1
|
Alam MK, Faruk Hosen M, Ganji KK, Ahmed K, Bui FM. Identification of key signaling pathways and novel computational drug target for oral cancer, metabolic disorders and periodontal disease. J Genet Eng Biotechnol 2024; 22:100431. [PMID: 39674633 PMCID: PMC11539153 DOI: 10.1016/j.jgeb.2024.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 12/16/2024]
Abstract
AIM Due to conventional endocrinological methods, there is presently no shared work available, and no therapeutic options have been demonstrated in oral cancer (OC) and periodontal disease (PD), type 2 diabetes (T2D), and obese patients. The aim of this study is to determine the similar molecular pathways and potential therapeutic targets in PD, OC, T2D, and obesity that may be used to anticipate the progression of the disease. METHODS Four Gene Expression Omnibus (GEO) microarray datasets (GSE29221, GSE15773, GSE16134, and GSE13601) are used for finding differentially expressed genes (DEGs) for T2D, obese, and PD patients with OC in order to explore comparable pathways and therapeutic medications. Gene ontology (GO) and pathway analysis were used to investigate the functional annotations of the genes. The hub genes were then identified using protein-protein interaction (PPI) networks, and the most significant PPI components were evaluated using a clustering approach. RESULTS These three gene expression-based datasets yielded a total of seven common DEGs. According to the GO annotation, the majority of the DEGs were connected with the microtubule cytoskeleton structure involved in mitosis. The KEGG pathways revealed that the concordant DEGs are connected to the cell cycle and progesterone-mediated oocyte maturation. Based on topological analysis of the PPI network, major hub genes (CCNB1, BUB1, TTK, PLAT, and AHNAK) and notable modules were revealed. This work additionally identified the connection of TF genes and miRNAs with common DEGs, as well as TF activity. CONCLUSION Predictive drug analysis yielded concordant drug compounds involved with T2D, OC, PD, and obesity disorder, which might be beneficial for examining the diagnosis, treatment, and prognosis of metabolic disorders and Oral cancer.
Collapse
Affiliation(s)
- Mohammad Khursheed Alam
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia.
| | - Md Faruk Hosen
- Department of Computing Information System, Daffodil International University, Birulia, Savar, Dhaka 1216, Bangladesh.
| | - Kiran Kumar Ganji
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
| | - Kawsar Ahmed
- Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City, Birulia, Dhaka 1216, Bangladesh; Group of Biophotomatiχ, Dept. of ICT, MBSTU, Santosh, Tangail 1902, Bangladesh; Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon S7N5A9, SK, Canada.
| | - Francis M Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon S7N5A9, SK, Canada.
| |
Collapse
|
2
|
Liu J, Hu D, Wang Y, Zhou X, Jiang L, Wang P, Lai H, Wang Y, Xiao H. Exploration of a Predictive Model for Keloid and Potential Therapeutic Drugs Based on Immune Infiltration and Cuproptosis-Related Genes. J Burn Care Res 2024; 45:1217-1231. [PMID: 38334429 DOI: 10.1093/jbcr/irae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 02/10/2024]
Abstract
The aim of this study was to investigate the correlation between cuproptosis-related genes and immunoinfiltration in keloid, develop a predictive model for keloid occurrence, and explore potential therapeutic drugs. The microarray datasets (GSE7890 and GSE145725) were obtained from Gene Expression Omnibus database to identify the differentially expressed genes (DEGs) between keloid and nonkeloid samples. Key genes were identified through immunoinfiltration analysis and DEGs and then analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, followed by the identification of protein-protein interaction networks, transcription factors, and miRNAs associated with key genes. Additionally, a logistic regression analysis was performed to develop a predictive model for keloid occurrence, and potential candidate drugs for keloid treatment were identified. Three key genes (FDX1, PDHB, and DBT) were identified, showing involvement in acetyl-CoA biosynthesis, mitochondrial matrix, oxidoreductase activity, and the tricarboxylic acid cycle. Immune infiltration analysis suggested the involvement of B cells, Th1 cells, dendritic cells, T helper cells, antigen-presenting cell coinhibition, and T cell coinhibition in keloid. These genes were used to develop a logistic regression-based nomogram for predicting keloid occurrence with an area under the curve of 0.859 and good calibration. We identified 32 potential drug molecules and extracted the top 10 compounds based on their P-values, showing promise in targeting key genes and potentially effective against keloid. Our study identified some genes in keloid pathogenesis and potential therapeutic drugs. The predictive model enhances early diagnosis and management. Further research is needed to validate and explore clinical implications.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Ding Hu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Yaojun Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Xiaoqian Zhou
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Liyuan Jiang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Peng Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Haijing Lai
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Yu Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Houan Xiao
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| |
Collapse
|
3
|
Syage AR, Pachow C, Murray KM, Henningfield C, Fernandez K, Du A, Cheng Y, Olivarria G, Kawauchi S, MacGregor GR, Green KN, Lane TE. Cystatin F attenuates neuroinflammation and demyelination following murine coronavirus infection of the central nervous system. J Neuroinflammation 2024; 21:157. [PMID: 38879499 PMCID: PMC11179388 DOI: 10.1186/s12974-024-03153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Cystatin F is a secreted lysosomal cysteine protease inhibitor that has been implicated in affecting the severity of demyelination and enhancing remyelination in pre-clinical models of immune-mediated demyelination. How cystatin F impacts neurologic disease severity following viral infection of the central nervous system (CNS) has not been well characterized and was the focus of this study. We used cystatin F null-mutant mice (Cst7-/-) with a well-established model of murine coronavirus-induced neurologic disease to evaluate the contributions of cystatin F in host defense, demyelination and remyelination. METHODS Wildtype controls and Cst7-/- mice were intracranially (i.c.) infected with a sublethal dose of the neurotropic JHM strain of mouse hepatitis virus (JHMV), with disease progression and survival monitored daily. Viral plaque assays and qPCR were used to assess viral levels in CNS. Immune cell infiltration into the CNS and immune cell activation were determined by flow cytometry and 10X genomics chromium 3' single cell RNA sequencing (scRNA-seq). Spinal cord demyelination was determined by luxol fast blue (LFB) and Hematoxylin/Eosin (H&E) staining and axonal damage assessed by immunohistochemical staining for SMI-32. Remyelination was evaluated by electron microscopy (EM) and calculation of g-ratios. RESULTS JHMV-infected Cst7-/- mice were able to control viral replication within the CNS, indicating that cystatin F is not essential for an effective Th1 anti-viral immune response. Infiltration of T cells into the spinal cords of JHMV-infected Cst7-/- mice was increased compared to infected controls, and this correlated with increased axonal damage and demyelination associated with impaired remyelination. Single-cell RNA-seq of CD45 + cells enriched from spinal cords of infected Cst7-/- and control mice revealed enhanced expression of transcripts encoding T cell chemoattractants, Cxcl9 and Cxcl10, combined with elevated expression of interferon-g (Ifng) and perforin (Prf1) transcripts in CD8 + T cells from Cst7-/- mice compared to controls. CONCLUSIONS Cystatin F is not required for immune-mediated control of JHMV replication within the CNS. However, JHMV-infected Cst7-/- mice exhibited more severe clinical disease associated with increased demyelination and impaired remyelination. The increase in disease severity was associated with elevated expression of T cell chemoattractant chemokines, concurrent with increased neuroinflammation. These findings support the idea that cystatin F influences expression of proinflammatory gene expression impacting neuroinflammation, T cell activation and/or glia cell responses ultimately impacting neuroinflammation and neurologic disease.
Collapse
Affiliation(s)
- Amber R Syage
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Collin Pachow
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Kaitlin M Murray
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Caden Henningfield
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Kellie Fernandez
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Annie Du
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Yuting Cheng
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Gema Olivarria
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Shimako Kawauchi
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, 92697, USA
| | - Grant R MacGregor
- Department of Developmental & Cell Biology, University of California, Irvine, 92697, USA
| | - Kim N Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Thomas E Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA.
- Center for Virus Research, University of California, Irvine, 92697, USA.
| |
Collapse
|
4
|
Syage A, Pachow C, Cheng Y, Mangale V, Green KN, Lane TE. Microglia influence immune responses and restrict neurologic disease in response to central nervous system infection by a neurotropic murine coronavirus. Front Cell Neurosci 2023; 17:1291255. [PMID: 38099152 PMCID: PMC10719854 DOI: 10.3389/fncel.2023.1291255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Intracranial (i.c.) inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia serve numerous functions including maintenance of the healthy central nervous system (CNS) and are among the first responders to injury or infection. More recently, studies have demonstrated that microglia aid in tailoring innate and adaptive immune responses following infection by neurotropic viruses including flaviviruses, herpesviruses, and picornaviruses. These findings have emphasized an important role for microglia in host defense against these viral pathogens. In addition, microglia are also critical in optimizing immune-mediated control of JHMV replication within the CNS while restricting the severity of demyelination and enhancing remyelination. This review will highlight our current understanding of the molecular and cellular mechanisms by which microglia aid in host defense, limit neurologic disease, and promote repair following CNS infection by a neurotropic murine coronavirus.
Collapse
Affiliation(s)
- Amber Syage
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Collin Pachow
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Yuting Cheng
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Vrushali Mangale
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Kim N. Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Cheng Y, Javonillo DI, Pachow C, Scarfone VM, Fernandez K, Walsh CM, Green KN, Lane TE. Ablation of microglia following infection of the central nervous system with a neurotropic murine coronavirus infection leads to increased demyelination and impaired remyelination. J Neuroimmunol 2023; 381:578133. [PMID: 37352687 PMCID: PMC11840753 DOI: 10.1016/j.jneuroim.2023.578133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Intracranial inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia are the resident immune cell of the central nervous system (CNS) and are considered important in regulating events associated with neuroinflammation as well as influencing both white matter damage and remyelination. To better understand mechanisms by which microglia contribute to these immune-mediated events, JHMV-infected mice with established demyelination were treated with the small molecular inhibitor of colony stimulating factor 1 receptor (CSF1R), PLX5622, to deplete microglia. Treatment with PLX5622 did not affect viral replication within the CNS yet the severity of demyelination was increased and remyelination impaired compared to control mice. Gene expression analysis revealed that targeting microglia resulted in altered expression of genes associated with immune cell activation and phagocytosis of myelin debris. These findings indicate that microglia are not critical in viral surveillance in persistently JHMV-infected mice yet restrict white matter damage and remyelination, in part, by influencing phagocytosis of myelin debris.
