1
|
Sabbaghian M, Gheitasi H, Fadaee M, Javadi Henafard H, Tavakoli A, Shekarchi AA, Poortahmasebi V. Human cytomegalovirus microRNAs: strategies for immune evasion and viral latency. Arch Virol 2024; 169:157. [PMID: 38969819 DOI: 10.1007/s00705-024-06080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/17/2024] [Indexed: 07/07/2024]
Abstract
Viruses use various strategies and mechanisms to deal with cells and proteins of the immune system that form a barrier against infection. One of these mechanisms is the encoding and production of viral microRNAs (miRNAs), whose function is to regulate the gene expression of the host cell and the virus, thus creating a suitable environment for survival and spreading viral infection. miRNAs are short, single-stranded, non-coding RNA molecules that can regulate the expression of host and viral proteins, and due to their non-immunogenic nature, they are not eliminated by the cells of the immune system. More than half of the viral miRNAs are encoded and produced by Orthoherpesviridae family members. Human cytomegalovirus (HCMV) produces miRNAs that mediate various processes in infected cells to contribute to HCMV pathogenicity, including immune escape, viral latency, and cell apoptosis. Here, we discuss which cellular and viral proteins or cellular pathways and processes these mysterious molecules target to evade immunity and support viral latency in infected cells. We also discuss current evidence that their function of bypassing the host's innate and adaptive immune system is essential for the survival and multiplication of the virus and the spread of HCMV infection.
Collapse
Affiliation(s)
- Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lachiondo-Ortega S, Delgado TC, Baños-Jaime B, Velázquez-Cruz A, Díaz-Moreno I, Martínez-Chantar ML. Hu Antigen R (HuR) Protein Structure, Function and Regulation in Hepatobiliary Tumors. Cancers (Basel) 2022; 14:2666. [PMID: 35681645 PMCID: PMC9179498 DOI: 10.3390/cancers14112666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Hu antigen R (HuR) is a 36-kDa ubiquitous member of the ELAV/Hu family of RNA-binding proteins (RBPs), which plays an important role as a post-transcriptional regulator of specific RNAs under physiological and pathological conditions, including cancer. Herein, we review HuR protein structure, function, and its regulation, as well as its implications in the pathogenesis, progression, and treatment of hepatobiliary cancers. In particular, we focus on hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), tumors where the increased cytoplasmic localization of HuR and activity are proposed, as valuable diagnostic and prognostic markers. An overview of the main regulatory axes involving HuR, which are associated with cell proliferation, invasion, metastasis, apoptosis, and autophagy in HCC, is provided. These include the transcriptional, post-transcriptional, and post-translational modulators of HuR function, in addition to HuR target transcripts. Finally, whereas studies addressing the relevance of targeting HuR in CCA are limited, in the past few years, HuR has emerged as a potential therapeutic target in HCC. In fact, the therapeutic efficacy of some pharmacological inhibitors of HuR has been evaluated, in early experimental models of HCC. We, further, discuss the major findings and future perspectives of therapeutic approaches that specifically block HuR interactions, either with post-translational modifiers or cognate transcripts in hepatobiliary cancers.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (S.L.-O.); (T.C.D.)
| | - Teresa Cardoso Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (S.L.-O.); (T.C.D.)
| | - Blanca Baños-Jaime
- Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Instituto de Investigaciones Químicas (IIQ), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain; (B.B.-J.); (A.V.-C.); (I.D.-M.)
| | - Alejandro Velázquez-Cruz
- Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Instituto de Investigaciones Químicas (IIQ), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain; (B.B.-J.); (A.V.-C.); (I.D.-M.)
| | - Irene Díaz-Moreno
- Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Instituto de Investigaciones Químicas (IIQ), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain; (B.B.-J.); (A.V.-C.); (I.D.-M.)
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (S.L.-O.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain
| |
Collapse
|
3
|
3'untranslated regions of tumor suppressor genes evolved specific features to favor cancer resistance. Oncogene 2022; 41:3278-3288. [PMID: 35523946 DOI: 10.1038/s41388-022-02343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Cancer-related genes have evolved specific genetic and genomic features to favor tumor suppression. Previously we reported that tumor suppressor genes (TSGs) acquired high promoter CpG dinucleotide frequencies during evolution to maintain high expression in normal tissues and resist cancer-specific downregulation. In this study, we investigated whether 3'untranslated regions (3'UTRs) of TSGs have evolved specific features to carry out similar functions. We found that 3'UTRs of TSGs, especially those involved in multiple histological types and pediatric cancers, are longer than those of non-cancer genes. 3'UTRs of TSGs also exhibit higher density of binding sites for RNA-binding proteins (RBPs), particularly those having high affinities to C-rich motifs. Both longer 3'UTR length and RBP binding sites enrichment are correlated with higher gene expression in normal tissues across tissue types. Moreover, both features together with the correlated N6-methyladenosine modification and the extent of protein-protein interactions are positively associated with the ability of TSGs to resist cancer-specific downregulation. These results were successfully validated with independent datasets. Collectively, these findings indicate that TSGs have evolved longer 3'UTR with increased propensity to RBP binding, N6-methyladenosine modification and protein-protein interactions for optimizing their tumor-suppressing functions.
Collapse
|
4
|
Raguraman R, Shanmugarama S, Mehta M, Elle Peterson J, Zhao YD, Munshi A, Ramesh R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv Drug Deliv Rev 2022; 180:114068. [PMID: 34822926 PMCID: PMC8724414 DOI: 10.1016/j.addr.2021.114068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is often diagnosed at an advanced stage and conventional treatments for disease management have limitations associated with them. Novel therapeutic targets are thus avidly sought for the effective management of LC. RNA binding proteins (RBPs) have been convincingly established as key players in tumorigenesis, and their dysregulation is linked to multiple cancers, including LC. In this context, we review the role of Human antigen R (HuR), an RBP that is overexpressed in LC, and further associated with various aspects of LC tumor growth and response to therapy. Herein, we describe the role of HuR in LC progression and outline the evidences supporting various pharmacologic and biologic approaches for inhibiting HuR expression and function. These approaches, including use of small molecule inhibitors, siRNAs and shRNAs, have demonstrated favorable results in reducing tumor cell growth, invasion and migration, angiogenesis and metastasis. Hence, HuR has significant potential as a key therapeutic target in LC. Use of siRNA-based approaches, however, have certain limitations that prevent their maximal exploitation as cancer therapies. To address this, in the conclusion of this review, we provide a list of nanomedicine-based HuR targeting approaches currently being employed for siRNA and shRNA delivery, and provide a rationale for the immense potential therapeutic benefits offered by nanocarrier-based HuR targeting and its promise for treating patients with LC.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghna Mehta
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan D Zhao
- Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
Shao Z, Tu Z, Shi Y, Li S, Wu A, Wu Y, Tian N, Sun L, Pan Z, Chen L, Gao W, Zhou Y, Wang X, Zhang X. RNA-Binding Protein HuR Suppresses Inflammation and Promotes Extracellular Matrix Homeostasis via NKRF in Intervertebral Disc Degeneration. Front Cell Dev Biol 2020; 8:611234. [PMID: 33330514 PMCID: PMC7732619 DOI: 10.3389/fcell.2020.611234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) has been reported to be a major cause of low back pain. Studies have demonstrated that IVDD may be dysregulated at the transcriptional level; however, whether post-transcriptional regulation is involved is still unknown. The current study aimed to illustrate the role of Human antigen R (HuR), an RNA binding protein involved in post-transcriptional regulation, in IVDD. The results showed that the expression of HuR was decreased in degenerative nucleus pulposus (NP) tissues as well as in TNF-α-treated NP cells. Downregulation of HuR may lead to increased inflammation and extracellular matrix (ECM) degradation in TNF-α-treated NP cells; however, these effects were not reversed in HuR overexpressed NP cells. Inhibition of the NF-κB signaling pathway attenuates inflammation and ECM degradation in HuR-deficient NP cells. A mechanism study showed that HuR prompted NKRF mRNA stability via binding to its AU-rich elements, and upregulation of NKRF suppressed inflammation and ECM degradation in HuR-deficient NP cells. Furthermore, we found that NKRF, but not HuR, overexpression ameliorated the process of IVDD in rats in vivo. In conclusion, HuR suppressed inflammation and ECM degradation in NP cells via stabilizing NKRF and inhibiting the NF-κB signaling pathway; NKRF, but not HuR, may serve as a potential therapeutic target for IVDD.
