1
|
Azeez SS, Hamad RS, Hamad BK, Shekha MS, Bergsten P. Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine. Front Genome Ed 2024; 6:1509924. [PMID: 39726634 PMCID: PMC11669675 DOI: 10.3389/fgeed.2024.1509924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated proteins) has undergone marked advancements since its discovery as an adaptive immune system in bacteria and archaea, emerged as a potent gene-editing tool after the successful engineering of its synthetic guide RNA (sgRNA) toward the targeting of specific DNA sequences with high accuracy. Besides its DNA editing ability, further-developed Cas variants can also edit the epigenome, rendering the CRISPR-Cas system a versatile tool for genome and epigenome manipulation and a pioneering force in precision medicine. This review explores the latest advancements in CRISPR-Cas technology and its therapeutic and biomedical applications, highlighting its transformative impact on precision medicine. Moreover, the current status of CRISPR therapeutics in clinical trials is discussed. Finally, we address the persisting challenges and prospects of CRISPR-Cas technology.
Collapse
Affiliation(s)
- Sarkar Sardar Azeez
- Department of Medical Laboratory Technology, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Rahin Shareef Hamad
- Nursing Department, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Bahra Kakamin Hamad
- Department of Medical Laboratory Technology, Erbil Health and Medical Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Mudhir Sabir Shekha
- Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Roy S, Majee P, Sudhakar S, Mishra S, Kalia J, Pradeepkumar PI, Srivatsan SG. Structural elucidation of HIV-1 G-quadruplexes in a cellular environment and their ligand binding using responsive 19F-labeled nucleoside probes. Chem Sci 2024; 15:7982-7991. [PMID: 38817587 PMCID: PMC11134374 DOI: 10.1039/d4sc01755b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Understanding the structure and recognition of highly conserved regulatory segments of the integrated viral DNA genome that forms unique topologies can greatly aid in devising novel therapeutic strategies to counter chronic infections. In this study, we configured a probe system using highly environment-sensitive nucleoside analogs, 5-fluoro-2'-deoxyuridine (FdU) and 5-fluorobenzofuran-2'-deoxyuridine (FBFdU), to investigate the structural polymorphism of HIV-1 long terminal repeat (LTR) G-quadruplexes (GQs) by fluorescence and 19F NMR. FdU and FBFdU, serving as hairpin and GQ sensors, produced distinct spectral signatures for different GQ topologies adopted by LTR G-rich oligonucleotides. Importantly, systematic 19F NMR analysis in Xenopus laevis oocytes gave unprecedented information on the structure adopted by the LTR G-rich region in the cellular environment. The results indicate that it forms a unique GQ-hairpin hybrid architecture, a potent hotspot for selective targeting. Furthermore, structural models generated using MD simulations provided insights on how the probe system senses different GQs. Using the responsiveness of the probes and Taq DNA polymerase stop assay, we monitored GQ- and hairpin-specific ligand interactions and their synergistic inhibitory effect on the replication process. Our findings suggest that targeting GQ and hairpin motifs simultaneously using bimodal ligands could be a new strategy to selectively block the viral replication.
Collapse
Affiliation(s)
- Sarupa Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr Homi Bhabha Road Pune 411008 India
| | - Priyasha Majee
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Satyajit Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - Jeet Kalia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr Homi Bhabha Road Pune 411008 India
| |
Collapse
|
3
|
Páez DJ, Kurath G, Powers RL, Naish KA, Purcell MK. Local and systemic replicative fitness for viruses in specialist, generalist, and non-specialist interactions with salmonid hosts. J Gen Virol 2024; 105. [PMID: 38180085 DOI: 10.1099/jgv.0.001937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Host tissues represent diverse resources or barriers for pathogen replicative fitness. We tested whether viruses in specialist, generalist, and non-specialist interactions replicate differently in local entry tissue (fin), and systemic target tissue (kidney) using infectious hematopoietic necrosis virus (IHNV) and three salmonid fish hosts. Virus tissue replication was host specific, but one feature was shared by specialists and the generalist which was uncommon in the non-specialist interactions: high host entry and replication capacity in the local tissue after contact. Moreover, specialists showed increased replication in systemic target tissues early after host contact. By comparing ancestral and derived IHNV viruses, we also characterized replication tradeoffs associated with specialist and generalist evolution. Compared with the ancestral virus, a derived specialist gained early local replicative fitness in the new host but lost replicative fitness in the ancestral host. By contrast, a derived generalist showed small replication losses relative to the ancestral virus in the ancestral host but increased early replication in the local tissue of novel hosts. This study shows that the mechanisms of specialism and generalism are host specific and that local and systemic replication can contribute differently to overall within host replicative fitness for specialist and generalist viruses.
Collapse
Affiliation(s)
- David J Páez
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, 616 Marrowstone Point Road, Nordland, WA 98358, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| | - Rachel L Powers
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maureen K Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
- U.S. Geological Survey, Forest Rangeland Ecosystem Science Center, Corvallis, OR 97330, USA
| |
Collapse
|
4
|
Construction and characterization of a full-length, replication-competent and infectious enhanced green fluorescence protein-tagged HIV-1 subtype C molecular clone. Virology 2022; 571:34-38. [DOI: 10.1016/j.virol.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/19/2022]
|
5
|
Abstract
HIV-1 integrates into human chromosomes to establish a lifelong reservoir of virally infected cells. However, the majority of integrated viral DNA shows lethal defects, likely due to errors introduced during reverse transcription of viral RNA. Identifying and quantifying HIV-1 DNA sequences that are genome-intact and can give rise to rebound viremia during antiretroviral treatment interruption are critical steps for understanding the complexity and evolutionary dynamics of HIV-1 reservoir cells. Here, we describe FLIP-Seq, (Full-Length Individual Proviral Sequencing) a near full-length, single-genome next-generation sequencing approach for analyzing HIV-1 DNA in human cells. Briefly, this technique involves sequential dilution of proviral DNA to single genomes, amplification of near full-length viral DNA, deep sequencing of amplification products, and a biocomputational analysis designed to distinguish genome-intact HIV-1 DNA from defective viral DNA species. This procedure can be performed with small numbers of cells from highly purified CD4 T cell subsets, allows to generate an absolute quantification of viral sequences present in a given cell population, provides insight into phylogenetic associations of intact proviruses, and can identify proportions of sequence-identical proviruses likely derived from clonally expanded reservoir cells.
Collapse
Affiliation(s)
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Rindler AE, Kuster H, Neumann K, Leemann C, Braun DL, Metzner KJ, Günthard HF. A Novel High Throughput, Parallel Infection Assay for Determining the Replication Capacities of 346 Primary HIV-1 Isolates of the Zurich Primary HIV-1 Infection Study in Primary Cells. Viruses 2021; 13:404. [PMID: 33806576 PMCID: PMC8000554 DOI: 10.3390/v13030404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
HIV-1 replication capacity is an important characteristic to understand the replication competence of single variants or virus populations. It can further aid in the understanding of HIV-1 pathogenicity, disease progression, and drug resistance mutations. To effectively study RC, many assays have been established. However, there is still demand for a high throughput replication capacity assay using primary cells which is robust and reproducible. In this study, we established such an assay and validated it using 346 primary HIV-1 isolates from patients enrolled in the Zurich Primary HIV Infection study (ZPHI) and two control viruses, HIV-1 JR-CSFWT and HIV-1 JR-CSFK65R_M184V. Replication capacity was determined by measuring the viral growth on PBMCs over 10 days by longitudinally transferring cell culture supernatant to TZM-bl reporter cells. By utilizing the TZM-bl luciferase reporter assay, we determined replication capacity by measuring viral infectivity. The simplicity of the experimental setup allowed for all 346 primary HIV-1 isolates to be replicated at one time. Although the infectious input dose for each virus was normalized, a broad range of replication capacity values over 4 logs was observed. The approach was confirmed by two repeated experiments and we demonstrated that the reproducibility of the replication capacity values is statistically comparable between the two separate experiments. In summary, these results endorse our high throughput replication capacity assay as reproducible and robust and can be utilized for large scale HIV-1 replication capacity experiments in primary cells.
Collapse
Affiliation(s)
- Audrey E. Rindler
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
- Life Sciences Graduate School, University of Zürich, 8057 Zürich, Switzerland
| | - Herbert Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| | - Kathrin Neumann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| | - Dominique L. Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, 8091 Zürich, Switzerland; (A.E.R.); (H.K.); (K.N.); (C.L.); (D.L.B.)
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Chung CH, Allen AG, Atkins AJ, Sullivan NT, Homan G, Costello R, Madrid R, Nonnemacher MR, Dampier W, Wigdahl B. Safe CRISPR-Cas9 Inhibition of HIV-1 with High Specificity and Broad-Spectrum Activity by Targeting LTR NF-κB Binding Sites. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:965-982. [PMID: 32818921 PMCID: PMC7452136 DOI: 10.1016/j.omtn.2020.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
Viral latency of human immunodeficiency virus type 1 (HIV-1) has become a major hurdle to a cure in the highly effective antiretroviral therapy (ART) era. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has successfully been demonstrated to excise or inactivate integrated HIV-1 provirus from infected cells by targeting the long terminal repeat (LTR) region. However, the guide RNAs (gRNAs) have classically avoided transcription factor binding sites (TFBSs) that are readily observed and known to be important in human promoters. Although conventionally thought unfavorable due to potential impact on human promoters, our computational pipeline identified gRNA sequences that were predicted to inactivate HIV-1 transcription by targeting the nuclear factor κB (NF-κB) binding sites (gNFKB0, gNFKB1) with a high safety profile (lack of predicted or observed human edits) and broad-spectrum activity (predicted coverage of known viral sequences). Genome-wide, unbiased identification of double strand breaks (DSBs) enabled by sequencing (GUIDE-seq) showed that the gRNAs targeting NF-κB binding sites had no detectable CRISPR-induced off-target edits in HeLa cells. 5′ LTR-driven HIV-1 transcription was significantly reduced in three HIV-1 reporter cell lines. These results demonstrate a working model to specifically target well-known TFBSs in the HIV-1 LTR that are readily observed in human promoters to reduce HIV-1 transcription with a high-level safety profile and broad-spectrum activity.
