1
|
Heinz JL, Hinke DM, Maimaitili M, Wang J, Sabli IKD, Thomsen M, Farahani E, Ren F, Hu L, Zillinger T, Grahn A, von Hofsten J, Verjans GMGM, Paludan SR, Viejo-Borbolla A, Sancho-Shimizu V, Mogensen TH. Varicella zoster virus-induced autophagy in human neuronal and hematopoietic cells exerts antiviral activity. J Med Virol 2024; 96:e29690. [PMID: 38804180 DOI: 10.1002/jmv.29690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Autophagy is a degradational pathway with pivotal roles in cellular homeostasis and survival, including protection of neurons in the central nervous system (CNS). The significance of autophagy as antiviral defense mechanism is recognized and some viruses hijack and modulate this process to their advantage in certain cell types. Here, we present data demonstrating that the human neurotropic herpesvirus varicella zoster virus (VZV) induces autophagy in human SH-SY5Y neuronal cells, in which the pathway exerts antiviral activity. Productively VZV-infected SH-SY5Y cells showed increased LC3-I-LC3-II conversion as well as co-localization of the viral glycoprotein E and the autophagy receptor p62. The activation of autophagy was dependent on a functional viral genome. Interestingly, inducers of autophagy reduced viral transcription, whereas inhibition of autophagy increased viral transcript expression. Finally, the genotype of patients with severe ocular and brain VZV infection were analyzed to identify potential autophagy-associated inborn errors of immunity. Two patients expressing genetic variants in the autophagy genes ULK1 and MAP1LC3B2, respectively, were identified. Notably, cells of both patients showed reduced autophagy, alongside enhanced viral replication and death of VZV-infected cells. In conclusion, these results demonstrate a neuro-protective role for autophagy in the context of VZV infection and suggest that failure to mount an autophagy response is a potential predisposing factor for development of severe VZV disease.
Collapse
Affiliation(s)
- Johanna L Heinz
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Daniëla M Hinke
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jiayi Wang
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ira K D Sabli
- Dept of Paediatric Infectious Diseases & Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Michelle Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ensieh Farahani
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Fanghui Ren
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lili Hu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Zillinger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Anna Grahn
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Joanna von Hofsten
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Halland Hospital Halmstad, Halmstad, Sweden
| | - Georges M G M Verjans
- Department of Viroscience, HerpeslabNL, Erasmus University MC, Rotterdam, The Netherlands
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Vanessa Sancho-Shimizu
- Dept of Paediatric Infectious Diseases & Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Arvin AM. Creating the "Dew Drop on a Rose Petal": the Molecular Pathogenesis of Varicella-Zoster Virus Skin Lesions. Microbiol Mol Biol Rev 2023; 87:e0011622. [PMID: 37354037 PMCID: PMC10521358 DOI: 10.1128/mmbr.00116-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023] Open
Abstract
Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chicken pox) as the primary infection in a susceptible host. Varicella is very contagious through its transmission by direct contact with vesicular skin lesions that contain high titers of infectious virus and respiratory droplets. While the clinical manifestations of primary VZV infection are well recognized, defining the molecular mechanisms that drive VZV pathogenesis in the naive host before adaptive antiviral immunity is induced has been a challenge due to species specificity. This review focuses on advances made in identifying the differentiated human host cells targeted by VZV to cause varicella, the processes involved in viral takeover of these heterogenous cell types, and the host cell countermeasures that typically culminate in a benign illness. This work has revealed many unexpected and multifaceted mechanisms used by VZV to achieve its high prevalence and persistence in the human population.
Collapse
Affiliation(s)
- Ann M. Arvin
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Tommasi C, Breuer J. The Biology of Varicella-Zoster Virus Replication in the Skin. Viruses 2022; 14:982. [PMID: 35632723 PMCID: PMC9147561 DOI: 10.3390/v14050982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
The replication of varicella-zoster virus (VZV) in skin is critical to its pathogenesis and spread. Primary infection causes chickenpox, which is characterised by centrally distributed skin blistering lesions that are rich in infectious virus. Cell-free virus in the cutaneous blistering lesions not only spreads to cause further cases, but infects sensory nerve endings, leading to the establishment of lifelong latency in sensory and autonomic ganglia. The reactivation of virus to cause herpes zoster is again characterised by localised painful skin blistering rash containing infectious virus. The development of in vitro and in vivo models of VZV skin replication has revealed aspects of VZV replication and pathogenesis in this important target organ and improved our understanding of the vaccine strain vOKa attenuation. In this review, we outline the current knowledge on VZV interaction with host signalling pathways, the viral association with proteins associated with epidermal terminal differentiation, and how these interconnect with the VZV life cycle to facilitate viral replication and shedding.
Collapse
Affiliation(s)
- Cristina Tommasi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Judith Breuer
- Department of Infection, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
4
|
He Q, Wu Y, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. ICP22/IE63 Mediated Transcriptional Regulation and Immune Evasion: Two Important Survival Strategies for Alphaherpesviruses. Front Immunol 2021; 12:743466. [PMID: 34925320 PMCID: PMC8674840 DOI: 10.3389/fimmu.2021.743466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the process of infecting the host, alphaherpesviruses have derived a series of adaptation and survival strategies, such as latent infection, autophagy and immune evasion, to survive in the host environment. Infected cell protein 22 (ICP22) or its homologue immediate early protein 63 (IE63) is a posttranslationally modified multifunctional viral regulatory protein encoded by all alphaherpesviruses. In addition to playing an important role in the efficient use of host cell RNA polymerase II, it also plays an important role in the defense process of the virus overcoming the host immune system. These two effects of ICP22/IE63 are important survival strategies for alphaherpesviruses. In this review, we summarize the complex mechanism by which the ICP22 protein regulates the transcription of alphaherpesviruses and their host genes and the mechanism by which ICP22/IE63 participates in immune escape. Reviewing these mechanisms will also help us understand the pathogenesis of alphaherpesvirus infections and provide new strategies to combat these viral infections.
Collapse
Affiliation(s)
- Qing He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Dissecting the Molecular Mechanisms of the Tropism of Varicella-Zoster Virus for Human T Cells. J Virol 2016; 90:3284-7. [PMID: 26792747 DOI: 10.1128/jvi.03375-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of varicella-zoster virus (VZV) tropism for T cells support their role in viral transport to the skin during primary infection. Multiparametric single-cell mass cytometry demonstrates that, instead of preferentially infecting skin-homing T cells, VZV alters cell signaling and remodels surface proteins to enhance T cell skin trafficking. Viral proteins dispensable in skin, such as that encoded by open reading frame 66, are necessary in T cells. Interference with VZV T cell tropism may offer novel strategies for drug and vaccine design.
Collapse
|
6
|
Wang W, Cheng T, Zhu H, Xia N. Insights into the function of tegument proteins from the varicella zoster virus. SCIENCE CHINA-LIFE SCIENCES 2015. [PMID: 26208824 DOI: 10.1007/s11427-015-4887-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chickenpox (varicella) is caused by primary infection with varicella zoster virus (VZV), which can establish long-term latency in the host ganglion. Once reactivated, the virus can cause shingles (zoster) in the host. VZV has a typical herpesvirus virion structure consisting of an inner DNA core, a capsid, a tegument, and an outer envelope. The tegument is an amorphous layer enclosed between the nucleocapsid and the envelope, which contains a variety of proteins. However, the types and functions of VZV tegument proteins have not yet been completely determined. In this review, we describe the current knowledge on the multiple roles played by VZV tegument proteins during viral infection. Moreover, we discuss the VZV tegument protein-protein interactions and their impact on viral tissue tropism in SCID-hu mice. This will help us develop a better understanding of how the tegument proteins aid viral DNA replication, evasion of host immune response, and pathogenesis.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, 361102, China
| | | | | | | |
Collapse
|
7
|
Zerboni L, Sen N, Oliver SL, Arvin AM. Molecular mechanisms of varicella zoster virus pathogenesis. Nat Rev Microbiol 2014; 12:197-210. [PMID: 24509782 PMCID: PMC4066823 DOI: 10.1038/nrmicro3215] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Varicella zoster virus (VZV) is the causative agent of varicella (chickenpox) and zoster (shingles). Investigating VZV pathogenesis is challenging as VZV is a human-specific virus and infection does not occur, or is highly restricted, in other species. However, the use of human tissue xenografts in mice with severe combined immunodeficiency (SCID) enables the analysis of VZV infection in differentiated human cells in their typical tissue microenvironment. Xenografts of human skin, dorsal root ganglia or foetal thymus that contains T cells can be infected with mutant viruses or in the presence of inhibitors of viral or cellular functions to assess the molecular mechanisms of VZV-host interactions. In this Review, we discuss how these models have improved our understanding of VZV pathogenesis.