Collapse
Affiliation(s)
- Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhuolong Tu
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zongyou Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Linwei Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Chinese Orthopedic Regenerative Medicine Society, Hangzhou, China
| |
Collapse
|
6
|
Estrogen signaling differentially alters iron metabolism in monocytes in an Interleukin 6-dependent manner. Immunobiology 2020; 225:151995. [PMID: 32962815 DOI: 10.1016/j.imbio.2020.151995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 01/16/2023]
Abstract
The ability of monocytes to release or sequester iron affects their role in cancer and inflammation. Previous work has shown that while IL-6 upregulates hepcidin synthesis and enhances iron sequestration, E2 reduces hepcidin synthesis and increases iron release. Given that E2 upregulates IL-6 production in monocytes, it is likely that the exact effect of E2 on iron metabolism in monocytes is shaped by its effect on IL-6 expression. To address this issue, the expression of key iron regulatory proteins was assessed in E2-treated U937, HuT-78, THP-1 and Hep-G2 cells. Iron status was also evaluated in U937 cells treated with the ERα agonist PPT, the ER antagonist ICI-182780, dexamethasone + E2, IL-6 + E2 and in IL-6-silenced U937 cells. E2 treatment reduced hepcidin synthesis in HuT-78, THP-1 and Hep-G2 cells but increased hepcidin synthesis and reduced FPN expression in U937 cells. E2-treated U937 cells also showed reduced HIF-1α and FTH expression and increased TFR1 expression, which associated with increased labile iron content as compared with similarly treated Hep-G2 cells. While treatment of U937 cells with interleukin 6 (IL-6) resulted in increased expression of hepcidin, dexamethasone treatment resulted in reduced hepcidin synthesis relative to E2- or dexamethasone + E2-treated cells; IL-6 silencing also resulted in reduced hepcidin synthesis in U937 cells. Lastly, while iron depletion resulted in increased cell death in U937 cells, E2 treatment resulted in enhanced cell survival and reduced apoptosis. These findings suggest that E2 differentially alters iron metabolism in monocytes in an IL-6 dependent manner.
Collapse
|
7
|
Barbu MG, Condrat CE, Thompson DC, Bugnar OL, Cretoiu D, Toader OD, Suciu N, Voinea SC. MicroRNA Involvement in Signaling Pathways During Viral Infection. Front Cell Dev Biol 2020; 8:143. [PMID: 32211411 PMCID: PMC7075948 DOI: 10.3389/fcell.2020.00143] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
The study of miRNAs started in 1993, when Lee et al. observed their involvement in the downregulation of a crucial protein known as LIN-14 in the nematode Caenorhabditis elegans. Since then, great progress has been made regarding research on microRNAs, which are now known to be involved in the regulation of various physiological and pathological processes in both animals and humans. One such example is represented by their interaction with various signaling pathways during viral infections. It has been observed that these pathogens can induce the up-/downregulation of various host miRNAs in order to elude the host's immune system. In contrast, some miRNAs studied could have an antiviral effect, enabling the defense mechanisms to fight the infection or, at the very least, they could induce the pathogen to enter a latent state. At the same time, some viruses encode their own miRNAs, which could further modulate the host's signaling pathways, thus favoring the survival and replication of the virus. The goal of this extensive literature review was to present how miRNAs are involved in the regulation of various signaling pathways in some of the most important and well-studied human viral infections. Further on, knowing which miRNAs are involved in various viral infections and what role they play could aid in the development of antiviral therapeutic agents for certain diseases that do not have a definitive cure in the present. The clinical applications of miRNAs are extremely important, as miRNAs targeted inhibition may have substantial therapeutic impact. Inhibition of miRNAs can be achieved through many different methods, but chemically modified antisense oligonucleotides have shown the most prominent effects. Though scientists are far from completely understanding all the molecular mechanisms behind the complex cross-talks between miRNA pathways and viral infections, the general knowledge is increasing on the different roles played by miRNAs during viral infections.
Collapse
Affiliation(s)
- Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Oana Daniela Toader
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Institute of Oncology Prof. Dr. Alexandru Trestioreanu, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
8
|
Alarifi S, Alkahtani S, Al-Qahtani AA, Stournaras C, Sourvinos G. Induction of interleukin-11 mediated by RhoA GTPase during human cytomegalovirus lytic infection. Cell Signal 2020; 70:109599. [PMID: 32165237 DOI: 10.1016/j.cellsig.2020.109599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/18/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen which periodically reactivates, causing severe clinical consequences in immunosuppressed patients, organ and stem cell transplant recipients or newborn babies with congenital infections. HCMV infection stimulates the expression of several proinflammatory cytokines, which may contribute to the pathogenesis of the infection. Rho GTPases mediate cytokine expression while increasing evidence implicates them in important aspects of HCMV life cycle. Here, we studied the role of RhoA on the interleukin 11 (IL-11) release in HCMV-infected fibroblasts. Human fibroblasts, either endogenously expressing or silenced for RhoA, were infected by HCMV or UV-inactivated virus and IL-11 transcription and secretion were evaluated. We found that HCMV lytic infection increased the IL-11 levels, both in terms of transcription and translation. Both infectious and non-infectious HCMV particles were able to induce the IL-11 production. The depletion of RhoA resulted in an even higher release of IL-11, revealing the implication of this specific Rho isoform in this biological event. Finally, infection of cells in the presence of the HCMV DNA replication inhibitor, ganciclovir, significantly reduced the secretion of IL-11, strongly associating its induction with active viral DNA replication. Collectively, these data demonstrate, for the first time, a novel role of RhoA GTPase during HCMV lytic infection, regulating the activation of an immune response through IL-11.
Collapse
Affiliation(s)
- Saud Alarifi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; Department of Microbiology and Immunology, Alfaisal University, School of Medicine, Riyadh, Saudi Arabia
| | - Christos Stournaras
- Department of Biochemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| | - George Sourvinos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
9
|
HCMV-encoded US7 and US8 act as antagonists of innate immunity by distinctively targeting TLR-signaling pathways. Nat Commun 2019; 10:4670. [PMID: 31604943 PMCID: PMC6789044 DOI: 10.1038/s41467-019-12641-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/21/2019] [Indexed: 01/04/2023] Open
Abstract
The mechanisms by which many human cytomegalovirus (HCMV)-encoded proteins help the virus to evade immune surveillance remain poorly understood. In particular, it is unknown whether HCMV proteins arrest Toll-like receptor (TLR) signaling pathways required for antiviral defense. Here, we report that US7 and US8 as key suppressors that bind both TLR3 and TLR4, facilitating their destabilization by distinct mechanisms. US7 exploits the ER-associated degradation components Derlin-1 and Sec61, promoting ubiquitination of TLR3 and TLR4. US8 not only disrupts the TLR3-UNC93B1 association but also targets TLR4 to the lysosome, resulting in rapid degradation of the TLR. Accordingly, a mutant HCMV lacking the US7-US16 region has an impaired ability to hinder TLR3 and TLR4 activation, and the impairment is reversed by the introduction of US7 or US8. Our findings reveal an inhibitory effect of HCMV on TLR signaling, which contributes to persistent avoidance of the host antiviral response to achieve viral latency. Human cytomegalovirus (HCMV) has evolved several mechanisms to evade the host immune response. Here, Park et al. show that HCMV-encoded US7 and US8 proteins bind TLR3 and TLR4 and facilitate TLR degradation by distinct mechanisms, including ER-associated and lysosomal degradation.
Collapse
|
10
|
Human cytomegalovirus induces and exploits Roquin to counteract the IRF1-mediated antiviral state. Proc Natl Acad Sci U S A 2019; 116:18619-18628. [PMID: 31451648 DOI: 10.1073/pnas.1909314116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA represents a pivotal component of host-pathogen interactions. Human cytomegalovirus (HCMV) infection causes extensive alteration in host RNA metabolism, but the functional relationship between the virus and cellular RNA processing remains largely unknown. Through loss-of-function screening, we show that HCMV requires multiple RNA-processing machineries for efficient viral lytic production. In particular, the cellular RNA-binding protein Roquin, whose expression is actively stimulated by HCMV, plays an essential role in inhibiting the innate immune response. Transcriptome profiling revealed Roquin-dependent global down-regulation of proinflammatory cytokines and antiviral genes in HCMV-infected cells. Furthermore, using cross-linking immunoprecipitation (CLIP)-sequencing (seq), we identified IFN regulatory factor 1 (IRF1), a master transcriptional activator of immune responses, as a Roquin target gene. Roquin reduces IRF1 expression by directly binding to its mRNA, thereby enabling suppression of a variety of antiviral genes. This study demonstrates how HCMV exploits host RNA-binding protein to prevent a cellular antiviral response and offers mechanistic insight into the potential development of CMV therapeutics.