Collapse
Affiliation(s)
- Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Alexander G Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Andrew J Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Neil T Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Greg Homan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Robert Costello
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Rebekah Madrid
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
8
|
HIV-1 Latency and Latency Reversal: Does Subtype Matter? Viruses 2019; 11:v11121104. [PMID: 31795223 PMCID: PMC6950696 DOI: 10.3390/v11121104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cells that are latently infected with HIV-1 preclude an HIV-1 cure, as antiretroviral therapy does not target this latent population. HIV-1 is highly genetically diverse, with over 10 subtypes and numerous recombinant forms circulating worldwide. In spite of this vast diversity, much of our understanding of latency and latency reversal is largely based on subtype B viruses. As such, most of the development of cure strategies targeting HIV-1 are solely based on subtype B. It is currently assumed that subtype does not influence the establishment or reactivation of latent viruses. However, this has not been conclusively proven one way or the other. A better understanding of the factors that influence HIV-1 latency in all viral subtypes will help develop therapeutic strategies that can be applied worldwide. Here, we review the latest literature on subtype-specific factors that affect viral replication, pathogenesis, and, most importantly, latency and its reversal.
Collapse
|
9
|
Resistance to the Tat Inhibitor Didehydro-Cortistatin A Is Mediated by Heightened Basal HIV-1 Transcription. mBio 2019; 10:mBio.01750-18. [PMID: 31266880 PMCID: PMC6606815 DOI: 10.1128/mbio.01750-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat binds the viral RNA structure transactivation-responsive element (TAR) and recruits transcriptional cofactors, amplifying viral mRNA expression. The Tat inhibitor didehydro-cortistatin A (dCA) promotes a state of persistent latency, refractory to viral reactivation. Here we investigated mechanisms of HIV-1 resistance to dCA in vitro Mutations in Tat and TAR were not identified, consistent with the high level of conservation of these elements. Instead, viruses resistant to dCA developed higher Tat-independent basal transcription. We identified a combination of mutations in the HIV-1 promoter that increased basal transcriptional activity and modifications in viral Nef and Vpr proteins that increased NF-κB activity. Importantly, these variants are unlikely to enter latency due to accrued transcriptional fitness and loss of sensitivity to Tat feedback loop regulation. Furthermore, cells infected with these variants become more susceptible to cytopathic effects and immune-mediated clearance. This is the first report of viral escape to a Tat inhibitor resulting in heightened Tat-independent activity, all while maintaining wild-type Tat and TAR.IMPORTANCE HIV-1 Tat enhances viral RNA transcription by binding to TAR and recruiting activating factors. Tat enhances its own transcription via a positive-feedback loop. Didehydro-cortistatin A (dCA) is a potent Tat inhibitor, reducing HIV-1 transcription and preventing viral rebound. dCA activity demonstrates the potential of the "block-and-lock" functional cure approaches. We investigated the viral genetic barrier to dCA resistance in vitro While mutations in Tat and TAR were not identified, mutations in the promoter and in the Nef and Vpr proteins promoted high Tat-independent activity. Promoter mutations increased the basal transcription, while Nef and Vpr mutations increased NF-κB nuclear translocation. This heightened transcriptional activity renders CD4+ T cells infected with these viruses more susceptible to cytotoxic T cell-mediated killing and to cell death by cytopathic effects. Results provide insights on drug resistance to a novel class of antiretrovirals and reveal novel aspects of viral transcriptional regulation.
Collapse
|
10
|
Bertels F, Leemann C, Metzner KJ, Regoes R. Parallel evolution of HIV-1 in a long-term experiment. Mol Biol Evol 2019; 36:2400-2414. [PMID: 31251344 PMCID: PMC6805227 DOI: 10.1093/molbev/msz155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/06/2019] [Accepted: 06/22/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most intriguing puzzles in biology is the degree to which evolution is repeatable. The repeatability of evolution, or parallel evolution, has been studied in a variety of model systems, but has rarely been investigated with clinically relevant viruses. To investigate parallel evolution of HIV-1, we passaged two replicate HIV-1 populations for almost 1 year in each of two human T-cell lines. For each of the four evolution lines, we determined the genetic composition of the viral population at nine time points by deep sequencing the entire genome. Mutations that were carried by the majority of the viral population accumulated continuously over 1 year in each evolution line. Many majority mutations appeared in more than one evolution line, that is, our experiments showed an extreme degree of parallel evolution. In one of the evolution lines, 62% of the majority mutations also occur in another line. The parallelism impairs our ability to reconstruct the evolutionary history by phylogenetic methods. We show that one can infer the correct phylogenetic topology by including minority mutations in our analysis. We also find that mutation diversity at the beginning of the experiment is predictive of the frequency of majority mutations at the end of the experiment.
Collapse
Affiliation(s)
- Frederic Bertels
- Department of Environmental Systems Sciences, ETH Zurich, Zurich.,Max-Planck-Institute for Evolutionary Biology, Department of Microbial Population Biology
| | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich.,Insitute of Medical Virology, University of Zurich, Zurich
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich.,Insitute of Medical Virology, University of Zurich, Zurich
| | - Roland Regoes
- Department of Environmental Systems Sciences, ETH Zurich, Zurich
| |
Collapse
|
11
|
Mbondji-wonje C, Dong M, Wang X, Zhao J, Ragupathy V, Sanchez AM, Denny TN, Hewlett I. Distinctive variation in the U3R region of the 5' Long Terminal Repeat from diverse HIV-1 strains. PLoS One 2018; 13:e0195661. [PMID: 29664930 PMCID: PMC5903597 DOI: 10.1371/journal.pone.0195661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Functional mapping of the 5’LTR has shown that the U3 and the R regions (U3R) contain a cluster of regulatory elements involved in the control of HIV-1 transcription and expression. As the HIV-1 genome is characterized by extensive variability, here we aimed to describe mutations in the U3R from various HIV-1 clades and CRFs in order to highlight strain specific differences that may impact the biological properties of diverse HIV-1 strains. To achieve our purpose, the U3R sequence of plasma derived virus belonging to different clades (A1, B, C, D, F2) and recombinants (CRF02_AG, CRF01_AE and CRF22_01A1) was obtained using Illumina technology. Overall, the R region was very well conserved among and across different strains, while in the U3 region the average inter-strains nucleotide dissimilarity was up to 25%. The TAR hairpin displayed a strain-distinctive cluster of mutations affecting the bulge and the loop, but mostly the stem. Like in previous studies we found a TATAA motif in U3 promoter region from the majority of HIV-1 strains and a TAAAA motif in CRF01_AE; but also in LTRs from CRF22_01A1 isolates. Although LTRs from CRF22_01A1 specimens were assigned CRF01_AE, they contained two NF-kB sites instead of the single TFBS described in CRF01_AE. Also, as previously describe in clade C isolates, we found no C/EBP binding site directly upstream of the enhancer region in CRF22_01A1 specimens. In our study, one-third of CRF02_AG LTRs displayed three NF-kB sites which have been mainly described in clade C isolates. Overall, the number, location and binding patterns of potential regulatory elements found along the U3R might be specific to some HIV-1 strains such as clade F2, CRF02_AG, CRF01_AE and CRF22_01A1. These features may be worth consideration as they may be involved in distinctive regulation of HIV-1 transcription and replication by different and diverse infecting strains.
Collapse
Affiliation(s)
- Christelle Mbondji-wonje
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- Department of Molecular Biology, Faculty of Medicine, Pharmacy and Biomedical sciences, University of Douala, Douala, Cameroon
- * E-mail: (CM); (IH)
| | - Ming Dong
- U.S. Military HIV Research Program, Silver Spring, Maryland United States of America
| | - Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Viswanath Ragupathy
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ana M. Sanchez
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Thomas N. Denny
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Indira Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (CM); (IH)
| |
Collapse
|
12
|
Wang G, Zhao N, Berkhout B, Das AT. CRISPR-Cas based antiviral strategies against HIV-1. Virus Res 2018; 244:321-332. [PMID: 28760348 DOI: 10.1016/j.virusres.2017.07.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022]
Abstract
In bacteria and archaea, the clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (Cas) confer adaptive immunity against exogenous DNA elements. This CRISPR-Cas system has been turned into an effective tool for editing of eukaryotic DNA genomes. Pathogenic viruses that have a double-stranded DNA (dsDNA) genome or that replicate through a dsDNA intermediate can also be targeted with this DNA editing tool. Here, we review how CRISPR-Cas was used in novel therapeutic approaches against the human immunodeficiency virus type-1 (HIV-1), focusing on approaches that aim to permanently inactivate all virus genomes or to prevent viral persistence in latent reservoirs.
Collapse
Affiliation(s)
- Gang Wang
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Na Zhao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Initial treatment response among HIV subtype F infected patients who started antiretroviral therapy based on integrase inhibitors. AIDS 2018; 32:121-125. [PMID: 29112068 DOI: 10.1097/qad.0000000000001679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: HIV-1 subtype B (54.4%) and subtype F (27.2%) are the most prevalent variants in patients who started antiretroviral therapy including an integrase inhibitor in the last 2 years in Northwest Spain. Virological response rates to antiretroviral therapy based on integrase inhibitor were significantly lower among F subtypes compared with B subtypes at weeks 12 (25.0% vs. 75.0%) and 24 (59.1% vs. 95.0%). Subtype F was independently associated with virological response at 24 weeks [odds ratio 11.8 (95% confidence interval 1.1-119.9); P = 0.037].