Collapse
Affiliation(s)
- Leigh Zerboni
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nandini Sen
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Stefan L Oliver
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ann M Arvin
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
8
|
Osterman A, Vizoso-Pinto MG, Jung J, Jaeger G, Eberle J, Nitschko H, Baiker A. A novel indirect immunofluorescence test for the detection of IgG and IgA antibodies for diagnosis of Hepatitis E Virus infections. J Virol Methods 2013; 191:48-54. [PMID: 23557668 DOI: 10.1016/j.jviromet.2013.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 12/27/2022]
Abstract
Hepatitis E Virus (HEV) causes epidemic infections in regions of poor hygiene in the developing world. Over the last years, however, increasing numbers of autochthonous infections in industrialized countries have been described, leading to new interest in this pathogen. Currently available serological test formats to detect IgG and IgM antibodies are mainly based on bacterially expressed ORF2 and ORF3 antigens and often give ambiguous results. The objective of this study was the development of a different assay format for HEV diagnosis--a HEV immunofluorescence test (HEV-IFT) based on mammalian cells transiently expressing recombinant HEV ORF2 protein with a simple production and staining protocol and the investigation of its performance and methodical feasibility under diagnostic laboratory conditions. 31 sera of patients at different phases of HEV infection and 40 control sera from a non-endemic region were analyzed for anti-HEV IgG, IgM, and IgA antibodies. The HEV-IFT detected successfully anti-HEV IgG and IgA, but not anti-HEV IgM antibodies. In the study group the HEV-IFT was able to confirm HEV infections and to support diagnosis when ambiguous results were obtained by commercial assays. Signal localization and staining patterns helped to gather additional information about reactive antibodies present in patient sera. In conclusion the developed IFT for the detection of anti-HEV IgG and IgA antibodies can be used for diagnosis and for the serological confirmation of HEV infections.
Collapse
Affiliation(s)
- Andreas Osterman
- Max von Pettenkofer-Institute, Virology, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9a, D-80336 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
ORF11 protein interacts with the ORF9 essential tegument protein in varicella-zoster virus infection. J Virol 2013; 87:5106-17. [PMID: 23427162 DOI: 10.1128/jvi.00102-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tegument proteins encoded by ORF11 and ORF9 of varicella-zoster virus (VZV) are conserved among all alphaherpesvirus. We previously demonstrated that the ORF9 gene is essential, whereas ORF11 is dispensable in vitro but its deletion severely impairs VZV infection of skin xenografts in the SCID mouse model in vivo. Here we report that ORF11 protein interacts with ORF9 protein in infected cells as well as in the absence of other viral proteins, and we have mapped the ORF11 protein domain involved in their interaction. Although ORF11 is an RNA binding protein, the interaction between ORF11 and ORF9 proteins was not mediated by RNA or DNA bridging. VZV recombinants with mutations preventing ORF11 protein binding to ORF9 protein had no effect on 6-day growth kinetics based on plaque numbers, but plaque sizes were reduced in vitro. However, disruption of the ORF11 and ORF9 protein interaction was associated with failure to replicate in skin xenografts in vivo. Further, we demonstrate that in the absence of their interaction, the ORF9 protein displays an identical cellular localization, accumulating in the trans-Golgi region, whereas the ORF11 protein exhibits aberrant localization, dispersing throughout the cytoplasm. Overall, our observations suggest that while complete tegument assembly may not be necessary for VZV replication in vitro, the interaction between the ORF11 and ORF9 proteins appears to be critical for the proper localization of ORF11 protein to the assembly complex and for production of infectious virus during VZV pathogenesis in skin.
Collapse
|
10
|
Recombinant monoclonal antibody recognizes a unique epitope on varicella-zoster virus immediate-early 63 protein. J Virol 2012; 86:6345-9. [PMID: 22438547 DOI: 10.1128/jvi.06814-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We previously constructed a recombinant monoclonal antibody (rec-MAb 63P4) that detects immediate-early protein IE63 encoded by varicella-zoster virus (VZV) in the cytoplasm of productively infected cells. Here, we used ORF63 truncation mutants to map the rec-MAb 63P4 binding epitope to amino acids 141 to 150 of VZV IE63, a region not shared with other widely used anti-IE63 antibodies, and found that the recombinant antibody does not bind to the simian IE63 counterpart.
Collapse
|
11
|
Abstract
Primary infection by varicella zoster virus (VZV) typically results in childhood chickenpox, at which time latency is established in the neurons of the cranial nerve, dorsal root and autonomic ganglia along the entire neuraxis. During latency, the histone-associated virus genome assumes a circular episomal configuration from which transcription is epigenetically regulated. The lack of an animal model in which VZV latency and reactivation can be studied, along with the difficulty in obtaining high-titer cell-free virus, has limited much of our understanding of VZV latency to descriptive studies of ganglia removed at autopsy and analogy to HSV-1, the prototype alphaherpesvirus. However, the lack of miRNA, detectable latency-associated transcript and T-cell surveillance during VZV latency highlight basic differences between the two neurotropic herpesviruses. This article focuses on VZV latency: establishment, maintenance and reactivation. Comparisons are made with HSV-1, with specific attention to differences that make these viruses unique human pathogens.
Collapse
Affiliation(s)
| | - Aamir Shahzad
- Department for Biomolecular Structural Chemistry Max F. Perutz Laboratories, University of Vienna, Austria
| | - Randall J Cohrs
- Author for correspondence: University of Colorado Denver Medical School, Aurora, CO, USA, Tel.: +1 303 742 4325
| |
Collapse
|
12
|
Mutagenesis of varicella-zoster virus glycoprotein I (gI) identifies a cysteine residue critical for gE/gI heterodimer formation, gI structure, and virulence in skin cells. J Virol 2011; 85:4095-110. [PMID: 21345964 DOI: 10.1128/jvi.02596-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Varicella-zoster virus (VZV) is the alphaherpesvirus that causes chicken pox (varicella) and shingles (zoster). The two VZV glycoproteins gE and gI form a heterodimer that mediates efficient cell-to-cell spread. Deletion of gI yields a small-plaque-phenotype virus, ΔgI virus, which is avirulent in human skin using the xenograft model of VZV pathogenesis. In the present study, 10 mutant viruses were generated to determine which residues were required for the typical function of gI. Three phosphorylation sites in the cytoplasmic domain of gI were not required for VZV virulence in vivo. Two deletion mutants mapped a gE binding region in gI to residues 105 to 125. A glycosylation site, N116, in this region did not affect virulence. Substitution of four cysteine residues highly conserved in the Alphaherpesvirinae established that C95 is required for gE/gI heterodimer formation. The C95A and Δ105-125 (with residues 105 to 125 deleted) viruses had small-plaque phenotypes with reduced replication kinetics in vitro similar to those of the ΔgI virus. The Δ105-125 virus was avirulent for human skin in vivo. In contrast, the C95A mutant replicated in vivo but with significantly reduced kinetics compared to those of the wild-type virus. In addition to abolished gE/gI heterodimer formation, gI from the C95A or the Δ105-125 mutant was not recognized by monoclonal antibodies that detect the canonical conformation of gI, demonstrating structural disruption of gI in these viruses. This alteration prevented gI incorporation into virus particles. Thus, residues C95 and 105 to 125 are critical for gI structure required for gE/gI heterodimer formation, virion incorporation, and ultimately, effective viral spread in human skin.
Collapse
|
13
|
Folster JM, Jensen NJ, Ruyechan WT, Inoue N, Schmid DS. Regulation of the expression of the varicella-zoster virus open reading frame 66 gene. Virus Res 2010; 155:334-42. [PMID: 21074584 DOI: 10.1016/j.virusres.2010.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/01/2010] [Accepted: 11/04/2010] [Indexed: 11/18/2022]
Abstract
The varicella-zoster virus (VZV) open reading frame (ORF) 66 encodes a serine/threonine kinase that phosphorylates the major viral transactivator protein, immediate-early (IE) 62, preventing its nuclear importation. Cytoplasmic sequestration of IE62 may alter viral gene transcription and could serve as a mechanism for maintaining VZV latency. We examined the regulation of expression of the ORF66 gene by mapping the promoter region, which was localized to within 150 bases of the start codon. The ORF66 promoter was activated by two viral regulatory proteins, IE62 and IE63. We evaluated the binding of viral regulatory proteins and cellular transcription factors based on recognized cellular transcription factor binding sites identified within the ORF66 promoter. These included Sp1 and TBP binding sites, several of which were essential for optimal promoter activity. Site-directed mutations in Sp1 and TBP binding sites led to varying degrees of impairment of ORF66 gene expression in the context of VZV infection. We also examined the effect of Sp1 and TBP mutations on IE62, Sp1, and TBP binding. These studies reveal that host cell-derived and viral factors contribute to and cooperate in the expression of this important viral kinase gene.