Collapse
Affiliation(s)
- Yuting Cheng
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
| | - Dominic Ibarra Javonillo
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697, USA
| | - Collin Pachow
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
| | - Vanessa M Scarfone
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine 92697, USA
| | - Kellie Fernandez
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697, USA
| | - Craig M Walsh
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
| | - Kim N Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697, USA
| | - Thomas E Lane
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA; Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697, USA; Center for Virus Research, University of California, Irvine 92697, USA.
| |
Collapse
|
6
|
Deng X, Luo Y, Guan T, Guo X. Identification of the Genetic Influence of SARS-CoV-2 Infections on IgA Nephropathy Based on Bioinformatics Method. Kidney Blood Press Res 2023; 48:367-384. [PMID: 37040729 PMCID: PMC10308545 DOI: 10.1159/000529687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/09/2023] [Indexed: 04/13/2023] Open
Abstract
INTRODUCTION Coronavirus disease-2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. It was initially detected in Wuhan, China, in December 2019. In March 2020, the World Health Organization (WHO) declared COVID-19 a global pandemic. Compared to healthy individuals, patients with IgA nephropathy (IgAN) are at a higher risk of SARS-CoV-2 infection. However, the potential mechanisms remain unclear. This study explores the underlying molecular mechanisms and therapeutic agents for the management of IgAN and COVID-19 using the bioinformatics and system biology way. METHODS We first downloaded GSE73953 and GSE164805 from the Gene Expression Omnibus (GEO) database to obtain common differentially expressed genes (DEGs). Then, we performed the functional enrichment analysis, pathway analysis, protein-protein interaction (PPI) analysis, gene regulatory networks analysis, and potential drug analysis on these common DEGs. RESULTS We acquired 312 common DEGs from the IgAN and COVID-19 datasets and used various bioinformatics tools and statistical analyses to construct the PPI network to extract hub genes. Besides, we performed gene ontology (GO) and pathway analyses to reveal the common correlation between IgAN and COVID-19. Finally, on the basis of common DEGs, we determined the interactions between DEGs-miRNAs, the transcription factor-genes (TFs-genes), protein-drug, and gene-disease networks. CONCLUSION We successfully identified hub genes that may act as biomarkers of COVID-19 and IgAN and also screened out some potential drugs to provide new ideas for COVID-19 and IgAN treatment.
Collapse
Affiliation(s)
- Xiaoqi Deng
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yu Luo
- School of Medicine, Xiamen University, Xiamen, China
| | - Tianjun Guan
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaodan Guo
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Systematic approach to identify therapeutic targets and functional pathways for the cervical cancer. J Genet Eng Biotechnol 2023; 21:10. [PMID: 36723760 PMCID: PMC9892376 DOI: 10.1186/s43141-023-00469-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/14/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND In today's society, cancer has become a big concern. The most common cancers in women are breast cancer (BC), endometrial cancer (EC), ovarian cancer (OC), and cervical cancer (CC). CC is a type of cervix cancer that is the fourth most common cancer in women and the fourth major cause of death. RESULTS This research uses a network approach to discover genetic connections, functional enrichment, pathways analysis, microRNAs transcription factors (miRNA-TF) co-regulatory network, gene-disease associations, and therapeutic targets for CC. Three datasets from the NCBI's GEO collection were considered for this investigation. Then, using a comparison approach between the datasets, 315 common DEGs were discovered. The PPI network was built using a variety of combinatorial statistical approaches and bioinformatics tools, and the PPI network was then utilized to identify hub genes and critical modules. CONCLUSION Furthermore, we discovered that CC has specific similar links with the progression of different tumors using Gene Ontology terminology and pathway analysis. Transcription factors-gene linkages, gene-disease correlations, and the miRNA-TF co-regulatory network were revealed to have functional enrichments. We believe the candidate drugs identified in this study could be effective for advanced CC treatment.
Collapse
|
8
|
Zhang W, Liu L, Xiao X, Zhou H, Peng Z, Wang W, Huang L, Xie Y, Xu H, Tao L, Nie W, Yuan X, Liu F, Yuan Q. Identification of common molecular signatures of SARS-CoV-2 infection and its influence on acute kidney injury and chronic kidney disease. Front Immunol 2023; 14:961642. [PMID: 37026010 PMCID: PMC10070855 DOI: 10.3389/fimmu.2023.961642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main cause of COVID-19, causing hundreds of millions of confirmed cases and more than 18.2 million deaths worldwide. Acute kidney injury (AKI) is a common complication of COVID-19 that leads to an increase in mortality, especially in intensive care unit (ICU) settings, and chronic kidney disease (CKD) is a high risk factor for COVID-19 and its related mortality. However, the underlying molecular mechanisms among AKI, CKD, and COVID-19 are unclear. Therefore, transcriptome analysis was performed to examine common pathways and molecular biomarkers for AKI, CKD, and COVID-19 in an attempt to understand the association of SARS-CoV-2 infection with AKI and CKD. Three RNA-seq datasets (GSE147507, GSE1563, and GSE66494) from the GEO database were used to detect differentially expressed genes (DEGs) for COVID-19 with AKI and CKD to search for shared pathways and candidate targets. A total of 17 common DEGs were confirmed, and their biological functions and signaling pathways were characterized by enrichment analysis. MAPK signaling, the structural pathway of interleukin 1 (IL-1), and the Toll-like receptor pathway appear to be involved in the occurrence of these diseases. Hub genes identified from the protein-protein interaction (PPI) network, including DUSP6, BHLHE40, RASGRP1, and TAB2, are potential therapeutic targets in COVID-19 with AKI and CKD. Common genes and pathways may play pathogenic roles in these three diseases mainly through the activation of immune inflammation. Networks of transcription factor (TF)-gene, miRNA-gene, and gene-disease interactions from the datasets were also constructed, and key gene regulators influencing the progression of these three diseases were further identified among the DEGs. Moreover, new drug targets were predicted based on these common DEGs, and molecular docking and molecular dynamics (MD) simulations were performed. Finally, a diagnostic model of COVID-19 was established based on these common DEGs. Taken together, the molecular and signaling pathways identified in this study may be related to the mechanisms by which SARS-CoV-2 infection affects renal function. These findings are significant for the effective treatment of COVID-19 in patients with kidney diseases.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Hongshan Zhou
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Wei Wang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Wannian Nie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiangning Yuan
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Fang Liu
- Health Management Center, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Liu, ; Qiongjing Yuan,
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
- National Clinical Medical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Research Center for Medical Metabolomics, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Liu, ; Qiongjing Yuan,
| |
Collapse
|
9
|
Li C, Zhang Y, Xiao Y, Luo Y. Identifying the Effect of COVID-19 Infection in Multiple Myeloma and Diffuse Large B-Cell Lymphoma Patients Using Bioinformatics and System Biology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7017317. [PMID: 36466549 PMCID: PMC9711963 DOI: 10.1155/2022/7017317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 09/29/2023]
Abstract
The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), also referred to as COVID-19, has spread to several countries and caused a serious threat to human health worldwide. Patients with confirmed COVID-19 infection spread the disease rapidly throughout the region. Multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) are risk factors for COVID-19, although the molecular mechanisms underlying the relationship among MM, DLBCL, and COVID-19 have not been elucidated so far. In this context, transcriptome analysis was performed in the present study to identify the shared pathways and molecular indicators of MM, DLBCL, and COVID-19, which benefited the overall understanding of the effect of COVID-19 in patients with MM and DLBCL. Three datasets (GSE16558, GSE56315, and GSE152418) were downloaded from the Gene Expression Omnibus (GEO) and searched for the shared differentially expressed genes (DEGs) in patients with MM and DLBCL who were infected with SARS-CoV-2. The objective was to detect similar pathways and prospective medicines. A total of 29 DEGs that were common across these three datasets were selected. A protein-protein interaction (PPI) network was constructed using data from the STRING database followed by the identification of hub genes. In addition, the association of MM and DLBCL with COVID-19 infection was analyzed through functional analysis using ontologies terms and pathway analysis. Three relationships were observed in the evaluated datasets: transcription factor-gene interactions, protein-drug interactions, and an integrated regulatory network of DEGs and miRNAs with mutual DEGs. The findings of the present study revealed potential pharmaceuticals that could be beneficial in the treatment of COVID-19.
Collapse
Affiliation(s)
- Chengcheng Li
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ying Zhang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingying Xiao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yun Luo
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Hwang M, Savarin C, Kim J, Powers J, Towne N, Oh H, Bergmann CC. Trem2 deficiency impairs recovery and phagocytosis and dysregulates myeloid gene expression during virus-induced demyelination. J Neuroinflammation 2022; 19:267. [PMID: 36333761 PMCID: PMC9635103 DOI: 10.1186/s12974-022-02629-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background Triggering receptor expressed on myeloid cells 2 (Trem2) plays a protective role in neurodegenerative diseases. By contrast, Trem2 functions can exacerbate tissue damage during respiratory viral or liver infections. We, therefore, investigated the role of Trem2 in a viral encephalomyelitis model associated with prominent Th1 mediated antiviral immunity leading to demyelination. Methods Wild-type (WT) and Trem2 deficient (Trem2−/−) mice were infected with a sublethal glia tropic murine coronavirus (MHV–JHM) intracranially. Disease progression and survival were monitored daily. Leukocyte accumulation and pathological features including demyelination and axonal damage in spinal cords (SC) were determined by flow cytometry and tissue section immunofluorescence analysis. Expression of select inflammatory cytokines and chemokines was measured by RT-PCR and global myeloid cell gene expression in SC-derived microglia and infiltrated bone-marrow-derived macrophages (BMDM) were determined using the Nanostring nCounter platform. Results BMDM recruited to SCs in response to infection highly upregulated Trem2 mRNA compared to microglia coincident with viral control. Trem2 deficiency did not alter disease onset or severity, but impaired clinical recovery after onset of demyelination. Disease progression in Trem2−/− mice could not be attributed to altered virus control or an elevated proinflammatory response. A prominent difference was increased degenerated myelin not associated with the myeloid cell markers IBA1 and/or CD68. Gene expression profiles of SC-derived microglia and BMDM further revealed that Trem2 deficiency resulted in impaired upregulation of phagocytosis associated genes Lpl and Cd36 in microglia, but a more complex pattern in BMDM. Conclusions Trem2 deficiency during viral-induced demyelination dysregulates expression of other select genes regulating phagocytic pathways and lipid metabolism, with distinct effects on microglia and BMDM. The ultimate failure to remove damaged myelin is reminiscent of toxin or autoimmune cell-induced demyelination models and supports that Trem2 function is regulated by sensing tissue damage including a dysregulated lipid environment in very distinct inflammatory environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02629-1.
Collapse
|
11
|
Skinner DD, Syage AR, Olivarria GM, Stone C, Hoglin B, Lane TE. Sustained Infiltration of Neutrophils Into the CNS Results in Increased Demyelination in a Viral-Induced Model of Multiple Sclerosis. Front Immunol 2022; 13:931388. [PMID: 36248905 PMCID: PMC9562915 DOI: 10.3389/fimmu.2022.931388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Intracranial inoculation of the neuroadapted JHM strain of mouse hepatitis virus (JHMV) into susceptible strains of mice results in acute encephalomyelitis followed by a cimmune-mediated demyelination similar to the human demyelinating disease multiple sclerosis (MS). JHMV infection of transgenic mice in which expression of the neutrophil chemoattractant chemokine CXCL1 is under the control of a tetracycline-inducible promoter active within GFAP-positive cells results in sustained neutrophil infiltration in the central nervous system (CNS) that correlates with an increase in spinal cord demyelination. We used single cell RNA sequencing (scRNAseq) and flow cytometry to characterize molecular and cellular changes within the CNS associated with increased demyelination in transgenic mice compared to control animals. These approaches revealed the presence of activated neutrophils as determined by expression of mRNA transcripts associated with neutrophil effector functions, including CD63, MMP9, S100a8, S100a9, and ASPRV1, as well as altered neutrophil morphology and protein expression. Collectively, these findings reveal insight into changes in the profile of neutrophils associated with increased white matter damage in mice persistently infected with a neurotropic coronavirus.