Collapse
|
14
|
Harwig A, Landick R, Berkhout B. The Battle of RNA Synthesis: Virus versus Host. Viruses 2017; 9:v9100309. [PMID: 29065472 PMCID: PMC5691660 DOI: 10.3390/v9100309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Transcription control is the foundation of gene regulation. Whereas a cell is fully equipped for this task, viruses often depend on the host to supply tools for their transcription program. Over the course of evolution and adaptation, viruses have found diverse ways to optimally exploit cellular host processes such as transcription to their own benefit. Just as cells are increasingly understood to employ nascent RNAs in transcription regulation, recent discoveries are revealing how viruses use nascent RNAs to benefit their own gene expression. In this review, we first outline the two different transcription programs used by viruses, i.e., transcription (DNA-dependent) and RNA-dependent RNA synthesis. Subsequently, we use the distinct stages (initiation, elongation, termination) to describe the latest insights into nascent RNA-mediated regulation in the context of each relevant stage.
Collapse
Affiliation(s)
- Alex Harwig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Venner CM, Nankya I, Kyeyune F, Demers K, Kwok C, Chen PL, Rwambuya S, Munjoma M, Chipato T, Byamugisha J, Van Der Pol B, Mugyenyi P, Salata RA, Morrison CS, Arts EJ. Infecting HIV-1 Subtype Predicts Disease Progression in Women of Sub-Saharan Africa. EBioMedicine 2016; 13:305-314. [PMID: 27751765 PMCID: PMC5264310 DOI: 10.1016/j.ebiom.2016.10.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Long-term natural history cohorts of HIV-1 in the absence of treatment provide the best measure of virulence by different viral subtypes. METHODS Newly HIV infected Ugandan and Zimbabwean women (N=303) were recruited and monitored for clinical, social, behavioral, immunological and viral parameters for 3 to 9.5years. RESULTS Ugandan and Zimbabwean women infected with HIV-1 subtype C had 2.5-fold slower rates of CD4 T-cell declines and higher frequencies of long-term non-progression than those infected with subtype A or D (GEE model, P<0.001), a difference not associated with any other clinical parameters. Relative replicative fitness and entry efficiency of HIV-1 variants directly correlated with virulence in the patients, subtype D>A>C (P<0.001, ANOVA). DISCUSSION HIV-1 subtype C was less virulent than either A or D in humans; the latter being the most virulent. Longer periods of asymptomatic HIV-1 subtype C could explain the continued expansion and dominance of subtype C in the global epidemic.
Collapse
Affiliation(s)
- Colin M Venner
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Immaculate Nankya
- Joint Clinical Research Centre, Kampala, Uganda; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Korey Demers
- Joint Clinical Research Centre, Kampala, Uganda; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Cynthia Kwok
- Family Health International 360, Durham, NC, USA
| | | | - Sandra Rwambuya
- Joint Clinical Research Centre, Kampala, Uganda; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Marshall Munjoma
- Department of Obstetrics and Gynaecology, University of Zimbabwe, Harare, Zimbabwe
| | - Tsungai Chipato
- Department of Obstetrics and Gynaecology, University of Zimbabwe, Harare, Zimbabwe
| | | | - Barbara Van Der Pol
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, USA
| | | | - Robert A Salata
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Eric J Arts
- Department of Microbiology and Immunology, Western University, London, ON, Canada; Joint Clinical Research Centre, Kampala, Uganda; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
16
|
Qu D, Li C, Sang F, Li Q, Jiang ZQ, Xu LR, Guo HJ, Zhang C, Wang JH. The variances of Sp1 and NF-κB elements correlate with the greater capacity of Chinese HIV-1 B'-LTR for driving gene expression. Sci Rep 2016; 6:34532. [PMID: 27698388 PMCID: PMC5048295 DOI: 10.1038/srep34532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/15/2016] [Indexed: 12/28/2022] Open
Abstract
The 5' end of HIV-1 long terminal repeat (LTR) serves as a promoter that plays an essential role in driving viral gene transcription. Manipulation of HIV-1 LTR provides a potential therapeutic strategy for suppressing viral gene expression or excising integrated provirus. Subtype-specific genetic diversity in the LTR region has been observed. The minor variance of LTR, particularly in the transcription factor binding sites, can have a profound impact on its activity. However, the LTR profiles from major endemic Chinese subtypes are not well characterized. Here, by characterizing the sequences and functions of LTRs from endemic Chinese HIV-1 subtypes, we showed that nucleotide variances of Sp1 core promoter and NF-κB element are associated with varied LTR capacity for driving viral gene transcription. The greater responsiveness of Chinese HIV-1 B'-LTR for driving viral gene transcription upon stimulation is associated with an increased level of viral reactivation. Moreover, we demonstrated that the introduction of CRISPR/dead Cas9 targeting Sp1 or NF-κB element suppressed viral gene expression. Taken together, our study characterized LTRs from endemic HIV-1 subtypes in China and suggests a potential target for the suppression of viral gene expression and a novel strategy that facilitates the accomplishment of a functional cure.
Collapse
Affiliation(s)
- Di Qu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chuan Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Feng Sang
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Qiang Li
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhi-Qiang Jiang
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Li-Ran Xu
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Hui-Jun Guo
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chiyu Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Toll-interacting protein inhibits HIV-1 infection and regulates viral latency. Biochem Biophys Res Commun 2016; 475:161-8. [PMID: 27181351 DOI: 10.1016/j.bbrc.2016.05.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Abstract
HIV-1 latency is mainly characterized by a reversible silencing of long-terminal repeat (LTR)-driven transcription of provirus. The existing of repressive factors has been described to contribute to transcription silencing of HIV-1. Toll-interacting protein (Tollip) has been identified as a repressor of Toll like receptors (TLR)-mediated signaling. Our previous study has found that Tollip inhibited NF-κB-dependent HIV-1 promoter LTR-driven transcription, indicating the potential role of Tollip in governing viral latency. In this study, by using HIV-1 latently infected Jurkat T-cell and central memory CD4(+) T-cells, we demonstrate the role of Tollip in regulating HIV-1 latency, as the knock-down of Tollip promoted HIV-1 reactivation from both HIV-1 latently infected Jurkat CD4(+) T cells and primary central memory T cells (TCM). Moreover, we found that the activities of LTRs derived from multiple HIV-1 subtypes could be repressed by Tollip; Knock-down of Tollip promoted HIV-1 transcription and infection in CD4(+) T cells. Our data indicate a key role of Tollip in suppressing HIV-1 infection and regulating viral latency, which provides a potential host target for combating HIV-1 infection and latency.
Collapse
|
18
|
Zhao X, Qian L, Qi D, Zhou D, Shen W, Liu Y, Liu C, Kong X. The 57th amino acid conveys the differential subcellular localization of human immunodeficiency virus-1 Tat derived from subtype B and C. Virus Genes 2016; 52:179-88. [PMID: 26832332 DOI: 10.1007/s11262-015-1267-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
The multifunctional transactivator Tat protein is an essentially regulatory protein for HIV-1 replication and it plays a role in pathogenesis of HIV-1 infection. At present, numerous experimental studies about HIV-1 Tat focus on subtype B, very few has been under study of subtype C-Tat. In view of the amino acid variation of the clade-specific Tat proteins, we hypothesized that the amino acid difference contributed to differential function of Tat proteins. In the present study, we documented that subtype B NL4-3 Tat and subtype C isolate HIV1084i Tat from pediatric patient in Zambia exhibited distinct nuclear localization by over-expressing fusion protein Tat-EGFP. Interestingly, 1084i Tat showed uniform nuclear distribution, whereas NL4-3 Tat primarily localized in nucleolus. The 57th amino acid, highly conserved between B-Tat (arginine) and C-Tat (serine), is located in the basic domain of Tat, and played an important role in this subcellular localization. Meanwhile, we found that substitution of arginine to serine at the site 57 decreases Tat transactivation of the HIV-1 LTR promoter.
Collapse
Affiliation(s)
- Xuechao Zhao
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Weijin Road No. 94, Nankai District, Tianjin, 300071, China
| | - Lingyu Qian
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Weijin Road No. 94, Nankai District, Tianjin, 300071, China
| | - Di Qi
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Weijin Road No. 94, Nankai District, Tianjin, 300071, China
| | - Deyu Zhou
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Weijin Road No. 94, Nankai District, Tianjin, 300071, China
| | - Wenyuan Shen
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Weijin Road No. 94, Nankai District, Tianjin, 300071, China
| | - Yu Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Weijin Road No. 94, Nankai District, Tianjin, 300071, China
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Weijin Road No. 94, Nankai District, Tianjin, 300071, China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Weijin Road No. 94, Nankai District, Tianjin, 300071, China.
| |
Collapse
|
19
|
Stable Phenotypic Changes of the Host T Cells Are Essential to the Long-Term Stability of Latent HIV-1 Infection. J Virol 2015; 89:6656-72. [PMID: 25878110 DOI: 10.1128/jvi.00571-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/10/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The extreme stability of the latent HIV-1 reservoir in the CD4(+) memory T cell population prevents viral eradication with current antiretroviral therapy. It has been demonstrated that homeostatic T cell proliferation and clonal expansion of latently infected T cells due to viral integration into specific genes contribute to this extraordinary reservoir stability. Nevertheless, given the constant exposure of the memory T cell population to specific antigen or bystander activation, this reservoir stability seems remarkable, unless it is assumed that latent HIV-1 resides exclusively in memory T cells that recognize rare antigens. Another explanation for the stability of the reservoir could be that the latent HIV-1 reservoir is associated with an unresponsive T cell phenotype. We demonstrate here that host cells of latent HIV-1 infection events were functionally altered in ways that are consistent with the idea of an anergic, unresponsive T cell phenotype. Manipulations that induced or mimicked an anergic T cell state promoted latent HIV-1 infection. Kinome analysis data reflected this altered host cell phenotype at a system-wide level and revealed how the stable kinase activity changes networked to stabilize latent HIV-1 infection. Protein-protein interaction networks generated from kinome data could further be used to guide targeted genetic or pharmacological manipulations that alter the stability of latent HIV-1 infection. In summary, our data demonstrate that stable changes to the signal transduction and transcription factor network of latently HIV-1 infected host cells are essential to the ability of HIV-1 to establish and maintain latent HIV-1 infection status. IMPORTANCE The extreme stability of the latent HIV-1 reservoir allows the infection to persist for the lifetime of a patient, despite completely suppressive antiretroviral therapy. This extreme reservoir stability is somewhat surprising, since the latently HIV-1 infected CD4(+) memory T cells that form the structural basis of the viral reservoir should be exposed to cognate antigen over time. Antigen exposure would trigger a recall response and should deplete the reservoir, likely over a relatively short period. Our data demonstrate that stable and system-wide phenotypic changes to host cells are a prerequisite for the establishment and maintenance of latent HIV-1 infection events. The changes observed are consistent with an unresponsive, anergy-like T cell phenotype of latently HIV-1 infected host cells. An anergy-like, unresponsive state of the host cells of latent HIV-1 infection events would explain the stability of the HIV-1 reservoir in the face of continuous antigen exposure.