Collapse
|
11
|
Alcendor DJ. Human Vascular Pericytes and Cytomegalovirus Pathobiology. Int J Mol Sci 2019; 20:E1456. [PMID: 30909422 PMCID: PMC6471229 DOI: 10.3390/ijms20061456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
Pericytes are multipotent cells of the vascular system with cytoplasmic extensions proximal to endothelial cells that occur along the abluminal surface of the endothelium. The interactions between endothelial cells and pericytes are essential for proper microvascular formation, development, stabilization, and maintenance. Pericytes are essential for the regulation of paracellular flow between cells, transendothelial fluid transport, angiogenesis, and vascular immunosurveillance. They also influence the chemical composition of the surrounding microenvironment to protect endothelial cells from potential harm. Dysregulation or loss of pericyte function can result in microvascular instability and pathological consequences. Human pericytes have been shown to be targets for human cytomegalovirus (HCMV) infection and lytic replication that likely contribute to vascular inflammation. This review focuses on human vascular pericytes and their permissiveness for HCMV infection. It also discusses their implication in pathogenesis in the blood⁻brain barrier (BBB), the inner blood⁻retinal barrier (IBRB), the placenta⁻blood barrier, and the renal glomerulus as well as their potential role in subclinical vascular disease.
Collapse
Affiliation(s)
- Donald J Alcendor
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN 37208, USA.
| |
Collapse
|
12
|
Gustafsson KLR, Renné T, Söderberg-Naucler C, Butler LM. Human cytomegalovirus replication induces endothelial cell interleukin-11. Cytokine 2018; 111:563-566. [PMID: 29807687 PMCID: PMC6299253 DOI: 10.1016/j.cyto.2018.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 01/06/2023]
Abstract
Cytomegalovirus induces endothelial cell interleukin-11 secretion. Viral replication drives interleukin-11 upregulation at the transcriptional level. First report of any biological agent that induces endothelial cell IL-11 production.
Endothelial cells (EC) are critical sites of human cytomegalovirus (hCMV) infection in vivo. Infection can induce the production of various EC cytokines, such as interleukin (IL-)6, which can have autocrine and/or paracrine effector functions. Here, we report that hCMV induces the production of EC IL-11, a relatively understudied member of the IL-6-type cytokine family. We detail temporal EC IL-11 translation and protein secretion dynamics in response to hCMV infection, and reveal distinct differences compared to EC IL-6. Viral replication had markedly opposing effects on the regulation of these closely related cytokines, representing a major driving force behind IL-11 production, whilst concurrently suppressing IL-6 expression. This is the first report of any biological agent that stimulates EC IL-11 production.
Collapse
Affiliation(s)
- K L R Gustafsson
- Department of Medicine, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - T Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | - L M Butler
- Department of Medicine, Karolinska Institute, SE-171 76 Stockholm, Sweden; Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| |
Collapse
|
13
|
Aronoff DM, Correa H, Rogers LM, Arav-Boger R, Alcendor DJ. Placental pericytes and cytomegalovirus infectivity: Implications for HCMV placental pathology and congenital disease. Am J Reprod Immunol 2017; 78:10.1111/aji.12728. [PMID: 28741727 PMCID: PMC5561471 DOI: 10.1111/aji.12728] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022] Open
Abstract
PROBLEM Placental pericytes are essential for placental microvascular function, stability, and integrity. Mechanisms of human cytomegalovirus (HCMV) pathogenesis incorporating placental pericytes are unknown. METHOD OF STUDY HCMV-infected placental tissue was stained by dual-labeled immunohistochemistry. Primary placental pericytes, cytotrophoblasts, and villous fibroblasts were exposed to HCMV; and infectivity was analyzed by microscopy and immunofluorescence. Cytokine expression was examined by Luminex assay. A HCMV-GFP recombinant virus was used to examine replication kinetics. RESULTS Immunohistochemistry showed HCMV in trophoblast and the villous core with T-cell and macrophage infiltration. Primary HCMV isolate from a patient (SBCMV)- infected pericytes showed dysregulation of proinflammatory and angiogenic cytokines when compared to control cells. A tri-cell model of the villous floor showed a unique expression profile. Finally, we show pericytes infected in vivo with HCMV in placental tissue from a congenitally infected child. CONCLUSION Placental pericytes support HCMV replication, inducing proinflammatory and angiogenic cytokines that likely contribute to viral dissemination, placenta inflammation, and dysregulation of placental angiogenesis.
Collapse
Affiliation(s)
- David M. Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208, USA
| | - Hernan Correa
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Lisa M. Rogers
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Ravit. Arav-Boger
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Donald J. Alcendor
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208, USA
| |
Collapse
|
14
|
Ashshi AM. Aberrant expression of interleukin-6 and its receptor in Fallopian tubes bearing an ectopic pregnancy with and without tubal cytomegalovirus infection. Virusdisease 2016; 27:340-350. [PMID: 28004013 DOI: 10.1007/s13337-016-0342-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/22/2016] [Indexed: 01/02/2023] Open
Abstract
Cytomegalovirus (CMV) has recently been suggested as a potential risk factor for the development of ectopic pregnancy (EP) following upper genital tract infection in women. However, little is known about its associated underlying pathogenic mechanisms. This was a prospective case-control study that measured the prevalence of CMV infection in Fallopian tubes (FT) bearing an EP and its effects on the tubal expression of interleukin (IL)-6 and its signaling molecules, which are known to play significant roles in the immune response against CMV infection as well as embryo implantation. Fresh FTs from 96 EPs during salpingectomy and another 61 women at the midluteal phase during total abdominal hysterectomy (TAH) were collected to measure the rate of CMV by an IVD CE PCR kit. The participants were then classified to measure the expression of IL-6, its receptor (IL6R) and intracellular mediators (gp-130, STAT3) by immunohistochemistry and quantitative RT-PCR. The results showed significantly higher (P = 0.01) rates of CMV in FTs obtained from EP (22.9 %) compared with controls (8.2 %). IL-6 (P = 0.003), IL6Rα (P = 0.02), gp 130 (P = 0.008) and STAT3 (P = 0.03) were significantly higher in TAH-positive (n = 5) compared with TAH-negative FTs by immunohistochemistry. Furthermore, the expression in the non-infected EP samples was significantly higher for IL-6 (P = 0.004), IL6R (P = 0.007), gp130 (P = 0.006) and STAT3 (P = 0.007) compared with negative TAH. Similar results were observed by quantitative PCR. CMV-positive EP samples showed the highest significant increase of the studied molecules by all techniques. In conclusion, Fallopian tubal infection with CMV is higher in EP and could predispose to embryo implantation by up-regulating the expression of IL-6 and its related molecules as part of tubal innate immune response. Further in vitro and in vivo studies are compulsory to illustrate the roles of IL-6 and CMV in the pathogenesis of EP.
Collapse
Affiliation(s)
- Ahmed Mohamed Ashshi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Holy Makkah, PO Box 7607, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Abstract
Interleukin 6 (IL-6) has a broad effect on cells of the immune system and those not of the immune system and often displays hormone-like characteristics that affect homeostatic processes. IL-6 has context-dependent pro- and anti-inflammatory properties and is now regarded as a prominent target for clinical intervention. However, the signaling cassette that controls the activity of IL-6 is complicated, and distinct intervention strategies can inhibit this pathway. Clinical experience with antagonists of IL-6 has raised new questions about how and when to block this cytokine to improve disease outcome and patient wellbeing. Here we discuss the effect of IL-6 on innate and adaptive immunity and the possible advantages of various antagonists of IL-6 and consider how the immunobiology of IL-6 may inform clinical decisions.
Collapse
Affiliation(s)
- Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Simon A Jones
- Cardiff Institute of Infection and Immunity, The School of Medicine, Cardiff University, Heath Campus, Cardiff, UK
| |
Collapse
|
16
|
IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16:448-57. [DOI: 10.1038/ni.3153] [Citation(s) in RCA: 1392] [Impact Index Per Article: 139.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
|
17
|
Wilkerson I, Laban J, Mitchell JM, Sheibani N, Alcendor DJ. Retinal pericytes and cytomegalovirus infectivity: implications for HCMV-induced retinopathy and congenital ocular disease. J Neuroinflammation 2015; 12:2. [PMID: 25573478 PMCID: PMC4314746 DOI: 10.1186/s12974-014-0219-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/09/2014] [Indexed: 01/25/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) is the leading infectious cause of vision loss among congenitally infected children. Retinal pericytes play an essential role in maintaining retinal vascular and endothelial cell proliferation. However, the role of retinal pericytes in ocular HCMV pathogenesis is unknown. Methods Retinal pericytes were exposed to clinical (SBCMV) and lab strains of HCMV; infectivity was analyzed by microscopy, immunofluorescence and qRT-PCR (reverse transcription polymerase chain reaction). Cytokine expression was examined by Luminex assay. Recombinant HCMV-GPF was used to examine viral replication kinetics. A Tricell culture model of the inner blood-retinal barrier (IBRB) was examined for cell type infectivity using immunohistochemistry. Results Retinal pericytes expressed the biomarker neuron-glial antigen 2. Antigenic expression profiles for several cytoskeletal, cell adhesion and inflammatory proteins were shared by both retinal and brain pericytes. Infected pericytes showed cytomegalic cytopathology and expressed mRNAs for the major immediate protein (MIE) and HCMV phosphorylated envelop protein 65. qRT-PCR analysis showed full lytic replication of HCMV in retinal pericytes. Pericytes exposed to SBCMV for 9 days expressed higher levels of vascular endothelial cell growth factor mRNA compared to controls. Luminex analysis of supernatants from SBCMV-infected retinal pericytes had increased levels of macrophage inflammatory protein-1α, beta-2 microglobulin (B2-m), matrix metalloproteinase-3 and -9 (MMP3/9), and lower levels of IL-6 and IL-8 compared to controls. At 24 hours post infection, pericytes expressed higher levels of IL-8, TIMP-1 (tissue inhibitor of metalloproteinase-1), and RANTES (regulated upon activation normal T cell-expressed and presumably secreted) but lower levels of MMP9. Time course analysis showed that both brain and retinal pericytes were more permissive for HCMV infection than other cellular components of the BBB (blood-brain barrier) and IBRB. Using a Tricell culture model of the IBRB (retinal endothelial, pericytes, Müller cells), retinal pericytes were most permissive for SBCMV infection. SBCMV infection of this IBRB Tricell mixture for 96 hours resulted in increased levels of IL-6, MMP9, and stem cell factor with a concomitant decrease in granulocyte-macrophage colony-stimulating factor and TNF-alpha. Conclusion In retinal pericytes, HCMV induces proinflammatory and angiogenic cytokines. In the IBRB, pericytes likely serve as an amplification reservoir which contributes to retinal inflammation and angiogenesis.