Collapse
Affiliation(s)
- Dominic D. Skinner
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Amber R. Syage
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Gema M. Olivarria
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Colleen Stone
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Bailey Hoglin
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States,Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States,Center for Virus Research, University of California Irvine, Irvine, CA, United States,*Correspondence: Thomas E. Lane,
| |
Collapse
|
12
|
Exploring the Novel Computational Drug Target and Associated Key Pathways of Oral Cancer. Curr Issues Mol Biol 2022; 44:3552-3572. [PMID: 36005140 PMCID: PMC9406749 DOI: 10.3390/cimb44080244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Oral cancer (OC) is a serious health concern that has a high fatality rate. The oral cavity has seven kinds of OC, including the lip, tongue, and floor of the mouth, as well as the buccal, hard palate, alveolar, retromolar trigone, and soft palate. The goal of this study is to look into new biomarkers and important pathways that might be used as diagnostic biomarkers and therapeutic candidates in OC. The publicly available repository the Gene Expression Omnibus (GEO) was to the source for the collection of OC-related datasets. GSE74530, GSE23558, and GSE3524 microarray datasets were collected for analysis. Minimum cut-off criteria of |log fold-change (FC)| > 1 and adjusted p < 0.05 were applied to calculate the upregulated and downregulated differential expression genes (DEGs) from the three datasets. After that only common DEGs in all three datasets were collected to apply further analysis. Gene ontology (GO) and pathway analysis were implemented to explore the functional behaviors of DEGs. Then protein−protein interaction (PPI) networks were built to identify the most active genes, and a clustering algorithm was also implemented to identify complex parts of PPI. TF-miRNA networks were also constructed to study OC-associated DEGs in-depth. Finally, top gene performers from PPI networks were used to apply drug signature analysis. After applying filtration and cut-off criteria, 2508, 3377, and 670 DEGs were found for GSE74530, GSE23558, and GSE3524 respectively, and 166 common DEGs were found in every dataset. The GO annotation remarks that most of the DEGs were associated with the terms of type I interferon signaling pathway. The pathways of KEGG reported that the common DEGs are related to the cell cycle and influenza A. The PPI network holds 88 nodes and 492 edges, and CDC6 had the highest number of connections. Four clusters were identified from the PPI. Drug signatures doxorubicin and resveratrol showed high significance according to the hub genes. We anticipate that our bioinformatics research will aid in the definition of OC pathophysiology and the development of new therapies for OC.
Collapse
|
13
|
Hirzel C, Grandgirard D, Surial B, Wider MF, Leppert D, Kuhle J, Walti LN, Schefold JC, Spinetti T, Suter-Riniker F, Dijkman R, Leib SL. Neuro-axonal injury in COVID-19: the role of systemic inflammation and SARS-CoV-2 specific immune response. Ther Adv Neurol Disord 2022; 15:17562864221080528. [PMID: 35299779 PMCID: PMC8922213 DOI: 10.1177/17562864221080528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 12/29/2022] Open
Abstract
Background: In coronavirus disease-2019 (COVID-19) patients, there is increasing evidence of neuronal injury by the means of elevated serum neurofilament light chain (sNfL) levels. However, the role of systemic inflammation and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–specific immune response with regard to neuronal injury has not yet been investigated. Methods: In a prospective cohort study, we recruited patients with mild–moderate (n = 39) and severe (n = 14) COVID-19 and measured sNfL levels, cytokine concentrations, SARS-CoV-2-specific antibodies including neutralizing antibody titers, and cell-mediated immune responses at enrollment and at 28(±7) days. We explored the association of neuro-axonal injury as by the means of sNfL measurements with disease severity, cytokine levels, and virus-specific immune responses. Results: sNfL levels, as an indicator for neuronal injury, were higher at enrollment and increased during follow-up in severely ill patients, whereas during mild–moderate COVID-19, sNfL levels remained unchanged. Severe COVID-19 was associated with increased concentrations of cytokines assessed [interleukin (IL)-6, IL-8, interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α)], higher anti-spike IgG and anti-nucleocapsid IgG concentrations, and increased neutralizing antibody titers compared with mild–moderate disease. Patients with more severe disease had higher counts of defined SARS-CoV-2-specific T cells. Increases in sNfL concentrations from baseline to day 28(±7) positively correlated with anti-spike protein IgG antibody levels and with titers of neutralizing antibodies. Conclusion: Severe COVID-19 is associated with increased serum concentration of cytokines and subsequent neuronal injury as reflected by increased levels of sNfL. Patients with more severe disease developed higher neutralizing antibody titers and higher counts of SARS-CoV-2-specific T cells during the course of COVID-19 disease. Mounting a pronounced virus-specific humoral and cell-mediated immune response upon SARS-CoV-2 infection did not protect from neuro-axonal damage as by the means of sNfL levels.
Collapse
Affiliation(s)
- Cédric Hirzel
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Bernard Surial
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manon F. Wider
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura N. Walti
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joerg C. Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thibaud Spinetti
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3001 Bern, Switzerland
| |
Collapse
|
14
|
Saadi F, Pal D, Sarma JD. Spike Glycoprotein Is Central to Coronavirus Pathogenesis-Parallel Between m-CoV and SARS-CoV-2. Ann Neurosci 2021; 28:201-218. [PMID: 35341224 PMCID: PMC8948335 DOI: 10.1177/09727531211023755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Coronaviruses (CoVs) are single-stranded, polyadenylated, enveloped RNA of positive polarity with a unique potential to alter host tropism. This has been exceptionally demonstrated by the emergence of deadly virus outbreaks of the past: Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and Middle East Respiratory Syndrome (MERS-CoV) in 2012. The 2019 outbreak by the new cross-species transmission of SARS-CoV-2 has put the world on alert. CoV infection is triggered by receptor recognition, membrane fusion, and successive viral entry mediated by the surface Spike (S) glycoprotein. S protein is one of the major antigenic determinants and the target for neutralizing antibodies. It is a valuable target in antiviral therapies because of its central role in cell-cell fusion, viral antigen spread, and host immune responses leading to immunopathogenesis. The receptor-binding domain of S protein has received greater attention as it initiates host attachment and contains major antigenic determinants. However, investigating the therapeutic potential of fusion peptide as a part of the fusion core complex assembled by the heptad repeats 1 and 2 (HR1 and HR2) is also warranted. Along with receptor attachment and entry, fusion mechanisms should also be explored for designing inhibitors as a therapeutic intervention. In this article, we review the S protein function and its role in mediating membrane fusion, spread, tropism, and its associated pathogenesis with notable therapeutic strategies focusing on results obtained from studies on a murine β-Coronavirus (m-CoV) and its associated disease process.
Collapse
Affiliation(s)
- Fareeha Saadi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, West Bengal, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, West Bengal, India
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Psenicka MW, Smith BC, Tinkey RA, Williams JL. Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease? Front Cell Neurosci 2021; 15:654284. [PMID: 34234647 PMCID: PMC8255483 DOI: 10.3389/fncel.2021.654284] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The pathology in neurodegenerative diseases is often accompanied by inflammation. It is well-known that many cells within the central nervous system (CNS) also contribute to ongoing neuroinflammation, which can promote neurodegeneration. Multiple sclerosis (MS) is both an inflammatory and neurodegenerative disease in which there is a complex interplay between resident CNS cells to mediate myelin and axonal damage, and this communication network can vary depending on the subtype and chronicity of disease. Oligodendrocytes, the myelinating cell of the CNS, and their precursors, oligodendrocyte precursor cells (OPCs), are often thought of as the targets of autoimmune pathology during MS and in several animal models of MS; however, there is emerging evidence that OPCs actively contribute to inflammation that directly and indirectly contributes to neurodegeneration. Here we discuss several contributors to MS disease progression starting with lesion pathology and murine models amenable to studying particular aspects of disease. We then review how OPCs themselves can play an active role in promoting neuroinflammation and neurodegeneration, and how other resident CNS cells including microglia, astrocytes, and neurons can impact OPC function. Further, we outline the very complex and pleiotropic role(s) of several inflammatory cytokines and other secreted factors classically described as solely deleterious during MS and its animal models, but in fact, have many neuroprotective functions and promote a return to homeostasis, in part via modulation of OPC function. Finally, since MS affects patients from the onset of disease throughout their lifespan, we discuss the impact of aging on OPC function and CNS recovery. It is becoming clear that OPCs are not simply a bystander during MS progression and uncovering the active roles they play during different stages of disease will help uncover potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Morgan W. Psenicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brandon C. Smith
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Rachel A. Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
16
|
Gholami M, Safari S, Ulloa L, Motaghinejad M. Neuropathies and neurological dysfunction induced by coronaviruses. J Neurovirol 2021; 27:380-396. [PMID: 33983506 PMCID: PMC8117458 DOI: 10.1007/s13365-021-00977-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/23/2021] [Accepted: 04/05/2021] [Indexed: 02/03/2023]
Abstract
During the recent years, viral epidemic due to coronaviruses, such as SARS (Severe Acute Respiratory Syndrome), Middle East Respiratory Coronavirus Syndrome (MERS), and COVID-19 (coronavirus disese-19), has become a global problem. In addition to causing cardiovascular and respiratory lethal dysfunction, these viruses can cause neurodegeneration leading to neurological disorders. Review of the current scientific literature reveals the multiple neuropathies and neuronal dysfunction associated with these viruses. Here, we review the major findings of these studies and discuss the main neurological sequels and outcomes of coronavirus infections with SARS, MERS, and COVID-19. This article analyzes and discusses the main mechanisms of coronavirus-induced neurodegeneration according to the current experimental and clinical studies. Coronaviruses can damage the nerves directly through endovascular dysfunctions thereby affecting nerve structures and synaptic connections. Coronaviruses can also induce neural cell degeneration indirectly via mitochondrial dysfunction inducing oxidative stress, inflammation, and apoptosis. Thus, coronaviruses can cause neurological disorders by inducing neurovascular dysfunction affecting nerve structures and synaptic connections, and by inducing inflammation, oxidative stress, and apoptosis. While some of these mechanisms are similar to other RNA viruses, the neurotoxic mechanisms of COVID-19, MERS, and SARS-CoV viruses are unknown and need detailed clinical and experimental studies.