Collapse
|
20
|
Jiang G, Dandekar S. Targeting NF-κB signaling with protein kinase C agonists as an emerging strategy for combating HIV latency. AIDS Res Hum Retroviruses 2015; 31:4-12. [PMID: 25287643 DOI: 10.1089/aid.2014.0199] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) is very effective in suppressing HIV-1 replication and restoring immune functions in HIV-infected individuals. However, it fails to eradicate the latent viral reservoirs and fully resolve chronic inflammation in HIV infection. The "shock-and-kill" strategy was recently proposed to induce latent HIV expression in the presence of HAART. Recent studies have shown that the protein kinase C (PKC) agonists are highly potent in inducing latent HIV expression from the viral reservoirs in vitro and ex vivo and in protecting primary CD4(+) T cells from HIV infection through down-modulation of their HIV coreceptor expression. The PKC agonists are excellent candidates for advancing to clinical HIV eradication strategies. This article will present a critical review of the structure and function of known PKC agonists, their mechanisms for the reactivation of latent HIV expression, and the potential of these compounds for advancing clinical HIV eradication strategies.
Collapse
Affiliation(s)
- Guochun Jiang
- Department of Medical Microbiology and Immunology, University of California, Davis, California
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, California
| |
Collapse
|
21
|
Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology 2014; 462-463:328-39. [PMID: 25014309 DOI: 10.1016/j.virol.2014.05.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/28/2014] [Accepted: 05/29/2014] [Indexed: 11/21/2022]
Abstract
The ability of HIV to establish long-lived latent infection is mainly due to transcriptional silencing of viral genome in resting memory T lymphocytes. Here, we show that new semi-synthetic ingenol esters reactivate latent HIV reservoirs. Amongst the tested compounds, 3-caproyl-ingenol (ING B) was more potent in reactivating latent HIV than known activators such as SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. ING B activated PKC isoforms followed by NF-κB nuclear translocation. As virus reactivation is dependent on intact NF-κB binding sites in the LTR promoter region ING B, we have shown that. ING B was able to reactivate virus transcription in primary HIV-infected resting cells up to 12 fold and up to 25 fold in combination with SAHA. Additionally, ING B promoted up-regulation of P-TEFb subunits CDK9/Cyclin T1. The role of ING B on promoting both transcription initiation and elongation makes this compound a strong candidate for an anti-HIV latency drug combined with suppressive HAART.
Collapse
|
22
|
van der Sluis RM, Derking R, Breidel S, Speijer D, Berkhout B, Jeeninga RE. Interplay between viral Tat protein and c-Jun transcription factor in controlling LTR promoter activity in different human immunodeficiency virus type I subtypes. J Gen Virol 2014; 95:968-979. [PMID: 24447950 DOI: 10.1099/vir.0.059642-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HIV-1 transcription depends on cellular transcription factors that bind to sequences in the long-terminal repeat (LTR) promoter. Each HIV-1 subtype has a specific LTR promoter configuration, and minor sequence changes in transcription factor binding sites (TFBSs) or their arrangement can influence transcriptional activity, virus replication and latency properties. Previously, we investigated the proviral latency properties of different HIV-1 subtypes in the SupT1 T cell line. Here, subtype-specific latency and replication properties were studied in primary PHA-activated T lymphocytes. No major differences in latency and replication capacity were measured among the HIV-1 subtypes. Subtype B and AE LTRs were studied in more detail with regard to a putative AP-1 binding site using luciferase reporter constructs. c-Jun, a member of the AP-1 transcription factor family, can activate both subtype B and AE LTRs, but the latter showed a stronger response, reflecting a closer match with the consensus AP-1 binding site. c-Jun overexpression enhanced Tat-mediated transcription of the viral LTR, but in the absence of Tat inhibited basal promoter activity. Thus, c-Jun can exert a positive or negative effect via the AP-1 binding site in the HIV-1 LTR promoter, depending on the presence or absence of Tat.
Collapse
Affiliation(s)
- Renée M van der Sluis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Derking
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Seyguerney Breidel
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Rienk E Jeeninga
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
23
|
van der Sluis RM, Jeeninga RE, Berkhout B. Establishment and molecular mechanisms of HIV-1 latency in T cells. Curr Opin Virol 2013; 3:700-6. [PMID: 23953324 DOI: 10.1016/j.coviro.2013.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Treatment of an HIV infected individual with antiretroviral drugs is a successful way to suppress the plasma viral RNA load below the limit of detection (50 copies HIV RNA/ml plasma). This can provide lifelong protection against virus-induced pathogenesis in drug-adherent patients. Unfortunately, even after many years of continuous treatment, the virus persists and the plasma viral load will rebound rapidly when therapy is interrupted. The reason for this rapid rebound is the presence of a long-lived reservoir of latent HIV-1 proviruses that can be reactivated in resting memory T cells. Attempts to eliminate these proviruses have thus far not been successful and this long-lived latent reservoir is therefore considered a major obstacle toward a cure for HIV-1. A detailed understanding of the molecular mechanisms causing HIV latency and knowledge on the establishment of this reservoir may give us clues for future strategies aiming at the eradication of this reservoir.
Collapse
Affiliation(s)
- Renée M van der Sluis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
24
|
tat Exon 1 exhibits functional diversity during HIV-1 subtype C primary infection. J Virol 2013; 87:5732-45. [PMID: 23487450 DOI: 10.1128/jvi.03297-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat is a mediator of viral transcription and is involved in the control of virus replication. However, associations between HIV-1 Tat diversity and functional effects during primary HIV-1 infection are still unclear. We estimated selection pressures in tat exon 1 using the mixed-effects model of evolution with 672 viral sequences generated from 20 patients infected with HIV-1 subtype C (HIV-1C) over 500 days postseroconversion. tat exon 1 residues 3, 4, 21, 24, 29, 39, and 68 were under positive selection, and we established that specific amino acid signature patterns were apparent in primary HIV-1C infection compared with chronic infection. We assessed the impact of these mutations on long terminal repeat (LTR) activity and found that Tat activity was negatively affected by the Ala(21) substitution identified in 13/20 (65%) of patients, which reduced LTR activity by 88% (± 1%) (P < 0.001). The greatest increase in Tat activity was seen with the Gln(35)/Lys(39) double mutant that resulted in an additional 49% (± 14%) production of LTR-driven luciferase (P = 0.012). There was a moderate positive correlation between Tat-mediated LTR activity and HIV-1 RNA in plasma (P = 0.026; r = 0.400) after 180 days postseroconversion that was reduced by 500 days postseroconversion (P = 0.043; r = 0.266). Although Tat activation of the LTR is not a strong predictor of these clinical variables, there are significant linear relationships between Tat transactivation and patients' plasma viral loads and CD4 counts, highlighting the complex interplay between Tat mutations in early HIV-1C infection.
Collapse
|
25
|
Duverger A, Wolschendorf F, Zhang M, Wagner F, Hatcher B, Jones J, Cron RQ, van der Sluis RM, Jeeninga RE, Berkhout B, Kutsch O. An AP-1 binding site in the enhancer/core element of the HIV-1 promoter controls the ability of HIV-1 to establish latent infection. J Virol 2013; 87:2264-77. [PMID: 23236059 PMCID: PMC3571467 DOI: 10.1128/jvi.01594-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 12/01/2012] [Indexed: 12/13/2022] Open
Abstract
Following integration, HIV-1 in most cases produces active infection events; however, in some rare instances, latent infection events are established. The latter have major clinical implications, as latent infection allows the virus to persist despite antiretroviral therapy. Both the cellular factors and the viral elements that potentially determine whether HIV-1 establishes active or latent infection events remain largely elusive. We detail here the contribution of different long terminal repeat (LTR) sequences for the establishment of latent HIV-1 infection. Using a panel of full-length replication-competent virus constructs that reflect naturally occurring differences of HIV-1 subtype-specific LTRs and targeted LTR mutants, we found the primary ability of HIV-1 to establish latent infection in this system to be controlled by a four-nucleotide (nt) AP-1 element just upstream of the NF-κB element in the viral promoter. Deletion of this AP-1 site mostly deprived HIV-1 of the ability to establish latent HIV-1 infection. Extension of this site to a 7-nt AP-1 sequence massively promoted latency establishment, suggesting that this promoter region represents a latency establishment element (LEE). Given that these minimal changes in a transcription factor binding site affect latency establishment to such large extent, our data support the notion that HIV-1 latency is a transcription factor restriction phenomenon.