Collapse
Affiliation(s)
- Irene Wilkerson
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA.
| | - Joshua Laban
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA.
| | - Johnathan M Mitchell
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| | - Donald J Alcendor
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA.
| |
Collapse
|
18
|
Hook LM, Grey F, Grabski R, Tirabassi R, Doyle T, Hancock M, Landais I, Jeng S, McWeeney S, Britt W, Nelson JA. Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. Cell Host Microbe 2014; 15:363-73. [PMID: 24629342 DOI: 10.1016/j.chom.2014.02.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/26/2013] [Accepted: 02/12/2014] [Indexed: 11/16/2022]
Abstract
Herpesviruses, including human cytomegalovirus (HCMV), encode multiple microRNAs (miRNA) whose targets are just being uncovered. Moreover, miRNA function during the virus life cycle is relatively unknown. We find that HCMV miRs UL112-1, US5-1, and US5-2 target multiple components of the host secretory pathway, including VAMP3, RAB5C, RAB11A, SNAP23, and CDC42. A HCMV miR UL112-1, US5-1, and US5-2 triple mutant displayed aberrant morphogenesis of the virion assembly compartment (VAC), increased secretion of noninfectious particles, and increased IL-6 release from infected cells. Ectopic expression of miRs UL112-1, US5-1, and US5-2 or siRNAs directed against RAB5C, RAB11A, SNAP23, and CDC42 caused the loss of Golgi stacks with reorganization into structures that resemble the VAC and a decrease in cytokine release. These observations indicate that multiple HCMV miRNAs coordinately regulate reorganization of the secretory pathway to control cytokine secretion and facilitate formation of the VAC for efficient infectious virus production.
Collapse
Affiliation(s)
- Lauren M Hook
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Finn Grey
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Robert Grabski
- Department of Pediatrics, University of Alabama, Birmingham, AL 35294, USA
| | - Rebecca Tirabassi
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tracy Doyle
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Igor Landais
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Sophia Jeng
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shannon McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - William Britt
- Department of Pediatrics, University of Alabama, Birmingham, AL 35294, USA
| | - Jay A Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
19
|
Hashimoto M, Tsugawa T, Kawagishi H, Asai A, Sugimoto M. Loss of HuR leads to senescence-like cytokine induction in rodent fibroblasts by activating NF-κB. Biochim Biophys Acta Gen Subj 2014; 1840:3079-87. [PMID: 25018007 DOI: 10.1016/j.bbagen.2014.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND HuR (human antigen R) is a ubiquitously expressed member of the Hu/ELAV family of proteins that is involved in diverse biological processes. HuR has also been shown to play an important role in cell cycle arrest during replicative senescence in both human and mouse cells. Senescent cells not only halt their proliferation, but also activate the secretion of proinflammatory cytokines. A persistent DNA damage response is essential for the senescence-associated secretory phenotype (SASP), and increasing evidence has suggested that the SASP is associated with malignancy. METHODS Senescence-associated phenotypes were analyzed in MEFs and other cell line in which HuR expression is inhibited by sh-RNA-mediated knockdown. RESULTS RNAi-mediated HuR inhibition resulted in an increase in SASP-related cytokines. The induction of SASP factors did not depend on ARF-p53 pathway-mediated cell cycle arrest, but required NF-κB activity. In the absence of HuR, cells were defective in the DNA-damage response, and single strand DNA breaks accumulated, which may have caused the activation of NF-κB and subsequent cytokine induction. CONCLUSIONS In the absence of HuR, cells exhibit multiple senescence-associated phenotypes. Our findings suggest that HuR regulates not only the replicative lifespan, but also the expression of SASP-related cytokines in mouse fibroblasts. GENERAL SIGNIFICANCE RNA-binding protein HuR protects cells from undergoing senescence. Senescence-associated phenotypes are accelerated in HuR-deficient cells.
Collapse
Affiliation(s)
- Michihiro Hashimoto
- Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Obu, Aichi 474-8511, Japan
| | - Takayuki Tsugawa
- Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Obu, Aichi 474-8511, Japan
| | - Hiroyuki Kawagishi
- Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Obu, Aichi 474-8511, Japan
| | - Azusa Asai
- Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Obu, Aichi 474-8511, Japan
| | - Masataka Sugimoto
- Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Obu, Aichi 474-8511, Japan.
| |
Collapse
|
20
|
Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus. J Neuroinflammation 2012; 9:95. [PMID: 22607552 PMCID: PMC3413582 DOI: 10.1186/1742-2094-9-95] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 04/24/2012] [Indexed: 12/12/2022] Open
Abstract
Background Congenital human cytomegalovirus (HCMV) infections can result in CNS abnormalities in newborn babies including vision loss, mental retardation, motor deficits, seizures, and hearing loss. Brain pericytes play an essential role in the development and function of the blood–brain barrier yet their unique role in HCMV dissemination and neuropathlogy has not been reported. Methods Primary human brain vascular pericytes were exposed to a primary clinical isolate of HCMV designated ‘SBCMV’. Infectivity was analyzed by microscopy, immunofluorescence, Western blot, and qRT-PCR. Microarrays were performed to identify proinflammatory cytokines upregulated after SBCMV exposure, and the results validated by real-time quantitative polymerase chain reaction (qPCR) methodology. In situ cytokine expression of pericytes after exposure to HCMV was examined by ELISA and in vivo evidence of HCMV infection of brain pericytes was shown by dual-labeled immunohistochemistry. Results HCMV-infected human brain vascular pericytes as evidenced by several markers. Using a clinical isolate of HCMV (SBCMV), microscopy of infected pericytes showed virion production and typical cytomegalic cytopathology. This finding was confirmed by the expression of major immediate early and late virion proteins and by the presence of HCMV mRNA. Brain pericytes were fully permissive for CMV lytic replication after 72 to 96 hours in culture compared to human astrocytes or human brain microvascular endothelial cells (BMVEC). However, temporal transcriptional expression of pp65 virion protein after SBCMV infection was lower than that seen with the HCMV Towne laboratory strain. Using RT-PCR and dual-labeled immunofluorescence, proinflammatory cytokines CXCL8/IL-8, CXCL11/ITAC, and CCL5/Rantes were upregulated in SBCMV-infected cells, as were tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1beta), and interleukin-6 (IL-6). Pericytes exposed to SBCMV elicited higher levels of IL-6 compared to both mock-infected as well as heat-killed virus controls. A 6.6-fold induction of IL-6 and no induction TNF-alpha was observed in SBCMV-infected cell supernatants at 24 hours postinfection. Using archival brain tissue from a patient coinfected with HCMV and HIV, we also found evidence of HCMV infection of pericytes using dual-label immunohistochemistry, as monitored by NG2 proteoglycan staining. Conclusion HCMV lytic infection of primary human brain pericytes suggests that pericytes contribute to both virus dissemination in the CNS as well as neuroinflammation.
Collapse
|
21
|
Abstract
The cytoplasmic events that control mammalian gene expression, primarily mRNA stability and translation, potently influence the cellular response to internal and external signals. The ubiquitous RNA-binding protein (RBP) HuR is one of the best-studied regulators of cytoplasmic mRNA fate. Through its post-transcriptional influence on specific target mRNAs, HuR can alter the cellular response to proliferative, stress, apoptotic, differentiation, senescence, inflammatory and immune stimuli. In light of its central role in important cellular functions, HuR's role in diseases in which these responses are aberrant is increasingly appreciated. Here, we review the mechanisms that control HuR function, its influence on target mRNAs, and how impairment in HuR-governed gene expression programs impact upon different disease processes. We focus on HuR's well-recognized implication in cancer and chronic inflammation, and discuss emerging studies linking HuR to cardiovascular, neurological, and muscular pathologies. We also discuss the progress, potential, and challenges of targeting HuR therapeutically.