Collapse
Affiliation(s)
- Mina Gholami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, NC, 27710, Durham, USA.
| | - Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Mahmud SMH, Al-Mustanjid M, Akter F, Rahman MS, Ahmed K, Rahman MH, Chen W, Moni MA. Bioinformatics and system biology approach to identify the influences of SARS-CoV-2 infections to idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease patients. Brief Bioinform 2021; 22:6224261. [PMID: 33847347 PMCID: PMC8083324 DOI: 10.1093/bib/bbab115] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/25/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), better known as COVID-19, has become a current threat to humanity. The second wave of the SARS-CoV-2 virus has hit many countries, and the confirmed COVID-19 cases are quickly spreading. Therefore, the epidemic is still passing the terrible stage. Having idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are the risk factors of the COVID-19, but the molecular mechanisms that underlie IPF, COPD, and CVOID-19 are not well understood. Therefore, we implemented transcriptomic analysis to detect common pathways and molecular biomarkers in IPF, COPD, and COVID-19 that help understand the linkage of SARS-CoV-2 to the IPF and COPD patients. Here, three RNA-seq datasets (GSE147507, GSE52463, and GSE57148) from Gene Expression Omnibus (GEO) is employed to detect mutual differentially expressed genes (DEGs) for IPF, and COPD patients with the COVID-19 infection for finding shared pathways and candidate drugs. A total of 65 common DEGs among these three datasets were identified. Various combinatorial statistical methods and bioinformatics tools were used to build the protein–protein interaction (PPI) and then identified Hub genes and essential modules from this PPI network. Moreover, we performed functional analysis under ontologies terms and pathway analysis and found that IPF and COPD have some shared links to the progression of COVID-19 infection. Transcription factors–genes interaction, protein–drug interactions, and DEGs-miRNAs coregulatory network with common DEGs also identified on the datasets. We think that the candidate drugs obtained by this study might be helpful for effective therapeutic in COVID-19.
Collapse
Affiliation(s)
- S M Hasan Mahmud
- Computer Science and Technology from the University of Electronic Science and Technology of China, China
| | | | - Farzana Akter
- Computer Science and Engineering from Daffodil International University, Bangladesh
| | | | - Kawsar Ahmed
- Information and Communication Technology (ICT) at Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Habibur Rahman
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Wenyu Chen
- University of Electronic Science and Technology of China, China
| | | |
Collapse
|
18
|
Vincenti I, Merkler D. New advances in immune components mediating viral control in the CNS. Curr Opin Virol 2021; 47:68-78. [PMID: 33636592 DOI: 10.1016/j.coviro.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Protective immune responses in the central nervous system (CNS) must act efficiently but need to be tightly controlled to avoid excessive damage to this vital organ. Under homeostatic conditions, the immune surveillance of the CNS is mediated by innate immune cells together with subsets of memory lymphocytes accumulating over lifetime. Accordingly, a wide range of immune responses can be triggered upon pathogen infection that can be associated with devastating clinical outcomes, and which most frequently are due to neurotropic viruses. Here, we discuss recent advances about our understanding of anti-viral immune responses with special emphasis on mechanisms operating in the various anatomical compartments of the CNS.
Collapse
Affiliation(s)
- Ilena Vincenti
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Doron Merkler
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland.
| |
Collapse
|
19
|
Septyaningtrias DE, Susilowati R. Neurological involvement of COVID-19: from neuroinvasion and neuroimmune crosstalk to long-term consequences. Rev Neurosci 2021; 32:427-442. [PMID: 33550780 DOI: 10.1515/revneuro-2020-0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022]
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic continues to be a multidimensional threat to humanity, more evidence of neurological involvement associated with it has emerged. Neuroimmune interaction may prove to be important not only in the pathogenesis of neurological manifestations but also to prevent systemic hyperinflammation. In this review, we summarize reports of COVID-19 cases with neurological involvement, followed by discussion of possible routes of entry, immune responses against coronavirus infection in the central nervous system and mechanisms of nerve degeneration due to viral infection and immune responses. Possible mechanisms for neuroprotection and virus-associated neurological consequences are also discussed.
Collapse
Affiliation(s)
- Dian Eurike Septyaningtrias
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako Sekip Utara, Yogyakarta55281, Indonesia
| | - Rina Susilowati
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako Sekip Utara, Yogyakarta55281, Indonesia
| |
Collapse
|
20
|
Hassert M, Geerling E, Stone ET, Steffen TL, Feldman MS, Dickson AL, Class J, Richner JM, Brien JD, Pinto AK. mRNA induced expression of human angiotensin-converting enzyme 2 in mice for the study of the adaptive immune response to severe acute respiratory syndrome coronavirus 2. PLoS Pathog 2020; 16:e1009163. [PMID: 33326500 PMCID: PMC7773324 DOI: 10.1371/journal.ppat.1009163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/30/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
The novel human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic. Critical to the rapid evaluation of vaccines and antivirals against SARS-CoV-2 is the development of tractable animal models to understand the adaptive immune response to the virus. To this end, the use of common laboratory strains of mice is hindered by significant divergence of the angiotensin-converting enzyme 2 (ACE2), which is the receptor required for entry of SARS-CoV-2. In the current study, we designed and utilized an mRNA-based transfection system to induce expression of the hACE2 receptor in order to confer entry of SARS-CoV-2 in otherwise non-permissive cells. By employing this expression system in an in vivo setting, we were able to interrogate the adaptive immune response to SARS-CoV-2 in type 1 interferon receptor deficient mice. In doing so, we showed that the T cell response to SARS-CoV-2 is enhanced when hACE2 is expressed during infection. Moreover, we demonstrated that these responses are preserved in memory and are boosted upon secondary infection. Importantly, using this system, we functionally identified the CD4+ and CD8+ structural peptide epitopes targeted during SARS-CoV-2 infection in H2b restricted mice and confirmed their existence in an established model of SARS-CoV-2 pathogenesis. We demonstrated that, identical to what has been seen in humans, the antigen-specific CD8+ T cells in mice primarily target peptides of the spike and membrane proteins, while the antigen-specific CD4+ T cells target peptides of the nucleocapsid, membrane, and spike proteins. As the focus of the immune response in mice is highly similar to that of the humans, the identification of functional murine SARS-CoV-2-specific T cell epitopes provided in this study will be critical for evaluation of vaccine efficacy in murine models of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Tara L. Steffen
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Madi S. Feldman
- Department of Biomedical Engineering, Saint Louis University, St. Louis, Missouri, United States of America
| | - Alexandria L. Dickson
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Jacob Class
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Justin M. Richner
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| |
Collapse
|
21
|
Mangale V, Syage AR, Ekiz HA, Skinner DD, Cheng Y, Stone CL, Brown RM, O'Connell RM, Green KN, Lane TE. Microglia influence host defense, disease, and repair following murine coronavirus infection of the central nervous system. Glia 2020; 68:2345-2360. [PMID: 32449994 PMCID: PMC7280614 DOI: 10.1002/glia.23844] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022]
Abstract
The present study examines functional contributions of microglia in host defense, demyelination, and remyelination following infection of susceptible mice with a neurotropic coronavirus. Treatment with PLX5622, an inhibitor of colony stimulating factor 1 receptor (CSF1R) that efficiently depletes microglia, prior to infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in increased mortality compared with control mice that correlated with impaired control of viral replication. Single cell RNA sequencing (scRNASeq) of CD45+ cells isolated from the CNS revealed that PLX5622 treatment resulted in muted CD4+ T cell activation profile that was associated with decreased expression of transcripts encoding MHC class II and CD86 in macrophages but not dendritic cells. Evaluation of spinal cord demyelination revealed a marked increase in white matter damage in PLX5622-treated mice that corresponded with elevated expression of transcripts encoding disease-associated proteins Osteopontin (Spp1), Apolipoprotein E (Apoe), and Triggering receptor expressed on myeloid cells 2 (Trem2) that were enriched within macrophages. In addition, PLX5622 treatment dampened expression of Cystatin F (Cst7), Insulin growth factor 1 (Igf1), and lipoprotein lipase (Lpl) within macrophage populations which have been implicated in promoting repair of damaged nerve tissue and this was associated with impaired remyelination. Collectively, these findings argue that microglia tailor the CNS microenvironment to enhance control of coronavirus replication as well as dampen the severity of demyelination and influence repair.
Collapse
Affiliation(s)
- Vrushali Mangale
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Amber R. Syage
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - H. Atakan Ekiz
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Dominic D. Skinner
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Yuting Cheng
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Colleen L. Stone
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - R. Marshall Brown
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Ryan M. O'Connell
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Kim N. Green
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
22
|
Sariol A, Perlman S. Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity 2020; 53:248-263. [PMID: 32717182 PMCID: PMC7359787 DOI: 10.1016/j.immuni.2020.07.005] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
A key goal to controlling coronavirus disease 2019 (COVID-19) is developing an effective vaccine. Development of a vaccine requires knowledge of what constitutes a protective immune response and also features that might be pathogenic. Protective and pathogenic aspects of the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not well understood, partly because the virus has infected humans for only 6 months. However, insight into coronavirus immunity can be informed by previous studies of immune responses to non-human coronaviruses, common cold coronaviruses, and SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we review the literature describing these responses and discuss their relevance to the SARS-CoV-2 immune response.
Collapse
Affiliation(s)
- Alan Sariol
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley Perlman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
23
|
Abstract
A key goal to controlling coronavirus disease 2019 (COVID-19) is developing an effective vaccine. Development of a vaccine requires knowledge of what constitutes a protective immune response and also features that might be pathogenic. Protective and pathogenic aspects of the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not well understood, partly because the virus has infected humans for only 6 months. However, insight into coronavirus immunity can be informed by previous studies of immune responses to non-human coronaviruses, common cold coronaviruses, and SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we review the literature describing these responses and discuss their relevance to the SARS-CoV-2 immune response.
Collapse
Affiliation(s)
- Alan Sariol
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley Perlman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
24
|
Hassert M, Geerling E, Stone ET, Steffen TL, Dickson A, Feldman MS, Class J, Richner JM, Brien JD, Pinto AK. mRNA induced expression of human angiotensin-converting enzyme 2 in mice for the study of the adaptive immune response to severe acute respiratory syndrome coronavirus 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32793909 DOI: 10.1101/2020.08.07.241877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The novel human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic resulting in nearly 20 million infections across the globe, as of August 2020. Critical to the rapid evaluation of vaccines and antivirals is the development of tractable animal models of infection. The use of common laboratory strains of mice to this end is hindered by significant divergence of the angiotensin-converting enzyme 2 (ACE2), which is the receptor required for entry of SARS-CoV-2. In the current study, we designed and utilized an mRNA-based transfection system to induce expression of the hACE2 receptor in order to confer entry of SARS-CoV-2 in otherwise non-permissive cells. By employing this expression system in an in vivo setting, we were able to interrogate the adaptive immune response to SARS-CoV-2 in type 1 interferon receptor deficient mice. In doing so, we showed that the T cell response to SARS-CoV-2 is enhanced when hACE2 is expressed during infection. Moreover, we demonstrated that these responses are preserved in memory and are boosted upon secondary infection. Interestingly, we did not observe an enhancement of SARS-CoV-2 specific antibody responses with hACE2 induction. Importantly, using this system, we functionally identified the CD4+ and CD8+ peptide epitopes targeted during SARS-CoV-2 infection in H2b restricted mice. Antigen-specific CD8+ T cells in mice of this MHC haplotype primarily target peptides of the spike and membrane proteins, while the antigen-specific CD4+ T cells target peptides of the nucleocapsid, membrane, and spike proteins. The functional identification of these T cell epitopes will be critical for evaluation of vaccine efficacy in murine models of SARS-CoV-2. The use of this tractable expression system has the potential to be used in other instances of emerging infections in which the rapid development of an animal model is hindered by a lack of host susceptibility factors.