Collapse
Affiliation(s)
| | | | | | | | - Brandon Hatcher
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Renee M. van der Sluis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Rienk E. Jeeninga
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
26
|
Abstract
Envelope glycoproteins (Env) of lentiviruses typically possess unusually long cytoplasmic domains, often 150 amino acids or longer. It is becoming increasingly clear that these sequences contribute a diverse array of functional activities to the life cycle of their viruses. The cytoplasmic domain of gp41 (gp41CD) is required for replication of human immunodeficiency virus type 1 (HIV-1) in most but not all cell types, whereas it is largely dispensable for replication of simian immunodeficiency virus (SIV). Functionally, gp41CD has been shown to regulate rapid clathrin-mediated endocytosis of Env. The resultant low levels of Env expression at the cell surface likely serve as an immune avoidance mechanism to limit accessibility to the humoral immune response. Intracellular trafficking of Env is also regulated by gp41CD through interactions with a variety of cellular proteins. Furthermore, gp41CD has been implicated in the incorporation of Env into virions through an interaction with the virally encoded matrix protein. Most recently, the gp41CDs of HIV-1 and SIV were shown to activate the key cellular-transcription factor NF-κB via the serine/threonine kinase TAK1. Less well understood are the cytotoxicity- and apoptosis-inducing activities of gp41CD as well as potential roles in modulating the actin cytoskeleton and overcoming host cell restrictions. In this review, we summarize what is currently known about the cytoplasmic domains of HIV-1 and SIV and attempt to integrate the wealth of information in terms of defined functional activities.
Collapse
Affiliation(s)
- Thomas S. Postler
- New England Primate Research Center, Department of Microbiology and Immunobiology, Harvard Medical School, Southborough, Massachusetts, USA
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C. Desrosiers
- New England Primate Research Center, Department of Microbiology and Immunobiology, Harvard Medical School, Southborough, Massachusetts, USA
| |
Collapse
|
27
|
van der Velden GJ, Vink MA, Klaver B, Das AT, Berkhout B. An AUG codon upstream of rev and env open reading frames ensures optimal translation of the simian immunodeficiency virus Env protein. Virology 2012; 436:191-200. [PMID: 23260111 DOI: 10.1016/j.virol.2012.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/10/2012] [Accepted: 11/18/2012] [Indexed: 11/16/2022]
Abstract
The mRNAs encoding the Rev and Env proteins of simian immunodeficiency virus (SIV) are unique because upstream translation start codons are present that may modulate the expression of these viral proteins. We previously reported the regulatory effect of a small upstream open reading frame (ORF) on Rev and Env translation. Here we study this mechanism in further detail by modulating the strength of the translation signals upstream of the open reading frames in subgenomic reporters. Furthermore, the effects of these mutations on SIV gene expression and viral replication are analyzed. An intricate regulatory mechanism is disclosed that allows the virus to express a balanced amount of these two proteins.
Collapse
Affiliation(s)
- Gisela J van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
Bachu M, Yalla S, Asokan M, Verma A, Neogi U, Sharma S, Murali RV, Mukthey AB, Bhatt R, Chatterjee S, Rajan RE, Cheedarla N, Yadavalli VS, Mahadevan A, Shankar SK, Rajagopalan N, Shet A, Saravanan S, Balakrishnan P, Solomon S, Vajpayee M, Satish KS, Kundu TK, Jeang KT, Ranga U. Multiple NF-κB sites in HIV-1 subtype C long terminal repeat confer superior magnitude of transcription and thereby the enhanced viral predominance. J Biol Chem 2012; 287:44714-35. [PMID: 23132857 DOI: 10.1074/jbc.m112.397158] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We demonstrate that at least three different promoter variant strains of HIV-1 subtype C have been gradually expanding and replacing the standard subtype C viruses in India, and possibly in South Africa and other global regions, over the past decade. The new viral strains contain an additional NF-κB, NF-κB-like, or RBEIII site in the viral promoter. Although the acquisition of an additional RBEIII site is a property shared by all the HIV-1 subtypes, acquiring an additional NF-κB site remains an exclusive property of subtype C. The acquired κB site is genetically distinct, binds the p50-p65 heterodimer, and strengthens the viral promoter at the levels of transcription initiation and elongation. The 4-κB viruses dominate the 3-κB "isogenic" viral strains in pairwise competition assays in T-cell lines, primary cells, and the ecotropic human immunodeficiency virus mouse model. The dominance of the 4-κB viral strains is also evident in the natural context when the subjects are coinfected with κB-variant viral strains. The mean plasma viral loads, but not CD4 counts, are significantly different in 4-κB infection suggesting that these newly emerging strains are probably more infectious. It is possible that higher plasma viral loads underlie selective transmission of the 4-κB viral strains. Several publications previously reported duplication or deletion of diverse transcription factor-binding sites in the viral promoter. Unlike previous reports, our study provides experimental evidence that the new viral strains gained a potential selective advantage as a consequence of the acquired transcription factor-binding sites and importantly that these strains have been expanding at the population level.
Collapse
Affiliation(s)
- Mahesh Bachu
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Upstream AUG codons in the simian immunodeficiency virus SIVmac239 genome regulate Rev and Env protein translation. J Virol 2012; 86:12362-71. [PMID: 22951834 DOI: 10.1128/jvi.01532-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mRNAs encoding the Rev and Env proteins of simian immunodeficiency virus (SIV) are unique because upstream translation start codons are present that may modulate the expression of these viral proteins. This is true for the regular mRNAs, but we also report novel mRNA splicing variants that encode up to five upstream AUG (uAUG) codons. Their influence on Rev and Env translation was measured by mutational inactivation in reporter constructs and in the SIVmac239 strain. An intricate regulatory mechanism was disclosed that allows the virus to express a balanced amount of these two proteins. This insight also allows the design of vector constructs that efficiently express these proteins.
Collapse
|
30
|
Knoepfel SA, Abad A, Abad X, Fortes P, Berkhout B. Design of modified U1i molecules against HIV-1 RNA. Antiviral Res 2012; 94:208-16. [DOI: 10.1016/j.antiviral.2012.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022]
|
31
|
Ranjbar S, Jasenosky LD, Chow N, Goldfeld AE. Regulation of Mycobacterium tuberculosis-dependent HIV-1 transcription reveals a new role for NFAT5 in the toll-like receptor pathway. PLoS Pathog 2012; 8:e1002620. [PMID: 22496647 PMCID: PMC3320587 DOI: 10.1371/journal.ppat.1002620] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/21/2012] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) disease in HIV co-infected patients contributes to increased mortality by activating innate and adaptive immune signaling cascades that stimulate HIV-1 replication, leading to an increase in viral load. Here, we demonstrate that silencing of the expression of the transcription factor nuclear factor of activated T cells 5 (NFAT5) by RNA interference (RNAi) inhibits Mycobacterium tuberculosis (MTb)-stimulated HIV-1 replication in co-infected macrophages. We show that NFAT5 gene and protein expression are strongly induced by MTb, which is a Toll-like receptor (TLR) ligand, and that an intact NFAT5 binding site in the viral promoter of R5-tropic HIV-1 subtype B and subtype C molecular clones is required for efficent induction of HIV-1 replication by MTb. Furthermore, silencing by RNAi of key components of the TLR pathway in human monocytes, including the downstream signaling molecules MyD88, IRAK1, and TRAF6, significantly inhibits MTb-induced NFAT5 gene expression. Thus, the innate immune response to MTb infection induces NFAT5 gene and protein expression, and NFAT5 plays a crucial role in MTb regulation of HIV-1 replication via a direct interaction with the viral promoter. These findings also demonstrate a general role for NFAT5 in TLR- and MTb-mediated control of gene expression. The major cause of AIDS deaths globally has been tuberculosis (TB), which is caused by the bacterium Mycobacterium tuberculosis (MTb). Co-infection with MTb exacerbates human immunodeficiency virus type1 (HIV-1) replication and disease progression via both innate and adaptive host immune responses to MTb infection. In this report, we present evidence that the transcription factor NFAT5 plays a crucial role in MTb-induced HIV-1 replication in human peripheral blood cells and monocytes. We also show that MTb infection itself stimulates NFAT5 gene expression in human monocytes and that its expression involves the TLR signalling pathway and requires the downstream adaptor proteins MyD88, IRAK1, and TRAF6. This identification of a novel role for NFAT5 in TB/HIV-1 co-infection reveals that NFAT5 is a major mediator of TLR-dependent gene expression and thus provides a potential new therapeutic target for treatment of HIV-1 and possibly other diseases.
Collapse
Affiliation(s)
- Shahin Ranjbar
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Pediatrics Harvard Medical School, Boston, Massachusetts, United States of America
| | - Luke D. Jasenosky
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Nancy Chow
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Anne E. Goldfeld
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Dey SS, Xue Y, Joachimiak MP, Friedland GD, Burnett JC, Zhou Q, Arkin AP, Schaffer DV. Mutual information analysis reveals coevolving residues in Tat that compensate for two distinct functions in HIV-1 gene expression. J Biol Chem 2012; 287:7945-55. [PMID: 22253435 DOI: 10.1074/jbc.m111.302653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viral genomes are continually subjected to mutations, and functionally deleterious ones can be rescued by reversion or additional mutations that restore fitness. The error prone nature of HIV-1 replication has resulted in highly diverse viral sequences, and it is not clear how viral proteins such as Tat, which plays a critical role in viral gene expression and replication, retain their complex functions. Although several important amino acid positions in Tat are conserved, we hypothesized that it may also harbor functionally important residues that may not be individually conserved yet appear as correlated pairs, whose analysis could yield new mechanistic insights into Tat function and evolution. To identify such sites, we combined mutual information analysis and experimentation to identify coevolving positions and found that residues 35 and 39 are strongly correlated. Mutation of either residue of this pair into amino acids that appear in numerous viral isolates yields a defective virus; however, simultaneous introduction of both mutations into the heterologous Tat sequence restores gene expression close to wild-type Tat. Furthermore, in contrast to most coevolving protein residues that contribute to the same function, structural modeling and biochemical studies showed that these two residues contribute to two mechanistically distinct steps in gene expression: binding P-TEFb and promoting P-TEFb phosphorylation of the C-terminal domain in RNAPII. Moreover, Tat variants that mimic HIV-1 subtypes B or C at sites 35 and 39 have evolved orthogonal strengths of P-TEFb binding versus RNAPII phosphorylation, suggesting that subtypes have evolved alternate transcriptional strategies to achieve similar gene expression levels.
