1
|
Zhang T, Zou L. Enhancers in T Cell development and malignant lesions. Cell Death Discov 2024; 10:406. [PMID: 39284807 PMCID: PMC11405840 DOI: 10.1038/s41420-024-02160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Enhancers constitute a vital category of cis-regulatory elements with a Mediator complex within DNA sequences, orchestrating gene expression by activating promoters. In the development of T cells, some enhancers regulate the critical genes, which might also regulate T cell malignant lesions. This review is to comprehensively elucidate the contributions of enhancers in both normal T cell development and its malignant pathogenesis, proposing the idea that the precise subunits of the Mediator complex are the potential drug target for disrupting the specific gene enhancer for T cell malignant diseases.
Collapse
Affiliation(s)
- Tong Zhang
- Clinical Medicine Research Department, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Postgraduate School in Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Zou
- Clinical Medicine Research Department, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| |
Collapse
|
2
|
Liang Y, Wei X, Yue PJ, Zhang HC, Li ZN, Wang XX, Sun YY, Fu WN. MYCT1 inhibits hematopoiesis in diffuse large B-cell lymphoma by suppressing RUNX1 transcription. Cell Mol Biol Lett 2024; 29:5. [PMID: 38172714 PMCID: PMC10763471 DOI: 10.1186/s11658-023-00522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The abnormality of chromosomal karyotype is one factor causing poor prognosis of lymphoma. In the analysis of abnormal karyotype of lymphoma patients, three smallest overlap regions were found, in which MYCT1 was located. MYCT1 is the first tumor suppressor gene cloned by our research team, but its studies relating to the occurrence and development of lymphoma have not been reported. METHODS R banding analyses were employed to screen the abnormality of chromosomal karyotype in clinical specimen and MYCT1 over-expression cell lines. FISH was to monitor MYCT1 copy number aberration. RT-PCR and Western blot were to detect the mRNA and protein levels of the MYCT1 and RUNX1 genes, respectively. The MYCT1 and RUNX1 protein levels in clinical specimen were evaluated by immunohistochemical DAB staining. The interaction between MYCT1 and MAX proteins was identified via Co-IP and IF. The binding of MAX on the promoter of the RUNX1 gene was detected by ChIP and Dual-luciferase reporter assay, respectively. Flow cytometry and CCK-8 assay were to explore the effects of MYCT1 and RUNX1 on the cell cycle and proliferation, respectively. RESULTS MYCT1 was located in one of three smallest overlap regions of diffuse large B-cell lymphoma, it altered chromosomal instability of diffuse large B-cell lymphoma cells. MYCT1 negatively correlated with RUNX1 in lymphoma tissues of the patients. MAX directly promoted the RUNX1 gene transcription by binding to its promoter region. MYCT1 may represses RUNX1 transcription by binding MAX in diffuse large B-cell lymphoma cells. MYCT1 binding to MAX probably suppressed RUNX1 transcription, leading to the inhibition of proliferation and cell cycle of the diffuse large B-cell lymphoma cells. CONCLUSION This study finds that there is a MYCT1-MAX-RUNX1 signaling pathway in diffuse large B-cell lymphoma. And the study provides clues and basis for the in-depth studies of MYCT1 in the diagnosis, treatment and prognosis of lymphoma.
Collapse
Affiliation(s)
- Ying Liang
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xin Wei
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Peng-Jie Yue
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - He-Cheng Zhang
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Zhen-Ning Li
- Department of Oromaxillofacial-Head and Neck Surgery, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Xiao-Xue Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
3
|
A novel enhancer RNA, Hmrhl, positively regulates its host gene, phkb, in chronic myelogenous leukemia. Noncoding RNA Res 2019; 4:96-108. [PMID: 31891018 PMCID: PMC6926186 DOI: 10.1016/j.ncrna.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/09/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022] Open
Abstract
Noncoding RNAs are increasingly being accredited with key roles in gene regulation during development and disease. Here we report the discovery and characterization of a novel long noncoding RNA, Hmrhl, which shares synteny and partial sequence similarity with the mouse lncRNA, Mrhl. The human homolog, Hmrhl, transcribed from intron 14 of phkb gene, is 5.5 kb in size, expressed in all tissues examined and is associated with chromatin. Analysis of Hmrhl locus using ENCODE database revealed that it exhibits hallmarks of enhancers like the open chromatin configuration, binding of transcription factors, enhancer specific histone signature etc. in the K562 Chronic Myelogenous Leukemia (CML) cells. We compared the expression of Hmrhl in the normal lymphoblast cell line, GM12878, with that of K562 cells and lymphoma samples and show that it is highly upregulated in leukemia as well as several cases of lymphoma. Further, we validated the enhancer properties of Hmrhl locus in K562 cells with the help of ChIP-qPCR and Luciferase assay. Moreover, siRNA mediated down-regulation of Hmrhl in K562 cells leads to a concomitant down regulation of its parent gene, phkb, showing that Hmrhl functions as an enhancer RNA and positively regulates its host gene, phkb, in chronic myelogenous leukemia. This study is significant in view of the fact that a better understanding of mechanism of gene regulation under normal conditions and its perturbation in cancer could in turn help in its therapeutic intervention through molecular medicine/RNA based drug discovery.