Collapse
|
25
|
Brown DG, Soto R, Yandamuri S, Stone C, Dickey L, Gomes-Neto JC, Pastuzyn ED, Bell R, Petersen C, Buhrke K, Fujinami RS, O'Connell RM, Stephens WZ, Shepherd JD, Lane TE, Round JL. The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling. eLife 2019; 8:e47117. [PMID: 31309928 PMCID: PMC6634972 DOI: 10.7554/elife.47117] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 12/30/2022] Open
Abstract
Symbiotic microbes impact the function and development of the central nervous system (CNS); however, little is known about the contribution of the microbiota during viral-induced neurologic damage. We identify that commensals aid in host defense following infection with a neurotropic virus through enhancing microglia function. Germfree mice or animals that receive antibiotics are unable to control viral replication within the brain leading to increased paralysis. Microglia derived from germfree or antibiotic-treated animals cannot stimulate viral-specific immunity and microglia depletion leads to worsened demyelination. Oral administration of toll-like receptor (TLR) ligands to virally infected germfree mice limits neurologic damage. Homeostatic activation of microglia is dependent on intrinsic signaling through TLR4, as disruption of TLR4 within microglia, but not the entire CNS (excluding microglia), leads to increased viral-induced clinical disease. This work demonstrates that gut immune-stimulatory products can influence microglia function to prevent CNS damage following viral infection.
Collapse
Affiliation(s)
- D Garrett Brown
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Raymond Soto
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Soumya Yandamuri
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Colleen Stone
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Laura Dickey
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Joao Carlos Gomes-Neto
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Elissa D Pastuzyn
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Charisse Petersen
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Kaitlin Buhrke
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Robert S Fujinami
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Ryan M O'Connell
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - W Zac Stephens
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Jason D Shepherd
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Thomas E Lane
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - June L Round
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
26
|
Cheng Y, Skinner DD, Lane TE. Innate Immune Responses and Viral-Induced Neurologic Disease. J Clin Med 2018; 8:jcm8010003. [PMID: 30577473 PMCID: PMC6352557 DOI: 10.3390/jcm8010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) characterized by chronic neuroinflammation, axonal damage, and demyelination. Cellular components of the adaptive immune response are viewed as important in initiating formation of demyelinating lesions in MS patients. This notion is supported by preclinical animal models, genome-wide association studies (GWAS), as well as approved disease modifying therapies (DMTs) that suppress clinical relapse and are designed to impede infiltration of activated lymphocytes into the CNS. Nonetheless, emerging evidence demonstrates that the innate immune response e.g., neutrophils can amplify white matter damage through a variety of different mechanisms. Indeed, using a model of coronavirus-induced neurologic disease, we have demonstrated that sustained neutrophil infiltration into the CNS of infected animals correlates with increased demyelination. This brief review highlights recent evidence arguing that targeting the innate immune response may offer new therapeutic avenues for treatment of demyelinating disease including MS.
Collapse
Affiliation(s)
- Yuting Cheng
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Dominic D Skinner
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
27
|
Savarin C, Bergmann CC. Fine Tuning the Cytokine Storm by IFN and IL-10 Following Neurotropic Coronavirus Encephalomyelitis. Front Immunol 2018; 9:3022. [PMID: 30619363 PMCID: PMC6306494 DOI: 10.3389/fimmu.2018.03022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
The central nervous system (CNS) is vulnerable to several viral infections including herpes viruses, arboviruses and HIV to name a few. While a rapid and effective immune response is essential to limit viral spread and mortality, this anti-viral response needs to be tightly regulated in order to limit immune mediated tissue damage. This balance between effective virus control with limited pathology is especially important due to the highly specialized functions and limited regenerative capacity of neurons, which can be targets of direct virus cytolysis or bystander damage. CNS infection with the neurotropic strain of mouse hepatitis virus (MHV) induces an acute encephalomyelitis associated with focal areas of demyelination, which is sustained during viral persistence. Both innate and adaptive immune cells work in coordination to control virus replication. While type I interferons are essential to limit virus spread associated with early mortality, perforin, and interferon-γ promote further virus clearance in astrocytes/microglia and oligodendrocytes, respectively. Effective control of virus replication is nonetheless associated with tissue damage, characterized by demyelinating lesions. Interestingly, the anti-inflammatory cytokine IL-10 limits expansion of tissue lesions during chronic infection without affecting viral persistence. Thus, effective coordination of pro- and anti-inflammatory cytokines is essential during MHV induced encephalomyelitis in order to protect the host against viral infection at a limited cost.
Collapse
Affiliation(s)
- Carine Savarin
- Department of Neuroscience, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, United States
| | - Cornelia C Bergmann
- Department of Neuroscience, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
28
|
Savarin C, Dutta R, Bergmann CC. Distinct Gene Profiles of Bone Marrow-Derived Macrophages and Microglia During Neurotropic Coronavirus-Induced Demyelination. Front Immunol 2018; 9:1325. [PMID: 29942315 PMCID: PMC6004766 DOI: 10.3389/fimmu.2018.01325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/28/2018] [Indexed: 01/09/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination and axonal loss. Demyelinating lesions are associated with infiltrating T lymphocytes, bone marrow-derived macrophages (BMDM), and activated resident microglia. Tissue damage is thought to be mediated by T cell produced cytokines and chemokines, which activate microglia and/or BMDM to both strip myelin and produce toxic factors, ultimately damaging axons and promoting disability. However, the relative contributions of BMDM and microglia to demyelinating pathology are unclear, as their identification in MS tissue is difficult due to similar morphology and indistinguishable surface markers when activated. The CD4 T cell-induced autoimmune murine model of MS, experimental autoimmune encephalitis (EAE), in which BMDM are essential for demyelination, has revealed pathogenic and repair-promoting phenotypes associated with BMDM and microglia, respectively. Using a murine model of demyelination induced by a gliatropic coronavirus, in which BMDM are redundant for demyelination, we herein characterize gene expression profiles of BMDM versus microglia associated with demyelination. While gene expression in CNS infiltrating BMDM was upregulated early following infection and subsequently sustained, microglia expressed a more dynamic gene profile with extensive mRNA upregulation coinciding with peak demyelination after viral control. This delayed microglia response comprised a highly pro-inflammatory and phagocytic profile. Furthermore, while BMDM exhibited a mixed phenotype of M1 and M2 markers, microglia repressed the vast majority of M2-markers. Overall, these data support a pro-inflammatory and pathogenic role of microglia temporally remote from viral control, whereas BMDM retained their gene expression profile independent of the changing environment. As demyelination is caused by multifactorial insults, our results highlight the plasticity of microglia in responding to distinct inflammatory settings, which may be relevant for MS pathogenesis.
Collapse
Affiliation(s)
- Carine Savarin
- Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Ranjan Dutta
- Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Cornelia C Bergmann
- Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
29
|
Zalinger ZB, Elliott R, Weiss SR. Role of the inflammasome-related cytokines Il-1 and Il-18 during infection with murine coronavirus. J Neurovirol 2017; 23:845-854. [PMID: 28895072 PMCID: PMC5726909 DOI: 10.1007/s13365-017-0574-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 11/17/2022]
Abstract
The inflammasome, a cytosolic protein complex that mediates the processing and secretion of pro-inflammatory cytokines, is one of the first responders during viral infection. The cytokines secreted following inflammasome activation, which include IL-1 and IL-18, regulate cells of both the innate and adaptive immune system, guiding the subsequent immune responses. In this study, we used murine coronavirus, mouse hepatitis virus (MHV), infection of the central nervous system and liver to assess of the role of the inflammasome and its related cytokines on pathogenesis and host defense during viral infection. Mice lacking all inflammasome signaling due to the absence of caspase-1 and -11 were more vulnerable to infection, with poor survival and elevated viral replication compared to wild-type mice. Mice lacking IL-1 signaling experienced elevated viral replication but similar survival compared to wild-type controls. In the absence of IL-18, mice had elevated viral replication and poor survival, and this protective effect of IL-18 was found to be due to promotion of interferon gamma production in αβ T cells. These data suggest that inflammasome signaling is largely protective during murine coronavirus infection, in large part due to the pro-inflammatory effects of IL-18.
Collapse
Affiliation(s)
- Zachary B Zalinger
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA.,Moderna Therapeutics, 320 Bent Street, Cambridge, MA, 02141, USA
| | - Ruth Elliott
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA.
| |
Collapse
|
30
|
Savarin C, Bergmann CC. Viral-induced suppression of self-reactive T cells: Lessons from neurotropic coronavirus-induced demyelination. J Neuroimmunol 2017; 308:12-16. [PMID: 28108025 PMCID: PMC5474352 DOI: 10.1016/j.jneuroim.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022]
Abstract
Genetic and environmental factors, i.e. infections, have been proposed to contribute to disease induction and relapsing events in multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system (CNS). While research has mainly focused on virus associated autoimmune activation, less is known about prevention of autoimmunity, especially following resolving infections associated with CNS tissue damage. This review discusses novel insights on control of self-reactive (SR) T cells activated during neurotropic coronavirus-induced demyelination. A new concept is introduced that SR T cells can be dampened by distinct regulatory mechanisms in the periphery and the CNS, thereby preventing autoimmune disease. Virus-induced demyelination activates myelin specific T cells. Virus-induced regulatory mechanisms limit pathogenic self-reactive R CD4 T cells. Self-reactive CD4 T cells are controlled by distinct mechanisms in the CLN and CNS.
Collapse
Affiliation(s)
- Carine Savarin
- Lerner Research Institute, Cleveland Clinic, Neuroscience Department NC-30, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Cornelia C Bergmann
- Lerner Research Institute, Cleveland Clinic, Neuroscience Department NC-30, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
31
|
Baxter VK, Griffin DE. Interferon gamma modulation of disease manifestation and the local antibody response to alphavirus encephalomyelitis. J Gen Virol 2016; 97:2908-2925. [PMID: 27667782 DOI: 10.1099/jgv.0.000613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection of mice with Sindbis virus (SINV) produces encephalomyelitis and provides a model for examination of the central nervous system (CNS) immune response to alphavirus infection. Clearance of infectious virus is accomplished through a cooperative effort between SINV-specific antibody and IFN-γ, but the regulatory interactions are poorly understood. To determine the effects of IFN-γ on clinical disease and the antiviral immune response, C57BL/6 mice lacking IFN-γ (Ifng-/-) or IFN-γ receptor (Ifngr1-/-) were studied in comparison to WT mice. Maximum production of Ifng mRNA and IFN-γ protein in the CNS of WT and Ifngr1-/- mice occurred 5-7 days after infection, with higher levels of IFN-γ in Ifngr1-/- mice. Onset of clinical disease was earlier in mice with impaired IFN-γ signalling, although Ifngr1-/- mice recovered more rapidly. Ifng-/- and Ifngr1-/- mice maintained body weight better than WT mice, associated with better food intake and lower brain levels of inflammatory cytokines. Clearance of infectious virus from the spinal cords was slower, and CNS, but not serum, levels of SINV-specific IgM, IgG2a and IgG2b were lower in Ifngr1-/- and Ifng-/- mice compared to WT mice. Decreased CNS antiviral antibody was associated with lower expression of mRNAs for B-cell attracting chemokines CXCL9, CXCL10 and CXCL13 and fewer B cells in the CNS. Therefore, IFN-γ signalling increases levels of CNS pro-inflammatory cytokines, leading to clinical disease, but synergistically clears virus with SINV-specific antibody at least in part by increasing chemokine production important for infiltration of antibody-secreting B cells into the CNS.