Collapse
Affiliation(s)
- Jennifer M Folster
- Division of Viral Diseases, Measles, Mumps, Rubella, and Herpesvirus Laboratory Branch, Centers for Disease Control and Prevention, Office of Infectious Diseases, National Center for Immunizations and Respiratory Diseases, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
14
|
Zhang Z, Selariu A, Warden C, Huang G, Huang Y, Zaccheus O, Cheng T, Xia N, Zhu H. Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor. PLoS Pathog 2010; 6:e1000971. [PMID: 20617166 PMCID: PMC2895648 DOI: 10.1371/journal.ppat.1000971] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 05/27/2010] [Indexed: 11/30/2022] Open
Abstract
The Varicella Zoster Virus (VZV) is a ubiquitous human alpha-herpesvirus that is the causative agent of chicken pox and shingles. Although an attenuated VZV vaccine (v-Oka) has been widely used in children in the United States, chicken pox outbreaks are still seen, and the shingles vaccine only reduces the risk of shingles by 50%. Therefore, VZV still remains an important public health concern. Knowledge of VZV replication and pathogenesis remains limited due to its highly cell-associated nature in cultured cells, the difficulty of generating recombinant viruses, and VZV's almost exclusive tropism for human cells and tissues. In order to circumvent these hurdles, we cloned the entire VZV (p-Oka) genome into a bacterial artificial chromosome that included a dual-reporter system (GFP and luciferase reporter genes). We used PCR-based mutagenesis and the homologous recombination system in the E. coli to individually delete each of the genome's 70 unique ORFs. The collection of viral mutants obtained was systematically examined both in MeWo cells and in cultured human fetal skin organ samples. We use our genome-wide deletion library to provide novel functional annotations to 51% of the VZV proteome. We found 44 out of 70 VZV ORFs to be essential for viral replication. Among the 26 non-essential ORF deletion mutants, eight have discernable growth defects in MeWo. Interestingly, four ORFs were found to be required for viral replication in skin organ cultures, but not in MeWo cells, suggesting their potential roles as skin tropism factors. One of the genes (ORF7) has never been described as a skin tropic factor. The global profiling of the VZV genome gives further insights into the replication and pathogenesis of this virus, which can lead to improved prevention and therapy of chicken pox and shingles. The Varicella Zoster Virus (VZV) is the causative agent of chicken pox and shingles. The long-term efficacy of the current chickenpox vaccine is yet to be determined, and the current shingles vaccine fails to provide protective immunity for a substantial number of individuals. Shingles can also lead to post-herpetic neuralgia (PHN), a debilitating condition associated with an intractable pain that can linger for life. Therefore, VZV remains an important public health concern. We use growth-rate analysis of our genome-wide deletion library to determine the essentiality of all known VZV genes, including novel annotations for 51% of the VZV proteome. We also discovered a novel skin-tropic factor encoded by ORF7. Overall, our identification of genes essential for VZV replication and pathogenesis will serve as the basis for multiple in-depth genetic studies of VZV, which can lead to improved prevention and therapy of chicken pox and shingles. For example, essential genes may be appealing drug targets and genes whose deletion causes a substantial growth defect may be prospective candidates for novel live attenuated vaccines.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Microbiology and Molecular Genetics, UMNDJ-Newark, Newark, New Jersey, United States of America
| | - Anca Selariu
- Department of Microbiology and Molecular Genetics, UMNDJ-Newark, Newark, New Jersey, United States of America
| | - Charles Warden
- Department of Microbiology and Molecular Genetics, UMNDJ-Newark, Newark, New Jersey, United States of America
| | - Grace Huang
- Department of Microbiology and Molecular Genetics, UMNDJ-Newark, Newark, New Jersey, United States of America
| | - Ying Huang
- Department of Microbiology and Molecular Genetics, UMNDJ-Newark, Newark, New Jersey, United States of America
| | - Oluleke Zaccheus
- Department of Microbiology and Molecular Genetics, UMNDJ-Newark, Newark, New Jersey, United States of America
| | - Tong Cheng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, UMNDJ-Newark, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ambagala APN, Krogmann T, Qin J, Pesnicak L, Cohen JI. A varicella-zoster virus mutant impaired for latency in rodents, but not impaired for replication in cell culture. Virology 2010; 399:194-200. [PMID: 20116820 DOI: 10.1016/j.virol.2010.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 10/06/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
Abstract
While trying to generate a site-directed deletion in the ORF63 latency-associated gene of varicella-zoster virus (VZV) Oka, we constructed a virus with an unexpected rearrangement. The virus has a small deletion in both copies of ORF63 and two copies of a cassette inserted between ORFs 64/65 and 68/69 containing (a) truncated ORF62, (b) ORF63 with a small deletion, and (c) full-length ORF64. The virus was not impaired for growth in human cells, induced higher levels of neutralizing antibodies in guinea pigs, and was impaired for latency in cotton rats compared with parental virus (p=0.0022). Additional mutants containing the same truncation in ORF62, with or without the ORF63 deletion, were less impaired for latency. A VZV Oka mutant, replicating to similar titers and inducing a comparable immune response as parental virus, but impaired for latency, might serve as a safer vaccine and be less likely to reactivate to cause zoster.
Collapse
Affiliation(s)
- Aruna P N Ambagala
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
16
|
Mueller NH, Walters MS, Marcus RA, Graf LL, Prenni J, Gilden D, Silverstein SJ, Cohrs RJ. Identification of phosphorylated residues on varicella-zoster virus immediate-early protein ORF63. J Gen Virol 2010; 91:1133-7. [PMID: 20089801 DOI: 10.1099/vir.0.019067-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient replication of varicella-zoster virus (VZV) in cell culture requires expression of protein encoded by VZV open reading frame 63 (ORF63p). Two-dimensional gel analysis demonstrates that ORF63p is extensively modified. Mass spectroscopy analysis of ORF63p isolated from transiently transfected HEK 293 and stably transfected MeWo cells identified 10 phosphorylated residues. In VZV-infected MeWo cells, only six phosphorylated residues were detected. This report identifies phosphorylation of two previously uncharacterized residues (Ser5 and Ser31) in ORF63p extracted from cells infected with VZV or transfected with an ORF63p expression plasmid. Computational analysis of ORF63p for known kinase substrates did not identify Ser5 or Ser31 as candidate phosphorylation sites, suggesting that either atypical recognition sequences or novel cellular kinases are involved in ORF63p post-translational modification.
Collapse
Affiliation(s)
- Niklaus H Mueller
- Department of Neurology, University of Colorado Denver School of Medicine, Denver, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The varicella-zoster virus (VZV) genome contains at least 70 genes, and all but six have homologs in herpes simplex virus (HSV). Cosmids and BACs corresponding to the VZV parental Oka and vaccine Oka viruses have been used to "knockout" 34 VZV genes. Seven VZV genes (ORF4, 5, 9, 21, 29, 62, and 68) have been shown to be required for growth in vitro. Recombinant viruses expressing several markers (e.g., beta-galactosidase, green fluorescence protein, luciferase) and several foreign viral genes (from herpes simplex, Epstein-Barr virus, hepatitis B, mumps, HIV, and simian immunodeficiency virus) have been constructed. Further studies of the VZV genome, using recombinant viruses, may facilitate the development of safer and more effective VZV vaccines. Furthermore, VZV might be useful as a vaccine vector to immunize against both VZV and other viruses.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Varicella-zoster virus T cell tropism and the pathogenesis of skin infection. Curr Top Microbiol Immunol 2010; 342:189-209. [PMID: 20397071 DOI: 10.1007/82_2010_29] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Varicella-zoster virus (VZV) is a medically important human alphaherpesvirus that causes varicella and zoster. VZV initiates primary infection by inoculation of the respiratory mucosa. In the course of primary infection, VZV establishes a life-long persistence in sensory ganglia; VZV reactivation from latency may result in zoster in healthy and immunocompromised patients. The VZV genome has at least 70 known or predicted open reading frames (ORFs), but understanding how these gene products function in virulence is difficult because VZV is a highly human-specific pathogen. We have addressed this obstacle by investigating VZV infection of human tissue xenografts in the severe combined immunodeficiency mouse model. In studies relevant to the pathogenesis of primary VZV infection, we have examined VZV infection of human T cell (thymus/liver) and skin xenografts. This work supports a new paradigm for VZV pathogenesis in which VZV T cell tropism provides a mechanism for delivering the virus to skin. We have also shown that VZV-infected T cells transfer VZV to neurons in sensory ganglia. The construction of infectious VZV recombinants that have deletions or targeted mutations of viral genes or their promoters and the evaluation of VZV mutants in T cell and skin xenografts has revealed determinants of VZV virulence that are important for T cell and skin tropism in vivo.