Collapse
|
4
|
Klase Z, Yedavalli VSRK, Houzet L, Perkins M, Maldarelli F, Brenchley J, Strebel K, Liu P, Jeang KT. Activation of HIV-1 from latent infection via synergy of RUNX1 inhibitor Ro5-3335 and SAHA. PLoS Pathog 2014; 10:e1003997. [PMID: 24651404 PMCID: PMC3961356 DOI: 10.1371/journal.ppat.1003997] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/29/2014] [Indexed: 01/24/2023] Open
Abstract
A major barrier to the elimination of HIV-1 infection is the presence of a pool of long-lived, latently infected CD4+ memory T-cells. The search for treatments to re-activate latent HIV to aid in clearance is hindered by the incomplete understanding of the mechanisms that lead to transcriptional silencing of viral gene expression in host cells. Here we identify a previously unknown role for RUNX1 in HIV-1 transcriptional latency. The RUNX proteins, in combination with the co-factor CBF-β, are critical transcriptional regulators in T-cells. RUNX1 strongly modulates CD4 expression and contributes to CD4+ T-cell function. We show that RUNX1 can bind DNA sequences within the HIV-1 LTR and that this binding represses transcription. Using patient samples we show a negative correlation between RUNX1 expression and viral load. Furthermore, we find that pharmacologic inhibition of RUNX1 by a small molecule inhibitor, Ro5-3335, synergizes with the histone deacetylase (HDAC) inhibitor SAHA (Vorinostat) to enhance the activation of latent HIV-1 in both cell lines and PBMCs from patients. Our findings indicate that RUNX1 and CBF-β cooperate in cells to modulate HIV-1 replication, identifying for the first time RUNX1 as a cellular factor involved in HIV-1 latency. This work highlights the therapeutic potential of inhibitors of RUNX1 to re-activate virus and aid in clearance of HIV-1.
Collapse
Affiliation(s)
- Zachary Klase
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Venkat S. R. K. Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laurent Houzet
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Molly Perkins
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Frank Maldarelli
- Host Virus Interaction Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason Brenchley
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Liu
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kuan-Teh Jeang
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Kaneko K, Furuyama K, Fujiwara T, Kobayashi R, Ishida H, Harigae H, Shibahara S. Identification of a novel erythroid-specific enhancer for the ALAS2 gene and its loss-of-function mutation which is associated with congenital sideroblastic anemia. Haematologica 2013; 99:252-61. [PMID: 23935018 DOI: 10.3324/haematol.2013.085449] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Erythroid-specific 5-aminolevulinate synthase (ALAS2) is the rate-limiting enzyme for heme biosynthesis in erythroid cells, and a missense mutation of the ALAS2 gene is associated with congenital sideroblastic anemia. However, the gene responsible for this form of anemia remains unclear in about 40% of patients. Here, we identify a novel erythroid-specific enhancer of 130 base pairs in the first intron of the ALAS2 gene. The newly identified enhancer contains a cis-acting element that is bound by the erythroid-specific transcription factor GATA1, as confirmed by chromatin immunoprecipitation analysis in vivo and by electrophoretic mobility shift assay in vitro. A promoter activity assay in K562 human erythroleukemia cells revealed that the presence of this 130-base pair region increased the promoter activity of the ALAS2 gene by 10-15-fold. Importantly, two mutations, each of which disrupts the GATA-binding site in the enhancer, were identified in unrelated male patients with congenital sideroblastic anemia, and the lower expression level of ALAS2 mRNA in bone marrow erythroblasts was confirmed in one of these patients. Moreover, GATA1 failed to bind to each mutant sequence at the GATA-binding site, and each mutation abolished the enhancer function on ALAS2 promoter activity in K562 cells. Thus, a mutation at the GATA-binding site in this enhancer may cause congenital sideroblastic anemia. These results suggest that the newly identified intronic enhancer is essential for the expression of the ALAS2 gene in erythroid cells. We propose that the 130-base pair enhancer region located in the first intron of the ALAS2 gene should be examined in patients with congenital sideroblastic anemia in whom the gene responsible is unknown.