Collapse
Affiliation(s)
- Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Dickey LL, Worne CL, Glover JL, Lane TE, O’Connell RM. MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. J Neuroinflammation 2016; 13:240. [PMID: 27604627 PMCID: PMC5015201 DOI: 10.1186/s12974-016-0699-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/20/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are noncoding RNAs that modulate cellular gene expression, primarily at the post-transcriptional level. We sought to examine the functional role of miR-155 in a model of viral-induced neuroinflammation. METHODS Acute encephalomyelitis and immune-mediated demyelination were induced by intracranial injection with the neurotropic JHM strain of mouse hepatitis virus (JHMV) into C57BL/6 miR-155 (+/+) wildtype (WT) mice or miR-155 (-/-) mice. Morbidity and mortality, viral load and immune cell accumulation in the CNS, and spinal cord demyelination were assessed at defined points post-infection. T cells harvested from infected mice were used to examine cytolytic activity, cytokine activity, and expression of certain chemokine receptors. To determine the impact of miR-155 on trafficking, T cells from infected WT or miR-155 (-/-) mice were adoptively transferred into RAG1 (-/-) mice, and T cell accumulation into the CNS was assessed using flow cytometry. Statistical significance was determined using the Mantel-Cox log-rank test or Student's T tests. RESULTS Compared to WT mice, JHMV-infected miR-155 (-/-) mice developed exacerbated disease concomitant with increased morbidity/mortality and an inability to control viral replication within the CNS. In corroboration with increased susceptibility to disease, miR-155 (-/-) mice had diminished CD8(+) T cell responses in terms of numbers, cytolytic activity, IFN-γ secretion, and homing to the CNS that corresponded with reduced expression of the chemokine receptor CXCR3. Both IFN-γ secretion and trafficking were impaired in miR-155 (-/-) , virus-specific CD4(+) T cells; however, expression of the chemokine homing receptors analyzed on CD4(+) cells was not affected. Except for very early during infection, there were not significant differences in macrophage infiltration into the CNS between WT and miR-155 (-/-) JHMV-infected mice, and the severity of demyelination was similar at 14 days p.i. between WT and miR-155 (-/-) JHMV-infected mice. CONCLUSIONS These findings support a novel role for miR-155 in host defense in a model of viral-induced encephalomyelitis. Specifically, miR-155 enhances antiviral T cell responses including cytokine secretion, cytolytic activity, and homing to the CNS in response to viral infection. Further, miR-155 can play either a host-protective or host-damaging role during neuroinflammation depending on the disease trigger.
Collapse
Affiliation(s)
- Laura L. Dickey
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Colleen L. Worne
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Jessica L. Glover
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Thomas E. Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Ryan M. O’Connell
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| |
Collapse
|
33
|
Immune Responses to Viruses in the CNS. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7151986 DOI: 10.1016/b978-0-12-374279-7.14022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For recovery from infection, the immune response in the central nervous system (CNS) must eliminate or control virus replication without destroying nonrenewable, essential cells. Thus, upon intracellular virus detection, the infected cell must initiate clearance pathways without triggering neuronal cell death. As a result, the inflammatory response must be tightly regulated and unique mechanisms contribute to the immune response in the CNS. Early restriction of virus replication is accomplished by the innate immune response upon activation of pattern recognition receptors in resident cells. Infiltrating immune cells enter from the periphery to clear virus. Antibodies and interferon-γ are primary contributors to noncytolytic clearance of virus in the CNS. Lymphocytes are retained in the CNS after the acute phase of infection presumably to block reactivation of virus replication.
Collapse
|
34
|
Abstract
Neurotropic strains of the mouse hepatitis virus (MHV) cause a range of diseases in infected mice ranging from mild encephalitis with clearance of the virus followed by demyelination to rapidly fatal encephalitis. This chapter discusses the structure, life cycle, transmission, and pathology of neurotropic coronaviruses, as well as the immune response to coronavirus infection. Mice infected with neurotropic strains of MHV have provided useful systems in which to study processes of virus- and immune-mediated demyelination and virus clearance and/or persistence in the CNS, and the mechanisms of virus evasion of the immune system.
Collapse
|
35
|
Myd88 Initiates Early Innate Immune Responses and Promotes CD4 T Cells during Coronavirus Encephalomyelitis. J Virol 2015; 89:9299-312. [PMID: 26136579 DOI: 10.1128/jvi.01199-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/22/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Myd88 signaling is critical to the control of numerous central nervous system (CNS) infections by promoting both innate and adaptive immune responses. Nevertheless, the extent to which Myd88 regulates type I interferon (IFN) versus proinflammatory factors and T cell function, as well as the anatomical site of action, varies extensively with the pathogen. CNS infection by neurotropic coronavirus with replication confined to the brain and spinal cord induces protective IFN-α/β via Myd88-independent activation of melanoma differentiation-associated gene 5 (MDA5). However, a contribution of Myd88-dependent signals to CNS pathogenesis has not been assessed. Infected Myd88(-/-) mice failed to control virus, exhibited enhanced clinical disease coincident with increased demyelination, and succumbed to infection within 3 weeks. The induction of IFN-α/β, as well as of proinflammatory cytokines and chemokines, was impaired early during infection. However, defects in both IFN-α/β and select proinflammatory factors were rapidly overcome prior to T cell recruitment. Myd88 deficiency also specifically blunted myeloid and CD4 T cell recruitment into the CNS without affecting CD8 T cells. Moreover, CD4 T cells but not CD8 T cells were impaired in IFN-γ production. Ineffective virus control indeed correlated most prominently with reduced antiviral IFN-γ in the CNS of Myd88(-/-) mice. The results demonstrate a crucial role for Myd88 both in early induction of innate immune responses during coronavirus-induced encephalomyelitis and in specifically promoting protective CD4 T cell activation. In the absence of these responses, functional CD8 T cells are insufficient to control viral spread within the CNS, resulting in severe demyelination. IMPORTANCE During central nervous system (CNS) infections, signaling through the adaptor protein Myd88 promotes both innate and adaptive immune responses. The extent to which Myd88 regulates antiviral type I IFN, proinflammatory factors, adaptive immunity, and pathology is pathogen dependent. These results reveal that Myd88 protects from lethal neurotropic coronavirus-induced encephalomyelitis by accelerating but not enhancing the induction of IFN-α/β, as well as by promoting peripheral activation and CNS accumulation of virus-specific CD4 T cells secreting IFN-γ. By controlling both early innate immune responses and CD4 T cell-mediated antiviral IFN-γ, Myd88 signaling limits the initial viral dissemination and is vital for T cell-mediated control of viral loads. Uncontrolled viral replication in the absence of Myd88 leads to severe demyelination and pathology despite overall reduced inflammatory responses. These data support a vital role of Myd88 signaling in protective antimicrobial functions in the CNS by promoting proinflammatory mediators and T cell-mediated IFN-γ production.
Collapse
|
36
|
Puntambekar SS, Hinton DR, Yin X, Savarin C, Bergmann CC, Trapp BD, Stohlman SA. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia 2015; 63:2106-2120. [PMID: 26132901 PMCID: PMC4755156 DOI: 10.1002/glia.22880] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/29/2022]
Abstract
Neurotropic coronavirus induces an acute encephalomyelitis accompanied by focal areas of demyelination distributed randomly along the spinal column. The initial areas of demyelination increase only slightly after the control of infection. These circumscribed focal lesions are characterized by axonal sparing, myelin ingestion by macrophage/microglia, and glial scars associated with hypertrophic astrocytes, which proliferate at the lesion border. Accelerated virus control in mice lacking the anti‐inflammatory cytokine IL‐10 was associated with limited initial demyelination, but low viral mRNA persistence similar to WT mice and declining antiviral cellular immunity. Nevertheless, lesions exhibited sustained expansion providing a model of dysregulated white matter injury temporally remote from the acute CNS insult. Expanding lesions in the absence of IL‐10 are characterized by sustained microglial activation and partial loss of macrophage/microglia exhibiting an acquired deactivation phenotype. Furthermore, IL‐10 deficiency impaired astrocyte organization into mesh like structures at the lesion borders, but did not prevent astrocyte hypertrophy. The formation of discrete foci of demyelination in IL‐10 sufficient mice correlated with IL‐10 receptor expression exclusively on astrocytes in areas of demyelination suggesting a critical role for IL‐10 signaling to astrocytes in limiting expansion of initial areas of white matter damage. GLIA 2015;63:2106–2120
Collapse
Affiliation(s)
- Shweta S Puntambekar
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - David R Hinton
- Department of Pathology, The University of Southern California Keck School of Medicine, Los Angeles, California
| | - Xinghua Yin
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Carine Savarin
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Cornelia C Bergmann
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Stephen A Stohlman
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
37
|
Marro BS, Blanc CA, Loring JF, Cahalan MD, Lane TE. Promoting remyelination: utilizing a viral model of demyelination to assess cell-based therapies. Expert Rev Neurother 2015; 14:1169-79. [PMID: 25245576 DOI: 10.1586/14737175.2014.955854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS. While a broad range of therapeutics effectively reduce the incidence of focal white matter inflammation and plaque formation for patients with relapse-remitting forms of MS, a challenge within the field is to develop therapies that allow for axonal protection and remyelination. In the last decade, growing interest has focused on utilizing neural precursor cells (NPCs) to promote remyelination. To understand how NPCs function in chronic demyelinating environments, several excellent pre-clinical mouse models have been developed. One well accepted model is infection of susceptible mice with neurotropic variants of mouse hepatitis virus (MHV) that undergo chronic demyelination exhibiting clinical and histopathologic similarities to MS patients. Combined with the possibility that an environmental agent such as a virus could trigger MS, the MHV model of demyelination presents a relevant mouse model to assess the therapeutic potential of NPCs transplanted into an environment in which inflammatory-mediated demyelination is established.
Collapse
Affiliation(s)
- Brett S Marro
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697, USA
| | | | | | | | | |
Collapse
|
38
|
Hwang M, Phares TW, Hinton DR, Stohlman SA, Bergmann CC, Min B. Distinct CD4 T-cell effects on primary versus recall CD8 T-cell responses during viral encephalomyelitis. Immunology 2015; 144:374-386. [PMID: 25187405 PMCID: PMC4557674 DOI: 10.1111/imm.12378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 12/23/2022] Open
Abstract
CD4 T-cell help is not a universal requirement for effective primary CD8 T cells but is essential to generate memory CD8 T cells capable of recall responses. This study examined how CD4 T cells affect primary and secondary anti-viral CD8 T-cell responses within the central nervous system (CNS) during encephalomyelitis induced by sublethal gliatropic coronavirus. CD4 T-cell depletion before infection did not impair peripheral expansion, interferon-γ production, CNS recruitment or initial CNS effector capacity of virus-specific CD8 T cells ex vivo. Nevertheless, impaired virus control in the absence of CD4 T cells was associated with gradually diminished CNS CD8 T-cell interferon-γ production. Furthermore, within the CD8 T-cell population short-lived effector cells were increased and memory precursor effector cells were significantly decreased, consistent with higher T-cell turnover. Transfer of memory CD8 T cells to reduce viral load in CD4-depleted mice reverted the recipient CNS CD8 T-cell phenotype to that in wild-type control mice. However, memory CD8 T cells primed without CD4 T cells and transferred into infected CD4-sufficient recipients expanded less efficiently and were not sustained in the CNS, contrasting with their helped counterparts. These data suggest that CD4 T cells are dispensable for initial expansion, CNS recruitment and differentiation of primary resident memory CD8 T cells as long as the duration of antigen exposure is limited. By contrast, CD4 T cells are essential to prolong primary CD8 T-cell function in the CNS and imprint memory CD8 T cells for recall responses.
