstract
The guinea pig cytomegalovirus (GPCMV) co-linear gene and potential functional homolog of HCMV UL84 (GP84) was investigated. The GP84 gene had delayed early transcription kinetics and transient expression studies of GP84 protein (pGP84) demonstrated that it targeted the nucleus and co-localized with the viral DNA polymerase accessory protein as described for HCMV pUL84. Additionally, pGP84 exhibited a transdominant inhibitory effect on viral growth as described for HCMV. The inhibitory domain could be localized to a minimal peptide sequence of 99 aa. Knockout of GP84 generated virus with greatly impaired growth kinetics. Lastly, the GP84 ORF was capable of complementing for the loss of the UL84 coding sequence in a chimeric HCMV. Based on this research and previous studies we conclude that GPCMV is similar to HCMV by encoding single copy co-linear functional homologs of HCMV UL82 (pp71), UL83 (pp65) and UL84 genes.
Collapse
Affiliation(s)
- A McGregor
- Center for Infectious Diseases and Microbiology, Translational Research and Division of Infectious Diseases, University of Minnesota Medical School, Department of Pediatrics, 2001 Sixth Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
24
|
Cui Z, Zhang K, Zhang Z, Liu Y, Zhou Y, Wei H, Zhang XE. Visualization of the dynamic multimerization of human Cytomegalovirus pp65 in punctuate nuclear foci. Virology 2009; 392:169-77. [DOI: 10.1016/j.virol.2009.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/06/2009] [Accepted: 06/11/2009] [Indexed: 11/24/2022]
|
25
|
Properties of virion transactivator proteins encoded by primate cytomegaloviruses. Virol J 2009; 6:65. [PMID: 19473490 PMCID: PMC2693105 DOI: 10.1186/1743-422x-6-65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 05/27/2009] [Indexed: 11/25/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a betaherpesvirus that causes severe disease in situations where the immune system is immature or compromised. HCMV immediate early (IE) gene expression is stimulated by the virion phosphoprotein pp71, encoded by open reading frame (ORF) UL82, and this transactivation activity is important for the efficient initiation of viral replication. It is currently recognized that pp71 acts to overcome cellular intrinsic defences that otherwise block viral IE gene expression, and that interactions of pp71 with the cell proteins Daxx and ATRX are important for this function. A further property of pp71 is the ability to enable prolonged gene expression from quiescent herpes simplex virus type 1 (HSV-1) genomes. Non-human primate cytomegaloviruses encode homologs of pp71, but there is currently no published information that addresses their effects on gene expression and modes of action. Results The UL82 homolog encoded by simian cytomegalovirus (SCMV), strain Colburn, was identified and cloned. This ORF, named S82, was cloned into an HSV-1 vector, as were those from baboon, rhesus monkey and chimpanzee cytomegaloviruses. The use of an HSV-1 vector enabled expression of the UL82 homologs in a range of cell types, and permitted investigation of their abilities to direct prolonged gene expression from quiescent genomes. The results show that all UL82 homologs activate gene expression, and that neither host cell type nor promoter target sequence has major effects on these activities. Surprisingly, the UL82 proteins specified by non-human primate cytomegaloviruses, unlike pp71, did not direct long term expression from quiescent HSV-1 genomes. In addition, significant differences were observed in the intranuclear localization of the UL82 homologs, and in their effects on Daxx. Strikingly, S82 mediated the release of Daxx from nuclear domain 10 substructures much more rapidly than pp71 or the other proteins tested. All UL82 homologs stimulated the early release of ATRX from nuclear domain 10. Conclusion All of the UL82 homolog proteins analysed activated gene expression, but surprising differences in other aspects of their properties were revealed. The results provide new information on early events in infection with cytomegaloviruses.