Collapse
|
19
|
Phosphorylation of the nuclear form of varicella-zoster virus immediate-early protein 63 by casein kinase II at serine 186. J Virol 2009; 83:12094-100. [PMID: 19759161 DOI: 10.1128/jvi.01526-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame (ORF) 63 is abundantly transcribed in latently infected human ganglia and encodes a 278-amino-acid protein, IE63, with immediate-early kinetics. IE63 is expressed in the cytoplasm of neurons during VZV latency and in both the cytoplasm and the nucleus during productive infection; however, the mechanism(s) involved in IE63 nuclear import and retention has remained unclear. We constructed and identified a recombinant monoclonal antibody to detect a posttranslationally modified form of IE63. Analysis of a series of IE63 truncation and substitution mutants showed that amino acids 186 to 195 are required for antibody binding. Synthetic peptides corresponding to this region identified IE63 S186 as a target for casein kinase II phosphorylation. In addition, acidic charges supplied by E194 and E195 were required for antibody binding. Immunofluorescence analysis of VZV-infected MeWo cells using the recombinant monoclonal antibody detected IE63 exclusively in the nuclei of infected cells, indicating that casein kinase II phosphorylation of S186 occurs in the nucleus and possibly identifying an initial molecular event operative in VZV reactivation.
Collapse
|
20
|
The replication cycle of varicella-zoster virus: analysis of the kinetics of viral protein expression, genome synthesis, and virion assembly at the single-cell level. J Virol 2009; 83:3904-18. [PMID: 19193797 DOI: 10.1128/jvi.02137-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Varicella-zoster virus (VZV) is a human alphaherpesvirus that is highly cell associated in cell culture. Because cell-free virus yields are too low to permit the synchronous infections needed for time-resolved analyses, information is lacking about the sequence of events during the VZV replication cycle. To address this challenge, we differentially labeled VZV-infected inoculum cells (input) and uninfected (output) cells with fluorescent cell dyes or endocytosed nanogold particles and evaluated newly infected cells by confocal immunofluorescence or electron microscopy (EM) at the single-cell level at defined intervals. We demonstrated the spatiotemporal expression of six major VZV proteins, ORF61, IE62, IE63, ORF29, ORF23, and gE, representing all putative kinetic classes, for the first time. Newly synthesized ORF61, as well as IE62, the major VZV transactivator, appeared within 1 h, and they were targeted to different subnuclear compartments. The formation of VZV DNA replication compartments started between 4 and 6 h, involved recruitment of ORF29 to putative IE62 prereplication sites, and resulted in large globular nuclear compartments where newly synthesized viral DNA accumulated. Although considered a late protein, gE accumulated in the Golgi compartment at as early as 4 h. ORF23 capsid protein was present at 9 h. The assembly of viral nucleocapsids and mature enveloped VZ virions was detected by 9 to 12 h by time-resolved EM. Although syncytium formation is a hallmark of VZV infection, infection of neighboring cells did not require cell-cell fusion; its occurrence from 9 h is likely to amplify VZV replication. Our results define the productive cycle of VZV infection in a single cell as occurring in 9 to 12 h.
Collapse
|
21
|
Oliver SL, Zerboni L, Sommer M, Rajamani J, Arvin AM. Development of recombinant varicella-zoster viruses expressing luciferase fusion proteins for live in vivo imaging in human skin and dorsal root ganglia xenografts. J Virol Methods 2008; 154:182-93. [PMID: 18761377 PMCID: PMC2657092 DOI: 10.1016/j.jviromet.2008.07.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/18/2008] [Accepted: 07/23/2008] [Indexed: 11/16/2022]
Abstract
Varicella-zoster virus (VZV) is a host specific human pathogen that has been studied using human xenografts in SCID mice. Live whole-animal imaging is an emerging technique to measure protein expression in vivo using luminescence. Currently, it has only been possible to determine VZV protein expression in xenografts postmortem. Therefore, to measure immediate early (IE63) and late (glycoprotein E [gE]) protein expression in vivo viruses expressing IE63 or gE as luciferase fusion proteins were generated. Viable recombinant viruses pOka-63-luciferase and pOka-63/70-luciferase, which had luciferase genes fused to ORF63 and its duplicate ORF70, or pOka-gE-CBR were recovered that expressed IE63 or gE as fusion proteins and generated luminescent plaques. In contrast to pOka-63/70-luciferase viruses, the luciferase gene was rapidly lost in vitro when fused to a single copy of ORF63 or ORF68. IE63 expression was successfully measured in human skin and dorsal root ganglia xenografts infected with the genomically stable pOka-63/70-luciferase viruses. The progress of VZV infection in dorsal root ganglia xenografts was delayed in valacyclovir treated mice but followed a similar trend in untreated mice when the antiviral was withdrawn 28 days post-inoculation. Thus, IE63-luciferase fusion proteins were effective for investigating VZV infection and antiviral activity in human xenografts.
Collapse
Affiliation(s)
- Stefan L Oliver
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | | | | | | | | |
Collapse
|
22
|
Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3.1 and h3.3. J Virol 2008; 83:200-9. [PMID: 18971269 DOI: 10.1128/jvi.00645-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Varicella-zoster virus (VZV) immediate-early 63 protein (IE63) is abundantly expressed during both acute infection in vitro and latent infection in human ganglia. Using the yeast two-hybrid system, we found that VZV IE63 interacts with human antisilencing function 1 protein (ASF1). ASF1 is a nucleosome assembly factor which is a member of the H3/H4 family of histone chaperones. IE63 coimmunoprecipitated and colocalized with ASF1 in transfected cells expressing IE63 and in VZV-infected cells. IE63 also colocalized with ASF1 in both lytic and latently VZV-infected enteric neurons. ASF1 exists in two isoforms, ASF1a and ASF1b, in mammalian cells. IE63 preferentially bound to ASF1a, and the amino-terminal 30 amino acids of ASF1a were critical for its interaction with IE63. VZV IE63 amino acids 171 to 208 and putative phosphorylation sites of IE63, both of which are critical for virus replication and latency in rodents, were important for the interaction of IE63 with ASF1. Finally, we found that IE63 increased the binding of ASF1 to histone H3.1 and H3.3, which suggests that IE63 may help to regulate levels of histones in virus-infected cells. Since ASF1 mediates eviction and deposition of histones during transcription, the interaction of VZV IE63 with ASF1 may help to regulate transcription of viral or cellular genes during lytic and/or latent infection.
Collapse
|
23
|
Nuclear import of the varicella-zoster virus latency-associated protein ORF63 in primary neurons requires expression of the lytic protein ORF61 and occurs in a proteasome-dependent manner. J Virol 2008; 82:8673-86. [PMID: 18562514 DOI: 10.1128/jvi.00685-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame (ORF) 63 protein (ORF63p) is one of six VZV ORFs shown to be transcribed and translated in latently infected human dorsal root ganglia. ORF63p accumulates exclusively in the cytoplasm of latently infected sensory neurons, whereas it is both nuclear and cytoplasmic during lytic infection and following reactivation from latency. Here, we demonstrate that infection of primary guinea pig enteric neurons (EN) with an adenovirus expressing ORF63p results in the exclusive cytoplasmic localization of the protein reminiscent of its distribution during latent VZV infection in humans. We show that the addition of the simian virus 40 large-T-antigen nuclear localization signal (NLS) results in the nuclear import of ORF63p in EN and that the ORF63p endogenous NLSs are functional in EN when fused to a heterologous protein. These data suggest that the cytoplasmic localization of ORF63p in EN results from the masking of the NLSs, thus blocking nuclear import. However, the coexpression of ORF61p, a strictly lytic VZV protein, and ORF63p in EN results in the nuclear import of ORF63p in a proteasome-dependent manner, and both ORF63p NLSs are required for this event. We propose that the cytoplasmic localization of ORF63p in neurons results from NLS masking and that the expression of ORF61p removes this block, allowing nuclear import to proceed.
Collapse
|
24
|
Zhang B, Duan Z, Zhao Y. Mouse models with human immunity and their application in biomedical research. J Cell Mol Med 2008; 13:1043-58. [PMID: 18419795 PMCID: PMC4496103 DOI: 10.1111/j.1582-4934.2008.00347.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biomedical research in human beings is largely restricted to in vitro studies that lack complexity of a living organism. To overcome this limitation, humanized mouse models are developed based on immunodeficient characteristics of severe combined immunodeficiency (SCID) or recombination activating gene (Rag)(null) mice, which can accept xenografts. Peripheral constitution of human immunity in SCID or Rag(null) mice has been achieved by transplantation of mature human immune cells, foetal human thymus, bone marrow, liver tissues, lymph nodes or a combination of these, although efficiency needs to be improved. These mouse models with constituted human immunity (defined as humanized mice in the present text) have been widely used to investigate the basic principles of human immunobiology as well as complex pathomechanisms and potential therapies of human diseases. Here, elements of an ideal humanized mouse model are highlighted including genetic and non-genetic modification of recipient mice, transplantation strategies and proposals to improve engraftments. The applications of the humanized mice to study the development and response of human immune cells, human autoimmune diseases, virus infections, transplantation biology and tumour biology are reviewed as well.