Collapse
Affiliation(s)
- Mihyun Hwang
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Timothy W Phares
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David R Hinton
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen A Stohlman
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Cornelia C Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Booki Min
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
39
|
Plaisted WC, Weinger JG, Walsh CM, Lane TE. T cell mediated suppression of neurotropic coronavirus replication in neural precursor cells. Virology 2013; 449:235-43. [PMID: 24418558 PMCID: PMC3894587 DOI: 10.1016/j.virol.2013.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/17/2013] [Accepted: 11/14/2013] [Indexed: 02/02/2023]
Abstract
Neural precursor cells (NPCs) are the subject of intense investigation for their potential to treat neurodegenerative disorders, yet the consequences of neuroinvasive virus infection of NPCs remain unclear. This study demonstrates that NPCs support replication following infection by the neurotropic JHM strain of mouse hepatitis virus (JHMV). JHMV infection leads to increased cell death and dampens IFN-γ-induced MHC class II expression. Importantly, cytokines secreted by CD4+ T cells inhibit JHMV replication in NPCs, and CD8+ T cells specifically target viral peptide-pulsed NPCs for lysis. Furthermore, treatment with IFN-γ inhibits JHMV replication in a dose-dependent manner. Together, these findings suggest that T cells play a critical role in controlling replication of a neurotropic virus in NPCs, a finding which has important implications when considering immune modulation for NPC-based therapies for treatment of human neurologic diseases. Murine neural precursor cells are infected by JHMV in a CEACAM1a-dependent manner. Peptide-pulsed NPCs are targeted for lysis by virus-specific CD8+ T cells. JHMV replication in NPCs is suppressed by CD4+ T cells through IFN-γ secretion. IFN-γ dampens CEACAM1a expression and JHMV protein production in NPCs.
Collapse
Affiliation(s)
- Warren C Plaisted
- Department of Molecular Biology & Biochemistry, University of California, Irvine 92697-3900, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine 92697-3900, USA
| | - Jason G Weinger
- Department of Molecular Biology & Biochemistry, University of California, Irvine 92697-3900, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine 92697-3900, USA
| | - Craig M Walsh
- Department of Molecular Biology & Biochemistry, University of California, Irvine 92697-3900, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine 92697-3900, USA; Multiple Sclerosis Research Center, University of California, Irvine 92697-3900, USA; Institute for Immunology, University of California, Irvine 92697-3900, USA
| | - Thomas E Lane
- Department of Molecular Biology & Biochemistry, University of California, Irvine 92697-3900, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine 92697-3900, USA; Multiple Sclerosis Research Center, University of California, Irvine 92697-3900, USA; Institute for Immunology, University of California, Irvine 92697-3900, USA.
| |
Collapse
|
40
|
Abstract
The fate of T lymphocytes revolves around a continuous stream of interactions between the T-cell receptor (TCR) and peptide-major histocompatibility complex (MHC) molecules. Beginning in the thymus and continuing into the periphery, these interactions, refined by accessory molecules, direct the expansion, differentiation, and function of T-cell subsets. The cellular context of T-cell engagement with antigen-presenting cells, either in lymphoid or non-lymphoid tissues, plays an important role in determining how these cells respond to antigen encounters. CD8(+) T cells are essential for clearance of a lymphocytic choriomeningitis virus (LCMV) infection, but the virus can present a number of unique challenges that antiviral T cells must overcome. Peripheral LCMV infection can lead to rapid cytolytic clearance or chronic viral persistence; central nervous system infection can result in T-cell-dependent fatal meningitis or an asymptomatic carrier state amenable to immunotherapeutic clearance. These diverse outcomes all depend on interactions that require TCR engagement of cognate peptide-MHC complexes. In this review, we explore the diversity in antiviral T-cell behaviors resulting from TCR engagement, beginning with an overview of the immunological synapse and progressing to regulators of TCR signaling that shape the delicate balance between immunopathology and viral clearance.
Collapse
Affiliation(s)
- E. Ashley Moseman
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Dorian B. McGavern
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
41
|
Phares TW, DiSano KD, Hinton DR, Hwang M, Zajac AJ, Stohlman SA, Bergmann CC. IL-21 optimizes T cell and humoral responses in the central nervous system during viral encephalitis. J Neuroimmunol 2013; 263:43-54. [PMID: 23992866 PMCID: PMC3796038 DOI: 10.1016/j.jneuroim.2013.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 01/08/2023]
Abstract
Acute coronavirus encephalomyelitis is controlled by T cells while humoral responses suppress virus persistence. This study defines the contribution of interleukin (IL)-21, a regulator of T and B cell function, to central nervous system (CNS) immunity. IL-21 receptor deficiency did not affect peripheral T cell activation or trafficking, but dampened granzyme B, gamma interferon and IL-10 expression by CNS T cells and reduced serum and intrathecal humoral responses. Viral control was already lost prior to humoral CNS responses, but demyelination remained comparable. These data demonstrate a critical role of IL-21 in regulating CNS immunity, sustaining viral persistence and preventing mortality. IL-21 optimizes CNS CD4 and CD8 T cell responses during viral encephalomyelitis. IL-21 promotes peripheral and CNS humoral immunity. IL-21 promotes CNS viral control and prevents mortality.
Collapse
Affiliation(s)
- Timothy W. Phares
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Krista D. DiSano
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - David R. Hinton
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mihyun Hwang
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Allan J. Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephen A. Stohlman
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Corresponding author at: Department of Neuroscience, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, NC30, Cleveland, OH 44195, USA. Tel.: + 1 216 444 5922; fax: + 1 216 444 7927.
| |
Collapse
|
42
|
Weinger JG, Marro BS, Hosking MP, Lane TE. The chemokine receptor CXCR2 and coronavirus-induced neurologic disease. Virology 2013; 435:110-7. [PMID: 23217621 PMCID: PMC3522860 DOI: 10.1016/j.virol.2012.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 12/18/2022]
Abstract
Inoculation with the neurotropic JHM strain of mouse hepatitis virus (MHV) into the central nervous system (CNS) of susceptible strains of mice results in an acute encephalomyelitis in which virus preferentially replicates within glial cells while excluding neurons. Control of viral replication during acute disease is mediated by infiltrating virus-specific T cells via cytokine secretion and cytolytic activity, however sterile immunity is not achieved and virus persists resulting in chronic neuroinflammation associated with demyelination. CXCR2 is a chemokine receptor that upon binding to specific ligands promotes host defense through recruitment of myeloid cells to the CNS as well as protecting oligodendroglia from cytokine-mediated death in response to MHV infection. These findings highlight growing evidence of the diverse and important role of CXCR2 in regulating neuroinflammatory diseases.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Molecular Biology & Biochemistry, UC Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
43
|
Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol 2013; 87:3382-92. [PMID: 23302888 DOI: 10.1128/jvi.03307-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microbial infections of the central nervous system (CNS) are often associated with local accumulation of antibody (Ab)-secreting cells (ASC). By providing a source of Ab at the site of infection, CNS-localized ASC play a critical role in acute viral control and in preventing viral recrudescence. Following coronavirus-induced encephalomyelitis, the CNS accumulation of ASC is chemokine (C-X-C motif) receptor 3 (CXCR3) dependent. This study demonstrates that CNS-expressed CXCR3 ligand CXCL10 is the critical chemokine regulating ASC accumulation. Impaired ASC recruitment in CXCL10(-/-) but not CXCL9(-/-) mice was consistent with reduced CNS IgG and κ-light chain mRNA and virus-specific Ab. Moreover, the few ASC recruited to the CNS in CXCL10(-/-) mice were confined to the vasculature, distinct from the parenchymal localization in wild-type and CXCL9(-/-) mice. However, neither CXCL9 nor CXCL10 deficiency diminished neutralizing serum Ab, supporting a direct role for CXCL10 in ASC migration. T cell accumulation, localization, and effector functions were also not affected in either CXCL9(-/-) or CXCL10(-/-) mice, consistent with similar control of infectious virus. There was also no evidence for dysregulation of chemokines or cytokines involved in ASC regulation. The distinct roles of CXCL9 and CXCL10 in ASC accumulation rather coincided with their differential localization. While CXCL10 was predominantly expressed by astrocytes, CXCL9 expression was confined to the vasculature/perivascular spaces. These results suggest that CXCL10 is critical for two phases: recruitment of ASC to the CNS vasculature and ASC entry into the CNS parenchyma.
Collapse
|
44
|
Savarin C, Stohlman SA, Hinton DR, Ransohoff RM, Cua DJ, Bergmann CC. IFN-γ protects from lethal IL-17 mediated viral encephalomyelitis independent of neutrophils. J Neuroinflammation 2012; 9:104. [PMID: 22642802 PMCID: PMC3419086 DOI: 10.1186/1742-2094-9-104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/10/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The interplay between IFN-γ, IL-17 and neutrophils during CNS inflammatory disease is complex due to cross-regulatory factors affecting both positive and negative feedback loops. These interactions have hindered the ability to distinguish the relative contributions of neutrophils, Th1 and Th17 cell-derived effector molecules from secondary mediators to tissue damage and morbidity. METHODS Encephalitis induced by a gliatropic murine coronavirus was used as a model to assess the direct contributions of neutrophils, IFN-γ and IL-17 to virus-induced mortality. CNS inflammatory conditions were selectively manipulated by adoptive transfer of virus-primed wild-type (WT) or IFN-γ deficient (GKO) memory CD4+ T cells into infected SCID mice, coupled with antibody-mediated neutrophil depletion and cytokine blockade. RESULTS Transfer of GKO memory CD4+ T cells into infected SCID mice induced rapid mortality compared to recipients of WT memory CD4+ T cells, despite similar virus control and demyelination. In contrast to recipients of WT CD4+ T cells, extensive neutrophil infiltration and IL-17 expression within the CNS in recipients of GKO CD4+ T cells provided a model to directly assess their contribution(s) to disease. Recipients of WT CD4+ T cells depleted of IFN-γ did not express IL-17 and were spared from mortality despite abundant CNS neutrophil infiltration, indicating that mortality was not mediated by excessive CNS neutrophil accumulation. By contrast, IL-17 depletion rescued recipients of GKO CD4+ T cells from rapid mortality without diminishing neutrophils or reducing GM-CSF, associated with pathogenic Th17 cells in CNS autoimmune models. Furthermore, co-transfer of WT and GKO CD4+ T cells prolonged survival in an IFN-γ dependent manner, although IL-17 transcription was not reduced. CONCLUSIONS These data demonstrate that IL-17 mediates detrimental clinical consequences in an IFN-γ-deprived environment, independent of extensive neutrophil accumulation or GM-CSF upregulation. The results also suggest that IFN-γ overrides the detrimental IL-17 effector responses via a mechanism downstream of transcriptional regulation.