Collapse
|
6
|
Ranzani M, Annunziato S, Adams DJ, Montini E. Cancer gene discovery: exploiting insertional mutagenesis. Mol Cancer Res 2013; 11:1141-58. [PMID: 23928056 DOI: 10.1158/1541-7786.mcr-13-0244] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insertional mutagenesis has been used as a functional forward genetics screen for the identification of novel genes involved in the pathogenesis of human cancers. Different insertional mutagens have been successfully used to reveal new cancer genes. For example, retroviruses are integrating viruses with the capacity to induce the deregulation of genes in the neighborhood of the insertion site. Retroviruses have been used for more than 30 years to identify cancer genes in the hematopoietic system and mammary gland. Similarly, another tool that has revolutionized cancer gene discovery is the cut-and-paste transposons. These DNA elements have been engineered to contain strong promoters and stop cassettes that may function to perturb gene expression upon integration proximal to genes. In addition, complex mouse models characterized by tissue-restricted activity of transposons have been developed to identify oncogenes and tumor suppressor genes that control the development of a wide range of solid tumor types, extending beyond those tissues accessible using retrovirus-based approaches. Most recently, lentiviral vectors have appeared on the scene for use in cancer gene screens. Lentiviral vectors are replication-defective integrating vectors that have the advantage of being able to infect nondividing cells, in a wide range of cell types and tissues. In this review, we describe the various insertional mutagens focusing on their advantages/limitations, and we discuss the new and promising tools that will improve the insertional mutagenesis screens of the future.
Collapse
Affiliation(s)
- Marco Ranzani
- San Raffaele-Telethon Institute for Gene Therapy, via Olgettina 58, 20132, Milan, Italy.
| | | | | | | |
Collapse
|
7
|
Dabrowska MJ, Ejegod D, Lassen LB, Johnsen HE, Wabl M, Pedersen FS, Dybkær K. Gene expression profiling of murine T-cell lymphoblastic lymphoma identifies deregulation of S-phase initiating genes. Leuk Res 2013; 37:1383-90. [PMID: 23896059 DOI: 10.1016/j.leukres.2013.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/24/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022]
Abstract
In a search for genes and pathways implicated in T-cell lymphoblastic lymphoma (T-LBL) development, we used a murine lymphoma model, where mice of the NMRI-inbred strain were inoculated with murine leukemia virus mutants. The resulting tumors were analyzed by integration analysis and global gene expression profiling to determine the effect of the retroviral integrations on the nearby genes, and the deregulated pathways in the tumors. Gene expression profiling identified increased expression of genes involved in the minichromosome maintenance and origin of recognition pathway as well as downregulation in negative regulators of G1/S transition, indicating increased S-phase initiation in murine T-LBLs.
Collapse
|
8
|
Pyrz M, Wang B, Wabl M, Pedersen FS. A retroviral mutagenesis screen identifies Cd74 as a common insertion site in murine B-lymphomas and reveals the existence of a novel IFNgamma-inducible Cd74 isoform. Mol Cancer 2010; 9:86. [PMID: 20416035 PMCID: PMC2883540 DOI: 10.1186/1476-4598-9-86] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/23/2010] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Insertional mutagenesis screens in the mouse are an acknowledged approach to identify genes involved in the pathogenesis of cancer. The potential of these screens to identify genes causally involved in tumorigenesis is not only limited to the murine host, but many of these genes have also been proven to be involved in the oncogenic process in man. RESULTS Through an insertional mutagenesis screen applying murine leukemia viruses in mouse, we found that Cd74 was targeted by proviral insertion in tumors of B-cell origin. This locus encodes a protein playing crucial roles in antigen presentation and B-cell homeostasis, and its deregulation is often associated with cancer in man. The distribution of insertions within the Cd74 locus prompted the identification of an alternative transcript initiated in intron 1 of Cd74 encoding an N-terminally truncated Cd74 isoform in tissues from un-infected mice, and transcriptional activation assays revealed a positive effect on the novel intronic promoter by a formerly described intronic enhancer in the Cd74 locus. Furthermore, we show that the new Cd74 isoform is IFNgamma inducible and that its expression is differentially regulated from the canonical Cd74 isoform at the transcriptional level. CONCLUSIONS We here identify Cd74 as a common insertion site in murine B-lymphomas and describe a novel IFNgamma-inducible murine Cd74 isoform differentially regulated from the canonical isoform and expressed under the control of an intronic promoter. The distribution and orientation of proviral insertion sites within the Cd74 locus underscores the causal involvement of the isoforms in the murine B-lymphomagenic process.