Collapse
Affiliation(s)
- Baojun Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
25
|
Jones L, Black AP, Malavige GN, Ogg GS. Phenotypic analysis of human CD4+ T cells specific for immediate-early 63 protein of varicella-zoster virus. Eur J Immunol 2008; 37:3393-403. [PMID: 18034426 DOI: 10.1002/eji.200737648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Open reading frame 63 of varicella-zoster Virus (VZV) encodes an immediate early (IE) phosphoprotein (IE63) that is believed to be important for viral infectivity and establishing latency. Evidence suggests that VZV-specific T cells are crucial in the control of viral replication; however, data addressing the existence of IE63 protein-specific CD4+ T cells are limited. Using IFN-gamma immunosorbent assays, we identified high frequencies of responses to overlapping peptides spanning the IE63 protein both ex vivo and after in vitro restimulation in healthy VZV-seropositive individuals. We identified a commonly recognised epitope, restricted by HLA-DRB1*1501, which was naturally processed and presented by keratinocytes. We proceeded to investigate the frequency and phenotype of the epitope-specific CD4+ T cells using HLA class II tetrameric complexes. Epitope-specific CD4+ T cells were detectable ex vivo and showed a mixed central and effector-memory differentiation phenotype, with a significant proportion showing evidence of recent activation and rapid effector function. In summary these data implicate persistent low-level or recurrent VZV antigen exposure in healthy immune donors and are compatible with a role for IE63-specific CD4+ T cells in the control of viral reactivation.
Collapse
Affiliation(s)
- Louise Jones
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, and Department of Dermatology, Churchill Hospital, Oxford, UK.
| | | | | | | |
Collapse
|
26
|
Habran L, El Mjiyad N, Di Valentin E, Sadzot-Delvaux C, Bontems S, Piette J. The varicella-zoster virus immediate-early 63 protein affects chromatin-controlled gene transcription in a cell-type dependent manner. BMC Mol Biol 2007; 8:99. [PMID: 17971236 PMCID: PMC2176069 DOI: 10.1186/1471-2199-8-99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 10/30/2007] [Indexed: 01/15/2023] Open
Abstract
Background Varicella Zoster Virus Immediate Early 63 protein (IE63) has been shown to be essential for VZV replication, and critical for latency establishment. The activity of the protein as a transcriptional regulator is not fully clear yet. Using transient transfection assays, IE63 has been shown to repress viral and cellular promoters containing typical TATA boxes by interacting with general transcription factors. Results In this paper, IE63 regulation properties on endogenous gene expression were evaluated using an oligonucleotide-based micro-array approach. We found that IE63 modulates the transcription of only a few genes in HeLa cells including genes implicated in transcription or immunity. Furthermore, we showed that this effect is mediated by a modification of RNA POL II binding on the promoters tested and that IE63 phosphorylation was essential for these effects. In MeWo cells, the number of genes whose transcription was modified by IE63 was somewhat higher, including genes implicated in signal transduction, transcription, immunity, and heat-shock signalling. While IE63 did not modify the basal expression of several NF-κB dependent genes such as IL-8, ICAM-1, and IκBα, it modulates transcription of these genes upon TNFα induction. This effect was obviously correlated with the amount of p65 binding to the promoter of these genes and with histone H3 acetylation and HDAC-3 removal. Conclusion While IE63 only affected transcription of a small number of cellular genes, it interfered with the TNF-inducibility of several NF-κB dependent genes by the accelerated resynthesis of the inhibitor IκBα.
Collapse
Affiliation(s)
- Lionel Habran
- Virology & Immunology Unit, GIGA-Research, GIGA B34, University of Liège, B-4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
27
|
Berarducci B, Sommer M, Zerboni L, Rajamani J, Arvin AM. Cellular and viral factors regulate the varicella-zoster virus gE promoter during viral replication. J Virol 2007; 81:10258-67. [PMID: 17634217 PMCID: PMC2045477 DOI: 10.1128/jvi.00553-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) glycoprotein E (gE) is essential for viral replication and is involved in cell-to-cell spread, secondary envelopment, and entry. We created a set of mutations in the gE promoter to investigate the role of viral and cellular transcriptional factors in regulation of the gE promoter. Deletion or point mutation of the two Sp1 sites in the gE promoter abolished Sp1 binding and IE62-mediated transactivation of the gE promoter in vitro. Incorporation of the deletion or the point mutations disrupting both of the Sp1 binding sites into the VZV genome was not compatible with viral replication. A point mutation altering the atypical Sp1 binding site was lethal, while altering the second site impaired VZV replication significantly, indicating functional differences between the two Sp1 binding sites. Deletions in the gE promoter that abolished putative binding sites for cellular transcriptional factors other than Sp1, identified by bioinformatics analysis, were inserted in the VZV genome. Replication of the viruses with mutations of the gE promoter did not differ from control recombinants in melanoma cells or primary human tonsil T cells in vitro. These deletions did not affect infection of human skin xenografts in SCIDhu mice. These results indicate that Sp1 is required for IE62-mediated transactivation of the gE promoter and that this transcriptional factor appears to be the only cellular factor essential for regulation of the gE promoter.
Collapse
Affiliation(s)
- Barbara Berarducci
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Dr., Rm. G312, Stanford, CA 94305-5208, USA.
| | | | | | | | | |
Collapse
|
28
|
Ambagala APN, Cohen JI. Varicella-Zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response. J Virol 2007; 81:7844-51. [PMID: 17507475 PMCID: PMC1951283 DOI: 10.1128/jvi.00325-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 63 (ORF63) is the most abundant transcript expressed during latency in human sensory ganglia. VZV with ORF63 deleted is impaired for replication in melanoma cells and fibroblasts and for latency in rodents. We found that replication of the ORF63 deletion mutant is fully complemented in U2OS cells, which have been shown to complement the growth of herpes simplex virus type 1 (HSV-1) ICP0 mutants. Since HSV-1 ICP0 mutants are hypersensitive to alpha interferon (IFN-alpha), we examined the effect of IFN-alpha on VZV replication. Replication of the ORF63 mutant in melanoma cells was severely inhibited in the presence of IFN-alpha, in contrast to other VZV mutants that were similarly impaired for replication or to parental virus. The VZV ORF63 mutant was not hypersensitive to IFN-gamma. IFN-alpha inhibited viral-gene expression in cells infected with the ORF63 mutant at a posttranscriptional level. Since IFN-alpha stimulates gene products that can phosphorylate the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) and inhibit translation, we determined whether cells infected with the ORF63 mutant had increased phosphorylation of eIF-2alpha compared with cells infected with parental virus. While phosphorylated eIF-2alpha was undetectable in uninfected cells or cells infected with parental virus, it was present in cells infected with the ORF63 mutant. Conversely, expression of IE63 (encoded by ORF63) in the absence of other viral proteins inhibited phosphorylation of eIF-2alpha. Since IFN-alpha has been shown to limit VZV replication in human skin xenografts, the ability of VZV IE63 to block the effects of the cytokine may play a critical role in VZV pathogenesis.
Collapse
Affiliation(s)
- Aruna P N Ambagala
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Cilloniz C, Jackson W, Grose C, Czechowski D, Hay J, Ruyechan WT. The varicella-zoster virus (VZV) ORF9 protein interacts with the IE62 major VZV transactivator. J Virol 2006; 81:761-74. [PMID: 17079304 PMCID: PMC1797441 DOI: 10.1128/jvi.01274-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The varicella-zoster virus (VZV) ORF9 protein is a member of the herpesvirus UL49 gene family but shares limited identity and similarity with the UL49 prototype, herpes simplex virus type 1 VP22. ORF9 mRNA is the most abundantly expressed message during VZV infection; however, little is known concerning the functions of the ORF9 protein. We have found that the VZV major transactivator IE62 and the ORF9 protein can be coprecipitated from infected cells. Yeast two-hybrid analysis localized the region of the ORF9 protein required for interaction with IE62 to the middle third of the protein encompassing amino acids 117 to 186. Protein pull-down assays with GST-IE62 fusion proteins containing N-terminal IE62 sequences showed that amino acids 1 to 43 of the acidic transcriptional activation domain of IE62 can bind recombinant ORF9 protein. Confocal microscopy of transiently transfected cells showed that in the absence of other viral proteins, the ORF9 protein was localized in the cytoplasm while IE62 was localized in the nucleus. In VZV-infected cells, the ORF9 protein was localized to the cytoplasm whereas IE62 exhibited both nuclear and cytoplasmic localization. Cotransfection of plasmids expressing ORF9, IE62, and the viral ORF66 kinase resulted in significant colocalization of ORF9 and IE62 in the cytoplasm. Coimmunoprecipitation experiments with antitubulin antibodies indicate the presence of ORF9-IE62-tubulin complexes in infected cells. Colocalization of ORF9 and tubulin in transfected cells was visualized by confocal microscopy. These data suggest a model for ORF9 protein function involving complex formation with IE62 and possibly other tegument proteins in the cytoplasm at late times in infection.