Collapse
|
26
|
Schleiss MR, McGregor A, Choi KY, Date SV, Cui X, McVoy MA. Analysis of the nucleotide sequence of the guinea pig cytomegalovirus (GPCMV) genome. Virol J 2008; 5:139. [PMID: 19014498 PMCID: PMC2614972 DOI: 10.1186/1743-422x-5-139] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 11/12/2008] [Indexed: 11/10/2022] Open
Abstract
In this report we describe the genomic sequence of guinea pig cytomegalovirus (GPCMV) assembled from a tissue culture-derived bacterial artificial chromosome clone, plasmid clones of viral restriction fragments, and direct PCR sequencing of viral DNA. The GPCMV genome is 232,678 bp, excluding the terminal repeats, and has a GC content of 55%. A total of 105 open reading frames (ORFs) of > 100 amino acids with sequence and/or positional homology to other CMV ORFs were annotated. Positional and sequence homologs of human cytomegalovirus open reading frames UL23 through UL122 were identified. Homology with other cytomegaloviruses was most prominent in the central ~60% of the genome, with divergence of sequence and lack of conserved homologs at the respective genomic termini. Of interest, the GPCMV genome was found in many cases to bear stronger phylogenetic similarity to primate CMVs than to rodent CMVs. The sequence of GPCMV should facilitate vaccine and pathogenesis studies in this model of congenital CMV infection.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Nozawa N, Yamamoto Y, Fukui Y, Katano H, Tsutsui Y, Sato Y, Yamada S, Inami Y, Nakamura K, Yokoi M, Kurane I, Inoue N. Identification of a 1.6 kb genome locus of guinea pig cytomegalovirus required for efficient viral growth in animals but not in cell culture. Virology 2008; 379:45-54. [PMID: 18656220 DOI: 10.1016/j.virol.2008.06.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/10/2008] [Accepted: 06/10/2008] [Indexed: 11/17/2022]
Abstract
Guinea pig cytomegalovirus (GPCMV) provides a useful model for studies of congenital CMV infection. During characterization of the GPCMV genome sequence, we identified two types of strains in a virus stock purchased from ATCC. One of them, GPCMV/del, lacks a 1.6 kb locus that positionally corresponds to murine CMV (MCMV) M129-M133. Growth of GPCMV/del in cell culture was marginally better than that of the other strain, GPCMV/full, which harbors the 1.6 kb locus. However, in animals infected intraperitoneally with virus stocks containing both strains, GPCMV/full disseminated more efficiently than GPCMV/del, including 200-fold greater viral load in salivary glands. Viral DNA, transcripts of the immediate-early 2 gene homolog, and viral antigens were more abundant in animals infected with GPCMV/full than in those infected with GPCMV/del. Although the observed phenomena have some similarity with the growth properties of MCMV strains defective in mck-1/mck-2(M129/131) and those defective in sgg(M132), no M129-M132 homologs were found in the 1.6 kb locus. Since one of the ORFs in the locus has a weak sequence similarity with HCMV UL130, which relates to cell tropism, further studies will be required to learn the mechanism for efficient GPCMV growth in animal.
Collapse
Affiliation(s)
- Naoki Nozawa
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Expression of the human cytomegalovirus UL97 gene in a chimeric guinea pig cytomegalovirus (GPCMV) results in viable virus with increased susceptibility to ganciclovir and maribavir. Antiviral Res 2008; 78:250-9. [PMID: 18325607 DOI: 10.1016/j.antiviral.2008.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 11/21/2022]
Abstract
In lieu of a licensed vaccine, antivirals are being considered as an intervention to prevent congenital human cytomegalovirus (HCMV) infection. Ideally, antiviral therapies should undergo pre-clinical evaluation in an animal model prior to human use. Guinea pig cytomegalovirus (GPCMV) is the only small animal model for congenital CMV. However, GPCMV is not susceptible to the most commonly used HCMV antiviral, ganciclovir (GCV), rendering in vivo study of this agent problematic in the guinea pig model. Human cytomegalovirus (HCMV) susceptibility to GCV is linked to the UL97 gene. We hypothesized that GPCMV susceptibility to GCV could be improved by inserting the HCMV (Towne) UL97 gene into the GPCMV genome in place of the homolog, GP97. A chimeric GPCMV (GPCMV::UL97) expressed UL97 protein, and replicated efficiently in cell culture, with kinetics similar to wild-type GPCMV. In contrast, deletion of GP97 resulted in a virus (GPCMVdGP97) that grew poorly in culture. GPCMV::UL97 had substantially improved susceptibility to the inhibitory effects of GCV in comparison to wild-type GPCMV. Additionally, GPCMV::UL97 exhibited improved susceptibility to another antiviral undergoing clinical trials, maribavir (MBV; benzimidazole riboside 1263W94), which also acts through UL97.