Collapse
Affiliation(s)
- Magdalena Pyrz
- Department of Molecular Biology, Aarhus University, Aarhus, DK-8000, Denmark
| | | | | | | |
Collapse
|
9
|
Loss of MicroRNA targets in the 3' untranslated region as a mechanism of retroviral insertional activation of growth factor independence 1. J Virol 2009; 83:8051-61. [PMID: 19474094 DOI: 10.1128/jvi.00427-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The non-oncogene-bearing retrovirus SL3-3 murine leukemia virus induces strictly T-cell lymphomas with a mean latency of 2 to 4 months in mice of the NMRI-inbred (NMRI-i) strain. By high-throughput sequencing of retroviral tags, we have identified the genomic region carrying the transcriptional repressor and oncogene growth factor independence 1 (Gfi1) as a frequent target for SL3-3 in the NMRI-i mouse genome. Twenty-four SL3-3 insertions were identified within a 1-kb window of the 3' untranslated region (3'UTR) of the Gfi1 gene, a clustering pattern unique for this lymphoma model. Expression analysis determined that the Gfi1 gene was transcriptionally activated by SL3-3 insertions, and an upregulation of Gfi1 protein expression was detected for tumors harboring insertions in the Gfi1 3'UTR. Here we provide data in support of a mechanism by which retroviral insertions in the Gfi1 3'UTR decouple microRNA-mediated posttranscriptional regulation.
Collapse
|
10
|
Nielsen AA, Kjartansdóttir KR, Rasmussen MH, Sørensen AB, Wang B, Wabl M, Pedersen FS. Activation of the brain-specific neurogranin gene in murine T-cell lymphomas by proviral insertional mutagenesis. Gene 2009; 442:55-62. [PMID: 19376211 DOI: 10.1016/j.gene.2009.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 11/17/2022]
Abstract
Neurogranin (Nrgn) is a highly expressed brain-specific protein, which sequesters calmodulin at low Ca(2+)-levels. We report here on retroviral activation of the Nrgn gene in tumors induced by the T-cell lymphomagenic SL3-3 murine leukemia virus. We have performed a systematic expression analysis of Nrgn in various mouse tissues and SL3-3 induced T-cell tumors. This demonstrated that insertional activation of Nrgn increased RNA and protein expression levels to that observed in brain. Furthermore, elevated Nrgn expression was also observed in some T-cell tumors with no detected provirus integrations into this genomic region. The presented data demonstrate that Nrgn can be produced at high levels outside the brain, and suggest a novel oncogenic role in T-cell lymphomas in mice.
Collapse
|
11
|
Control of pathogenicity and disease specificity of a T-lymphomagenic gammaretrovirus by E-box motifs but not by an overlapping glucocorticoid response element. J Virol 2008; 83:336-46. [PMID: 18945767 DOI: 10.1128/jvi.01368-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although transcription factors of the basic helix-loop-helix family have been shown to regulate enhancers of lymphomagenic gammaretroviruses through E-box motifs, the overlap of an E-box motif (Egre) with the glucocorticoid response element (GRE) has obscured their function in vivo. We report here that Egre, but not the GRE, affects disease induction by the murine T-lymphomagenic SL3-3 virus. Mutating all three copies of Egre prolonged the tumor latency period from 60 to 109 days. Further mutating an E-box motif (Ea/s) outside the enhancer prolonged the latency period to 180 days, suggesting that Ea/s works as a backup site for Egre. While wild-type SL3-3 and GRE and Ea/s mutants exclusively induced T-cell lymphomas with wild-type latencies mainly of the CD4(+) CD8(-) phenotype, Egre as well as the Egre and Ea/s mutants induced B-cell lymphomas and myeloid leukemia in addition to T-cell lymphomas. T-cell lymphomas induced by the two Egre mutants had the same phenotype as those induced by wild-type SL3-3, indicating the incomplete disruption of T-cell lymphomagenesis, which is in contrast to previous findings for a Runx site mutant of SL3-3. Mutating the Egre site or Egre and Ea/s triggered several tumor phenotype-associated secondary enhancer changes encompassing neighboring sites, none of which led to the regeneration of an E-box motif. Taken together, our results demonstrate a role for the E-box but not the GRE in T lymphomagenesis by SL3-3, unveil an inherent broader disease specificity of the virus, and strengthen the notion of selection for more potent enhancer variants of mutated viruses during tumor development.