Collapse
Affiliation(s)
- Subramanya Srikantan
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
22
|
Inhibition of inflammatory interleukin-6 activity via extracellular signal-regulated kinase-mitogen-activated protein kinase signaling antagonizes human cytomegalovirus reactivation from dendritic cells. J Virol 2011; 85:12750-8. [PMID: 21937636 DOI: 10.1128/jvi.05878-11] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus (HCMV) remains a major cause of viral disease in immunosuppressed transplant patients. The ability of HCMV to establish lifelong infection in humans and reactivate with devastating clinical consequences underscores the importance of understanding the triggers of HCMV reactivation in mature myeloid cells. Dendritic cell (DC) differentiation is concomitant with the activation of cellular signaling pathways and inflammatory gene expression and also HCMV reactivation. Here, we show a major role for interleukin-6 (IL-6) through extracellular signal-regulated kinase-mitogen-activated protein kinase (ERK-MAPK) signaling upon DC differentiation to promote HCMV reactivation. IL-6 drives reactivation by transcriptional upregulation of the major immediate-early (IE) genes, resulting in efficient progression of the virus life cycle and, ultimately, higher titers of infectious virus. Furthermore, the interception of IL-6 signaling with biological inhibitors significantly abrogated HCMV reactivation from experimental latency. Crucially, using cells derived from healthy seropositive donors, we observed a key role for IL-6 during reactivation from natural latency ex vivo in interstitial DCs. Clinically, HCMV reactivation occurs in highly inflammatory environments (i.e., transplantation); thus, the implications of this study could potentially provide novel approaches for therapeutic intervention.
Collapse
|
23
|
Filippakis H, Dimitropoulou P, Eliopoulos AG, Spandidos DA, Sourvinos G. The enhanced host-cell permissiveness of human cytomegalovirus is mediated by the Ras signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1872-82. [PMID: 21782855 DOI: 10.1016/j.bbamcr.2011.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 12/14/2022]
Abstract
Human cytomegalovirus utilizes cellular signal transduction pathways to activate viral or cellular transcription factors involved in the control of viral gene expression and DNA replication. In the present study, we demonstrate that Harvey-ras-transformed cells show increased permissiveness to human cytomegalovirus when compared to their parental non-transformed cells. Both the progeny viral yield and the protein levels were elevated in the human cytomegalovirus-infected Harvey-ras-transformed cells requiring active viral gene replication, as shown by the infection with UV-inactivated human cytomegalovirus. Inhibition of Ras or of key molecules of the Ras pathway, effectively suppressed viral infection in the Harvey-ras-transformed cells. On a cellular level, the human cytomegalovirus-infected Harvey-ras-transformed cells formed larger cellular foci, which were significantly higher in number, compared to the uninfected cells and preferentially recruited human cytomegalovirus virions, thereby incriminating human cytomegalovirus infection for the increased transformation of these cells. Furthermore, proliferation assays revealed a higher rate for the human cytomegalovirus-infected Harvey-ras-transformed cells compared to mock-infected cells, whereas human cytomegalovirus infection had no considerable effect on the proliferation of the non-transformed cells. Higher susceptibility to apoptosis was also detected in the human cytomegalovirus-infected ras-transformed cells, which in combination with the higher progeny virus reveals a mode by which human cytomegalovirus achieves efficient spread of infection in the cells expressing the oncogenic Harvey-ras (12V) gene. Collectively, our data suggest that human cytomegalovirus employs the host-cell Ras signaling pathway to ensue viral expression and ultimately successful propagation. Transformed cells with an activated Ras signaling pathway are therefore particularly susceptible to human cytomegalovirus infection.
Collapse
|
24
|
Lee AW, Wang N, Hornell TMC, Harding JJ, Deshpande C, Hertel L, Lacaille V, Pashine A, Macaubas C, Mocarski ES, Mellins ED. Human cytomegalovirus decreases constitutive transcription of MHC class II genes in mature Langerhans cells by reducing CIITA transcript levels. Mol Immunol 2011; 48:1160-7. [PMID: 21458073 DOI: 10.1016/j.molimm.2011.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 02/20/2011] [Accepted: 02/21/2011] [Indexed: 11/29/2022]
Abstract
Human cytomegalovirus (HCMV) productively infects CD34(+) progenitor-derived, mature Langerhans-type dendritic cells (matLC) and reduces surface expression of MHC class II complexes (MHC II) by increasing intracellular retention of these molecules. To determine whether HCMV also inhibits MHC II expression by other mechanisms, we assessed mRNA levels of the class II transcriptional regulator, CIITA, and several of its target genes in infected matLC. Levels of CIITA, HLA-DRA (DRA) and DRB transcripts, and new DR protein synthesis were compared in mock-infected and HCMV-infected cells by quantitative PCR and pulse-chase immunoprecipitation analyses, respectively. CIITA mRNA levels were significantly lower in HCMV-infected matLC as compared to mock-infected cells. When assessed in the presence of Actinomycin D, the stability of CIITA transcripts was not diminished by HCMV. Analysis of promoter-specific CIITA isoforms revealed that types I, III and IV all were decreased by HCMV, a result that differs from changes after incubation of these cells with lipopolysaccharide (LPS). Exposure to UV-inactivated virus failed to reduce CIITA mRNA levels, implicating de novo viral gene expression in this effect. HCMV-infected matLC also expressed lower levels of DR transcripts and reduced DR protein synthesis rates compared to mock-infected matLC. In summary, we demonstrate that HCMV infection of a human dendritic cell subset inhibits constitutive CIITA expression, most likely at the transcriptional level, resulting in reduced MHC II biosynthesis. We suggest this represents a new mechanism of modulation of mature LC by HCMV.
Collapse
Affiliation(s)
- Andrew W Lee
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Slinger E, Maussang D, Schreiber A, Siderius M, Rahbar A, Fraile-Ramos A, Lira SA, Söderberg-Nauclér C, Smit MJ. HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis. Sci Signal 2010; 3:ra58. [PMID: 20682912 DOI: 10.1126/scisignal.2001180] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
US28 is a viral G protein (heterotrimeric guanosine triphosphate-binding protein)-coupled receptor encoded by the human cytomegalovirus (HCMV). In addition to binding and internalizing chemokines, US28 constitutively activates signaling pathways linked to cell proliferation. Here, we show increased concentrations of vascular endothelial growth factor and interleukin-6 (IL-6) in supernatants of US28-expressing NIH 3T3 cells. Increased IL-6 was associated with increased activation of the signal transducer and activator of transcription 3 (STAT3) through upstream activation of the Janus-activated kinase JAK1. We used conditioned growth medium, IL-6-neutralizing antibodies, an inhibitor of the IL-6 receptor, and short hairpin RNA targeting IL-6 to show that US28 activates the IL-6-JAK1-STAT3 signaling axis through activation of the transcription factor nuclear factor kappaB and the consequent production of IL-6. Treatment of cells with a specific inhibitor of STAT3 inhibited US28-dependent [(3)H]thymidine incorporation and foci formation, suggesting a key role for STAT3 in the US28-mediated proliferative phenotype. US28 also elicited STAT3 activation and IL-6 secretion in HCMV-infected cells. Analyses of tumor specimens from glioblastoma patients demonstrated colocalization of US28 and phosphorylated STAT3 in the vascular niche of these tumors. Moreover, increased phospho-STAT3 abundance correlated with poor patient outcome. We propose that US28 induces proliferation in HCMV-infected tumors by establishing a positive feedback loop through activation of the IL-6-STAT3 signaling axis.
Collapse
Affiliation(s)
- Erik Slinger
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ait-goughoulte M, Lucifora J, Zoulim F, Durantel D. Innate antiviral immune responses to hepatitis B virus. Viruses 2010; 2:1394-1410. [PMID: 21994686 PMCID: PMC3185716 DOI: 10.3390/v2071394] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 06/22/2010] [Accepted: 07/01/2010] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is a major cause of acute and chronic hepatitis in humans. As HBV itself is currently viewed as a non-cytopathic virus, the liver pathology associated with hepatitis B is mainly thought to be due to immune responses directed against HBV antigens. The outcome of HBV infection is the result of complex interactions between replicating HBV and the immune system. While the role of the adaptive immune response in the resolution of HBV infection is well understood, the contribution of innate immune mechanisms remains to be clearly defined. The innate immune system represents the first line of defense against viral infection, but its role has been difficult to analyze in humans due to late diagnosis of HBV infection. In this review, we discuss recent advances in the field of innate immunity to HBV infection.
