1
|
Resck MEB, Câmara DCP, dos Santos FB, dos Santos JPC, Alto BW, Honório NA. Spatial-temporal distribution of chikungunya virus in Brazil: a review on the circulating viral genotypes and Aedes ( Stegomyia) albopictus as a potential vector. Front Public Health 2024; 12:1496021. [PMID: 39722706 PMCID: PMC11668782 DOI: 10.3389/fpubh.2024.1496021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Chikungunya virus (CHIKV) is mainly transmitted by the invasive mosquito Aedes (Stegomyia) aegypti in tropical and subtropical regions worldwide. However, genetic adaptations of the virus to the peri domestic mosquito vector Aedes (Stegomyia) albopictus has resulted in enhanced vector competence and associated epidemics and may contribute to further geographic expansion of CHIKV. However, evidence-based data on the relative role of Ae. albopictus in CHIKV transmission dynamics are scarce, especially in regions where Ae. aegypti is the main vector, such as in Brazil. Here, we review the CHIKV genotypes circulating in Brazil, spatial and temporal distribution of Chikungunya cases in Brazil, and susceptibility to infection and transmission (i.e., vector competence) of Ae. albopictus for CHIKV to better understand its relative contribution to the virus transmission dynamics.
Collapse
Affiliation(s)
| | - Daniel Cardoso Portela Câmara
- Programa de Computação Científica, Fundação Oswaldo Cruz - PROCC, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Flávia Barreto dos Santos
- Laboratório das Interações Vírus-Hospedeiros - LIVH, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | | | - Barry Wilmer Alto
- Florida Medical Entomology Laboratory-FMEL, University of Florida, Vero Beach, FL, United States
| | - Nildimar Alves Honório
- Laboratório das Interações Vírus-Hospedeiros - LIVH, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Hill V, Cleemput S, Pereira JS, Gifford RJ, Fonseca V, Tegally H, Brito AF, Ribeiro G, de Souza VC, Brcko IC, Ribeiro IS, De Lima ITT, Slavov SN, Sampaio SC, Elias MC, Tran VT, Kien DTH, Huynh T, Yacoub S, Dieng I, Salvato R, Wallau GL, Gregianini TS, Godinho FMS, Vogels CBF, Breban MI, Leguia M, Jagtap S, Roy R, Hapuarachchi C, Mwanyika G, Giovanetti M, Alcantara LCJ, Faria NR, Carrington CVF, Hanley KA, Holmes EC, Dumon W, Lima ARJ, Oliveira TD, Grubaugh ND. A new lineage nomenclature to aid genomic surveillance of dengue virus. PLoS Biol 2024; 22:e3002834. [PMID: 39283942 PMCID: PMC11426435 DOI: 10.1371/journal.pbio.3002834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/26/2024] [Indexed: 09/25/2024] Open
Abstract
Dengue virus (DENV) is currently causing epidemics of unprecedented scope in endemic settings and expanding to new geographical areas. It is therefore critical to track this virus using genomic surveillance. However, the complex patterns of viral genomic diversity make it challenging to use the existing genotype classification system. Here, we propose adding 2 sub-genotypic levels of virus classification, named major and minor lineages. These lineages have high thresholds for phylogenetic distance and clade size, rendering them stable between phylogenetic studies. We present assignment tools to show that the proposed lineages are useful for regional, national, and subnational discussions of relevant DENV diversity. Moreover, the proposed lineages are robust to classification using partial genome sequences. We provide a standardized neutral descriptor of DENV diversity with which we can identify and track lineages of potential epidemiological and/or clinical importance. Information about our lineage system, including methods to assign lineages to sequence data and propose new lineages, can be found at: dengue-lineages.org.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | | | - James Siqueira Pereira
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow, United Kingdom
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Vagner Fonseca
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Exact and Earth Sciences, University of the State of Bahia, Salvador, Brazil
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Gabriela Ribeiro
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Vinicius Carius de Souza
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Isabela Carvalho Brcko
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Igor Santana Ribeiro
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | | | - Svetoslav Nanev Slavov
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Maria Carolina Elias
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Vi Thuy Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Tuyen Huynh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Richard Salvato
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference, Hamburg, Germany
- National Reference Center for Tropical Infectious Diseases. Bernhard, Hamburg, Germany
| | - Tatiana S Gregianini
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Fernanda M S Godinho
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Gaspary Mwanyika
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Applied Sciences, Mbeya University of Science and Technology (MUST), Mbeya, Tanzania
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Roma, Italy
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Luiz C J Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, London, United Kingdom
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | | | | | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
3
|
Hill V, Cleemput S, Fonseca V, Tegally H, Brito AF, Gifford R, Tran VT, Kien DTH, Huynh T, Yacoub S, Dieng I, Ndiaye M, Balde D, Diagne MM, Faye O, Salvato R, Wallau GL, Gregianini TS, Godinho FMS, Vogels CBF, Breban MI, Leguia M, Jagtap S, Roy R, Hapuarachchi C, Mwanyika G, Giovanetti M, Alcantara LCJ, Faria NR, Carrington CVF, Hanley KA, Holmes EC, Dumon W, de Oliveira T, Grubaugh ND. A new lineage nomenclature to aid genomic surveillance of dengue virus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.16.24307504. [PMID: 38798319 PMCID: PMC11118645 DOI: 10.1101/2024.05.16.24307504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dengue virus (DENV) is currently causing epidemics of unprecedented scope in endemic settings and expanding to new geographical areas. It is therefore critical to track this virus using genomic surveillance. However, the complex patterns of viral genomic diversity make it challenging to use the existing genotype classification system. Here we propose adding two sub-genotypic levels of virus classification, named major and minor lineages. These lineages have high thresholds for phylogenetic distance and clade size, rendering them stable between phylogenetic studies. We present an assignment tool to show that the proposed lineages are useful for regional, national and sub-national discussions of relevant DENV diversity. Moreover, the proposed lineages are robust to classification using partial genome sequences. We provide a standardized neutral descriptor of DENV diversity with which we can identify and track lineages of potential epidemiological and/or clinical importance. Information about our lineage system, including methods to assign lineages to sequence data and propose new lineages, can be found at: dengue-lineages.org.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Vagner Fonseca
- Department of Exact and Earth Sciences, University of the State of Bahia, Salvador, Brazil
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Robert Gifford
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow, UK
| | - Vi Thuy Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Tuyen Huynh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mignane Ndiaye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Diamilatou Balde
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Moussa M Diagne
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Richard Salvato
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference, Hamburg, Germany
- National Reference Center for Tropical Infectious Diseases. Bernhard, Hamburg, Germany
| | - Tatiana S Gregianini
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Fernanda M S Godinho
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Gaspary Mwanyika
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Applied Sciences, Mbeya University of Science and Technology (MUST), Mbeya, Tanzania
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Italy
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Luiz C J Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, London, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | | | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Samuel J, Ghosh S, Thiyagarajan S. Identification and characterization of domain-specific inhibitors of DENV NS3 and NS5 proteins by in silico screening methods. J Biomol Struct Dyn 2024:1-15. [PMID: 38334186 DOI: 10.1080/07391102.2024.2313161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
The dengue virus (DENV) infects approximately 400 million people annually worldwide causing significant morbidity and mortality. Despite advances in understanding the virus life cycle and infectivity, no specific treatment for this disease exists due to the lack of therapeutic drugs. In addition, vaccines available currently are ineffective with severe side effects. Therefore, there is an urgent need for developing therapeutics suitable for effective management of DENV infection. In this study, we adopted a drug repurposing strategy to identify new therapeutic use of existing FDA approved drug molecules to target DENV2 non-structural proteins NS3 and NS5 using computational approaches. We used Drugbank database molecules for virtual screening and multiple docking analysis against a total of four domains, the NS3 protease and helicase domains and NS5 MTase and RdRp domains. Subsequently, MD simulations and MM-PBSA analysis were performed to validate the intrinsic atomic interactions and the binding affinities. Furthermore, the internal dynamics in all four protein domains, in presence of drug molecule binding were assessed using essential dynamics and free energy landscape analyses, which were further coupled with conformational dynamics-based clustering studies and cross-correlation analysis to map the regions that exhibit these structural variations. Our comprehensive analysis identified tolcapone, cefprozil, delavirdine and indinavir as potential inhibitors of NS5 MTase, NS5 RdRp, NS3 protease and NS3 helicase functions, respectively. These high-confidence candidate molecules will be useful for developing effective anti-DENV therapy to combat dengue infection.