Collapse
Affiliation(s)
- Siddharth S Dey
- Department of Chemical and Biomolecular Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Latency profiles of full length HIV-1 molecular clone variants with a subtype specific promoter. Retrovirology 2011; 8:73. [PMID: 21923919 PMCID: PMC3182984 DOI: 10.1186/1742-4690-8-73] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/16/2011] [Indexed: 12/31/2022] Open
Abstract
Background HIV-1 transcription initiation depends on cellular transcription factors that bind to promoter sequences in the Long Terminal Repeat (LTR). Each HIV-1 subtype has a specific LTR promoter configuration and even minor sequence changes in the transcription factor binding sites (TFBS) or their arrangement can impact transcriptional activity. Most latency studies have focused on HIV-1 subtype B strains, and the degree to which LTR promoter variation contributes to differences in proviral latency is therefore largely unknown. Latency differences may influence establishment and size of viral reservoirs as well as the possibility to clear the virus by therapeutic intervention. Results We investigated the proviral transcriptional latency properties of different HIV-1 subtypes as their LTRs have unique assemblies of transcription factor binding sites. We constructed recombinant viral genomes with the subtype-specific promoters inserted in the common backbone of the subtype B LAI isolate. The recombinant viruses are isogenic, except for the core promoter region that encodes all major TFBS, including NFκB and Sp1 sites. We developed and optimized an assay to investigate HIV-1 proviral latency in T cell lines. Our data show that the majority of HIV-1 infected T cells only start viral gene expression after TNFα activation. Conclusions There were no gross differences among the subtypes, both in the initial latency level and the activation response, except for subtype AE that combines an increased level of basal transcription with a reduced TNFα response. This subtype AE property is related to the presence of a GABP instead of NFκB binding site in the LTR.
Collapse
|
34
|
Johri MK, Mishra R, Chhatbar C, Unni SK, Singh SK. Tits and bits of HIV Tat protein. Expert Opin Biol Ther 2011; 11:269-83. [PMID: 21204735 DOI: 10.1517/14712598.2011.546339] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION HIV-Tat protein displays an array of functions that are essential for HIV replication. The structural flexibility of Tat protein has been regarded as one of the unique features responsible for sustaining diverse functions, from facilitated membrane-crossing ability to strong affinity for RNA binding. AREAS COVERED RNA binding ability and presence of multiple interacting domains in the same protein are very important properties of HIV-Tat protein. Tat protein has shown great ability to influence cellular and viral gene expression. We discuss the functions of HIV Tat protein, describing its structural significance, secretion and uptake of HIV Tat protein by immune cells, post-translational modifications and role of HIV Tat protein in HIV pathogenesis. EXPERT OPINION Perturbation in expression of many cytokines and chemokines by HIV-Tat protein exhibits downstream immune suppressive function as well as activation of several apoptotic genes. This explains the massive death of immune cells due to bystander effect of HIV Tat protein among HIV-infected patients.
Collapse
Affiliation(s)
- Manish K Johri
- Laboratory of Neurovirology & Inflammation Biology, Section of Infectious Diseases, Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad-500007, (A.P), India
| | | | | | | | | |
Collapse
|
35
|
Liu Y, Nonnemacher MR, Stauff DL, Li L, Banerjee A, Irish B, Kilareski E, Rajagopalan N, Suchitra JB, Khan ZK, Ranga U, Wigdahl B. Structural and functional studies of CCAAT/enhancer binding sites within the human immunodeficiency virus type 1 subtype C LTR. Biomed Pharmacother 2010; 64:672-80. [PMID: 20970301 DOI: 10.1016/j.biopha.2010.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/05/2010] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C, which is most predominant in sub-Saharan Africa as well as in Asia and India, is the most prevalent subtype worldwide. A large number of transcription factor families have been shown to be involved in regulating HIV-1 gene expression in T lymphocytes and cells of the monocyte-macrophage lineage. Among these, proteins of the CCAAT/enhancer binding protein (C/EBP) family are of particular importance in regulating HIV-1 gene expression within cells of the monocytic lineage during the course of hematologic development and cellular activation. Few studies have examined the role of C/EBPs in long terminal repeat (LTR)-directed viral gene expression of HIV-1 subtypes other than subtype B. Within subtype B viruses, two functional C/EBP sites located upstream of the TATA box are required for efficient viral replication in cells of the monocyte-macrophage lineage. We report the identification of three putative subtype C C/EBP sites, upstream site 1 and 2 (C-US1 and C-US2) and downstream site 1 (C-DS1). C-US1 and C-DS1 were shown to form specific DNA-protein complexes with members of the C/EBP family (C/EBPα, β, and δ). Functionally, within the U-937 monocytic cell line, subtype B and C LTRs were shown to be equally responsive to C/EBPβ-2, although the basal activity of subtype C LTRs appeared to be higher. Furthermore, the synergistic interaction between C/EBPβ-2 and Tat with the subtype C LTR was also observed in U-937 cells as previously demonstrated with the subtype B LTR.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
de Arellano ER, Alcamí J, López M, Soriano V, Holguín A. Drastic decrease of transcription activity due to hypermutated long terminal repeat (LTR) region in different HIV-1 subtypes and recombinants. Antiviral Res 2010; 88:152-9. [PMID: 20713090 DOI: 10.1016/j.antiviral.2010.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/27/2010] [Accepted: 08/09/2010] [Indexed: 11/25/2022]
Abstract
Transcriptional activation of HIV-1 gene expression is partially controlled by the interaction between viral and cellular transcription factors acting at HIV-1 long terminal repeat (LTR) sequences. HIV-1 subtyping at LTR region and nucleotide LTR variability from clinical samples in 48 subjects carrying different HIV-1 subtypes (9A, 5C, 3D, 3F, 21G, 2H, 3J and 2 undefined) at the protease (PR) gene, were performed. LTR sequences from each HIV-1 clade were cloned in luciferase-expression vectors to determine basal and Tat-induced transcriptional activities in the presence and absence of PMA stimulation. A high number (37.8%) of recombinants at LTR/PR regions were identified. All HIV-1 promoters presented low basal transcriptional activity that was nevertheless induced by Tat and PMA. LTR activity was similar across the majority of HIV-1 variants in response to Tat and cell activation. Only subtype C and CRF01_AE LTRs presented higher basal and induced-PMA transcription activities than HXB2 clade B promoter. No basal or Tat/PMA induced activity was found in those promoters presenting G to A hypermutation compared to the wild type promoter activities. G to A hypermutation at some important transcription binding-factor sites within LTR compromised the activity of the viral promoter, decreasing the in vitro viral transcription of the luciferase gene.
Collapse
Affiliation(s)
- Eva Ramírez de Arellano
- Department of Infectious Diseases, Hospital Carlos III, Madrid, Spain; National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | |
Collapse
|
37
|
Ayele W, Mekonnen Y, Messele T, Mengistu Y, Tsegaye A, Bakker M, Berkhout B, Dorigo-Zetsma W, Wolday D, Goudsmit J, Coutinho R, de Baar M, Paxton WA, Pollakis G. Differences in HIV type 1 RNA plasma load profile of closely related cocirculating Ethiopian subtype C strains: C and C'. AIDS Res Hum Retroviruses 2010; 26:805-13. [PMID: 20624072 DOI: 10.1089/aid.2009.0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two HIV-1 subtype C subclusters have been identified in Ethiopia (C and C') with little knowledge regarding their biological or clinical differences. We longitudinally monitored HIV-1 viral loads and CD4(+) T cell counts for 130 subtype C-infected individuals from Ethiopia over 5 years. The genetic subclusters C and C' were determined and comparisons were made between the groups. None of the study individuals received antiretroviral therapy. Subcluster C' was found to be the more prevalent (72.3%) genotype circulating. Individuals infected with subcluster C' harbored higher viral loads in comparison to subcluster C-infected individuals when the CD4(+) T cell counts were high (500-900 cells/mm(3)), whereas at low CD4(+) T cell counts (0-150 cells/mm(3)) individuals infected with subcluster C viruses showed higher viral loads. We identified a greater number of deaths among individuals infected with subcluster C viruses in comparison to C'. Our results indicate that infection with subcluster C viruses leads to a more rapid onset of disease, despite the initial lower HIV-1 RNA plasma loads. Additionally, the higher viral loads seen for HIV-1 subcluster C' infections at higher CD4(+) T cell counts can help explain the higher prevalence of this subtype in Ethiopia.