Collapse
Affiliation(s)
- Carine Savarin
- Department of Neurosciences NC30, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
45
|
Regulatory T cells in arterivirus and coronavirus infections: do they protect against disease or enhance it? Viruses 2012; 4:833-46. [PMID: 22754651 PMCID: PMC3386620 DOI: 10.3390/v4050833] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 01/05/2023] Open
Abstract
Regulatory T cells (Tregs) are a subset of T cells that are responsible for maintaining peripheral immune tolerance and homeostasis. The hallmark of Tregs is the expression of the forkhead box P3 (FoxP3) transcription factor. Natural regulatory T cells (nTregs) are a distinct population of T cells that express CD4 and FoxP3. nTregs develop in the thymus and function in maintaining peripheral immune tolerance. Other CD4+, CD4-CD8-, and CD8+CD28- T cells can be induced to acquire regulatory function by antigenic stimulation, depending on the cytokine milieu. Inducible (or adaptive) Tregs frequently express high levels of the interleukin 2 receptor (CD25). Atypical Tregs express FoxP3 and CD4 but have no surface expression of CD25. Type 1 regulatory T cells (Tr1 cells) produce IL-10, while T helper 3 cells (Th3) produce TGF-β. The function of inducible Tregs is presumably to maintain immune homeostasis, especially in the context of chronic inflammation or infection. Induction of Tregs in coronaviral infections protects against the more severe forms of the disease attributable to the host response. However, arteriviruses have exploited these T cell subsets as a means to dampen the immune response allowing for viral persistence. Treg induction or activation in the pathogenesis of disease has been described in both porcine reproductive and respiratory syndrome virus, lactate dehydrogenase elevating virus, and mouse hepatitis virus. This review discusses the development and biology of regulatory T cells in the context of arteriviral and coronaviral infection.
Collapse
|
46
|
Zirger JM, Puntel M, Bergeron J, Wibowo M, Moridzadeh R, Bondale N, Barcia C, Kroeger KM, Liu C, Castro MG, Lowenstein PR. Immune-mediated loss of transgene expression from virally transduced brain cells is irreversible, mediated by IFNγ, perforin, and TNFα, and due to the elimination of transduced cells. Mol Ther 2012; 20:808-19. [PMID: 22233583 PMCID: PMC3321600 DOI: 10.1038/mt.2011.243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/13/2011] [Indexed: 01/12/2023] Open
Abstract
The adaptive immune response to viral vectors reduces vector-mediated transgene expression from the brain. It is unknown, however, whether this loss is caused by functional downregulation of transgene expression or death of transduced cells. Herein, we demonstrate that during the elimination of transgene expression, the brain becomes infiltrated with CD4(+) and CD8(+) T cells and that these T cells are necessary for transgene elimination. Further, the loss of transgene-expressing brain cells fails to occur in the absence of IFNγ, perforin, and TNFα receptor. Two methods to induce severe immune suppression in immunized animals also fail to restitute transgene expression, demonstrating the irreversibility of this process. The need for cytotoxic molecules and the irreversibility of the reduction in transgene expression suggested to us that elimination of transduced cells is responsible for the loss of transgene expression. A new experimental paradigm that discriminates between downregulation of transgene expression and the elimination of transduced cells demonstrates that transduced cells are lost from the brain upon the induction of a specific antiviral immune response. We conclude that the anti-adenoviral immune response reduces transgene expression in the brain through loss of transduced cells.
Collapse
Affiliation(s)
- Jeffrey M Zirger
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mariana Puntel
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Josee Bergeron
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mia Wibowo
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rameen Moridzadeh
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Niyati Bondale
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Carlos Barcia
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kurt M Kroeger
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Deceased
| | - Chunyan Liu
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maria G Castro
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Current address: Department of Neurosurgery, The University of Michigan, Medical School, Ann Arbor, Michigan, USA
- Current address: Department of Cell and Developmental Biology, The University of Michigan, Medical School, Ann Arbor, Michigan, USA
| | - Pedro R Lowenstein
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Current address: Department of Neurosurgery, The University of Michigan, Medical School, Ann Arbor, Michigan, USA
- Current address: Department of Cell and Developmental Biology, The University of Michigan, Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
47
|
de Miranda AS, Rodrigues DH, Amaral DCG, de Lima Campos RD, Cisalpino D, Vilela MC, Lacerda-Queiroz N, de Souza KPR, Vago JP, Campos MA, Kroon EG, da Glória de Souza D, Teixeira MM, Teixeira AL, Rachid MA. Dengue-3 encephalitis promotes anxiety-like behavior in mice. Behav Brain Res 2012; 230:237-42. [PMID: 22366269 DOI: 10.1016/j.bbr.2012.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
Dengue virus is a human pathogen that may cause meningoencephalitis and other neurological syndromes. The current study investigated anxiety-like behavior and expression of proinflammatory cytokines and pro-apoptotic caspase-3 in the hippocampus of C57BL/6 mice infected with non-adapted Dengue virus 3 genotype I (DENV-3) inoculated intracranially with 4×10(3) (plaque-forming unit) PFU. Anxiety-like behavior was assessed in control and DENV-3 infected mice using the elevated plus maze. The open field test was performed to evaluate locomotor activity. Histopathological changes in CA regions of the hippocampus were assessed by haematoxylin and eosin staining. Immunoreactive and protein levels of cleaved caspase-3 were also analyzed in the hippocampus. The mRNA expression of IL-6 and TNF-α in the hippocampus were estimated by quantitative real time (polymerase chain reaction) PCR. All procedures were conducted on day 5 post-infection. We found that DENV-3 infected mice presented higher levels of anxiety in comparison with controls (p≤0.05). No difference in motor activity was found between groups (p=0.77). The infection was followed by a significant increase of TNF-α and IL-6 mRNA expression in the hippocampus (p≤0.05). Histological analysis demonstrated meningoencephalitis with formation of perivascular cuffs, infiltration of immune cells and loss of neurons at CA regions of hippocampus. Numerous caspase-3 positive neurons were visualized at CA areas in DENV-3 infected mice. Marked increase of cleaved caspase-3 levels were observed after infection. This study described anxiety-like behavior, hippocampal inflammation and neuronal apoptosis associated with DENV-3 infection in the central nervous system.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Departamento de Clínica Médica, Faculdade de Medicina, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis. J Virol 2011; 86:2416-27. [PMID: 22205741 DOI: 10.1128/jvi.06797-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CD4 T cell activation during peripheral infections not only is essential in inducing protective CD8 T cell memory but also promotes CD8 T cell function and survival. However, the contributions of CD4 T cell help to antiviral CD8 T cell immunity during central nervous system (CNS) infection are not well established. Encephalitis induced by the sublethal coronavirus JHMV was used to identify when CD4 T cells regulate CD8 T cell responses following CNS infection. Peripheral expansion of virus-specific CD8 T cells was impaired when CD4 T cells were ablated prior to infection but not at 4 days postinfection. Delayed CD4 T cell depletion abrogated CD4 T cell recruitment to the CNS but only slightly diminished CD8 T cell recruitment. Nevertheless, the absence of CNS CD4 T cells was associated with reduced gamma interferon (IFN-γ) and granzyme B expression by infiltrating CD8 T cells, increased CD8 T cell apoptosis, and impaired control of infectious virus. CD4 T cell depletion subsequent to CD4 T cell CNS migration restored CD8 T cell activity and virus control. Analysis of γc-dependent cytokine expression indicated interleukin-21 (IL-21) as a primary candidate optimizing CD8 T cell activity within the CNS. These results demonstrate that CD4 T cells play critical roles in both enhancing peripheral activation of CD8 T cells and prolonging their antiviral function within the CNS. The data highlight the necessity for temporally and spatially distinct CD4 T cell helper functions in sustaining CD8 T cell activity during CNS infection.
Collapse
|
49
|
Shifting hierarchies of interleukin-10-producing T cell populations in the central nervous system during acute and persistent viral encephalomyelitis. J Virol 2011; 85:6702-13. [PMID: 21525347 DOI: 10.1128/jvi.00200-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interleukin-10 (IL-10) mRNA is rapidly upregulated in the central nervous system (CNS) following infection with neurotropic coronavirus and remains elevated during persistent infection. Infection of transgenic IL-10/green fluorescent protein (GFP) reporter mice revealed that CNS-infiltrating T cells were the major source of IL-10, with minimal IL-10 production by macrophages and resident microglia. The proportions of IL-10-producing cells were initially similar in CD8(+) and CD4(+) T cells but diminished rapidly in CD8(+) T cells as the virus was controlled. Overall, the majority of IL-10-producing CD8(+) T cells were specific for the immunodominant major histocompatibility complex (MHC) class I epitope. Unlike CD8(+) T cells, a large proportion of CD4(+) T cells within the CNS retained IL-10 production throughout persistence. Furthermore, elevated frequencies of IL-10-producing CD4(+) T cells in the spinal cord supported preferential maintenance of IL-10 production at the site of viral persistence and tissue damage. IL-10 was produced primarily by the CD25(+) CD4(+) T cell subset during acute infection but prevailed in CD25(-) CD4(+) T cells during the transition to persistent infection and thereafter. Overall, these data demonstrate significant fluidity in the T-cell-mediated IL-10 response during viral encephalitis and persistence. While IL-10 production by CD8(+) T cells was limited primarily to the time of acute effector function, CD4(+) T cells continued to produce IL-10 throughout infection. Moreover, a shift from predominant IL-10 production by CD25(+) CD4(+) T cells to CD25(-) CD4(+) T cells suggests that a transition to nonclassical regulatory T cells precedes and is retained during CNS viral persistence.
Collapse
|
50
|
Lane TE, Hosking MP. The pathogenesis of murine coronavirus infection of the central nervous system. Crit Rev Immunol 2010; 30:119-30. [PMID: 20370625 DOI: 10.1615/critrevimmunol.v30.i2.20] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mouse hepatitis virus (MHV) is a positive-strand RNA virus that causes an acute encephalomyelitis that later resolves into a chronic fulminating demyelinating disease. Cytokine production, chemokine secretion, and immune cell infiltration into the central nervous system are critical to control viral replication during acute infection. Despite potent antiviral T-lymphocyte activity, sterile immunity is not achieved, and MHV chronically persists within oligodendrocytes. Continued infiltration and activation of the immune system, a result of the lingering viral antigen and RNA within oligodendrocytes, lead directly to the development of an immune-mediated demyelination that bears remarkable similarities, both clinically and histologically, to the human demyelinating disease multiple sclerosis. MHV offers a unique model system for studying host defense during acute viral infection and immune-mediated demyelination during chronic infection.
Collapse
Affiliation(s)
- Thomas E Lane
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|