Collapse
Affiliation(s)
- Johnson Samuel
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, KA, India
| | - Sanjay Ghosh
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, KA, India
| | | |
Collapse
|
5
|
Xu L, Li M, Zhang J, Li D, Tao J, Zhang F, Jin X, Lu J, Liu T. Metabolomic landscape of macrophage discloses an anabolic signature of dengue virus infection and antibody-dependent enhancement of viral infection. PLoS Negl Trop Dis 2024; 18:e0011923. [PMID: 38306392 PMCID: PMC10866464 DOI: 10.1371/journal.pntd.0011923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/14/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
Dengue virus (DENV) infection causes dengue fever, the most prevalent arthropod-transmitted viral disease worldwide. Viruses are acellular parasites and obligately rely on host cell machinery for reproduction. Previous studies have indicated metabolomic changes in endothelial cell models and sera of animal models and patients with dengue fever. To probe the immunometabolic mechanism of DENV infection, here, we report the metabolomic landscape of a human macrophage cell model of DENV infection and its antibody-dependent enhancement. DENV infection of THP-1-derived macrophages caused 202 metabolic variants, of which amino acids occupied 23.7%, fatty acids 21.78%, carbohydrates 10.4%, organic acids 13.37%, and carnitines 10.4%. These metabolomic changes indicated an overall anabolic signature, which was characterized by the global exhaustion of amino acids, increases of cellular fatty acids, carbohydrates and pentoses, but decreases of acylcarnitine. Significant activation of metabolic pathways of glycolysis, pentose phosphate, amino acid metabolism, and tricarboxylic acid cycle collectively support the overall anabolism to meet metabolic demands of DENV replication and immune activation by viral infection. Totally 88 of 202 metabolic variants were significantly changed by DENV infection, 36 of which met the statistical standard (P<0.05, VIP>1.5) of differentially expressed metabolites, which were the predominantly decreased variants of acylcarnitine and the increased variants of fatty acids and carbohydrates. Remarkably, 11 differentially expressed metabolites were significantly distinct between DENV only infection and antibody-dependent enhancement of viral infection. Our data suggested that the anabolic activation by DENV infection integrates the viral replication and anti-viral immune activation.
Collapse
Affiliation(s)
- Li Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Li
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jingpu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dongxiao Li
- Metabo-Profile Biotechnology Company, Shanghai, China
| | - Jie Tao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fuchun Zhang
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xia Jin
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiahai Lu
- Key Laboratory for Tropical Disease Control, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China
- Hainan Key Novel Thinktank "Hainan Medical University ’One Health’ Research Center", Haikou 571199, China
- Institute of One Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tiefu Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Sajid M, Tur Razia I, Kanwal A, Ahsan M, Tahir RA, Sajid M, Khan MS, Mukhtar N, Parveen G, Sehgal SA. Computational Advancement towards the Identification of Natural Inhibitors for Dengue Virus: A Brief Review. Comb Chem High Throughput Screen 2024; 27:2464-2484. [PMID: 37859315 DOI: 10.2174/0113862073244468230921050703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 08/03/2023] [Indexed: 10/21/2023]
Abstract
Viral infectious illnesses represent a severe hazard to human health due to their widespread incidence worldwide. Among these ailments, the dengue virus (DENV) infection stands out. World Health Organization (WHO) estimates that DENV infection affects ~400 million people each year, with potentially fatal symptoms showing up in 1% of the cases. In several instances, academic and pharmaceutical researchers have conducted several pilot and clinical studies on a variety of topics, including viral epidemiology, structure and function analyses, infection source and route, therapeutic targets, vaccinations, and therapeutic drugs. Amongst Takeda, TAK-003, Sanofi, Dengvaxia®, and Butantan/NIH/Merck, Dengvaxia® (CYD-TDV) is the only licensed vaccination yet; however, the potential inhibitors are under development. The biology and evolution of DENVs are briefly discussed in this review, which also compiles the most recent studies on prospective antiviral targets and antiviral candidates. In conclusion, the triumphs and failures have influenced the development of anti-DENV medications, and the findings in this review article will stimulate more investigation.
Collapse
Affiliation(s)
- Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| | - Iashia Tur Razia
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| | - Ayesha Kanwal
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, Punjab, Pakistan
| | - Rana Adnan Tahir
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Punjab, Pakistan
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| | | | - Naila Mukhtar
- Department of Botany, University of Okara, Okara, Punjab, Pakistan
| | - Gulnaz Parveen
- Department of Botany, Women University Swabi, Swabi, KPK, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology, and Bioinformatics, The Islamia University of Bahawalpur, Punjab, Pakistan
- Department of Bioinformatics, University of Okara, Okara, Punjab, Pakistan
| |
Collapse
|
7
|
de Arruda TB, Bavia L, Mosimann ALP, Aoki MN, Sarzi ML, Conchon-Costa I, Wowk PF, Duarte dos Santos CN, Pavanelli WR, Silveira GF, Bordignon J. Viremia and Inflammatory Cytokines in Dengue: Interleukin-2 as a Biomarker of Infection, and Interferon-α and -γ as Markers of Primary versus Secondary Infection. Pathogens 2023; 12:1362. [PMID: 38003826 PMCID: PMC10675515 DOI: 10.3390/pathogens12111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The pathogenesis of Dengue virus (DENV) infection is complex and involves viral replication that may trigger an inflammatory response leading to severe disease. Here, we investigated the correlation between viremia and cytokine levels in the serum of DENV-infected patients. Between 2013 and 2014, 138 patients with a diagnosis of acute-phase DENV infection and 22 patients with a non-dengue acute febrile illness (AFI) were enrolled. Through a focus-forming assay (FFU), we determined the viremia levels in DENV-infected patients and observed a peak in the first two days after the onset of symptoms. A higher level of viremia was observed in primary versus secondary DENV-infected patients. Furthermore, no correlation was observed between viremia and inflammatory cytokine levels in DENV-infected patients. Receiver operating characteristic (ROC) curve analysis revealed that IL-2 has the potential to act as a marker to distinguish dengue from other febrile illnesses and is positively correlated with Th1 cytokines. IFN-α and IFN-γ appear to be potential markers of primary versus secondary infection in DENV-infected patients, respectively. The results also indicate that viremia levels are not the main driving force behind inflammation in dengue and that cytokines could be used as infection biomarkers and for differentiation between primary versus secondary infection.
Collapse
Affiliation(s)
- Thaís Bonato de Arruda
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Lorena Bavia
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Paraná, Brazil
| | - Ana Luiza Pamplona Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Mateus Nobrega Aoki
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
- Laboratório de Ciências & Tecnologias Aplicadas a Saúde, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil
| | - Maria Lo Sarzi
- Secretaria Municipal de Saúde de Cambé, Cambé 86057-970, Paraná, Brazil
| | - Ivete Conchon-Costa
- Laboratório de Protozoologia Experimental, Universidade Estadual de Londrina, Londrina 86057-970, Paraná, Brazil (W.R.P.)
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Claudia Nunes Duarte dos Santos
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Wander Rogério Pavanelli
- Laboratório de Protozoologia Experimental, Universidade Estadual de Londrina, Londrina 86057-970, Paraná, Brazil (W.R.P.)
| | | | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| |
Collapse
|
8
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
9
|
Khan MB, Yang ZS, Lin CY, Hsu MC, Urbina AN, Assavalapsakul W, Wang WH, Chen YH, Wang SF. Dengue overview: An updated systemic review. J Infect Public Health 2023; 16:1625-1642. [PMID: 37595484 DOI: 10.1016/j.jiph.2023.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
Dengue is caused by the dengue virus (DENVs) infection and clinical manifestations include dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS). Due to a lack of antiviral drugs and effective vaccines, several therapeutic and control strategies have been proposed. A systemic literature review was conducted according to PRISMA guidelines to select proper references to give an overview of DENV infection. Results indicate that understanding the virus characteristics and epidemiology are essential to gain the basic and clinical knowledge as well as dengue disseminated pattern and status. Different factors and mechanisms are thought to be involved in the presentation of DHF and DSS, including antibody-dependent enhancement, immune dysregulation, viral virulence, host genetic susceptibility, and preexisting dengue antibodies. This study suggests that dissecting pathogenesis and risk factors as well as developing different types of therapeutic and control strategies against DENV infection are urgently needed.
Collapse
Affiliation(s)
- Muhammad Bilal Khan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Cheng Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
10
|
Thongsripong P, Edgerton SV, Bos S, Saborío S, Kuan G, Balmaseda A, Harris E, Bennett SN. Phylodynamics of dengue virus 2 in Nicaragua leading up to the 2019 epidemic reveals a role for lineage turnover. BMC Ecol Evol 2023; 23:58. [PMID: 37770825 PMCID: PMC10537812 DOI: 10.1186/s12862-023-02156-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Dengue is a mosquito-borne viral disease posing a significant threat to public health. Dengue virus (DENV) evolution is often characterized by lineage turnover, which, along with ecological and immunological factors, has been linked to changes in dengue phenotype affecting epidemic dynamics. Utilizing epidemiologic and virologic data from long-term population-based studies (the Nicaraguan Pediatric Dengue Cohort Study and Nicaraguan Dengue Hospital-based Study), we describe a lineage turnover of DENV serotype 2 (DENV-2) prior to a large dengue epidemic in 2019. Prior to this epidemic, Nicaragua had experienced relatively low levels of DENV transmission from 2014 to 2019, a period dominated by chikungunya in 2014/15 and Zika in 2016. RESULTS Our phylogenetic analyses confirmed that all Nicaraguan DENV-2 isolates from 2018 to 2019 formed their own clade within the Nicaraguan lineage of the Asian/American genotype. The emergence of the new DENV-2 lineage reflects a replacement of the formerly dominant clade presiding from 2005 to 2009, a lineage turnover marked by several shared derived amino acid substitutions throughout the genome. To elucidate evolutionary drivers of lineage turnover, we performed selection pressure analysis and reconstructed the demographic history of DENV-2. We found evidence of adaptive evolution by natural selection at the codon level as well as in branch formation. CONCLUSIONS The timing of its emergence, along with a statistical signal of adaptive evolution and distinctive amino acid substitutions, the latest in the NS5 gene, suggest that this lineage may have increased fitness relative to the prior dominant DENV-2 strains. This may have contributed to the intensity of the 2019 DENV-2 epidemic, in addition to previously identified immunological factors associated with pre-existing Zika virus immunity.