Collapse
Affiliation(s)
- Malika Ait-goughoulte
- INSERM, U871, Molecular Physiopathology and New Treatment of Viral Hepatitis, 151 Cours Albert Thomas, 69003 Lyon, France; E-Mails: (M.A.-g.); (J.L.); (F.Z.)
- Université de Lyon, UCBL, and IFR62 Lyon Est, 69008 Lyon, France
| | - Julie Lucifora
- INSERM, U871, Molecular Physiopathology and New Treatment of Viral Hepatitis, 151 Cours Albert Thomas, 69003 Lyon, France; E-Mails: (M.A.-g.); (J.L.); (F.Z.)
- Université de Lyon, UCBL, and IFR62 Lyon Est, 69008 Lyon, France
| | - Fabien Zoulim
- INSERM, U871, Molecular Physiopathology and New Treatment of Viral Hepatitis, 151 Cours Albert Thomas, 69003 Lyon, France; E-Mails: (M.A.-g.); (J.L.); (F.Z.)
- Université de Lyon, UCBL, and IFR62 Lyon Est, 69008 Lyon, France
- Hospices Civils de Lyon (HCL), Hôtel Dieu Hospital, 69002 Lyon, France
| | - David Durantel
- INSERM, U871, Molecular Physiopathology and New Treatment of Viral Hepatitis, 151 Cours Albert Thomas, 69003 Lyon, France; E-Mails: (M.A.-g.); (J.L.); (F.Z.)
- Université de Lyon, UCBL, and IFR62 Lyon Est, 69008 Lyon, France
- Hospices Civils de Lyon (HCL), Hôtel Dieu Hospital, 69002 Lyon, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-472-681-970; Fax: +33-472-681-971
| |
Collapse
|
27
|
Durantel D, Zoulim F. Innate response to hepatitis B virus infection: observations challenging the concept of a stealth virus. Hepatology 2009; 50:1692-5. [PMID: 19937686 DOI: 10.1002/hep.23361] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Mukherjee N, Lager PJ, Friedersdorf MB, Thompson MA, Keene JD. Coordinated posttranscriptional mRNA population dynamics during T-cell activation. Mol Syst Biol 2009; 5:288. [PMID: 19638969 PMCID: PMC2724974 DOI: 10.1038/msb.2009.44] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 06/03/2009] [Indexed: 11/25/2022] Open
Abstract
Although RNA-binding proteins (RBPs) coordinate many key decisions during cell growth and differentiation, the dynamics of RNA–RBP interactions have not been extensively studied on a global basis. We immunoprecipitated endogenous ribonucleoprotein complexes containing HuR and PABP throughout a T-cell activation time course and identified the associated mRNA populations using microarrays. We used Gaussian mixture modeling as a discriminative model, treating RBP association as a discrete variable (target or not target), and as a generative model, treating RBP-association as a continuous variable (probability of association). We report that HuR interacts with different populations of mRNAs during T-cell activation. These populations encode functionally related proteins that are members of the Wnt pathway and proteins mediating T-cell receptor signaling pathways. Moreover, the mRNA targets of HuR were found to overlap with the targets of other posttranscriptional regulatory factors, indicating combinatorial interdependence of posttranscriptional regulatory networks and modules after activation. Applying HuR mRNA dynamics as a quantitative phenotype in the drug-gene-phenotype Connectivity Map, we identified candidate small molecule effectors of HuR and T-cell activation. We show that one of these candidates, resveratrol, exerts T-cell activation-dependent posttranscriptional effects that are rescued by HuR. Thus, we describe a strategy to systematically link an RBP and condition-specific posttranscriptional effects to small molecule drugs.
Collapse
Affiliation(s)
- Neelanjan Mukherjee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
29
|
Zedtwitz-Liebenstein K, Jaksch P, Burgmann H, Friehs H, Hofbauer R, Schellongowski P, Frass M. Evaluation of interleukin-6 and interleukin-10 in lung transplant patients with human cytomegalovirus infection. Clin Transplant 2009; 23:687-91. [PMID: 19624695 DOI: 10.1111/j.1399-0012.2009.01041.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We hypothesized that interleukin-6 (IL-6) in plasma and bronchoalveolar lavage (BAL) might serve as additional diagnostic parameter in lung transplant patients with human cytomegalovirus (HCMV) infection. Therefore, we compared IL-6 levels in HCMV-positive vs. HCMV-negative patients. IL-6 was measured by ELISA in plasma and BAL in 111 patients. Furthermore, we investigated the influence of IL-10 on IL-6 production in HCMV-positive patients. For HCMV-DNA detection in plasma and BAL a quantitative polymerase chain reaction (PCR) assay was used. IL-6 levels were significantly higher in the HCMV-positive group (n = 39; BAL p = 0.045; plasma p = 0.017) in comparison to the HCMV-negative group (n = 72). IL-10 did not correlate with IL-6 concentration (p = 0.146). Donor (D) or recipient (R) HCMV-constellation did not influence IL-6 concentration. IL-6 levels were not influenced by elevated levels of HCMV copies. Our data suggest that IL-6 does not serve as a good diagnostic parameter for existence of HCMV infection in lung transplant patients. Because of the wide range of the IL-6 levels in both groups, we were not able to find a breakpoint differentiating between infected and not-infected patients. Another important finding was that IL-6 production is not dependent of the HCMV status of D/R.
Collapse
|
30
|
Sadanari H, Tanaka J, Li Z, Yamada R, Matsubara K, Murayama T. Proteasome inhibitor differentially regulates expression of the major immediate early genes of human cytomegalovirus in human central nervous system-derived cell lines. Virus Res 2009; 142:68-77. [PMID: 19201384 DOI: 10.1016/j.virusres.2009.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
Proteasome inhibitor, which inhibits NF-kappaB activation, has been reported to activate c-Jun N-terminal kinase (JNK)-c-Jun pathway. In this study, we investigated the effects of proteasome inhibitor on the human cytomegalovirus (HCMV) major immediate early (MIE) gene expression in human central nervous system (CNS)-derived cell lines. Treatment of HCMV-infected 118MGC glioma and U373-MG astrocytoma cells with three proteasome inhibitors, MG132, clasto-lactacystin beta-lactone, and epoxomicin, suppressed MIE protein expression. In contrast, in HCMV-infected IMR-32 neuroblastoma cells, the proteasome inhibitors increased MIE protein expression, even in the presence of NF-kappaB inhibitor SN-50. A luciferase reporter assay demonstrated that MG132 markedly elevated the MIE promoter/enhancer (MIEP) activity in IMR-32 cells, but down-regulated it in 118MGC and U373-MG cells. Mutation in five cAMP response elements (CREs) within the MIEP resulted in a loss of the ability to respond to MG132 in IMR-32 cells. Moreover, Western blotting analysis revealed that MG132 induced c-Jun phosphorylation in all three CNS-derived cell lines, whereas a high level of activating transcription factor-2 (ATF-2) phosphorylation was observed only in IMR-32 cells. Finally, MG132-induced MIE protein expression was suppressed by JNK inhibitor that reduced the phosphorylation levels of both c-Jun and ATF-2. Taken together, these results suggest that the proteasome inhibitors activate CRE binding proteins consisting of c-Jun and ATF-2 through activating the JNK-c-Jun pathway, thereby inducing MIE protein synthesis in IMR-32 cells under the condition where NF-kappaB activity is inhibited.
Collapse
Affiliation(s)
- Hidetaka Sadanari
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa, Ishikawa 920-1181, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Juckem LK, Boehme KW, Feire AL, Compton T. Differential initiation of innate immune responses induced by human cytomegalovirus entry into fibroblast cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:4965-77. [PMID: 18354222 DOI: 10.4049/jimmunol.180.7.4965] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection of permissive fibroblasts with human CMV (HCMV, AD169) is accompanied by a robust activation of innate immune defense. In this study, we show that inflammatory cytokine (IC) secretion and activation of the type I IFN pathway (alphabeta IFN) are initiated through distinct mechanisms. HCMV is recognized by TLR2 leading to the NF-kappaB activation and IC secretion. However, the IFN response to HCMV is not a TLR2-dependent process, as a dominant negative TLR2 does not affect the antiviral response to infection. Additionally, bafilomycin, an endosomal acidification inhibitor, has no effect on HCMV-induced IFN responses suggesting that IFN signaling is independent of endosomal resident TLRs. By contrast, disruption of lipid rafts by depletion of cellular cholesterol inhibits both HCMV entry as well as IFN responses. Cholesterol depletion had no effect on the induction of ICs by HCMV, illustrating a biological distinction at the cellular level with the initiation of innate immune pathways. Furthermore, HCMV entry inhibitors block IFN responses but not IC signaling. In particular, blocking the interaction of HCMV with beta(1) integrin diminished IFN signaling, suggesting that this virus-cell interaction or subsequent downstream steps in the entry pathway are critical for downstream signal transduction events. These data show that HCMV entry and IFN signaling are coordinated processes that require cholesterol-rich microdomains, whereas IC signaling is activated through outright sensing via TLR2. These findings further highlight the complexity and sophistication of innate immune responses at the earliest points in HCMV infection.