Collapse
|
12
|
Sørensen AB, Lund AH, Kunder S, Quintanilla-Martinez L, Schmidt J, Wang B, Wabl M, Pedersen FS. Impairment of alternative splice sites defining a novel gammaretroviral exon within gag modifies the oncogenic properties of Akv murine leukemia virus. Retrovirology 2007; 4:46. [PMID: 17617899 PMCID: PMC1936429 DOI: 10.1186/1742-4690-4-46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 07/06/2007] [Indexed: 01/25/2023] Open
Abstract
Background Mutations of an alternative splice donor site located within the gag region has previously been shown to broaden the pathogenic potential of the T-lymphomagenic gammaretrovirus Moloney murine leukemia virus, while the equivalent mutations in the erythroleukemia inducing Friend murine leukemia virus seem to have no influence on the disease-inducing potential of this virus. In the present study we investigate the splice pattern as well as the possible effects of mutating the alternative splice sites on the oncogenic properties of the B-lymphomagenic Akv murine leukemia virus. Results By exon-trapping procedures we have identified a novel gammaretroviral exon, resulting from usage of alternative splice acceptor (SA') and splice donor (SD') sites located in the capsid region of gag of the B-cell lymphomagenic Akv murine leukemia virus. To analyze possible effects in vivo of this novel exon, three different alternative splice site mutant viruses, mutated in either the SA', in the SD', or in both sites, respectively, were constructed and injected into newborn inbred NMRI mice. Most of the infected mice (about 90%) developed hematopoietic neoplasms within 250 days, and histological examination of the tumors showed that the introduced synonymous gag mutations have a significant influence on the phenotype of the induced tumors, changing the distribution of the different types as well as generating tumors of additional specificities such as de novo diffuse large B cell lymphoma (DLBCL) and histiocytic sarcoma. Interestingly, a broader spectrum of diagnoses was made from the two single splice-site mutants than from as well the wild-type as the double splice-site mutant. Both single- and double-spliced transcripts are produced in vivo using the SA' and/or the SD' sites, but the mechanisms underlying the observed effects on oncogenesis remain to be clarified. Likewise, analyses of provirus integration sites in tumor tissues, which identified 111 novel RISs (retroviral integration sites) and 35 novel CISs (common integration sites), did not clearly point to specific target genes or pathways to be associated with specific tumor diagnoses or individual viral mutants. Conclusion We present here the first example of a doubly spliced transcript within the group of gammaretroviruses, and we show that mutation of the alternative splice sites that define this novel RNA product change the oncogenic potential of Akv murine leukemia virus.
Collapse
Affiliation(s)
- Annette Balle Sørensen
- Department of Molecular Biology, University of Aarhus, Denmark
- The State and University Library, Universitetsparken, DK-8000 Aarhus C, Denmark
| | - Anders H Lund
- Department of Molecular Biology, University of Aarhus, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Sandra Kunder
- Institute of Pathology, GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | | - Jörg Schmidt
- Department of Comparative Medicine GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | | - Matthias Wabl
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
13
|
Kunder S, Calzada-Wack J, Hölzlwimmer G, Müller J, Kloss C, Howat W, Schmidt J, Höfler H, Warren M, Quintanilla-Martinez L. A comprehensive antibody panel for immunohistochemical analysis of formalin-fixed, paraffin-embedded hematopoietic neoplasms of mice: analysis of mouse specific and human antibodies cross-reactive with murine tissue. Toxicol Pathol 2007; 35:366-75. [PMID: 17455084 DOI: 10.1080/01926230701230296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Immunohistochemistry is an indispensable tool in human pathology enabling immunophenotypic characterization of tumor cells. Immunohistochemical analyses of mouse models of human hematopoietic neoplasias have become an important aspect for comparison of murine entities with their human counterparts. The aim of this study was to establish a diagnostic antibody panel for analysis of murine lymphomas/leukemias, useful in formalin-fixed/paraffin-embedded tissue. Overall, 48 antibodies (4 rabbit monoclonal, 12 rabbit polyclonal, 2 goat polyclonal, 11 rat, and 19 mouse monoclonal), which were either mouse-specific (14) or cross-reactive with murine tissue (34) were tested for staining quality and diagnostic value in 468 murine hematopoietic neoplasms. Specific staining was achieved with 29 antibodies, of which 18 were human antibodies cross-reactive with murine tissue. Only 23 (B220, BCL-2, BCL-6, CD117, CD138 (2x), CD3 (2x), CD43, CD45, CD5, CD79 alpha cy, cyclin D1, Ki-67 (2x), Mac-3, Mac-2, lysozyme, mast cell tryptase, MPO, Pax-5, TdT, and TER-119) were regarded as valuable for diagnostic evaluation. Immunohistochemistry was also established in an automated immunostainer for high throughput analysis. The antibody panel developed is useful for the classification of murine lymphomas and leukemias analyzed, and a valuable tool for human and veterinary pathologists involved in the diagnostic interpretation of murine models of hematopoietic neoplasias.
Collapse
Affiliation(s)
- Sandra Kunder
- GSF Research Center for Environment and Health, Institute of Pathology, Neuherberg 85764, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
When connective tissue undergoes malignant transformation, glioblastomas and sarcomas arise. However, the ancient biochemical mechanisms, which are now operational in sarcomas distorted by mutations and gene fusions in misaligned chromosomes, were originally acquired by those cells that emerged during the Cambrian explosion. Preserved throughout evolution up to the genus Homo, these mechanisms dictate the apoptosis- and senescence-resistant immortality of malignant cells. A 'retroviral paradox' distinguishes human sarcomas from those of the animal world. In contrast to the retrovirally induced sarcomatous transformation of animal (avian, murine, feline and simian) cells, human sarcomas have so far failed to yield a causative retroviral isolate. However, the proto-oncogenes/oncogenes transduced from their host cells by retroviruses of animals are the same that are active in human sarcomas. Since the encoded oncoproteins arise after birth, they are recognized frequently by the immune system of the host. Immune lymphocytes that kill autologous sarcoma cells in vitro commonly fail to do so in vivo. Sarcoma vaccines generate immune T- and natural killer cell reactions; even when vaccinated patients do not show a clinical response, their tumors become more sensitive to chemotherapy. The aim of this review is to lay a solid molecular biological foundation for the conclusion that targeting the sarcoma oncogenes will result in regression of the disease.