Collapse
Affiliation(s)
- Panpim Thongsripong
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA
| | - Sean V Edgerton
- Interdisciplinary Studies Graduate Program, The University of British Columbia, Vancouver, BC, Canada
| | - Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Saira Saborío
- Centro Nacional de Diagnóstico y Referencia, Laboraorio Nacional de Virología, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Angel Balmaseda
- Centro Nacional de Diagnóstico y Referencia, Laboraorio Nacional de Virología, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Shannon N Bennett
- Department of Microbiology, California Academy of Sciences, San Francisco, CA, USA.
| |
Collapse
|
11
|
Lambrechts L. Does arbovirus emergence in humans require adaptation to domestic mosquitoes? Curr Opin Virol 2023; 60:101315. [PMID: 36996522 DOI: 10.1016/j.coviro.2023.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
In the last few decades, several mosquito-borne arboviruses of zoonotic origin have established large-scale epidemic transmission cycles in the human population. It is often considered that arbovirus emergence is driven by adaptive evolution, such as virus adaptation for transmission by 'domestic' mosquito vector species that live in close association with humans. Here, I argue that although arbovirus adaptation to domestic mosquito vectors has been observed for several emerging arboviruses, it was generally not directly responsible for their initial emergence. Secondary adaptation to domestic mosquitoes often amplified epidemic transmission, however, this was more likely a consequence than a cause of arbovirus emergence. Considering that emerging arboviruses are generally 'preadapted' for transmission by domestic mosquito vectors may help to enhance preparedness toward future arbovirus emergence events.
Collapse
|
12
|
Lin DCD, Weng SC, Tsao PN, Chu JJH, Shiao SH. Co-infection of dengue and Zika viruses mutually enhances viral replication in the mosquito Aedes aegypti. Parasit Vectors 2023; 16:160. [PMID: 37165438 PMCID: PMC10172068 DOI: 10.1186/s13071-023-05778-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/16/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND The mosquito Aedes aegypti transmits two of the most serious mosquito-borne viruses, dengue virus (DENV) and Zika virus (ZIKV), which results in significant human morbidity and mortality worldwide. The quickly shifting landscapes of DENV and ZIKV endemicity worldwide raise concerns that their co-circulation through the Ae. aegypti mosquito vector could greatly exacerbate the disease burden in humans. Recent reports have indicated an increase in the number of co-infection cases in expanding co-endemic regions; however, the impact of co-infection on viral infection and the detailed molecular mechanisms remain to be defined. METHODS C6/36 (Aedes albopictus) cells were cultured in Dulbecco's modified Eagle medium/Mitsuhashi and Maramorosch Insect Medium (DMEM/MM) (1:1) containing 2% heat-inactivated fetal bovine serum and 1× penicillin/streptomycin solution. For virus propagation, the cells were infected with either DENV serotype 2 (DENV2) strain 16681 or ZIKV isolate Thailand/1610acTw (MF692778.1). Mosquitoes (Ae. aegypti UGAL [University of Georgia Laboratory]/Rockefeller strain) were orally infected with DENV2 and ZIKV through infectious blood-feeding. RESULTS We first examined viral replication activity in cells infected simultaneously, or sequentially, with DENV and ZIKV, and found interspecies binding of viral genomic transcripts to the non-structural protein 5 (NS5). When we challenged Ae. aegypti mosquitos with both DENV2 and ZIKV sequentially to probe similar interactions, virus production and vector susceptibility to infection were significantly enhanced. CONCLUSIONS Our results suggest that DENV2 and ZIKV simultaneously establishing infection in the Ae. aegypti mosquito vector may augment one another during replication. The data also implicate the homologous NS5 protein as a key intersection between the flaviviruses in co-infection, highlighting it as a potential target for vector control.
Collapse
Affiliation(s)
- Daniel Chieh-Ding Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
13
|
Erb SM, Butrapet S, Roehrig JT, Huang CYH, Blair CD. Genetic Adaptation by Dengue Virus Serotype 2 to Enhance Infection of Aedes aegypti Mosquito Midguts. Viruses 2022; 14:v14071569. [PMID: 35891549 PMCID: PMC9325310 DOI: 10.3390/v14071569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue viruses (DENVs), serotypes 1–4, are arthropod-borne viruses transmitted to humans by mosquitoes, primarily Aedes aegypti. The transmission cycle begins when Ae. aegypti ingest blood from a viremic human and the virus infects midgut epithelial cells. In studying viruses derived from the DENV2 infectious clone 30P-NBX, we found that when the virus was delivered to female Ae. aegypti in an infectious blood meal, the midgut infection rate (MIR) was very low. To determine if adaptive mutations in the DENV2 envelope (E) glycoprotein could be induced to increase the MIR, we serially passed 30P-NBX in Ae. aegypti midguts. After four passages, a single, non-conservative mutation in E protein domain II (DII) nucleotide position 1300 became dominant, resulting in replacement of positively-charged amino acid lysine (K) at position 122 with negatively-charged glutamic acid (E; K122E) and a significantly-enhanced MIR. Site directed mutagenesis experiments showed that reducing the positive charge of this surface-exposed region of the E protein DII correlated with improved Ae. aegypti midgut infection.
Collapse
Affiliation(s)
- Steven M. Erb
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Siritorn Butrapet
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (S.B.); (J.T.R.); (C.Y.-H.H.)
| | - John T. Roehrig
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (S.B.); (J.T.R.); (C.Y.-H.H.)
| | - Claire Y.-H. Huang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (S.B.); (J.T.R.); (C.Y.-H.H.)
| | - Carol D. Blair
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
- Correspondence:
| |
Collapse
|
14
|
Banho CA, Sacchetto L, Campos GRF, Bittar C, Possebon FS, Ullmann LS, Marques BDC, da Silva GCD, Moraes MM, Parra MCP, Negri AF, Boldrin AC, Barcelos MD, dos Santos TMIL, Milhim BHGA, Rocha LC, Dourado FS, dos Santos AL, Ciconi VB, Patuto C, Versiani AF, da Silva RA, de Oliveira Lobl EE, Hernandes VM, Zini N, Pacca CC, Estofolete CF, Ferreira HL, Rahal P, Araújo JP, Cohen JA, Kerr CC, Althouse BM, Vasilakis N, Nogueira ML. Impact of SARS-CoV-2 Gamma lineage introduction and COVID-19 vaccination on the epidemiological landscape of a Brazilian city. COMMUNICATIONS MEDICINE 2022; 2:41. [PMID: 35603276 PMCID: PMC9053258 DOI: 10.1038/s43856-022-00108-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/24/2022] [Indexed: 12/20/2022] Open
Abstract
Background The emergence of the Brazilian variant of concern, Gamma lineage (P.1), impacted the epidemiological profile of COVID-19 cases due to its higher transmissibility rate and immune evasion ability. Methods We sequenced 305 SARS-CoV-2 whole-genomes and performed phylogenetic analyses to identify introduction events and the circulating lineages. Additionally, we use epidemiological data of COVID-19 cases, severe cases, and deaths to measure the impact of vaccination coverage and mortality risk. Results Here we show that Gamma introduction in São José do Rio Preto, São Paulo, Brazil, was followed by the displacement of seven circulating SARS-CoV-2 variants and a rapid increase in prevalence two months after its first detection in January 2021. Moreover, Gamma variant is associated with increased mortality risk and severity of COVID-19 cases in younger age groups, which corresponds to the unvaccinated population at the time. Conclusions Our findings highlight the beneficial effects of vaccination indicated by a pronounced reduction of severe cases and deaths in immunized individuals, reinforcing the need for rapid and massive vaccination.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Guilherme Rodrigues Fernandes Campos
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Cíntia Bittar
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, São Paulo Brazil
| | - Fábio Sossai Possebon
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo Brazil
| | - Leila Sabrina Ullmann
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo Brazil
| | - Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Gislaine Ceslestino Dutra da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Marília Mazzi Moraes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Maisa Carla Pereira Parra
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | | | - Ana Carolina Boldrin
- Departamento de Vigilância Epidemiológica, São José do Rio Preto, São Paulo Brazil
| | | | - Thayza M. I. L. dos Santos
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Bruno H. G. A. Milhim
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Leonardo Cecílio Rocha
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Fernanda Simões Dourado
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Andresa Lopes dos Santos
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Victoria Bernardi Ciconi
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Caio Patuto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Alice Freitas Versiani
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Rafael Alves da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Edoardo Estevam de Oliveira Lobl
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Victor Miranda Hernandes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Nathalia Zini
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
- Faculdade Ceres (FACERES), São José do Rio Preto, São Paulo Brazil
| | - Cássia Fernanda Estofolete
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Helena Lage Ferreira
- Laboratório de Medicina Veterinária Preventiva Aplicada, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, São Paulo Brazil
| | - João Pessoa Araújo
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo Brazil
| | - Jamie A. Cohen
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA USA
| | - Cliff C. Kerr
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA USA
| | - Benjamin M. Althouse
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA USA
- University of Washington, Seattle, WA USA
- New Mexico State University, Las Cruces, NM USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX USA
| | - Mauricio Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX USA
| |
Collapse
|
15
|