Collapse
|
29
|
Schleiss MR, Aronow BJ, Handwerger S. Cytomegalovirus infection of human syncytiotrophoblast cells strongly interferes with expression of genes involved in placental differentiation and tissue integrity. Pediatr Res 2007; 61:565-71. [PMID: 17413859 DOI: 10.1203/pdr.0b013e318045be6d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The principle route of acquisition of cytomegalovirus (CMV) for the fetus is believed to be via the placenta. We subjected purified cytotrophoblast cells obtained from full-term placentas to CMV infection and examined placental gene expression using microarray analyses. Cytotrophoblast cells purified from term placentas differentiated in vitro into a multinucleated syncytium that could be productively infected with CMV, with peak virus titers of approximately 10 plaque-forming units (PFU)/mL identified in supernatants at late time points postinoculation. Infected syncytiotrophoblast cells expressed CMV-specific transcripts and proteins, as demonstrated by Northern blot and immunofluorescence assays. Microarray analyses revealed that CMV infection strongly and reproducibly altered trophoblast gene expression, elevating expression of mitotic cell cycle genes, and repressing expression of genes associated with trophoblast differentiation, particularly those associated with formation and stabilization of the extracellular matrix. We conclude that purified, differentiated syncytiotrophoblasts are permissive for CMV replication. Infection of these cells induces significant perturbations in trophoblast transcription. An improved understanding of the molecular events that occur during CMV infection of trophoblasts could provide insights into interventions that might prevent or minimize congenital transmission.
Collapse
Affiliation(s)
- Mark R Schleiss
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
30
|
Protection against congenital cytomegalovirus (CMV) disease, conferred by a replication-disabled, bacterial artificial chromosome (BAC)-based DNA vaccine. Vaccine 2006; 24:6175-86. [PMID: 16879902 DOI: 10.1016/j.vaccine.2006.06.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 05/30/2006] [Accepted: 06/23/2006] [Indexed: 11/28/2022]
Abstract
It is unclear if protective immunity can be conferred by a cytomegalovirus (CMV) vaccine encoding a single protein subunit, or if multiple viral genes need to be targeted. Using the guinea pig model of congenital CMV infection, these studies examined the immunogenicity and efficacy of a DNA vaccine based on the guinea pig cytomegalovirus (GPCMV) genome cloned as a non-infectious BAC plasmid, modified by transposon insertion into the homolog of the HCMV tegument protein, UL48. Following vaccination of female Hartley guinea pigs with BAC DNA, adverse GPCMV-related pregnancy outcome were assessed after establishment of pregnancy, followed by GPCMV third-trimester challenge. Animals immunized with recombinant BACmid engendered anti-GPCMV antibodies by ELISA assay. Immunogenicity of BAC plasmid DNA was augmented by inclusion of the lipid adjuvant, DOTMA/DOPE, in the vaccine regimen. Among pups born to 12 control (sham-immunized) dams challenged with GPCMV in the third trimester, mortality was 23/35 (66%). In contrast, among evaluable pregnancy outcomes in pups born to 10 BAC-immunized pregnant dams, preconception immunization resulted in reduced pup mortality, to 10/34 pups (29%; p<0.005 versus control, Fisher's exact test). In addition, vaccinated dams had reduced viral load, compared to controls, as assessed by quantitative, real-time PCR.
Collapse
|
31
|
Yue Y, Kaur A, Zhou SS, Barry PA. Characterization and immunological analysis of the rhesus cytomegalovirus homologue (Rh112) of the human cytomegalovirus UL83 lower matrix phosphoprotein (pp65). J Gen Virol 2006; 87:777-787. [PMID: 16528025 DOI: 10.1099/vir.0.81516-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhesus cytomegalovirus (RhCMV) contains two open reading frames (Rh111 and Rh112) that encode proteins homologous to the phosphoprotein 65 (pp65) of the human cytomegalovirus (HCMV) UL83 gene. As HCMV pp65 elicits protective immune responses in infected humans and represents an important vaccination target, one RhCMV homologue of HCMV pp65, pp65-2 (Rh112), was characterized and analysed for its ability to induce host immune responses. Similar to its HCMV counterpart, RhCMV pp65-2 was expressed as a late gene, localized to the nucleus within pp65-2-expressing cells and was present within infectious virions. Longitudinal and cross-sectional studies of pp65-2 immunity in naturally infected rhesus macaques showed that humoral responses to pp65-2 were elicited early during infection, but were not always sustained over time. In contrast, pp65-2-specific T-cell responses, examined by gamma interferon ELISPOT, were broadly detectable in all of the animals studied during primary infection and persisted in the vast majority of RhCMV-seropositive monkeys. Moreover, there was considerable inter-animal variability in the pattern of the immune responses to pp65-2. Together, these results demonstrated that RhCMV pp65-2 exhibited biological and immunological homology to HCMV pp65. Thus, the rhesus macaque model of HCMV persistence and pathogenesis should be relevant for addressing pp65-based vaccine modalities.