Collapse
Affiliation(s)
- Cristian Cilloniz
- Department of Microbiology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, SUNY, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
30
|
Berarducci B, Ikoma M, Stamatis S, Sommer M, Grose C, Arvin AM. Essential functions of the unique N-terminal region of the varicella-zoster virus glycoprotein E ectodomain in viral replication and in the pathogenesis of skin infection. J Virol 2006; 80:9481-96. [PMID: 16973553 PMCID: PMC1617235 DOI: 10.1128/jvi.00533-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) glycoprotein E (gE) is a multifunctional protein important for cell-cell spread, envelopment, and possibly entry. In contrast to other alphaherpesviruses, gE is essential for VZV replication. Interestingly, the N-terminal region of gE, comprised of amino acids 1 to 188, was shown not to be conserved in the other alphaherpesviruses by bioinformatics analysis. Mutational analysis was performed to investigate the functions associated with this unique gE N-terminal region. Linker insertions, serine-to-alanine mutations, and deletions were introduced in the gE N-terminal region in the VZV genome, and the effects of these mutations on virus replication and cell-cell spread, gE trafficking and localization, virion formation, and replication in vivo in the skin were analyzed. In summary, mutagenesis of the gE N-terminal region identified a new functional region in the VZV gE ectodomain essential for cell-cell spread and the pathogenesis of VZV skin tropism and demonstrated that different subdomains of the unique N-terminal region had specific roles in viral replication, cell-cell spread, and secondary envelopment.
Collapse
Affiliation(s)
- Barbara Berarducci
- Department of Pediatrics and Microbiology, Stanford University School of Medicine, 300 Pasteur Dr., Rm G312, Stanford, CA 94305-5208, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Schaap-Nutt A, Sommer M, Che X, Zerboni L, Arvin AM. ORF66 protein kinase function is required for T-cell tropism of varicella-zoster virus in vivo. J Virol 2006; 80:11806-16. [PMID: 16971426 PMCID: PMC1642581 DOI: 10.1128/jvi.00466-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several functions have been attributed to the serine/threonine protein kinase encoded by open reading frame 66 (ORF66) of varicella-zoster virus (VZV), including modulation of the apoptosis and interferon pathways, down-regulation of major histocompatibility complex class I cell surface expression, and regulation of IE62 localization. The amino acid sequence of the ORF66 protein contains a recognizable conserved kinase domain. Point mutations were introduced into conserved protein kinase motifs to evaluate their importance to ORF66 protein functions. Two substitution mutants were generated, including a G102A substitution, which blocked autophosphorylation and altered IE62 localization, and an S250P substitution, which had no effect on either autophosphorylation or IE62 localization. Both kinase domain mutants grew to titers equivalent to recombinant parent Oka (pOka) in vitro. pOka66G102A had slightly reduced growth in skin, which was comparable to the reduction observed when ORF66 translation was prevented by stop codon insertions in pOka66S. In contrast, infection of T-cell xenografts with pOka66G102A was associated with a significant decrease in infectious virus production equivalent to the impaired T-cell tropism found with pOka66S infection of T-cell xenografts in vivo. Disrupting kinase activity with the G102A mutation did not alter IE62 cytoplasmic localization in VZV-infected T cells, suggesting that decreased T-cell tropism is due to other ORF66 protein functions. The G102A mutation reduced the antiapoptotic effects of VZV infection of T cells. These experiments indicate that the T-cell tropism of VZV depends upon intact ORF66 protein kinase function.
Collapse
Affiliation(s)
- Anne Schaap-Nutt
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5208, USA.
| | | | | | | | | |
Collapse
|
32
|
Jones JO, Sommer M, Stamatis S, Arvin AM. Mutational analysis of the varicella-zoster virus ORF62/63 intergenic region. J Virol 2006; 80:3116-21. [PMID: 16501125 PMCID: PMC1395429 DOI: 10.1128/jvi.80.6.3116-3121.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The varicella-zoster virus (VZV) ORF62/63 intergenic region was cloned between the Renilla and firefly luciferase genes, which acted as reporters of ORF62 and ORF63 transcription, and recombinant viruses were generated that carried these reporter cassettes along with the intact native sequences in the repeat regions of the VZV genome. In order to investigate the potential contributions of cellular transregulatory proteins to ORF62 and ORF63 transcription, recombinant reporter viruses with mutations of consensus binding sites for six proteins within the intergenic region were also created. The reporter viruses were used to evaluate ORF62 and ORF63 transcription during VZV replication in cultured fibroblasts and in skin xenografts in SCIDhu mice in vivo. Mutations in putative binding sites for heat shock factor 1 (HSF-1), nuclear factor 1 (NF-1), and one of two cyclic AMP-responsive elements (CRE) reduced ORF62 reporter transcription in fibroblasts, while mutations in binding sites for HSF-1, NF-1, and octamer binding proteins (Oct-1) increased ORF62 reporter transcription in skin. Mutations in one CRE and the NF-1 site altered ORF63 transcription in fibroblasts, while mutation of the Oct-1 binding site increased ORF63 reporter transcription in skin. The effect of each of these mutations implies that the intact binding site sequence regulates native ORF62 and ORF63 transcription. Mutation of the only NF-kappaB/Rel binding site had no effect on ORF62 or ORF63 transcription in vitro or in vivo. The segment of the ORF62/63 intergenic region proximal to ORF63 was most important for ORF63 transcription, but mutagenesis also altered ORF62 transcription, indicating that this region functions as a bidirectional promoter. This first analysis of the ORF62/63 intergenic region in the context of VZV replication indicates that it is a dual promoter and that cellular transregulatory factors affect the transcription of these key VZV regulatory genes.
Collapse
Affiliation(s)
- Jeremy O Jones
- Department of Pediatrics, Stanford University, Stanford, California, USA.
| | | | | | | |
Collapse
|
33
|
Mahalingam R, Gilden DH, Wellish M, Pugazhenthi S. Transactivation of the simian varicella virus (SVV) open reading frame (ORF) 21 promoter by SVV ORF 62 is upregulated in neuronal cells but downregulated in non-neuronal cells by SVV ORF 63 protein. Virology 2005; 345:244-50. [PMID: 16242745 DOI: 10.1016/j.virol.2005.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 08/16/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
Simian varicella virus (SVV) infection in primates closely resembles varicella-zoster virus (VZV) infection in humans. SVV ORF 63 has 51.6% homology at the amino acid level to VZV ORF 63. We cloned SVV ORFs 63 and 62, transcribed and translated in vitro, and immunoprecipitated the expected proteins with rabbit polyclonal antibodies. Immunoprecipitation analysis revealed that SVV ORF 63 is expressed as a 43-kDa phosphorylated protein in virus-infected cells. In both neuronal and non-neuronal cells, SVV ORF 62 protein alone upregulated the SVV 21 promoter, while SVV ORF 63 protein alone did not have any effect. SVV ORF 62-mediated transactivation of the SVV ORF 21 promoter was upregulated in neuronal cells, but downregulated in non-neuronal cells, by SVV ORF 63 protein. This is the first study in which a varicella protein (ORF 63) expressed during latency has been shown to have a differential effect on a promoter that is also active during latency, in neuronal as compared to non-neuronal cells.
Collapse
Affiliation(s)
- Ravi Mahalingam
- Department of Neurology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
34
|
Abstract
Varicella-zoster virus (VZV) infection is restricted to humans, which hinders studies of its pathogenesis in rodent models of disease. To facilitate the study of VZV skin tropism, we developed an ex vivo system using human fetal skin organ culture (SOC). VZV replication was analyzed by plaque assay, transmission electron microscopy, and histology. The yield of infectious VZV from SOC increased approximately 100-fold over 6 days, virions were abundant, and lesions developed that contained VZV antigens and resembled varicella and zoster lesions. The SOC system for VZV replication has applications for testing virus mutants and antiviral drugs.
Collapse
Affiliation(s)
- Shannon L Taylor
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
35
|
Di Valentin E, Bontems S, Habran L, Jolois O, Markine-Goriaynoff N, Vanderplasschen A, Sadzot-Delvaux C, Piette J. Varicella-zoster virus IE63 protein represses the basal transcription machinery by disorganizing the pre-initiation complex. Biol Chem 2005; 386:255-67. [PMID: 15843171 DOI: 10.1515/bc.2005.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using transient transfection assays, regulation properties of varicella-zoster virus (VZV)-encoded IE63 protein were analyzed on several VZV immediate early (ORF4), early (ORF28) and late (ORF67) promoters. IE63 was shown to repress the basal activity of most of the promoters tested in epithelial (Vero) and neuronal (ND7) cells to various extents. Trans-repressing activities were also observed on heterologous viral and cellular promoters. Since a construct carrying only a TATA box sequence and a series of wild-type or mutated interleukin (IL)-8 promoters was also repressed by IE63, the role of upstream regulatory elements was ruled out. Importantly, the basal activity of a TATA-less promoter was not affected by IE63. Using a series of IE63 deletion constructs, amino acids 151-213 were shown to be essential to the trans-repressing activity in Vero cells, while in ND7 cells the essential region extended to a much larger carboxy-terminal part of the protein. We also demonstrate that IE63 is capable of disrupting the transcriptional pre-initiation complex and of interacting with several general transcription factors. The central and carboxy-terminal domains of IE63 are important for these effects. Altogether, these results demonstrate that IE63 protein is a transcriptional repressor whose activity is directed towards general transcription factors.