Yu X, Cheng G. Adaptive Evolution as a Driving Force of the Emergence and Re-Emergence of Mosquito-Borne Viral Diseases. Viruses 2022; 14:v14020435. [PMID: 35216028 PMCID: PMC8878277 DOI: 10.3390/v14020435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Emerging and re-emerging mosquito-borne viral diseases impose a significant burden on global public health. The most common mosquito-borne viruses causing recent epidemics include flaviviruses in the family Flaviviridae, including Dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV) and Togaviridae viruses, such as chikungunya virus (CHIKV). Several factors may have contributed to the recent re-emergence and spread of mosquito-borne viral diseases. Among these important causes are the evolution of mosquito-borne viruses and the genetic mutations that make them more adaptive and virulent, leading to widespread epidemics. RNA viruses tend to acquire genetic diversity due to error-prone RNA-dependent RNA polymerases, thus promoting high mutation rates that support adaptation to environmental changes or host immunity. In this review, we discuss recent findings on the adaptive evolution of mosquito-borne viruses and their impact on viral infectivity, pathogenicity, vector fitness, transmissibility, epidemic potential and disease emergence.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
16
|
Zhu X, Chen W, Ma C, Wang X, Sun J, Nie J, Shi J, Hu Y. Whole genome analysis identifies intra-serotype recombinants and positive selection sites of dengue virus in mainland China from 2015 to 2020. Virus Res 2022; 311:198705. [PMID: 35121087 DOI: 10.1016/j.virusres.2022.198705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Immune selection pressure can drive the virus to mutate, so as to achieve immune escape and epidemic of the virus. Thus, surveillance of recombinants and positively selected mutants of the dengue virus (DENV) are vital for preventing and controlling the dengue fever outbreak. However, little is known about recombinants and positively selected mutants of circulating DENV strains in mainland China. In this study, those variants with recombination and adaptive evolutionary sites of circulating DENV strains were identified during 2015-2020. Phylogenetic analysis showed that the DENV-2 was the dominant epidemic serotype, and the dengue epidemic in China was closely related to the imported virus from Southeast Asian countries. Recombination analysis based on 291 complete genomes of naturally circulating DENV identified 10 new intra-serotype recombinant variants. Two or three recombination regions in a single dengue isolate were also observed. The breakpoints of recombinants were distributed in different regions of the genome. In particular, two recombinant strains (strain DENV-4/China/YN/15DGR394 (2015) and XLLM10666) with extremely large exchange fragments were detected. This large-scale gene fragment exchange (eight genomic regions) of strain DENV-4/China/YN/15DGR394 (2015) with substitutions at both the 5' and 3' ends of the genome, had never been described before. Moreover, selection pressure analyses revealed seven positive selection sites located in regions encoding the NS1, NS3 and NS5 proteins. Overall, this study is the first to report ten specific intra-serotype recombinants and seven positive selection sites of Chinese epidemic strains of DENV, which highlight their significance for DENV surveillance and effective control.
Collapse
Affiliation(s)
- Xiaoli Zhu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China; Kunming Medical University, Kunming, Yunnan, China; Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wanxin Chen
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Chunli Ma
- Kunming Medical University, Kunming, Yunnan, China
| | - Xin Wang
- Kunming Medical University, Kunming, Yunnan, China
| | - Jing Sun
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jianyun Nie
- Kunming Medical University, Kunming, Yunnan, China; Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiandong Shi
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Yunzhang Hu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| |
Collapse
|
17
|
Jácome FC, Caldas GC, Rasinhas ADC, de Almeida ALT, de Souza DDC, Paulino AC, da Silva MAN, Bandeira DM, Barth OM, dos Santos FB, Barreto-Vieira DF. Immunocompetent Mice Infected by Two Lineages of Dengue Virus Type 2: Observations on the Pathology of the Lung, Heart and Skeletal Muscle. Microorganisms 2021; 9:microorganisms9122536. [PMID: 34946137 PMCID: PMC8704795 DOI: 10.3390/microorganisms9122536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) infection by one of the four serotypes (DENV-1 to 4) may result in a wide spectrum of clinical manifestations, with unpredictable evolution and organ involvement. Due to its association with severe epidemics and clinical manifestations, DENV-2 has been substantially investigated. In fact, the first emergence of a new lineage of the DENV-2 Asian/American genotype in Brazil (Lineage II) in 2008 was associated with severe cases and increased mortality related to organ involvement. A major challenge for dengue pathogenesis studies has been a suitable animal model, but the use of immune-competent mice, although sometimes controversial, has proven to be useful, as histological observations in infected animals reveal tissue alterations consistent to those observed in dengue human cases. Here, we aimed to investigate the outcomes caused by two distinct lineages of the DENV-2 Asian/American genotype in the lung, heart and skeletal muscle tissues of infected BALB/c mice. Tissues were submitted to histopathology, immunohistochemistry, histomorphometry and transmission electron microscopy (TEM) analysis. The viral genome was detected in heart and skeletal muscle samples. The viral antigen was detected in cardiomyocytes and endothelial cells of heart tissue. Heart and lung tissue samples presented morphological alterations comparable to those seen in dengue human cases. Creatine kinase serum levels were higher in mice infected with both lineages of DENV-2. Additionally, statistically significant differences, concerning alveolar septa thickening and heart weight, were observed between BALB/c mice infected with both DENV-2 lineages, which was demonstrated to be an appropriate experimental model for dengue pathogenesis studies on lung, heart and skeletal muscle tissues.
Collapse
Affiliation(s)
- Fernanda Cunha Jácome
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
- Correspondence:
| | - Gabriela Cardoso Caldas
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Arthur da Costa Rasinhas
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Ana Luisa Teixeira de Almeida
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Daniel Dias Coutinho de Souza
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Amanda Carlos Paulino
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Marcos Alexandre Nunes da Silva
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Derick Mendes Bandeira
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Ortrud Monika Barth
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Flavia Barreto dos Santos
- Laboratory of Viral Immunology, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil;
| | - Debora Ferreira Barreto-Vieira
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| |
Collapse
|
18
|
Calvez E, Bounmany P, Balière C, Somlor S, Viengphouthong S, Xaybounsou T, Keosenhom S, Fangkham K, Brey PT, Caro V, Lacoste V, Grandadam M. Using Background Sequencing Data to Anticipate DENV-1 Circulation in the Lao PDR. Microorganisms 2021; 9:microorganisms9112263. [PMID: 34835389 PMCID: PMC8617722 DOI: 10.3390/microorganisms9112263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Since its first detection in 1979, dengue fever has been considered a major public health issue in the Lao People’s Democratic Republic (PDR). Dengue virus (DENV) serotype 1 was the cause of an epidemic in 2010–2011. Between 2012 and 2020, major outbreaks due successively to DENV-3, DENV-4 and recently DENV-2 have been recorded. However, DENV-1 still co-circulated in the country over this period. Here, we summarize epidemiological and molecular data of DENV-1 between 2016 and 2020 in the Lao PDR. Our data highlight the continuous circulation of DENV-1 in the country at levels ranging from 16% to 22% among serotyping tests. In addition, the phylogenetic analysis has revealed the circulation of DENV-1 genotype I at least since 2008 with a co-circulation of different clusters. Sequence data support independent DENV-1 introductions in the Lao PDR correlated with an active circulation of this serotype at the regional level in Southeast Asia. The maintenance of DENV-1 circulation over the last ten years supports a low level of immunity against this serotype within the Lao population. Thereby, the risk of a DENV-1 epidemic cannot be ruled out in the future, and this emphasizes the importance of maintaining an integrated surveillance approach to prevent major outbreaks.
Collapse
Affiliation(s)
- Elodie Calvez
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
- Correspondence:
| | - Phaithong Bounmany
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Charlotte Balière
- Environment and Infectious Risks Unit, Institut Pasteur, 75015 Paris, France; (C.B.); (V.C.)
| | - Somphavanh Somlor
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Souksakhone Viengphouthong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Thonglakhone Xaybounsou
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Sitsana Keosenhom
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Kitphithak Fangkham
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
- Lao Army Institute for Preventive Medicine, Vientiane 01030, Laos
| | - Paul T. Brey
- Medical Entomology and Vector Borne Disease Unit, Institut Pasteur du Laos, Vientiane 01030, Laos;
| | - Valérie Caro
- Environment and Infectious Risks Unit, Institut Pasteur, 75015 Paris, France; (C.B.); (V.C.)
| | - Vincent Lacoste
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Marc Grandadam
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| |
Collapse
|
19
|
Evolution, heterogeneity and global dispersal of cosmopolitan genotype of Dengue virus type 2. Sci Rep 2021; 11:13496. [PMID: 34188091 PMCID: PMC8241877 DOI: 10.1038/s41598-021-92783-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue virus type 2 (DENV-2) contributes substantially to the dengue burden and dengue-related mortality in the tropics and sub-tropics. DENV-2 includes six genotypes, among which cosmopolitan genotype is the most widespread. The present study investigated the evolution, intra-genotype heterogeneity and dispersal of cosmopolitan genotype to understand unique genetic characteristics that have shaped the molecular epidemiology and distribution of cosmopolitan lineages. The spatial analysis demonstrated a wide geo-distribution of cosmopolitan genotype through an extensive inter-continental network, anchored in Southeast Asia and Indian sub-continent. Intra-genotype analyses using 3367 envelope gene sequences revealed six distinct lineages within the cosmopolitan genotype, namely the Indian sub-continent lineage and five other lineages. Indian sub-continent lineage was the most diverged among six lineages and has almost reached the nucleotide divergence threshold of 6% within E gene to qualify as a separate genotype. Genome wide amino acid signatures and selection pressure analyses further suggested differences in evolutionary characteristics between the Indian sub-continent lineage and other lineages. The present study narrates a comprehensive genomic analysis of cosmopolitan genotype and presents notable genetic characteristics that occurred during its evolution and global expansion. Whether those characteristics conferred a fitness advantage to cosmopolitan genotype in different geographies warrant further investigations.