Collapse
Affiliation(s)
- Workenesh Ayele
- Ethiopian Health and Nutrition Research Institute (EHNRI), Addis Ababa, Ethiopia
| | - Yared Mekonnen
- Ethiopian Health and Nutrition Research Institute (EHNRI), Addis Ababa, Ethiopia
| | - Tsehaynesh Messele
- Ethiopian Health and Nutrition Research Institute (EHNRI), Addis Ababa, Ethiopia
| | - Yohannes Mengistu
- Department of Microbiology, Immunology and Parasitology, Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aster Tsegaye
- Ethiopian Health and Nutrition Research Institute (EHNRI), Addis Ababa, Ethiopia
| | - Margreet Bakker
- Laboratory of Experimental Virology (LEV), Department of Medical Microbiology–Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology (LEV), Department of Medical Microbiology–Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Wendelien Dorigo-Zetsma
- Regional Microbiological and Serological Laboratory, Hospital Hilversum, Hilversum, The Netherlands
| | - Dawit Wolday
- Ethiopian Health and Nutrition Research Institute (EHNRI), Addis Ababa, Ethiopia
| | | | - Roel Coutinho
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - William A. Paxton
- Laboratory of Experimental Virology (LEV), Department of Medical Microbiology–Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Georgios Pollakis
- Laboratory of Experimental Virology (LEV), Department of Medical Microbiology–Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Arias JF, Nishihara R, Bala M, Ikuta K. High systemic levels of interleukin-10, interleukin-22 and C-reactive protein in Indian patients are associated with low in vitro replication of HIV-1 subtype C viruses. Retrovirology 2010; 7:15. [PMID: 20211031 PMCID: PMC2841095 DOI: 10.1186/1742-4690-7-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/09/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND HIV-1 subtype C (HIV-1C) accounts for almost 50% of all HIV-1 infections worldwide and predominates in countries with the highest case-loads globally. Functional studies suggest that HIV-1C is unique in its biological properties, and there are contradicting reports about its replicative characteristics. The present study was conducted to evaluate whether the host cytokine environment modulates the in vitro replication capacity of HIV-1C viruses. METHODS A small subset of HIV-1C isolates showing efficient replication in peripheral blood mononuclear cells (PBMC) is described, and the association of in vitro replication capacity with disease progression markers and the host cytokine response was evaluated. Viruses were isolated from patient samples, and the corresponding in vitro growth kinetics were determined by monitoring for p24 production. Genotype, phenotype and co-receptor usage were determined for all isolates, while clinical category, CD4 cell counts and viral loads were recorded for all patients. Plasmatic concentrations of cytokines and, acute-phase response, and microbial translocation markers were determined; and the effect of cytokine treatment on in vitro replication rates was also measured. RESULTS We identified a small number of viral isolates showing high in vitro replication capacity in healthy-donor PBMC. HIV-1C usage of CXCR4 co-receptor was rare; therefore, it did not account for the differences in replication potential observed. There was also no correlation between the in vitro replication capacity of HIV-1C isolates and patients' disease status. Efficient virus growth was significantly associated with low interleukin-10 (IL-10), interleukin-22 (IL-22), and C-reactive protein (CRP) levels in plasma (p < .0001). In vitro, pretreatment of virus cultures with IL-10 and CRP resulted in a significant reduction of virus production, whereas IL-22, which lacks action on immune cells appears to mediate its anti-HIV effect through interaction with both IL-10 and CRP, and its own protective effect on mucosal membranes. CONCLUSIONS These results indicate that high systemic levels of IL-10, CRP and IL-22 in HIV-1C-infected Indian patients are associated with low viral replication in vitro, and that the former two have direct inhibitory effects whereas the latter acts through downstream mechanisms that remain uncertain.
Collapse
Affiliation(s)
- Juan F Arias
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Viral Emergent Diseases Research Group (VIREM), Universidad del Valle, Cali, Colombia
| | - Reiko Nishihara
- Department of Health Promotion Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manju Bala
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Regional STD Teaching, Training and Research Center, VM Medical College & Safdarjang Hospital, New Delhi, India
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Amaku M, Burattini MN, Coutinho FAB, Massad E. Modeling the dynamics of viral evolution considering competition within individual hosts and at population level: the effects of treatment. Bull Math Biol 2010; 72:1294-314. [PMID: 20091353 DOI: 10.1007/s11538-009-9495-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 12/03/2009] [Indexed: 10/19/2022]
Abstract
We consider two viral strains competing against each other within individual hosts (at cellular level) and at population level (for infecting hosts) by studying two cases. In the first case, the strains do not mutate into each other. In this case, we found that each individual in the population can be infected by only one strain and that co-existence in the population is possible only when the strain that has the greater basic intracellular reproduction number, R (0c ), has the smaller population number R (0p ). Treatment against the one strain shifts the population equilibrium toward the other strain in a complicated way (see Appendix B). In the second case, we assume that the strain that has the greater intracellular number R (0c ) can mutate into the other strain. In this case, individual hosts can be simultaneously infected by both strains (co-existence within the host). Treatment shifts the prevalence of the two strains within the hosts, depending on the mortality induced by the treatment, which is, in turn, dependent upon the doses given to each individual. The relative proportions of the strains at the population level, under treatment, depend both on the relative proportions within the hosts (which is determined by the dosage of treatment) and on the number of individuals treated per unit time, that is, the rate of treatment. Implications for cases of real diseases are briefly discussed.
Collapse
|
40
|
Campbell GR, Loret EP, Spector SA. HIV-1 clade B Tat, but not clade C Tat, increases X4 HIV-1 entry into resting but not activated CD4+ T cells. J Biol Chem 2010; 285:1681-91. [PMID: 19917610 PMCID: PMC2804326 DOI: 10.1074/jbc.m109.049957] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 11/13/2009] [Indexed: 11/06/2022] Open
Abstract
CXCR4-using human immunodeficiency virus, type 1 (HIV-1) variants emerge late in the course of infection in >40% of individuals infected with clade B HIV-1 but are described less commonly with clade C isolates. Tat is secreted by HIV-1-infected cells where it acts on both uninfected bystander cells and infected cells. In this study, we show that clade B Tat, but not clade C Tat, increases CXCR4 surface expression on resting CD4+ T cells through a CCR2b-dependent mechanism that does not involve de novo protein synthesis. The expression of plectin, a cytolinker protein that plays an important role as a scaffolding platform for proteins involved in cellular signaling including CXCR4 signaling and trafficking, was found to be significantly increased following B Tat but not C Tat treatment. Knockdown of plectin using RNA interference showed that plectin is essential for the B Tat-induced translocation of CXCR4 to the surface of resting CD4+ T cells. The increased surface CXCR4 expression following B Tat treatment led to increased function of CXCR4 including increased chemoattraction toward CXCR4-using-gp120. Moreover, increased CXCR4 surface expression rendered resting CD4+ T cells more permissive to X4 but not R5 HIV-1 infection. However, neither B Tat nor C Tat was able to up-regulate surface expression of CXCR4 on activated CD4+ T cells, and both proteins inhibited the infection of activated CD4+ T cells with X4 but not R5 HIV-1. Thus, B Tat, but not C Tat, has the capacity to render resting, but not activated, CD4+ T cells more susceptible to X4 HIV-1 infection.
Collapse
Affiliation(s)
- Grant R. Campbell
- From the Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California 92093-0672
| | - Erwann P. Loret
- INSERM U911, Faculté de Pharmacie, Université de la Méditerranée, 13385 Marseille Cedex 5, France
| | - Stephen A. Spector
- From the Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California 92093-0672
- Rady Children's Hospital, San Diego, California 92123, and
| |
Collapse
|
41
|
Escape from autologous humoral immunity of HIV-1 is not associated with a decrease in replicative capacity. Virology 2009; 397:224-30. [PMID: 19945135 DOI: 10.1016/j.virol.2009.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 11/22/2022]
Abstract
Autologous HIV-1-specific neutralizing antibodies (NAbs) seem unable to inhibit viral replication as they rapidly select for neutralization escape variants. However, NAbs could potentially contribute indirectly to the control of HIV-1 if changes in the viral envelope coinciding with NAb escape would impair viral replication fitness. Here we analyzed the replication kinetics of HIV-1 isolated over the course of infection from five typical progressors, three of whom developed strong autologous neutralizing humoral immunity. Viral replication rate did not correlate with viral sensitivity to autologous serum neutralization or with envelope length or number of potential N-linked glycosylation sites in gp120, suggesting that the flexibility of the viral envelope allows escape from NAbs without the loss of viral fitness. Interestingly, the appearance of rapidly replicating viruses late in infection correlated with lower CD4(+) T-cell counts, suggesting that this viral characteristic may be positively selected when the availability of target cells becomes limiting.
Collapse
|
42
|
A novel yeast-based recombination method to clone and propagate diverse HIV-1 isolates. Biotechniques 2009; 46:458-67. [PMID: 19480640 DOI: 10.2144/000113119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Replication studies on human immunodeficiency virus 1 (HIV-1) rely on a few laboratory strains that are divergent from dominant HIV-1 subtypes in the epidemic. Several phenotypic differences between diverse HIV-1 isolates and subtypes could affect vaccine development and treatment, but this research field lacks robust cloning/virus production systems to study drug sensitivity, replication kinetics, or to develop personalized vaccines. Extreme HIV-1 heterogeneity leaves few restriction enzyme sites for bacterial cloning strategies. In this study, we describe an alternative approach that involves direct introduction of any HIV-1 coding regions (e.g., any gene from a patient sample) into an HIV-1 DNA vector using yeast recombination. This technique uses positive and negative selectable markers in yeast and avoids the need for purification and screening of the DNA substrates and cloning products. Replication-competent virus is then produced from a modified mammalian 293T packaging cell line transfected with this yeast-derived HIV-1 vector. Although HIV-1 served as the prototype, this cloning strategy is now being developed for other diverse virus species such as hepatitis C virus and influenza virus.
Collapse
|
43
|
CCR5- and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes: implications for the epidemic. J Virol 2009; 83:5592-605. [PMID: 19297481 DOI: 10.1128/jvi.02051-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C is the dominant subtype globally, due largely to the incidence of subtype C infections in sub-Saharan Africa and east Asia. We compared the relative replicative fitness (ex vivo) of the major (M) group of HIV-1 subtypes A, B, C, D, and CRF01_AE and group O isolates. To estimate pathogenic fitness, pairwise competitions were performed between CCR5-tropic (R5) or CXCR4-tropic (X4) virus isolates in peripheral blood mononuclear cells (PBMC). A general fitness order was observed among 33 HIV-1 isolates; subtype B and D HIV-1 isolates were slightly more fit than the subtype A and dramatically more fit than the 12 subtype C isolates. All group M isolates were more fit (ex vivo) than the group O isolates. To estimate ex vivo transmission fitness, a subset of primary HIV-1 isolates were examined in primary human explants from penile, cervical, and rectal tissues. Only R5 isolates and no X4 HIV-1 isolates could replicate in these tissues, whereas the spread to PM1 cells was dependent on active replication and passive virus transfer. In tissue competition experiments, subtype C isolates could compete with and, in some cases, even win over subtype A and D isolates. However, when the migratory cells from infected tissues were mixed with a susceptible cell line, the subtype C isolates were outcompeted by other subtypes, as observed in experiments with PBMC. These findings suggest that subtype C HIV-1 isolates might have equal transmission fitness but reduced pathogenic fitness relative to other group M HIV-1 isolates.