Collapse
Affiliation(s)
- Joseph G Sinkovics
- Cancer Institute of St. Joseph's Hospital Affiliated with the HL Moffitt Cancer Center, The University of South Florida College of Medicine, Department of Medical Microbiology and Immunology, Tampa, Florida, USA.
| |
Collapse
|
15
|
Sørensen KD, Kunder S, Quintanilla-Martinez L, Sørensen J, Schmidt J, Pedersen FS. Enhancer mutations of Akv murine leukemia virus inhibit the induction of mature B-cell lymphomas and shift disease specificity towards the more differentiated plasma cell stage. Virology 2007; 362:179-91. [PMID: 17258785 DOI: 10.1016/j.virol.2006.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/22/2006] [Accepted: 12/08/2006] [Indexed: 11/22/2022]
Abstract
This study investigates the role of the proviral transcriptional enhancer for B-lymphoma induction by exogenous Akv murine leukemia virus. Infection of newborn inbred NMRI mice with Akv induced 35% plasma cell proliferations (PCPs) (consistent with plasmacytoma), 33% diffuse large B-cell lymphomas, 25% follicular B-cell lymphomas and few splenic marginal zone and small B-cell lymphomas. Deleting one copy of the 99-bp proviral enhancer sequence still allowed induction of multiple B-cell tumor types, although PCPs dominated (77%). Additional mutation of binding sites for the glucocorticoid receptor, Ets, Runx, or basic helix-loop-helix transcription factors in the proviral U3 region, however, shifted disease induction to almost exclusively PCPs, but had no major influence on tumor latency periods. Southern analysis of immunoglobulin rearrangements and ecotropic provirus integration patterns showed that many of the tumors/cell proliferations induced by each virus were polyclonal. Our results indicate that enhancer mutations weaken the ability of Akv to induce mature B-cell lymphomas prior to the plasma cell stage, whereas development of plasma cell proliferations is less dependent of viral enhancer strength.
Collapse
Affiliation(s)
- Karina Dalsgaard Sørensen
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Bldg. 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
16
|
Wang CL, Wang BB, Bartha G, Li L, Channa N, Klinger M, Killeen N, Wabl M. Activation of an oncogenic microRNA cistron by provirus integration. Proc Natl Acad Sci U S A 2006; 103:18680-4. [PMID: 17121985 PMCID: PMC1693722 DOI: 10.1073/pnas.0609030103] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Retroviruses can cause tumors when they integrate near a protooncogene or tumor suppressor gene of the host. We infected >2,500 mice with the SL3-3 murine leukemia virus; in 22 resulting tumors, we found provirus integrations nearby or within the gene that contains the mir-17-92 microRNA (miRNA) cistron. Using quantitative real-time PCR, we showed that expression of miRNA was increased in these tumors, indicating that retroviral infection can induce expression of oncogenic miRNAs. Our results demonstrate that retroviral mutagenesis can be a potent tool for miRNA discovery.