Collapse
|
20
|
Natali EN, Babrak LM, Miho E. Prospective Artificial Intelligence to Dissect the Dengue Immune Response and Discover Therapeutics. Front Immunol 2021; 12:574411. [PMID: 34211454 PMCID: PMC8239437 DOI: 10.3389/fimmu.2021.574411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Dengue virus (DENV) poses a serious threat to global health as the causative agent of dengue fever. The virus is endemic in more than 128 countries resulting in approximately 390 million infection cases each year. Currently, there is no approved therapeutic for treatment nor a fully efficacious vaccine. The development of therapeutics is confounded and hampered by the complexity of the immune response to DENV, in particular to sequential infection with different DENV serotypes (DENV1-5). Researchers have shown that the DENV envelope (E) antigen is primarily responsible for the interaction and subsequent invasion of host cells for all serotypes and can elicit neutralizing antibodies in humans. The advent of high-throughput sequencing and the rapid advancements in computational analysis of complex data, has provided tools for the deconvolution of the DENV immune response. Several types of complex statistical analyses, machine learning models and complex visualizations can be applied to begin answering questions about the B- and T-cell immune responses to multiple infections, antibody-dependent enhancement, identification of novel therapeutics and advance vaccine research.
Collapse
Affiliation(s)
- Eriberto N. Natali
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Lmar M. Babrak
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- aiNET GmbH, Basel, Switzerland
| |
Collapse
|
21
|
Lee PX, Ting DHR, Boey CPH, Tan ETX, Chia JZH, Idris F, Oo Y, Ong LC, Chua YL, Hapuarachchi C, Ng LC, Alonso S. Relative contribution of nonstructural protein 1 in dengue pathogenesis. J Exp Med 2021; 217:151891. [PMID: 32584412 PMCID: PMC7478733 DOI: 10.1084/jem.20191548] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/10/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Dengue is a major public health concern in the tropical and subtropical world, with no effective treatment. The controversial live attenuated virus vaccine Dengvaxia has boosted the pursuit of subunit vaccine approaches, and nonstructural protein 1 (NS1) has recently emerged as a promising candidate. However, we found that NS1 immunization or passive transfer of NS1 antibodies failed to confer protection in symptomatic dengue mouse models using two non–mouse-adapted DENV2 strains that are highly virulent. Exogenous administration of purified NS1 also failed to worsen in vivo vascular leakage in sublethally infected mice. Neither method of NS1 immune neutralization changed the disease outcome of a chimeric strain expressing a vascular leak-potent NS1. Instead, virus chimerization involving the prME structural region indicated that these proteins play a critical role in driving in vivo fitness and virulence of the virus, through induction of key proinflammatory cytokines. This work highlights that the pathogenic role of NS1 is DENV strain dependent, which warrants reevaluation of NS1 as a universal dengue vaccine candidate.
Collapse
Affiliation(s)
- Pei Xuan Lee
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Donald Heng Rong Ting
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Clement Peng Hee Boey
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Eunice Tze Xin Tan
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Janice Zuo Hui Chia
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Fakhriedzwan Idris
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yukei Oo
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Li Ching Ong
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yen Leong Chua
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Lee Ching Ng
- Environmental Health Institute at National Environment Agency, Singapore
| | - Sylvie Alonso
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
22
|
Ma M, Wu S, He Z, Yuan L, Bai Z, Jiang L, Marshall J, Lu J, Yang Z, Jing Q. New genotype invasion of dengue virus serotype 1 drove massive outbreak in Guangzhou, China. Parasit Vectors 2021; 14:126. [PMID: 33639996 PMCID: PMC7910771 DOI: 10.1186/s13071-021-04631-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/06/2021] [Indexed: 11/26/2022] Open
Abstract
Background Dengue fever is a mosquito-borne infectious disease that has caused major health problems. Variations in dengue virus (DENV) genes are important features of epidemic outbreaks. However, the associations of DENV genes with epidemic potential have not been extensively examined. Here, we assessed new genotype invasion of DENV-1 isolated from Guangzhou in China to evaluate associations with epidemic outbreaks. Methodology/principal findings We used DENV-1 strains isolated from sera of dengue cases from 2002 to 2016 in Guangzhou for complete genome sequencing. A neighbor-joining phylogenetic tree was constructed to elucidate the genotype characteristics and determine if new genotype invasion was correlated with major outbreaks. In our study, a new genotype invasion event was observed during each significant outbreak period in 2002–2003, 2006–2007, and 2013–2014. Genotype II was the main epidemic genotype in 2003 and before. Invasion of genotype I in 2006 caused an unusual outbreak with 765 cases (relative risk [RR] = 16.24, 95% confidence interval [CI] 12.41–21.25). At the middle and late stages of the 2013 outbreak, genotype III was introduced to Guangzhou as a new genotype invasion responsible for 37,340 cases with RR 541.73 (95% CI 417.78–702.45), after which genotypes I and III began co-circulating. Base mutations occurred after new genotype invasion, and the gene sequence of NS3 protein had the lowest average similarity ratio (99.82%), followed by the gene sequence of E protein (99.86%), as compared to the 2013 strain. Conclusions/significance Genotype replacement and co-circulation of multiple DENV-1 genotypes were observed. New genotype invasion was highly correlated with local unusual outbreaks. In addition to DENV-1 genotype I in the unprecedented outbreak in 2014, new genotype invasion by DENV-1 genotype III occurred in Guangzhou.![]()
Collapse
Affiliation(s)
- Mengmeng Ma
- Department of Infectious Diseases, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, People's Republic of China
| | - Sean Wu
- Department of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Zhenjian He
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Lihong Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhijun Bai
- Department of Infectious Diseases, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, People's Republic of China
| | - Liyun Jiang
- Department of Infectious Diseases, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, People's Republic of China
| | - John Marshall
- Department of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Jiahai Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhicong Yang
- Department of Infectious Diseases, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, People's Republic of China
| | - Qinlong Jing
- Department of Infectious Diseases, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
23
|
Fang Y, Tambo E, Xue JB, Zhang Y, Zhou XN, Khater EIM. Detection of DENV-2 and Insect-Specific Flaviviruses in Mosquitoes Collected From Jeddah, Saudi Arabia. Front Cell Infect Microbiol 2021; 11:626368. [PMID: 33718273 PMCID: PMC7947193 DOI: 10.3389/fcimb.2021.626368] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/18/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases are rapidly spreading due to increasing international travel and trade. Routine mosquito surveillance and screening for mosquito-borne pathogens can be early indicators for local disease transmission and outbreaks. However, arbovirus detection in mosquito vectors has rarely been reported in Saudi Arabia. METHODS A total of 769,541 Aedes and Culex mosquitoes were collected by Black Hole traps during routine mosquito surveillance in the first half of 2016. Culex. quinquefasciatus and Ae. aegypti were the most prevalent species observed. Twenty-five and 24 randomly selected pools of Ae. aegypti and Cx. quinquefasciatus, respectively, were screened for arboviruses by RT-PCR. RESULTS Dengue 2 (DENV-2) and four strains of insect-specific flaviviruses, including one of cell-fusing agent virus (CFAV) and three of Phlebotomus-associated flavivirus (PAFV) were detected in pools of Ae. aegypti. We also detected 10 strains of Culex flavivirus (CxFV) in pools of Cx. quinquefasciatus. Phylogenetic analysis using whole genome sequences placed the DENV strain into the cosmopolitan 1 sub-DENV-2 genotype, and the CxFVs into the African/Caribbean/Latin American genotype. These analyses also showed that the DENV-2 strain detected in the present study was closely related to strains detected in China in 2014 and in Japan in 2018, which suggests frequent movement of DENV-2 strains among these countries. Furthermore, the phylogenetic analysis suggested at least five introductions of DENV-2 into Saudi Arabia from 2014 through 2018, most probably from India. CONCLUSIONS To our knowledge, this study reports the first detection of four arboviruses DENV, CFAV, PAFV, and CxFV in mosquitoes in Saudi Arabia, which shows that they are co-circulating in Jeddah. Our findings show a need for widespread mosquito-based arbovirus surveillance programs in Saudi Arabia, which will improve our understanding of the transmission dynamics of the mosquito-borne arboviruses within the country and help early predict and mitigate the risk of human infections and outbreaks.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Ernest Tambo
- Public Health Pests Laboratory, Municipality of Jeddah Governorate, Jeddah, Saudi Arabia
| | - Jing-Bo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Emad I. M. Khater
- Public Health Pests Laboratory, Municipality of Jeddah Governorate, Jeddah, Saudi Arabia
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
24
|
Universal Dengue Vaccine Elicits Neutralizing Antibodies against Strains from All Four Dengue Virus Serotypes. J Virol 2021; 95:JVI.00658-20. [PMID: 33208445 DOI: 10.1128/jvi.00658-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Any potential dengue virus (DENV) vaccine needs to elicit protective immunity against strains from all four serotypes to avoid potential antibody-dependent enhancement (ADE). In this study, four independent DENV envelope (E) glycoproteins were generated using wild-type E sequences from viruses isolated between 1943 and 2006 using computationally optimized broadly reactive antigen (COBRA) methodology. COBRA and wild-type E antigens were expressed on the surface of subvirion viral particles (SVPs). Four separate wild-type E antigens were used for each serotype. Mice vaccinated with wild-type DENV SVPs had anti-E IgG antibodies that neutralized serotype-specific viruses. COBRA DENV SVPs elicited a broader breadth of antibodies that neutralized strains across all four serotypes. Two COBRA DENV vaccine candidates that elicited the broadest breadth of neutralizing antibodies in mice were used to vaccinate rhesus macaques (Macaca mulatta) that either were immunologically naive to any DENV serotype or had preexisting antibodies to DENV. Antibodies elicited by COBRA DENV E immunogens neutralized all 12 strains of DENV in vitro, which was comparable to antibodies elicited by a tetravalent wild-type E SVP vaccination mixture. Therefore, using a single DENV COBRA E protein can elicit neutralizing antibodies against strains representing all four serotypes of DENV in both naive and dengue virus-preimmune populations.IMPORTANCE Dengue virus infects millions of people living in tropical areas of the world. Dengue virus-induced diseases can range from mild to severe with death. An effective vaccine will need to neutralize viruses from all four serotypes of dengue virus without inducing enhanced disease. A dengue virus E vaccine candidate generated by computationally optimized broadly reactive antigen algorithms elicits broadly neutralizing protection for currently circulating strains from all four serotypes regardless of immune status. Most dengue vaccines in development formulate four separate components based on prM-E from a wild-type strain representing each serotype. Designing a monovalent vaccine that elicits protective immunity against all four serotypes is an effective and economical strategy.