Collapse
Affiliation(s)
- Laura K Juckem
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison Medical School, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
32
|
Zhang JP, Li F, Yu XW, Sheng Q, Shi XW, Zhang XW. Trace Elements and Cytokine Profile in Cytomegalovirus-Infected Pregnancies: A Controlled Study. Gynecol Obstet Invest 2007; 65:128-32. [DOI: 10.1159/000110013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 04/20/2007] [Indexed: 11/19/2022]
|
33
|
Gealy C, Humphreys C, Dickinson V, Stinski M, Caswell R. An activation-defective mutant of the human cytomegalovirus IE2p86 protein inhibits NF-κB-mediated stimulation of the human interleukin-6 promoter. J Gen Virol 2007; 88:2435-2440. [PMID: 17698652 DOI: 10.1099/vir.0.82925-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The IE2p86 protein of human cytomegalovirus is an essential activator of early- and late-phase viral gene expression. Whilst IE2p86 activates expression of a number of cellular genes, it also represses certain cellular genes, particularly those activated by nuclear factor κB (NF-κB). As the interleukin-6 (IL-6) promoter can be activated by both NF-κB and IE2p86, it was examined whether there is competition between these two factors. Here, it is reported that both wild-type and mutant IE2p86 can block activation of the IL-6 promoter in response to interleukin-1β. By using an artificial activator in which the activation domain of NF-κB is directed to the promoter by the GAL4 DNA-binding domain, it is shown that the mutant form of IE2p86 can inhibit NF-κB-mediated activation at a step subsequent to promoter recruitment. These data therefore suggest a novel mechanism for inhibition of NF-κB by IE2p86.
Collapse
Affiliation(s)
- Claire Gealy
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| | | | - Vicky Dickinson
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| | - Mark Stinski
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Richard Caswell
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| |
Collapse
|
34
|
Lin Y, Sun M, Fuentes SM, Keim CD, Rothermel T, He B. Inhibition of interleukin-6 expression by the V protein of parainfluenza virus 5. Virology 2007; 368:262-72. [PMID: 17692882 PMCID: PMC2100396 DOI: 10.1016/j.virol.2007.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 06/29/2007] [Accepted: 07/06/2007] [Indexed: 01/22/2023]
Abstract
The V protein of parainfluenza virus 5 (PIV5) plays an important role in the evasion of host immune responses. The V protein blocks interferon (IFN) signaling in human cells by causing degradation of the STAT1 protein, a key component of IFN signaling, and blocks IFN-beta production by preventing nuclear translocation of IRF3, a key transcription factor for activating IFN-beta promoter. Interleukin-6 (IL-6), along with tumor necrosis factor (TNF)-alpha and IL-1beta, is a major proinflammatory cytokine that plays important roles in clearing virus infection through inflammatory responses. Many viruses have developed strategies to block IL-6 expression. Wild-type PIV5 infection induces little, if any, expression of cytokines such as IL-6 or TNF-alpha, whereas infection by a mutant PIV5 lacking the conserved C-terminal cysteine rich domain (rPIV5VDeltaC) induced high levels of IL-6 expression. Examination of mRNA levels of IL-6 indicated that the transcription activation of IL-6 played an important role in the increased IL-6 expression. Co-infection with wild-type PIV5 prevented the activation of IL-6 transcription by rPIV5VDeltaC, and a plasmid encoding the full-length PIV5 V protein prevented the activation of IL-6 promoter-driven reporter gene expression by rPIV5VDeltaC, indicating that the V protein played a role in inhibiting IL-6 transcription. The activation of IL-6 was independent of IFN-beta even though rPIV5VDeltaC-infected cells produced IFN-beta. Using reporter gene assays and chromatin immunoprecipitation (ChIP), it was found that NF-kappaB played an important role in activating expression of IL-6. We have proposed a model of activating and inhibiting IL-6 transcription by PIV5.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802
| | - Minghao Sun
- Graduate Program in Pathobiology, Pennsylvania State University, University Park, PA 16802
| | - Sandra M. Fuentes
- Graduate Program in Pathobiology, Pennsylvania State University, University Park, PA 16802
| | - Celia D. Keim
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802
| | - Terri Rothermel
- Graduate Program in Pathobiology, Pennsylvania State University, University Park, PA 16802
| | - Biao He
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802
- Graduate Program in Pathobiology, Pennsylvania State University, University Park, PA 16802
- The Huck Institutes of Life sciences, Pennsylvania State University, University Park, PA 16802
- Center of Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, PA 16802
- *Corresponding author: Biao He, Center of Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 115 Henning Bldg., University Park, PA 16802, Phone: 814 863 8533, Fax: 814 863 6140,
| |
Collapse
|
35
|
Wang W, Ye L, Ye L, Li B, Gao B, Zeng Y, Kong L, Fang X, Zheng H, Wu Z, She Y. Up-regulation of IL-6 and TNF-alpha induced by SARS-coronavirus spike protein in murine macrophages via NF-kappaB pathway. Virus Res 2007; 128:1-8. [PMID: 17532082 PMCID: PMC7114322 DOI: 10.1016/j.virusres.2007.02.007] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 02/06/2007] [Accepted: 02/08/2007] [Indexed: 11/29/2022]
Abstract
The clinical picture of severe acute respiratory syndrome (SARS) is characterized by an over-exuberant immune response with lung lymphomononuclear cells infilteration and proliferation that may account for tissue damage more than the direct effect of viral replication. To understand how cells response in the early stage of virus–host cell interaction, in this study, a purified recombinant S protein was studied for stimulating murine macrophages (RAW264.7) to produce proinflammatory cytokines (IL-6 and TNF-α) and chemokine IL-8. We found that direct induction of IL-6 and TNF-α release in the supernatant in a dose-, time-dependent manner and highly spike protein-specific, but no induction of IL-8 was detected. Further experiments showed that IL-6 and TNF-α production were dependent on NF-κB, which was activated through I-κBα degradation. These results suggest that SARS-CoV spike protein may play an important role in the pathogenesis of SARS, especially in inflammation and high fever.
Collapse
Affiliation(s)
| | - Linbai Ye
- Corresponding author. Tel.: +86 27 6875 2372; fax: +86 27 6876 4763.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Stanton RJ, McSharry BP, Rickards CR, Wang ECY, Tomasec P, Wilkinson GWG. Cytomegalovirus destruction of focal adhesions revealed in a high-throughput Western blot analysis of cellular protein expression. J Virol 2007; 81:7860-72. [PMID: 17522202 PMCID: PMC1951323 DOI: 10.1128/jvi.02247-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) systematically manages the expression of cellular functions, rather than exerting the global shutoff of host cell protein synthesis commonly observed with other herpesviruses during the lytic cycle. While microarray technology has provided remarkable insights into viral control of the cellular transcriptome, HCMV is known to encode multiple mechanisms for posttranscriptional and post-translation regulation of cellular gene expression. High-throughput Western blotting (BD Biosciences Powerblot technology) with 1,009 characterized antibodies was therefore used to analyze and compare the effects of infection with attenuated high-passage strain AD169 and virulent low-passage strain Toledo at 72 hpi across gels run in triplicate for each sample. Six hundred ninety-four proteins gave a positive signal in the screen, of which 68 from strain AD169 and 71 from strain Toledo were defined as being either positively or negatively regulated by infection with the highest level of confidence (BD parameters). In follow-up analyses, a subset of proteins was selected on the basis of the magnitude of the observed effect or their potential to contribute to defense against immune recognition. In analyses performed at 24, 72, and 144 hpi, connexin 43 was efficiently downregulated during HCMV infection, implying a breakdown of intercellular communication. Mitosis-associated protein Eg-5 was found to be differentially upregulated in the AD169 and Toledo strains of HCMV. Focal adhesions link the actin cytoskeleton to the extracellular matrix and have key roles in initiating signaling pathways and substrate adhesion and regulating cell migration. HCMV suppressed expression of the focal-adhesion-associated proteins Hic-5, paxillin, and alpha-actinin. Focal adhesions were clearly disrupted in HCMV-infected fibroblasts, with their associated intracellular and extracellular proteins being dispersed. Powerblot shows potential for rapid screening of the cellular proteome during HCMV infection.
Collapse
Affiliation(s)
- R J Stanton
- Department of Medical Microbiology, Tenovus Building, Heath Park, Cardiff CF14 4XX, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
There have been recent, significant advances about the role of mRNA turnover in controlling gene expression in immune cells. Post‐transcriptional regulation of gene expression contributes to the characteristics of many of the processes underlying the immune response by ensuring early, rapid, and transient action. The emphasis of this review is on current work that deals with the regulation of mRNA decay during innate immunity against microbes and T cell activation as a model of the adaptive response.