Collapse
Affiliation(s)
- Emmanuel Di Valentin
- Laboratory of Virology and Immunology, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zuranski T, Nawar H, Czechowski D, Lynch JM, Arvin A, Hay J, Ruyechan WT. Cell-type-dependent activation of the cellular EF-1alpha promoter by the varicella-zoster virus IE63 protein. Virology 2005; 338:35-42. [PMID: 15936796 DOI: 10.1016/j.virol.2005.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 03/02/2005] [Accepted: 05/05/2005] [Indexed: 11/20/2022]
Abstract
The varicella-zoster virus (VZV) IE63 protein is abundantly expressed during productive viral infection and is one of six gene products that appear to be expressed during latency. We have found that the IE63 protein can activate expression from the cellular EF-1alpha promoter in the absence of other viral proteins. The VZV IE62 protein, in contrast, was not found to transactivate this promoter. These data indicate that IE63 can function independently of the IE62 protein to positively influence the cellular transcription apparatus. We show that IE63 activation of the EF-1alpha promoter is cell type dependent and have examined the effects of point mutations important for IE63 phosphorylation and virus viability on this activation.
Collapse
Affiliation(s)
- Tricia Zuranski
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, 138 Farber Hall, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Jones JO, Arvin AM. Viral and cellular gene transcription in fibroblasts infected with small plaque mutants of varicella-zoster virus. Antiviral Res 2005; 68:56-65. [PMID: 16118026 DOI: 10.1016/j.antiviral.2005.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/09/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella and herpes zoster. In these experiments, cDNA corresponding to 69 VZV open reading frames was added to 42K human cDNA microarrays and used to examine viral as well as cellular gene transcription concurrently in fibroblasts infected with two genetically distinct small plaque VZV mutants, rOka/ORF63rev[T171] and rOkaDeltagI. rOka/ORF63rev[T171] has a point mutation in ORF63, which encodes the immediate early regulatory protein, IE63, and rOkaDeltagI has a deletion of ORF67, encoding glycoprotein I (gI). rOka/ORF63rev[T171] was deficient in the transcription of several viral genes compared to the recombinant rOka control virus. Deletion of ORF67 had minimal effects on viral gene transcription. Effects of rOka/ORF63rev[T171] and rOkaDeltagI on host cell gene transcription were similar to the rOka control, but a few host cell genes were regulated differently in rOkaDeltagI-infected cells. Infection of fibroblasts with intact or small plaque VZV mutants was associated with down-regulation of NF-kappaB and interferon responsive genes, down-regulation of TGF-beta responsive genes accompanied by reduced amounts of fibrotic/wound healing response genes (e.g. collagens, follistatin) and activation of cellular proliferation genes, and alteration of neuronal growth markers, as well as cellular genes encoding proteins important in protein and vesicle trafficking. These observations suggest that replication of VZV small plaque mutant viruses and intact VZV have similar consequences for host cell gene transcription in infected cells, and that the small plaque phenotype in these mutants reflects deficiencies in viral gene expression.
Collapse
Affiliation(s)
- Jeremy O Jones
- Department of Pediatrics, Stanford University, 300 Pasteur Drive, Rm G312, Stanford, CA, USA.
| | | |
Collapse
|
38
|
Habran L, Bontems S, Di Valentin E, Sadzot-Delvaux C, Piette J. Varicella-zoster virus IE63 protein phosphorylation by roscovitine-sensitive cyclin-dependent kinases modulates its cellular localization and activity. J Biol Chem 2005; 280:29135-43. [PMID: 15955820 DOI: 10.1074/jbc.m503312200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the first stage of Varicella-Zoster virus (VZV) infection, IE63 (immediate early 63 protein) is mostly expressed in the nucleus and also slightly in the cytoplasm, and during latency, IE63 localizes in the cytoplasm quite exclusively. Because phosphorylation is known to regulate various cellular mechanisms, we investigated the impact of phosphorylation by roscovitine-sensitive cyclin-dependent kinase (RSC) on the localization and functional properties of IE63. We demonstrated first that IE63 was phosphorylated on Ser-224 in vitro by CDK1 and CDK5 but not by CDK2, CDK7, or CDK9. Furthermore, by using roscovitine and CDK1 inhibitor III (CiIII), we showed that CDK1 phosphorylated IE63 on Ser-224 in vivo. By mutagenesis and the use of inhibitors, we demonstrated that phosphorylation on Ser-224 was important for the correct localization of the protein. Indeed, the substitution of these residues by alanine led to an exclusive nuclear localization of the protein, whereas mutations into glutamic acid did not modify its subcellular distribution. When transfected or VZV-infected cells were treated with roscovitine or CiIII, an exclusive nuclear localization of IE63 was also observed. By using a transfection assay, we also showed that phosphorylation on Ser-224 and Thr-222 was essential for the down-regulation of the basal activity of the VZV DNA polymerase gene promoter. Similarly, roscovitine and CiIII impaired these properties of the wild-type form of IE63. These observations clearly demonstrated the importance of CDK1-mediated IE63 phosphorylation for a correct distribution of IE63 between both cellular compartments and for its repressive activity toward the promoter tested.
Collapse
Affiliation(s)
- Lionel Habran
- Laboratory of Virology and Immunology, Center for Biomedical Genoproteomics, Institute of Pathology B23, University of Liège, B-4000, Liège, Belgium
| | | | | | | | | |
Collapse
|
39
|
Ito H, Sommer MH, Zerboni L, Baiker A, Sato B, Liang R, Hay J, Ruyechan W, Arvin AM. Role of the varicella-zoster virus gene product encoded by open reading frame 35 in viral replication in vitro and in differentiated human skin and T cells in vivo. J Virol 2005; 79:4819-27. [PMID: 15795267 PMCID: PMC1069565 DOI: 10.1128/jvi.79.8.4819-4827.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although genes related to varicella-zoster virus (VZV) open reading frame 35 (ORF35) are conserved in the herpesviruses, information about their contributions to viral replication and pathogenesis is limited. Using a VZV cosmid system, we deleted ORF35 to produce two null mutants, designated rOkaDelta35(#1) and rOkaDelta35(#2), and replaced ORF35 at a nonnative site, generating two rOkaDelta35/35@Avr mutants. ORF35 Flag-tagged recombinants were made by inserting ORF35-Flag at the nonnative Avr site as the only copy of ORF35, yielding rOkaDelta35/35Flag@Avr, or as a second copy, yielding rOka35Flag@Avr. Replication of rOkaDelta35 viruses was diminished in melanoma and Vero cells in a 6-day analysis of growth kinetics. Plaque sizes of rOkaDelta35 mutants were significantly smaller than those of rOka in melanoma cells. Infection of melanoma cells with rOkaDelta35 mutants was associated with disrupted cell fusion and polykaryocyte formation. The small plaque phenotype was not corrected by growth of rOkaDelta35 mutants in melanoma cells expressing the major VZV glycoprotein E, gE. The rOkaDelta35/35@Avr viruses displayed growth kinetics and plaque morphologies that were indistinguishable from those of rOka. Analysis with ORF35-Flag recombinants showed that the ORF35 gene product localized predominantly to the nuclei of infected cells. Evaluations in the SCIDhu mouse model demonstrated that ORF35 was required for efficient VZV infection of skin and T-cell xenografts, although the decrease in infectivity was most significant in skin. These mutagenesis experiments indicated that ORF35 was dispensable for VZV replication, but deleting ORF35 diminished growth in cultured cells and was associated with attenuated VZV infection of differentiated human skin and T cells in vivo.