Collapse
|
25
|
Origin and Spread of the Dengue Virus Type 1, Genotype V in Senegal, 2015-2019. Viruses 2021; 13:v13010057. [PMID: 33406660 PMCID: PMC7824722 DOI: 10.3390/v13010057] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/20/2023] Open
Abstract
Dengue virus (DENV) is the most widespread arthropod-borne virus, with the number and severity of outbreaks increasing worldwide in recent decades. Dengue is caused by genetically distinct serotypes, DENV-1–4. Here, we present data on DENV-1, isolated from patients with dengue fever during an outbreak in Senegal and Mali (Western Africa) in 2015–2019, that were analyzed by sequencing the envelope (E) gene. The emergence and the dynamics of DENV-1 in Western Africa were inferred by using maximum likelihood and Bayesian methods. The DENV-1 grouped into a monophyletic cluster that was closely related to those from Southeast Asia. The virus appears to have been introduced directly into Medina Gounass (Suburb of Dakar), Senegal (location probability = 0.301, posterior = 0.76). The introduction of the virus in Senegal occurred around 2014 (95% HPD = 2012.88–2014.84), and subsequently, the virus moved to regions within Senegal (e.g., Louga and Fatick), causing intense outbreaks in the subsequent years. The virus appears to have been introduced in Mali (a neighboring country) after its introduction in Senegal. In conclusion, we present evidence that the outbreak caused by DENV-1 in urban environments in Senegal and Mali after 2015 was caused by a single viral introduction from Asia.
Collapse
|
26
|
Bhatt P, Sabeena SP, Varma M, Arunkumar G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr Microbiol 2021; 78:17-32. [PMID: 33231723 PMCID: PMC7815537 DOI: 10.1007/s00284-020-02284-w] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022]
Abstract
The pathogenesis of dengue virus infection is attributed to complex interplay between virus, host genes and host immune response. Host factors such as antibody-dependent enhancement (ADE), memory cross-reactive T cells, anti-DENV NS1 antibodies, autoimmunity as well as genetic factors are major determinants of disease susceptibility. NS1 protein and anti-DENV NS1 antibodies were believed to be responsible for pathogenesis of severe dengue. The cytokine response of cross-reactive CD4+ T cells might be altered by the sequential infection with different DENV serotypes, leading to further elevation of pro-inflammatory cytokines contributing a detrimental immune response. Fcγ receptor-mediated antibody-dependent enhancement (ADE) results in release of cytokines from immune cells leading to vascular endothelial cell dysfunction and increased vascular permeability. Genomic variation of dengue virus and subgenomic flavivirus RNA (sfRNA) suppressing host immune response are viral determinants of disease severity. Dengue infection can lead to the generation of autoantibodies against DENV NS1antigen, DENV prM, and E proteins, which can cross-react with several self-antigens such as plasminogen, integrin, and platelet cells. Apart from viral factors, several host genetic factors and gene polymorphisms also have a role to play in pathogenesis of DENV infection. This review article highlights the various factors responsible for the pathogenesis of dengue and also highlights the recent advances in the field related to biomarkers which can be used in future for predicting severe disease outcome.
Collapse
Affiliation(s)
- Puneet Bhatt
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | | - Muralidhar Varma
- Dept of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576101 India
| | - Govindakarnavar Arunkumar
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- Present Address: WHO Country Office, Kathmandu, Nepal
| |
Collapse
|
27
|
Evolution and epidemiologic dynamics of dengue virus in Nicaragua during the emergence of chikungunya and Zika viruses. INFECTION GENETICS AND EVOLUTION 2020; 92:104680. [PMID: 33326875 DOI: 10.1016/j.meegid.2020.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022]
Abstract
Arthropod-borne viruses (arboviruses) comprise a significant and ongoing threat to human health, infecting hundreds of millions annually. Three such arboviruses include circumtropical dengue, Zika, and chikungunya viruses, exhibiting continuous emergence primarily via Aedes mosquito vectors. Nicaragua has experienced endemic dengue virus (DENV) transmission involving multiple serotypes since 1985, with chikungunya virus (CHIKV) reported in 2014-2015, followed by Zika virus (ZIKV) first reported in 2016. In order to identify patterns of genetic variation and selection pressures shaping the evolution of co-circulating DENV serotypes in light of the arrival of CHIKV and ZIKV, we employed whole-genome sequencing on an Illumina MiSeq platform of random-amplified total RNA libraries to characterize 42 DENV low-passage isolates, derived from viremic patients in Nicaragua between 2013 and 2016. Our approach also revealed clinically undetected co-infections with CHIKV. Of the three DENV serotypes (1, 2, and 3) co-circulating during our study, we uncovered distinct patterns of evolution using comparative phylogenetic inference. DENV-1 genetic variation was structured into two distinct co-circulating lineages with no evidence of positive selection in the origins of either lineage, suggesting they are equally fit. In contrast, the evolutionary history of DENV-2 was marked by positive selection, and a unique, divergent lineage correlated with high epidemic potential emerged in 2015 to drive an outbreak in 2016. DENV-3 genetic variation remained unstructured into lineages throughout the period of study. Thus, this study reveals insights into evolutionary and epidemiologic trends exhibited during the circulation of multiple arboviruses in Nicaragua.
Collapse
|
28
|
Calvez E, Pommelet V, Somlor S, Pompon J, Viengphouthong S, Bounmany P, Chindavong TA, Xaybounsou T, Prasayasith P, Keosenhom S, Brey PT, Telle O, Choisy M, Marcombe S, Grandadam M. Trends of the Dengue Serotype-4 Circulation with Epidemiological, Phylogenetic, and Entomological Insights in Lao PDR between 2015 and 2019. Pathogens 2020; 9:pathogens9090728. [PMID: 32899416 PMCID: PMC7557816 DOI: 10.3390/pathogens9090728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue outbreaks have regularly been recorded in Lao People's Democratic Republic (PDR) since the first detection of the disease in 1979. In 2012, an integrated arbovirus surveillance network was set up in Lao PDR and an entomological surveillance has been implemented since 2016 in Vientiane Capital. Here, we report a study combining epidemiological, phylogenetic, and entomological analyzes during the largest DENV-4 epidemic ever recorded in Lao PDR (2015-2019). Strikingly, from 2015 to 2019, we reported the DENV-4 emergence and spread at the country level after two large epidemics predominated by DENV-3 and DENV-1, respectively, in 2012-2013 and 2015. Our data revealed a significant difference in the median age of the patient infected by DENV-4 compared to the other serotypes. Phylogenetic analysis demonstrated the circulation of DENV-4 Genotype I at the country level since at least 2013. The entomological surveillance showed a predominance of Aedesaegypti compared to Aedesalbopictus and high abundance of these vectors in dry and rainy seasons between 2016 and 2019, in Vientiane Capital. Overall, these results emphasized the importance of an integrated approach to evaluate factors, which could impact the circulation and the epidemiological profile of dengue viruses, especially in endemic countries like Lao PDR.