Collapse
Affiliation(s)
- Yujuan Yue
- Center for Comparative Medicine, University of California, Davis, County Road 98 and Hutchison Drive, Davis, CA 95616, USA
| | - Amitinder Kaur
- Department of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, MA 02129, USA
| | - Shan Shan Zhou
- Center for Comparative Medicine, University of California, Davis, County Road 98 and Hutchison Drive, Davis, CA 95616, USA
| | - Peter A Barry
- California National Primate Research Center, University of California, Davis, County Road 98 and Hutchison Drive, Davis, CA 95616, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, County Road 98 and Hutchison Drive, Davis, CA 95616, USA
- Center for Comparative Medicine, University of California, Davis, County Road 98 and Hutchison Drive, Davis, CA 95616, USA
| |
Collapse
|
32
|
Schleiss MR, Anderson JL, McGregor A. Cyclic cidofovir (cHPMPC) prevents congenital cytomegalovirus infection in a guinea pig model. Virol J 2006; 3:9. [PMID: 16509982 PMCID: PMC1525182 DOI: 10.1186/1743-422x-3-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 03/01/2006] [Indexed: 11/12/2022] Open
Abstract
Background Congenital cytomegalovirus (CMV) infection is a major public health problem. Antiviral therapies administered during pregnancy might prevent vertical CMV transmission and disease in newborns, but these agents have not been evaluated in clinical trials. The guinea pig model of congenital CMV infection was therefore used to test the hypothesis that antiviral therapy, using the agent agent cyclic cidofovir (cHPMPC), could prevent congenital CMV infection. Results Pregnant outbred Hartley guinea pigs were challenged in the early-third trimester with guinea pig CMV (GPCMV) and treated with placebo, or the antiviral agent, cyclic cidofovir. To optimize detection of vertical infection, an enhanced green fluorescent protein (eGFP)-tagged virus was employed. Compared to placebo, cyclic cidofovir-treated dams and pups had reduced mortality following GPCMV challenge. The magnitude of GPCMV-induced maternal and fetal mortality in this study was reduced from 5/25 animals in the placebo group to 0/21 animals in the treatment group (p = 0.05, Fisher's exact test). By viral culture assay, antiviral therapy was found to completely prevent GPCMV transmission to the fetus. In control pups, 5/19 (26%) were culture-positive for GPCMV, compared to 0/16 of pups in the cyclic cidofovir treatment group (p < 0.05, Fisher's exact test). Conclusion Antiviral therapy with cyclic cidofovir improves pregnancy outcomes in guinea pigs, and eliminates congenital CMV infection, following viral challenge in the third trimester. This study also demonstrated that an eGFP-tagged recombinant virus, with the reporter gene inserted into a dispensable region of the viral genome, retained virulence, including the potential for congenital transmission, facilitating tissue culture-based detection of congenital infection. These observations provide support for clinical trials of antivirals for reduction of congenital CMV infection.
Collapse
Affiliation(s)
- Mark R Schleiss
- Division of Infectious Diseases, University of Minnesota Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6Street SE, McGuire Translational Research Facility, Minneapolis, Minnesota 55455, USA
| | - Jodi L Anderson
- Division of Infectious Diseases, University of Minnesota Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6Street SE, McGuire Translational Research Facility, Minneapolis, Minnesota 55455, USA
| | - Alistair McGregor
- Division of Infectious Diseases, University of Minnesota Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, 2001 6Street SE, McGuire Translational Research Facility, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
33
|
Abstract
Published work (D. J. McGeoch, Nucleic Acids Res. 18:4105-4110, 1990; J. E. McGeehan, N. W. Depledge, and D. J. McGeoch, Curr. Protein Peptide Sci. 2:325-333, 2001) has indicated that evolution of dUTPase in the class of herpesviruses that infect mammals and birds involved capture of a host gene followed by a duplication event that resulted in a coding region comprising two fused dUTPase domains. Some of the conserved residues required for enzyme activity were then lost, resulting in a dUTPase containing a single active site with different elements contributed by each half of the protein. Further conserved residues were lost in one subfamily (the Betaherpesvirinae), yielding a protein that is related to herpesvirus dUTPases but has a different and as yet unrecognized function. Evidence from sequence similarities and structural predictions now indicates that several additional genes were derived from the herpesvirus dUTPase gene, probably by duplication. These are UL31, UL82, UL83, and UL84 in human cytomegalovirus (and counterparts in other members of the Betaherpesvirinae) and ORF10 and ORF11 in human herpesvirus 8 (and counterparts in other members of the Gammaherpesvirinae). The findings clarify the evolutionary history of these genes and provide novel insights for structural and functional studies.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, University of Glasgow, UK.
| | | |
Collapse
|