Collapse
Affiliation(s)
- Hideki Ito
- Department of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, G-311, 300 Pasteur Dr., Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cohen JI, Krogmann T, Bontems S, Sadzot-Delvaux C, Pesnicak L. Regions of the varicella-zoster virus open reading frame 63 latency-associated protein important for replication in vitro are also critical for efficient establishment of latency. J Virol 2005; 79:5069-77. [PMID: 15795292 PMCID: PMC1069579 DOI: 10.1128/jvi.79.8.5069-5077.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 63 (ORF63) is one of the most abundant transcripts expressed during VZV latency in humans, and ORF63 protein has been detected in human ganglia by several laboratories. Deletion of over 90% of the ORF63 gene showed that the protein is required for efficient establishment of latency in rodents. We have constructed viruses with a series of mutations in ORF63. While prior experiments showed that transfection of cells with a plasmid expressing ORF63 but lacking the putative nuclear localization signal of the protein resulted in increased expression of the protein in the cytoplasm, we found that ORF63 protein remained in the nucleus in cells infected with a VZV ORF63 nuclear localization signal deletion mutant. This mutant was not impaired for growth in cell culture or for latency in rodents. Replacement of five serine or threonine phosphorylation sites in ORF63 with alanines resulted in a virus that was impaired for replication in vitro and for latency. A series of ORF63 carboxy-terminal mutants showed that the last 70 amino acids do not affect replication in vitro or latency in rodents; however, the last 108 amino acids are important for replication and latency. Thus, regions of ORF63 that are important for replication in vitro are also required for efficient establishment of latency.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Clinical Infectious Diseases, Bldg. 10, Room 11N228, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
41
|
Zerboni L, Ku CC, Jones CD, Zehnder JL, Arvin AM. Varicella-zoster virus infection of human dorsal root ganglia in vivo. Proc Natl Acad Sci U S A 2005; 102:6490-5. [PMID: 15851670 PMCID: PMC1088374 DOI: 10.1073/pnas.0501045102] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Varicella-zoster virus (VZV) causes varicella and establishes latency in sensory ganglia. VZV reactivation results in herpes zoster. We developed a model using human dorsal root ganglion (DRG) xenografts in severe combined immunodeficient (SCID) mice to investigate VZV infection of differentiated neurons and satellite cells in vivo. DRG engrafted under the kidney capsule and contained neurons and satellite cells within a typical DRG architecture. VZV clinical isolates infected the neurons within DRG. At 14 days postinfection, VZ virions were detected by electron microscopy in neuronal cell nuclei and cytoplasm but not in satellite cells. The VZV genome copy number was 7.1 x 10(7) to 8.0 x 10(8) copies per 10(5) cells, and infectious virus was recovered. This initial phase of viral replication was followed within 4-8 weeks by a transition to VZV latency, characterized by the absence of infectious virus release, the cessation of virion assembly, and a reduction in VZV genome copies to 3.7 x 10(5) to 4.7 x 10(6) per 10(5) cells. VZV persistence in DRG was achieved without any requirement for VZV-specific adaptive immunity and was associated with continued transcription of the ORF63 regulatory gene. The live attenuated varicella vaccine virus exhibited the same pattern of short-term replication, persistence of viral DNA, and prominent ORF63 transcription as the clinical isolates. VZV-infected T cells transferred virus from the circulation into DRG, suggesting that VZV lymphotropism facilitates its neurotropism. DRG xenografts may be useful for investigating neuropathogenic mechanisms of other human viruses.
Collapse
MESH Headings
- Animals
- Chickenpox/pathology
- DNA Primers
- Ganglia, Spinal/pathology
- Ganglia, Spinal/transplantation
- Ganglia, Spinal/virology
- Genome, Viral
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/physiology
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Mice
- Mice, SCID
- Microscopy, Electron, Transmission
- Neurons/ultrastructure
- Neurons/virology
- Reverse Transcriptase Polymerase Chain Reaction
- Satellite Cells, Perineuronal/ultrastructure
- Satellite Cells, Perineuronal/virology
- T-Lymphocytes/virology
- Transplantation, Heterologous
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
- Virion/physiology
- Virion/ultrastructure
- Virus Replication/physiology
Collapse
Affiliation(s)
- Leigh Zerboni
- Department of Pediatrics,Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
42
|
Ku CC, Besser J, Abendroth A, Grose C, Arvin AM. Varicella-Zoster virus pathogenesis and immunobiology: new concepts emerging from investigations with the SCIDhu mouse model. J Virol 2005; 79:2651-8. [PMID: 15708984 PMCID: PMC548427 DOI: 10.1128/jvi.79.5.2651-2658.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
MESH Headings
- Animals
- Cell Movement
- Chickenpox/etiology
- Chickenpox/immunology
- Chickenpox/virology
- Disease Models, Animal
- Genes, MHC Class I
- Genes, MHC Class II
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/immunology
- Herpesvirus 3, Human/pathogenicity
- Herpesvirus 3, Human/physiology
- Humans
- Immunity, Innate
- Mice
- Mice, SCID
- Mice, Transgenic
- Models, Biological
- Mutation
- Protein Kinases/genetics
- Skin/immunology
- Skin/virology
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Virulence/immunology
- Virus Replication
Collapse
Affiliation(s)
- Chia-Chi Ku
- Stanford University School of Medicine, 300 Pasteur Dr., Room G-311, Stanford, CA 94305-5119, USA
| | | | | | | | | |
Collapse
|
43
|
Besser J, Ikoma M, Fabel K, Sommer MH, Zerboni L, Grose C, Arvin AM. Differential requirement for cell fusion and virion formation in the pathogenesis of varicella-zoster virus infection in skin and T cells. J Virol 2004; 78:13293-305. [PMID: 15542680 PMCID: PMC524993 DOI: 10.1128/jvi.78.23.13293-13305.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein product of varicella-zoster virus (VZV) ORF47 is a serine/threonine protein kinase and tegument component. Evaluation of two recombinants of the Oka strain, rOka47DeltaC, with a C-terminal truncation of ORF47, and rOka47D-N, with a point mutation in the conserved kinase motif, showed that ORF47 kinase function was necessary for optimal VZV replication in human skin xenografts in SCID mice but not in cultured cells. We now demonstrate that rOka47DeltaC and rOka47D-N mutants do not infect human T-cell xenografts. Differences in the growth of kinase-defective ORF47 mutants allowed an examination of requirements for VZV pathogenesis in skin and T cells in vivo. Although virion assembly was reduced and no virion transport to cell surfaces was observed, epidermal cell fusion persisted, and VZV polykaryocytes were generated by rOka47DeltaC and rOka47D-N in skin. Virion assembly was also impaired in vitro, but VZV-induced cell fusion continued to cause syncytia in cultured cells infected with rOka47DeltaC or rOka47D-N. Intracellular trafficking of envelope glycoprotein E and the ORF47 and IE62 proteins, components of the tegument, was aberrant without ORF47 kinase activity. In summary, normal VZV virion assembly appears to require ORF47 kinase function. Cell fusion was induced by ORF47 mutants in skin, and cell-cell spread occurred even though virion formation was deficient. VZV-infected T cells do not undergo cell fusion, and impaired virion assembly by ORF47 mutants was associated with a complete elimination of T-cell infectivity. These observations suggest a differential requirement for cell fusion and virion formation in the pathogenesis of VZV infection in skin and T cells.
Collapse
Affiliation(s)
- Jaya Besser
- Stanford University, Department of Pediatrics, 300 Pasteur Dr., G-311, Stanford, CA 94305-5208, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Moffat J, Mo C, Cheng JJ, Sommer M, Zerboni L, Stamatis S, Arvin AM. Functions of the C-terminal domain of varicella-zoster virus glycoprotein E in viral replication in vitro and skin and T-cell tropism in vivo. J Virol 2004; 78:12406-15. [PMID: 15507627 PMCID: PMC525039 DOI: 10.1128/jvi.78.22.12406-12415.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) glycoprotein E (gE) is essential for VZV replication. To further analyze the functions of gE in VZV replication, a full deletion and point mutations were made in the 62-amino-acid (aa) C-terminal domain. Targeted mutations were introduced in YAGL (aa 582 to 585), which mediates gE endocytosis, AYRV (aa 568 to 571), which targets gE to the trans-Golgi network (TGN), and SSTT, an "acid cluster" comprising a phosphorylation motif (aa 588 to 601). Substitutions Y582G in YAGL, Y569A in AYRV, and S593A, S595A, T596A, and T598A in SSTT were introduced into the viral genome by using VZV cosmids. These experiments demonstrated a hierarchy in the contributions of these C-terminal motifs to VZV replication and virulence. Deletion of the gE C terminus and mutation of YAGL were lethal for VZV replication in vitro. Mutations of AYRV and SSTT were compatible with recovery of VZV, but the AYRV mutation resulted in rapid virus spread in vitro and the SSTT mutation resulted in higher virus titers than were observed for the parental rOka strain. When the rOka-gE-AYRV and rOka-gE-SSTT mutants were evaluated in skin and T-cell xenografts in SCIDhu mice, interference with TGN targeting was associated with substantial attenuation, especially in skin, whereas the SSTT mutation did not alter VZV infectivity in vivo. These results provide the first information about how targeted mutations of this essential VZV glycoprotein affect viral replication in vitro and VZV virulence in dermal and epidermal cells and T cells within intact tissue microenvironments in vivo.
Collapse
Affiliation(s)
- Jennifer Moffat
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | | | | | | | |
Collapse
|