Collapse
Affiliation(s)
- Elodie Calvez
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
- Correspondence:
| | - Virginie Pommelet
- Epidemiology Unit, Institut Pasteur du Lao PDR, Vientiane 01030, Laos;
| | - Somphavanh Somlor
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Julien Pompon
- Department of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
- MIVEGEC, University of Montpellier, CNRS, IRD, 34394 Montpellier, France
| | - Souksakhone Viengphouthong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Phaithong Bounmany
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Thep Aksone Chindavong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Thonglakhone Xaybounsou
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Phoyphaylinh Prasayasith
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Sitsana Keosenhom
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Paul T. Brey
- Medical Entomology and Vector Borne Disease Unit, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (P.T.B.); (S.M.)
| | - Olivier Telle
- Centre de Sciences Humaines (CHS), Centre National de la Recherche Scientifique (CNRS), Delhi 110001, India;
- Center for Policy Research (CPR), Delhi 110001, India
| | - Marc Choisy
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK;
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam
| | - Sébastien Marcombe
- Medical Entomology and Vector Borne Disease Unit, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (P.T.B.); (S.M.)
| | - Marc Grandadam
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
- Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
29
|
Mishra B, Balaji A, Beesetti H, Swaminathan S, Aduri R. The RNA secondary structural variation in the cyclization elements of the dengue genome and the possible implications in pathogenicity. Virusdisease 2020; 31:299-307. [PMID: 32904896 PMCID: PMC7458965 DOI: 10.1007/s13337-020-00615-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022] Open
Abstract
Dengue virus (DENV), the causative agent of dengue fever and severe dengue, exists as four antigenically different serotypes. These serotypes are further classified into genotypes and have varying degrees of pathogenicity. The 5' and 3' ends of the genomic RNA play a critical role in the viral life cycle. A global scale study of the RNA structural variation among the sero- and genotypes was carried out to correlate RNA structure with pathogenicity. We found that the GC rich stem and rigid loop structure of the 5' end of the genomic RNA of DENV 2 differs significantly from the others. The observed variation in base composition and base pairing may confer structural and functional advantage in highly virulent strains. This variation in the structure may influence the ease of cyclization and recruitment of viral RNA polymerase, NS5 RdRp, thereby affecting the pathogenicity of these strains.
Collapse
Affiliation(s)
- Bibhudutta Mishra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, South Goa, Goa 403 726 India
| | - Advait Balaji
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, South Goa, Goa 403 726 India
| | - Hemalatha Beesetti
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana 500 078 India
- Present Address: Molecular Medicine Division, Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Sathyamangalam Swaminathan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana 500 078 India
- Present Address: Molecular Medicine Division, Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Raviprasad Aduri
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, South Goa, Goa 403 726 India
| |
Collapse
|
30
|
Epidemiological implications of the genetic diversification of dengue virus (DENV) serotypes and genotypes in Mexico. INFECTION GENETICS AND EVOLUTION 2020; 84:104391. [PMID: 32502732 DOI: 10.1016/j.meegid.2020.104391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/07/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
Abstract
Variation and clade shifts in dengue virus (DENV) genotypes are responsible for numerous dengue fever outbreaks throughout Latin America in the past decade. Molecular analyses of dengue serotypes have revealed extensive genetic diversification and the emergence of new genotypes in Brazil (DENV-4 genotype I) and elsewhere in tropical and subtropical America. The goal of the present study is to assess the extent to which the adventitious introduction of DENV genotypes and their increasing genetic diversity affects dengue epidemiology in Mexico. A nuanced sequence inspection and phylogenetic analysis of the C-prM nucleotide region of DENV was performed for specimens collecting in 2009 from the Veracruz State, Mexico. Findings were contrasted with specimens collected in adjacent years and analysed based on the epidemiological patterns reported between 1990 and 2019. Additionally, the identification process of various DENV genotypes was assessed, including: (1) DENV-1, genotype V, (2) the DENV-2 Asian/American and Asian II genotypes (3) DENV-3, genotype III, and (4) DENV-4, genotype I. This resulted in the discovery of a distinct genetic cladistic pattern for serotype DENV-2. Lastly, study findings suggest that a correlation exists between the emergence of novel genotypes and genetic diversification, with the increasing incidence of DENV infections in Mexico in 2009.
Collapse
|
31
|
Alkaff AH, Saragih M, Fardiansyah MA, Tambunan USF. Role of Immunoinformatics in Accelerating Epitope-Based Vaccine Development against Dengue Virus. Open Biochem J 2020. [DOI: 10.2174/1874091x02014010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dengue Fever (DF) has emerged as a significant public health problem of international concern with its high prevalence in the tropic and subtropical regions. Dengue Virus (DENV), which is the cause of DF, consists of four serotypes of antigenically distinct viruses. The immense variation and limited identity similarity at the amino acid level lead to a problematic challenge in the development of an efficacious vaccine. Fortunately, the extensively available immunological data, the advance in antigenic peptide prediction, and the incorporation of molecular docking and dynamics simulation in immunoinformatics have directed the vaccine development towards the rational design of the epitope-based vaccine. Here, we point out the current state of dengue epidemiology and the recent development in vaccine development. Subsequently, we provide a systematic review of our validated method and tools for B- and T-cell epitope prediction as well as the use of molecular docking and dynamics in evaluating epitope affinity and stability in the discovery of a new tetravalent dengue vaccine through computational epitope-based vaccine design.
Collapse
|
32
|
Akther T, Muraduzzaman AKM, Parvin SM, Tabssum S, Munshi SU. Molecular & serological study of dengue virus-infected patients attending a tertiary hospital of Dhaka city, Bangladesh (2013 to 2016). Indian J Med Res 2020; 150:96-100. [PMID: 31571636 PMCID: PMC6798611 DOI: 10.4103/ijmr.ijmr_738_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Tahmina Akther
- Department of Virology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| | - A K M Muraduzzaman
- Department of Virology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| | - S Monira Parvin
- Department of Virology, Dhaka Medical College, Dhaka 1000, Bangladesh
| | - Shahina Tabssum
- Department of Virology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| | - Saif Ullah Munshi
- Department of Virology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| |
Collapse
|
33
|
Ahmed AM, Mohammed AT, Vu TT, Khattab M, Doheim MF, Ashraf Mohamed A, Abdelhamed MM, Shamandy BE, Dawod MT, Alesaei WA, Kassem MA, Mattar OM, Smith C, Hirayama K, Huy NT. Prevalence and burden of dengue infection in Europe: A systematic review and meta‐analysis. Rev Med Virol 2019; 30:e2093. [DOI: 10.1002/rmv.2093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Thao T. Vu
- School of Health and Biomedical SciencesRMIT University Melbourne Victoria Australia
| | | | | | | | | | | | | | - Wafaa Ali Alesaei
- Faculty of MedicineMisr University for Science and Technology Giza Egypt
| | - Mahmoud Attia Kassem
- Medical Oncology DepartmentThe Ohio State University Wexner Medical Center Columbus Ohio USA
| | | | - Chris Smith
- School of Tropical Medicine and Global HealthNagasaki University Nagasaki Japan
- Department of Clinical ResearchLondon School of Hygiene and Tropical Medicine London UK
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global HealthNagasaki University Nagasaki Japan
| | - Nguyen Tien Huy
- Evidence Based Medicine Research GroupTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied SciencesTon Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
34
|
Blight J, Alves E, Reyes-Sandoval A. Considering Genomic and Immunological Correlates of Protection for a Dengue Intervention. Vaccines (Basel) 2019; 7:E203. [PMID: 31816907 PMCID: PMC6963661 DOI: 10.3390/vaccines7040203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
Over three billion are at risk of dengue infection with more than 100 million a year presenting with symptoms that can lead to deadly haemorrhagic disease. There are however no treatments available and the only licensed vaccine shows limited efficacy and is able to enhance the disease in some cases. These failures have mainly been due to the complex pathology and lack of understanding of the correlates of protection for dengue virus (DENV) infection. With increasing data suggesting both a protective and detrimental effect for antibodies and CD8 T-cells whilst having complex environmental dynamics. This review discusses the roles of genomic and immunological aspects of DENV infection, providing both a historical interpretation and fresh discussion on how this information can be used for the next generation of dengue interventions.
Collapse
Affiliation(s)
- Joshua Blight
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK; (J.B.); (E.A.)
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eduardo Alves
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK; (J.B.); (E.A.)
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
35
|
Medina FA, Torres G, Acevedo J, Fonseca S, Casiano L, De León-Rodríguez CM, Santiago GA, Doyle K, Sharp TM, Alvarado LI, Paz-Bailey G, Muñoz-Jordán JL. Duration of the Presence of Infectious Zika Virus in Semen and Serum. J Infect Dis 2019; 219:31-40. [PMID: 30059980 DOI: 10.1093/infdis/jiy462] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/24/2018] [Indexed: 11/15/2022] Open
Abstract
Zika virus (ZIKV) has recently caused a large epidemic in the Americas that is associated with birth defects. Although ZIKV is primarily transmitted by Aedes mosquitoes, ZIKV RNA is detectable in blood and semen of infected individuals for weeks or months, during which sexual and other modes of transmission are possible. However, viral RNA is usually detectable longer than infectious virus is present. We determined the frequency of isolation of infectious virus from semen and serum samples prospectively obtained from a cohort of patients in Puerto Rico. We confirmed isolation of infectious virus on the basis of a tissue culture cytopathic effect, an increase in virus genome copy equivalents (GCE), and positive results of immunofluorescence analysis; virus in infected cells was quantitated by flow cytometry. These criteria confirmed the presence of infectious virus in semen specimens from 8 of 97 patients for up to 38 days after initial detection when virus loads are >1.4 × 106 genome copy equivalents/mL. Two serum isolates were obtained from 296 patients. These findings can help guide important prevention guidelines for persons that may potentially be infectious and transmit ZIKV sexually.