Collapse
|
44
|
Rouet F, Ménan H, Viljoen J, Ngo-Giang-Huong N, Mandaliya K, Valéa D, Lien TX, Danaviah S, Rousset D, Ganon A, Nerrienet E. In-house HIV-1 RNA real-time RT-PCR assays: principle, available tests and usefulness in developing countries. Expert Rev Mol Diagn 2009; 8:635-50. [PMID: 18785811 DOI: 10.1586/14737159.8.5.635] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The principle of currently available licensed HIV-1 RNA assays is based on real-time technologies that continuously monitor the fluorescence emitted by the amplification products. Besides these assays, in-house quantitative (q) real-time reverse transcription (RT)-PCR (RT-qPCR) tests have been developed and evaluated particularly in developing countries, for two main reasons. First, affordable and generalized access to HIV-1 RNA viral load is urgently needed in the context of expected universal access to prevention and antiretroviral treatment programs in these settings. Second, since many non-B subtypes, circulating recombinant forms and unique recombinant forms circulate in these areas, in-house HIV-1 RNA RT-qPCR assays are ideal academic tools to thoroughly evaluate the impact of HIV-1 genetic diversity on the accuracy of HIV-1 RNA quantification, as compared with licensed techniques. To date, at least 15 distinct in-house assays have been designed. They differ by their chemistry and the HIV-1 target sequence (located in gag, Pol-IN or LTR gene). Analytical performances of the tests that have been extensively evaluated appear at least as good as (or even better than) those of approved assays, with regard to HIV-1 strain diversity. Their clinical usefulness has been clearly demonstrated for early diagnosis of pediatric HIV-1 infection and monitoring of highly active antiretroviral therapy efficacy. The LTR-based HIV-1 RNA RT-qPCR assay has been evaluated by several groups under the auspices of the Agence Nationale de Recherches sur le SIDA et les hépatites virales B et C. It exists now as a complete standardized commercial test.
Collapse
Affiliation(s)
- François Rouet
- Laboratoire de Virologie, Centre Muraz, BP390 Bobo-Dioulasso 01, Burkina Faso.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cismasiu VB, Paskaleva E, Suman Daya S, Canki M, Duus K, Avram D. BCL11B is a general transcriptional repressor of the HIV-1 long terminal repeat in T lymphocytes through recruitment of the NuRD complex. Virology 2008; 380:173-81. [PMID: 18768194 DOI: 10.1016/j.virol.2008.07.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/01/2008] [Accepted: 07/30/2008] [Indexed: 12/01/2022]
Abstract
In this study we provide evidence that the transcription factor BCL11B represses expression from the HIV-1 long terminal repeat (LTR) in T lymphocytes through direct association with the HIV-1 LTR. We also demonstrate that the NuRD corepressor complex mediates BCL11B transcriptional repression of the HIV-1 LTR. In addition, BCL11B and the NuRD complex repressed TAT-mediated transactivation of the HIV-1 LTR in T lymphocytes, pointing to a potential role in initiation of silencing. In support of all the above results, we demonstrate that BCL11B affects HIV-1 replication and virus production, most likely by blocking LTR transcriptional activity. BCL11B showed specific repression for the HIV-1 LTR sequences isolated from seven different HIV-1 subtypes, demonstrating that it is a general transcriptional repressor for all LTRs.
Collapse
Affiliation(s)
- Valeriu B Cismasiu
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue MC-165, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
46
|
Jeeninga RE, Westerhout EM, van Gerven ML, Berkhout B. HIV-1 latency in actively dividing human T cell lines. Retrovirology 2008; 5:37. [PMID: 18439275 PMCID: PMC2387167 DOI: 10.1186/1742-4690-5-37] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 04/25/2008] [Indexed: 11/30/2022] Open
Abstract
Background Eradication of HIV-1 from an infected individual cannot be achieved by current drug regimens. Viral reservoirs established early during the infection remain unaffected by anti-retroviral therapy and are able to replenish systemic infection upon interruption of the treatment. Therapeutic targeting of viral latency will require a better understanding of the basic mechanisms underlying the establishment and long-term maintenance of HIV-1 in resting memory CD4 T cells, the most prominent reservoir of transcriptional silent provirus. However, the molecular mechanisms that permit long-term transcriptional control of proviral gene expression in these cells are still not well understood. Exploring the molecular details of viral latency will provide new insights for eventual future therapeutics that aim at viral eradication. Results We set out to develop a new in vitro HIV-1 latency model system using the doxycycline (dox)-inducible HIV-rtTA variant. Stable cell clones were generated with a silent HIV-1 provirus, which can subsequently be activated by dox-addition. Surprisingly, only a minority of the cells was able to induce viral gene expression and a spreading infection, eventhough these experiments were performed with the actively dividing SupT1 T cell line. These latent proviruses are responsive to TNFα treatment and alteration of the DNA methylation status with 5-Azacytidine or genistein, but not responsive to the regular T cell activators PMA and IL2. Follow-up experiments in several T cell lines and with wild-type HIV-1 support these findings. Conclusion We describe the development of a new in vitro model for HIV-1 latency and discuss the advantages of this system. The data suggest that HIV-1 proviral latency is not restricted to resting T cells, but rather an intrinsic property of the virus.
Collapse
Affiliation(s)
- Rienk E Jeeninga
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Lee YK, Chew A, Phan H, Greenhalgh DG, Cho K. Genome-wide expression profiles of endogenous retroviruses in lymphoid tissues and their biological properties. Virology 2008; 373:263-73. [PMID: 18187179 DOI: 10.1016/j.virol.2007.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 08/21/2007] [Accepted: 10/30/2007] [Indexed: 01/31/2023]
Abstract
Endogenous retroviruses (ERVs) constitute approximately 8-10% of the human and mouse genome. Some autoimmune diseases are attributed to the altered expression of ERVs. In this study, we examined the ERV expression profiles in lymphoid tissues and analyzed their biological properties. Tissues (spleen, thymus, and lymph nodes [axillary, inguinal, and mesenteric]) from C57BL/6J mice were analyzed for differential murine ERV (MuERV) expression by RT-PCR examination of polymorphic U3 sequences. Each tissue had a unique profile of MuERV expression. A genomic map identifying 60 putative MuERVs was established using 22 unique U3s as probes and their biological properties (primer binding site, coding potential, transcription regulatory element, tropism, recombination event, and integration age) were characterized. Interestingly, 12 putative MuERVs retained intact coding potentials for all three polypeptides essential for virus assembly and replication. We suggest that MuERV expression is differentially regulated in conjunction with the transcriptional environment of individual lymphoid tissues.
Collapse
Affiliation(s)
- Young-Kwan Lee
- Burn Research, Shriners Hospitals for Children and Department of Surgery, University of California, Davis, 2425 Stockton Blvd., Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
48
|
Poss M, Ross H. Evolution of the long terminal repeat and accessory genes of feline immunodeficiency virus genomes from naturally infected cougars. Virology 2008; 370:55-62. [PMID: 17904608 PMCID: PMC2215318 DOI: 10.1016/j.virol.2007.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 06/29/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
FIVpco is a member of the feline immunodeficiency virus family that is endemic in wild cougar populations. Virus replication is robust in FIVpco-infected cougars but there are no consequences of infection to cougar survival, fecundity or susceptibility to other infections. Unlike pathogenic lentiviruses, there is no evidence for positive selection on FIVpco gag or env. To better understand how lentivirus genomes evolve in natural infections, we evaluated the regulatory region and accessory genes from fourteen full-length FIVpco genomes, which represent the FIVpco diversity in the Northern Rockies Ecosystem. Our data demonstrate that the two sister groups of FIVpco have each acquired binding sites for different interferon response factors (IRF). The most variable gene in the FIVpco genome encodes OrfA, although there is no indication that it, or any other accessory gene, is under positive selection. There is a single-splice acceptor site for vif expression, which is conserved among all FIVpco genomes. However, there are several putative means to express rev and orfA, which differ between the phylogenetic groups of FIVpco. Our comparative study on divergent FIVpco genomes indicates that variation in potential gene regulation mechanisms, not changes in structural proteins, characterize the evolution of FIVpco in natural infections.
Collapse
Affiliation(s)
- Mary Poss
- Department of Biology, Center for Infectious Disease Dynamics, 208 Mueller Lab, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
49
|
Burattini M, Coutinho F, Massad E. Viral evolution and the competitive exclusion principle. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.bihy.2008.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Rodriguez MA, Shen C, Ratner D, Paranjape RS, Kulkarni SS, Chatterjee R, Gupta P. Genetic and functional characterization of the LTR of HIV-1 subtypes A and C circulating in India. AIDS Res Hum Retroviruses 2007; 23:1428-33. [PMID: 18184086 DOI: 10.1089/aid.2007.0152] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic analysis of HIV-1 sequences circulating in different parts of India have shown that the predominant proportion of HIV-1 subtypes circulating in India is type C and a small fraction are subtypes A, B, E, and CRFs. We sequenced the HIV-1 LTR promoter region of seven subtype C and five subtype A isolates obtained from two major cities in India. Sequence analysis of the complete promoter and TAR regions revealed conserved subtype-specific variability in several major binding sites. Three NF-kappaB sites were present in all subtype C isolates and two isolates contained an insertion in the MFNLP. The transcriptional activity of one of these isolates may have been hindered due to this insertion. Despite the apparent variability between the LTRs we did not observe any significant difference in the transcriptional activity between subtype C and subtype A. To our knowledge, this is the first study characterizing the genetic structure and functional attributes of subtype A LTRs from India.
Collapse
Affiliation(s)
- Milka A. Rodriguez
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Chengli Shen
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Deena Ratner
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | | | | | - Ramdas Chatterjee
- Department of Virology, Chittaranjan Cancer Research Institute, Calcutta, India
| | - Phalguni Gupta
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|