Collapse
Affiliation(s)
- Clifford L Wang
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rodenburg M, Fischer M, Engelmann A, Harbers SO, Ziegler M, Löhler J, Stocking C. Importance of receptor usage, Fli1 activation, and mouse strain for the stem cell specificity of 10A1 murine leukemia virus leukemogenicity. J Virol 2006; 81:732-42. [PMID: 17079317 PMCID: PMC1797452 DOI: 10.1128/jvi.01430-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Murine leukemia viruses (MuLV) induce leukemia through a multistage process, a critical step being the activation of oncogenes through provirus integration. Transcription elements within the long terminal repeats (LTR) are prime determinants of cell lineage specificity; however, the influence of other factors, including the Env protein that modulates cell tropism through receptor recognition, has not been rigorously addressed. The ability of 10A1-MuLV to use both PiT1 and PiT2 receptors has been implicated in its induction of blast cell leukemia. Here we show that restricting receptor usage of 10A1-MuLV to PiT2 results in loss of blast cell transformation capacity. However, the pathogenicity was unaltered when the env gene is exchanged with Moloney MuLV, which uses the Cat1 receptor. Significantly, the leukemic blasts express erythroid markers and consistently contain proviral integrations in the Fli1 locus, a target of Friend MuLV (F-MuLV) during erythroleukemia induction. Furthermore, an NB-tropic variant of 10A1 was unable to induce blast cell leukemia in C57BL/6 mice, which are also resistant to F-MuLV transformation. We propose that 10A1- and F-MuLV actually induce identical (erythro)blastic leukemia by a mechanism involving Fli1 activation and cooperation with inherent genetic mutations in susceptible mouse strains. Furthermore, we demonstrate that deletion of the Icsbp tumor suppressor gene in C57BL/6 mice is sufficient to confer susceptibility to 10A1-MuLV leukemia induction but with altered specificity. In summary, we validate the significance of the env gene in leukemia specificity and underline the importance of a complex interplay of cooperating oncogenes and/or tumor suppressors in determining the pathogenicity of MuLV variants.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Fibroblasts
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Hematopoietic Stem Cells/pathology
- Hematopoietic Stem Cells/virology
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/metabolism
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Experimental/pathology
- Leukemia, Experimental/virology
- Mice
- Mice, Inbred C57BL
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- Receptors, Virus/metabolism
- Retroviridae Infections/pathology
- Retroviridae Infections/virology
- Species Specificity
- Tumor Virus Infections/pathology
- Tumor Virus Infections/virology
Collapse
|
18
|
Uren AG, Kool J, Berns A, van Lohuizen M. Retroviral insertional mutagenesis: past, present and future. Oncogene 2005; 24:7656-72. [PMID: 16299527 DOI: 10.1038/sj.onc.1209043] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Retroviral insertion mutagenesis screens in mice are powerful tools for efficient identification of oncogenic mutations in an in vivo setting. Many oncogenes identified in these screens have also been shown to play a causal role in the development of human cancers. Sequencing and annotation of the mouse genome, along with recent improvements in insertion site cloning has greatly facilitated identification of oncogenic events in retrovirus-induced tumours. In this review, we discuss the features of retroviral insertion mutagenesis screens, covering the mechanisms by which retroviral insertions mutate cellular genes, the practical aspects of insertion site cloning, the identification and analysis of common insertion sites, and finally we address the potential for use of somatic insertional mutagens in the study of nonhaematopoietic and nonmammary tumour types.
Collapse
Affiliation(s)
- A G Uren
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
19
|
Gene Expression Profiling Identifies Oncogenic Molecular Pathways in T-Lymphoma Induction by SL3-3 Retrovirus Insertional Mutagenesis in Inbred NMRI Mice. Blood 2005. [DOI: 10.1182/blood.v106.11.3010.3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The non-oncogene bearing retrovirus SL3-3 murine leukemia virus (MLV) induces T-cell lymphomas with a remarkably consistent immunophenotype when injected into newborn inbred NMRI (NMRI-i) mice, making it, at present, the most homogeneous murine model of MLV induced T-lymphomas1. The oncogenic effects of SL3-3 are caused by proviral insertional mutagenesis of the host genome in or near genes of major importance for lymphoma/leukemia development. Determination of SL3-3 integration sites in the NMRI-i genome therefore provides an efficient whole genome screening method for identifying genes involved in murine and potentially also human T-cell lymphomagenic processes. Here, the impact of integration sites on latency, tumor immunophenotype, clonality, and gene expression profiles reflecting the affected molecular pathways involved in the carcinogenesis was analyzed. So far, a total of 22 retroviral integration sites were identified in thymic (14) and mesenteric lymph node tumors (8) from 10 SL3-3-infected NMRI-i mice. The majority of tumors were CD3+CD4+CD8− (2 thymus tumors were CD3+CD4+CD8+) and TCRβ clonality was demonstrated for all tumors by Southern analysis. Gene expression profiling using 60-mer oligonucleotide microarrays representing 10.000 different genes was performed in triplicate for 3 thymic tumors and a pool of 3 normal thymuses from uninfected NMRI-i mice. Unsupervised clustering of microarray data, two tailed student t-tests and significance analysis of microarrays (SAM) showed the T-cell thymus tumors to be more closely related to each other than to normal thymus tissues. The most common integration sites identified in thymic T-cell tumors were in or close to growth factor independence-1 (Gfi-1) and G1/S-specific cyclin D3 (CCND3), both involved in regulation of cell cycle progression in T cells. The two thymic tumors with CCND3 integrations contained homogenous CD3+CD4+CD8− single positive populations. The transcript levels determined by microarray of CCND3 were for both tumors 2-fold higher that what was observed in normal thymuses. D cyclins and cyclin-dependent kinases (CDKs) regulate the G1/S checkpoint and the interaction partner of CCND3, CDK6 was also up-regulated as compared to the normal thymus tissue. Similar expression features for CCND3 and CDK6 were observed for the third thymus tumor with, at present, unknown integration sites. Thus, for tumors with CCND3 integrations a promoted S phase entry leading irreversibly to cell division in the tumor cells can be suggested as further supported by the observation of decreased expression levels of the negative regulator of CDK2, p27KIP1 and increased expression of mRNA encoding G1 to S phase transition 2 (Gspt2). Notably, CCND3 is required for T-cell receptor (TCR) dependent expansion of transformed murine T-lymphocytes. Among other genes with a differential up-regulated expression in T-cell derived thymus tumors with SL3-3 integration in CCND3 were members of the TCR signaling cascade (Zap70, Fyn, VAV2, VAV3 and RAC2) and oncognes (Rel and Ect2) illustrating some of the transformation processes occurring in the malignant T-cells. In summary, this murine model of T-lymphomas enables a specific coupling of common integrations sites, like CCND3 or Gfi-1 to their effects on downstream molecular pathways.