Collapse
Affiliation(s)
- Khalid S A Khabar
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, P3354, mBC-03, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
38
|
Li XL, Andersen JB, Ezelle HJ, Wilson GM, Hassel BA. Post-transcriptional regulation of RNase-L expression is mediated by the 3'-untranslated region of its mRNA. J Biol Chem 2007; 282:7950-60. [PMID: 17237228 DOI: 10.1074/jbc.m607939200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNase-L mediates critical cellular functions including antiviral, pro-apoptotic, and tumor suppressive activities; accordingly, its expression must be tightly regulated. Little is known about the control of RNASEL expression; therefore, we examined the potential regulatory role of a conserved 3'-untranslated region (3'-UTR) in its mRNA. The 3'-UTR mediated a potent decrease in the stability of RNase-L mRNA, and of a chimeric beta-globin-3'-UTR reporter mRNA. AU-rich elements (AREs) are cis-acting regulatory regions that modulate mRNA stability. Eight AREs were identified in the RNase-L 3'-UTR, and deletion analysis identified positive and negative regulatory regions associated with distinct AREs. In particular, AREs 7 and 8 served a strong positive regulatory function. HuR is an ARE-binding protein that stabilizes ARE-containing mRNAs, and a predicted HuR binding site was identified in the region comprising AREs 7 and 8. Co-transfection of HuR and RNase-L enhanced RNase-L expression and mRNA stability in a manner that was dependent on this 3'-UTR region. Immunoprecipitation demonstrated that RNase-L mRNA associates with a HuR containing complex in intact cells. Activation of endogenous HuR by cell stress, or during myoblast differentiation, increased RNase-L expression, suggesting that RNase-L mRNA is a physiologic target for HuR. HuR-dependent regulation of RNase-L enhanced its antiviral activity demonstrating the functional significance of this regulation. These findings identify a novel mechanism of RNase-L regulation mediated by its 3'-UTR.
Collapse
Affiliation(s)
- Xiao-Ling Li
- University of Maryland, Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Cancer Center, Graduate Program in Molecular Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
39
|
Halwachs-Baumann G, Weihrauch G, Gruber HJ, Desoye G, Sinzger C. hCMV induced IL-6 release in trophoblast and trophoblast like cells. J Clin Virol 2006; 37:91-7. [PMID: 16884949 DOI: 10.1016/j.jcv.2006.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 02/17/2006] [Accepted: 06/13/2006] [Indexed: 11/18/2022]
Abstract
BACKGROUND Human cytomegalovirus (hCMV) infection of the trophoblasts is a crucial event in virus transmission from mother to child, being one responsible factor for intrauterine infection of the unborn. Differences of virus replication in trophoblasts depending on time point of pregnancy and degree of differentiation of trophoblasts might influence this transmission. Furthermore, immunological reactions of the trophoblasts to hCMV infection might be important defence mechanisms too. OBJECTIVES hCMV replication and interleukin-6 release in trophoblasts and trophoblast like cells (choriocarcinoma cells) was investigated. STUDY DESIGN Trophoblasts from term and 1st trimester placentas were isolated and infected with hCMV. hCMV production and release to the supernatant as well as interleukin-6 release and interleukin-6 mRNA production by these infected cells was measured. Choriocarcinoma cell lines (JEG-3, JAR) were treated the same. Non-infected trophoblasts were used as controls. RESULTS In 1st trimester trophoblast, term trophoblasts and JEG-3 permissive hCMV replication was observed, although with different kinetics and efficiency. In JAR no complete virus replication was seen. High levels of interleukin-6 were measured in the supernatants of all hCMV infected cells immediately after infection. IL-6 mRNA upregulation was seen 48 h after infection in those cell types replication of hCMV occurred (1st trimester trophoblasts, term trophoblasts, JEG-3). At that time-point hCMV immediate early proteins appeared. In JARs no virus production and no IL-6 mRNA upregulation was seen, and IL-6 levels in the supernatant of these hCMV infected cells declined significantly until day 6 after infection compared to mock infected cells. CONCLUSION These observations show that hCMV replication is influenced by the degree of trophoblast differentiation. Interleukin-6 is upregulated by hCMV infection, but is independent of complete virus replication.
Collapse
Affiliation(s)
- Gabriele Halwachs-Baumann
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University Hospital Graz, Auenbruggerplatz 29, A-8036 Graz, Austria.
| | | | | | | | | |
Collapse
|
40
|
Jarvis MA, Borton JA, Keech AM, Wong J, Britt WJ, Magun BE, Nelson JA. Human cytomegalovirus attenuates interleukin-1beta and tumor necrosis factor alpha proinflammatory signaling by inhibition of NF-kappaB activation. J Virol 2006; 80:5588-98. [PMID: 16699040 PMCID: PMC1472148 DOI: 10.1128/jvi.00060-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/15/2006] [Indexed: 01/03/2023] Open
Abstract
Viral infection is associated with a vigorous inflammatory response characterized by cellular infiltration and release of the proinflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha). In the present study, we identified a novel function of human cytomegalovirus (HCMV) that results in inhibition of IL-1 and TNF-alpha signaling pathways. The effect on these pathways was limited to cells infected with the virus, occurred at late times of infection, and was independent of cell type or virus strain. IL-1 and TNF-alpha signaling pathways converge at a point upstream of NF-kappaB activation and involve phosphorylation and degradation of the NF-kappaB inhibitory molecule IkappaBalpha. The HCMV inhibition of IL-1 and TNF-alpha pathways corresponded to a suppression of NF-kappaB activation. Analysis of IkappaBalpha phosphorylation and degradation suggested that HCMV induced two independent blocks in NF-kappaB activation, which occurred upstream from the point of convergence of the IL-1 and TNF-alpha pathways. We believe that the ability of HCMV to inhibit these two major proinflammatory pathways reveals a critical aspect of HCMV biology, with possible importance for immune evasion, as well as establishment of infection in cell types persistently infected by this virus.
Collapse
Affiliation(s)
- Michael A Jarvis
- Vaccine and Gene Therapy Institute, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Taylor RT, Bresnahan WA. Human cytomegalovirus immediate-early 2 protein IE86 blocks virus-induced chemokine expression. J Virol 2006; 80:920-8. [PMID: 16378994 PMCID: PMC1346867 DOI: 10.1128/jvi.80.2.920-928.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The effect of human cytomegalovirus (HCMV) gene expression on cytokine (beta interferon) and chemokine (RANTES, MIG, MCP-2, MIP-1alpha, and interleukin-8) expression was examined. We demonstrate that HCMV gene expression is required to suppress the transcriptional induction of these cytokines and that the HCMV immediate-early 2 gene product IE86 can effectively block the expression of cytokines and proinflammatory chemokines during HCMV and Sendai virus infection. Additionally, we present data on viral mutants and ectopic protein expression which demonstrate that pp65, another identified HCMV cytokine antagonist, is not involved in regulating these proinflammatory cytokines. This is the first report to demonstrate that IE86 can act to suppress virus-induced proinflammatory cytokine transcript expression, extending the antiviral properties of this multifunctional viral protein.
Collapse
Affiliation(s)
- R Travis Taylor
- Department of Microbiology, University of Minnesota, 1060 Mayo Building, MMC196, Minneapolis, MN 55455, USA
| | | |
Collapse
|
42
|
DeMeritt IB, Podduturi JP, Tilley AM, Nogalski MT, Yurochko AD. Prolonged activation of NF-kappaB by human cytomegalovirus promotes efficient viral replication and late gene expression. Virology 2005; 346:15-31. [PMID: 16303162 PMCID: PMC2600890 DOI: 10.1016/j.virol.2005.09.065] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 08/12/2005] [Accepted: 09/23/2005] [Indexed: 01/04/2023]
Abstract
Infection of fibroblasts by human cytomegalovirus (HCMV) rapidly activates the NF-kappaB signaling pathway, which we documented promotes efficient transactivation of the major immediate-early promoter (DeMeritt, I.B., Milford, L.E., Yurochko, A.D. (2004). Activation of the NF-kappaB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. J. Virol. 78, 4498-4507). Because a second, sustained increase in NF-kappaB activity following the initial phase of NF-kappaB activation was also observed, we investigated the role that this prolonged NF-kappaB activation played in viral replication and late gene expression. We first investigated HCMV replication in cells in which NF-kappaB activation was blocked by pretreatment with NF-kappaB inhibitors: HCMV replication was significantly decreased in these cultures. A decrease in replication was also observed when NF-kappaB was inhibited up to 48 h post-infection, suggesting a previously unidentified role for NF-kappaB in the regulation of the later class of viral genes.
Collapse
Affiliation(s)
- Ian B. DeMeritt
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Jagat P. Podduturi
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - A. Michael Tilley
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Maciej T. Nogalski
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Andrew D. Yurochko
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
- *Corresponding Author: Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, Phone: (318) 675-8332, Fax: (318) 675-5764, E-Mail:
| |
Collapse
|