Collapse
|
20
|
Rasmussen MH, Sørensen AB, Morris DW, Dutra JC, Engelhard EK, Wang CL, Schmidt J, Pedersen FS. Tumor model-specific proviral insertional mutagenesis of the Fos/Jdp2/Batf locus. Virology 2005; 337:353-64. [PMID: 15913695 DOI: 10.1016/j.virol.2005.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/05/2005] [Accepted: 04/22/2005] [Indexed: 11/29/2022]
Abstract
Retroviral activation of the AP-1/ATF super family member Jdp2 was recently reported to be a common event in M-MLV-induced T cell lymphoma in p27-null C57x129 mice as compared to wild type-inoculated mice but has not been found important in other models. On the basis of retroviral tag retrieval from 1190 individual Akv- and SL3-3-induced lymphomas, we here report that insertional mutagenesis into the 250-kb Fos/Jdp2/Batf locus is associated with SL3-3 MLV-induced T but not Akv-induced B cell lymphomas of NMRI and SWR mice. Integration pattern and clonality analyses suggest that Jdp2 participates in SL3-3-induced tumorigenesis distinctly as compared to the M-MLV setting. Northern blot analysis showed Jdp2 to be alternatively spliced in various normal tissues as well as MLV-induced lymphomas. Interestingly, in some tumors, proviral insertion seems to activate different mRNA sub-species. Whereas elevated mRNA levels of the Fos gene could not be correlated with provirus presence, in one case, Northern blot analysis as well as quantitative real-time PCR indicated proviral activation of the AP-1 super family member Batf, a gene not previously reported to be a target of insertional mutagenesis. A novel integration cluster between Jdp2 and Batf apparently did not influence the expression level of either gene, underscoring the importance of addressing expression effects to identify target genes of insertion. Altogether, such distinct insertion patterns point to different mechanism of activation of specific proto-oncogenes and are consequently of importance for the understanding of proviral activation mechanisms as well as the specific role of individual oncogenes in tumor development.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Basic-Leucine Zipper Transcription Factors
- DNA, Neoplasm/genetics
- DNA, Neoplasm/isolation & purification
- Disease Models, Animal
- Genes, fos
- Leukemia Virus, Murine/genetics
- Lymphoma, B-Cell/genetics
- Mice
- Mice, Inbred Strains
- Mutagenesis, Insertional
- Polymerase Chain Reaction
- Proviruses/genetics
- RNA, Messenger/genetics
- RNA, Viral/genetics
- Repressor Proteins/genetics
- Retroviridae/genetics
- Thymus Gland/virology
- Transcription Factors/genetics
- Tumor Cells, Cultured
- Virus Latency
Collapse
Affiliation(s)
- M H Rasmussen
- Department of Molecular Biology, University of Aarhus, C. F. Mollers Allé, Building 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Glud SZ, Sørensen AB, Andrulis M, Wang B, Kondo E, Jessen R, Krenacs L, Stelkovics E, Wabl M, Serfling E, Palmetshofer A, Pedersen FS. A tumor-suppressor function for NFATc3 in T-cell lymphomagenesis by murine leukemia virus. Blood 2005; 106:3546-52. [PMID: 16051745 PMCID: PMC1895049 DOI: 10.1182/blood-2005-02-0493] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nuclear factor of activated T cell (NFAT) transcription factors play a central role in differentiation, activation, and elimination of lymphocytes. We here report on the finding of provirus integration into the Nfatc3 locus in T-cell lymphomas induced by the murine lymphomagenic retrovirus SL3-3 and show that NFATc3 expression is repressed in these lymphomas. The provirus insertions are positioned close to the Nfatc3 promoter or a putative polyadenylated RNA (polyA) region. Furthermore, we demonstrate that NFATc3-deficient mice infected with SL3-3 develop T-cell lymphomas faster and with higher frequencies than wild-type mice or NFATc2-deficient mice. These results identify NFATc3 as a tumor suppressor for the development of murine T-cell lymphomas induced by the retrovirus SL3-3.
Collapse
|