Collapse
Affiliation(s)
- Freddy A Medina
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan
| | - Giselle Torres
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan
| | - Jenny Acevedo
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan
| | - Sharon Fonseca
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan
| | - Leslie Casiano
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan
| | | | - Gilberto A Santiago
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan
| | - Katherine Doyle
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan
| | - Tyler M Sharp
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan
| | - Luisa I Alvarado
- Ponce Health Sciences University-Saint Luke's Episcopal Hospital Consortium, Ponce, Puerto Rico
| | - Gabriela Paz-Bailey
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan
| | - Jorge L Muñoz-Jordán
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan
| |
Collapse
|
36
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
37
|
Laiton-Donato K, Alvarez DA, Peláez-Carvajal D, Mercado M, Ajami NJ, Bosch I, Usme-Ciro JA. Molecular characterization of dengue virus reveals regional diversification of serotype 2 in Colombia. Virol J 2019; 16:62. [PMID: 31068191 PMCID: PMC6505283 DOI: 10.1186/s12985-019-1170-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 11/24/2022] Open
Abstract
Dengue is hyperendemic in Colombia, where a cyclic behavior of serotype replacement leading to periodic epidemics has been observed for decades. This level of endemicity favors accumulation of dengue virus genetic diversity and could be linked to disease outcome. To assess the genetic diversity of dengue virus type 2 in Colombia, we sequenced the envelope gene of 24 virus isolates from acute cases of dengue or severe dengue fever during the period 2013–2016. The phylogenetic analysis revealed the circulation of the Asian-American genotype of dengue virus type 2 in Colombia during that period, the intra-genotype variability leading to divergence in two recently circulating lineages with differential geographic distribution, as well as the presence of nonsynonymous substitutions accompanying their emergence and diversification.
Collapse
Affiliation(s)
- Katherine Laiton-Donato
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Avenida Calle 26 N° 51-20 CAN, Bogotá DC, Colombia
| | - Diego A Alvarez
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Avenida Calle 26 N° 51-20 CAN, Bogotá DC, Colombia
| | - Dioselina Peláez-Carvajal
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Avenida Calle 26 N° 51-20 CAN, Bogotá DC, Colombia
| | - Marcela Mercado
- Dirección de Vigilancia y Análisis del Riesgo en Salud Pública, Instituto Nacional de Salud, Bogotá DC, 111321, Colombia
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142-1601, USA
| | - José A Usme-Ciro
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Avenida Calle 26 N° 51-20 CAN, Bogotá DC, Colombia. .,Current Address: Centro de Investigación en Salud para el Trópico - CIST, Facultad de Medicina, Universidad Cooperativa de Colombia, Troncal del Caribe Sector Mamatoco, Santa Marta, Colombia.
| |
Collapse
|
38
|
Gutiérrez-Bugallo G, Piedra LA, Rodriguez M, Bisset JA, Lourenço-de-Oliveira R, Weaver SC, Vasilakis N, Vega-Rúa A. Vector-borne transmission and evolution of Zika virus. Nat Ecol Evol 2019; 3:561-569. [PMID: 30886369 PMCID: PMC8900209 DOI: 10.1038/s41559-019-0836-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
Zika virus (ZIKV), discovered in the Zika Forest of Uganda in 1947, is a mosquito-borne flavivirus related to yellow fever, dengue and West Nile viruses. From its discovery until 2007, only sporadic ZIKV cases were reported, with mild clinical manifestations in patients. Therefore, little attention was given to this virus before epidemics in the South Pacific and the Americas that began in 2013. Despite a growing number of ZIKV studies in the past three years, many aspects of the virus remain poorly characterized, particularly the spectrum of species involved in its transmission cycles. Here, we review the mosquito and vertebrate host species potentially involved in ZIKV vector-borne transmission worldwide. We also provide an evidence-supported analysis regarding the possibility of ZIKV spillback from an urban cycle to a zoonotic cycle outside Africa, and we review hypotheses regarding recent emergence and evolution of ZIKV. Finally, we identify critical remaining gaps in the current knowledge of ZIKV vector-borne transmission.
Collapse
Affiliation(s)
- Gladys Gutiérrez-Bugallo
- Department of Vector Control, Center for Research, Diagnostic and Reference, Institute of Tropical Medicine Pedro Kourí, PAHO-WHO Collaborating Center for Dengue and its Control, Havana, Cuba
| | - Luis Augusto Piedra
- Department of Vector Control, Center for Research, Diagnostic and Reference, Institute of Tropical Medicine Pedro Kourí, PAHO-WHO Collaborating Center for Dengue and its Control, Havana, Cuba
| | - Magdalena Rodriguez
- Department of Vector Control, Center for Research, Diagnostic and Reference, Institute of Tropical Medicine Pedro Kourí, PAHO-WHO Collaborating Center for Dengue and its Control, Havana, Cuba
| | - Juan A Bisset
- Department of Vector Control, Center for Research, Diagnostic and Reference, Institute of Tropical Medicine Pedro Kourí, PAHO-WHO Collaborating Center for Dengue and its Control, Havana, Cuba
| | - Ricardo Lourenço-de-Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, Brazil
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Anubis Vega-Rúa
- Laboratory of Vector Control Research, Unit Transmission Reservoir and Pathogen Diversity, Institute Pasteur of Guadeloupe, Les Abymes, Guadeloupe, France.
| |
Collapse
|
39
|
Development of a Standardized Sanger-Based Method for Partial Sequencing and Genotyping of Dengue Viruses. J Clin Microbiol 2019; 57:JCM.01957-18. [PMID: 30760533 DOI: 10.1128/jcm.01957-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 11/20/2022] Open
Abstract
The global expansion of dengue viruses (DENV-1 to DENV-4) has contributed to the divergence, transmission, and establishment of genetic lineages of epidemiological concern; however, tracking the phylogenetic relationships of these virus is not always possible due to the inability of standardized sequencing procedures in resource-limited public health laboratories. Consequently, public genomic data banks contain inadequate representation of geographical regions and historical periods. In order to improve detection of the DENV-1 to DENV-4 lineages, we report the development of a serotype-specific Sanger-based method standardized to sequence DENV-1 to DENV-4 directly from clinical samples using universal primers that detect most DENV genotypes. The resulting envelope protein coding sequences are analyzed for genotyping with phylogenetic methods. We evaluated the performance of this method by detecting, amplifying, and sequencing 54 contemporary DENV isolates, including 29 clinical samples, representing a variety of genotypes of epidemiological importance and global presence. All specimens were sequenced successfully and phylogenetic reconstructions resulted in the expected genotype classification. To further improve genomic surveillance in regions where dengue is endemic, this method was transferred to 16 public health laboratories in 13 Latin American countries, to date. Our objective is to provide an accessible method that facilitates the integration of genomics with dengue surveillance.
Collapse
|
40
|
Ahamed SF, Rosario V, Britto C, Dias M, Nayak K, Chandele A, Kaja MK, Shet A. Emergence of new genotypes and lineages of dengue viruses during the 2012-15 epidemics in southern India. Int J Infect Dis 2019; 84S:S34-S43. [PMID: 30639622 DOI: 10.1016/j.ijid.2019.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To genotypically characterize dengue virus (DENV) isolates among dengue-infected children from 2012-13/2014-15 outbreaks in southern India. METHODS Children hospitalized with suspected dengue were tested for dengue RT-PCR targeting Capsid-preMembrane (C-prM) and Envelope (Env) regions. Following virologic confirmation (n=612), a representative selection of DENV isolates (n=99) were sequenced for C-prM, aligned using ClustalW and subjected to phylogenetic analysis by maximum-likelihood method in MEGA6. RESULTS In 2012-13 (n=113), DENV-3 (44, 38.9%) and DENV-2 (43, 38.1%) predominated; DENV-1 (22, 19.5%) and DENV-4 (1, 0.9%) were less common. The pattern changed in 2014-15 (n=499), when DENV-1 (329, 65.7%) predominated, followed by DENV-2 (97, 21.2%), DENV-3 (36, 6.7%) and DENV-4 (10, 2.0%). Multiple-serotype co-infections occurred in 2.7% and 5.4% in 2012-13 and 2014-15, respectively. Genotype III (GIII) of DENV-1 predominated (85.7%) in 2012-13, ceding to GI predominance (80.8%) in 2014-15. Among DENV-2, 71.9% (23/32) showed distinct clustering suggesting a new lineage, 'GIVc'. All tested DENV-4 were GIC, whose clustering pattern showed the emergence of two distinct clades. CONCLUSIONS New genotypic/lineage variations in DENV-1 and DENV-2 may have influenced the magnitude and severity of dengue epidemics in southern India during this period. These findings emphasize the role of active surveillance of DENV serotypes/genotypes in aiding outbreak control and vaccine studies.
Collapse
Affiliation(s)
- Syed Fazil Ahamed
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India; The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bangalore, 560064, Karnataka, India.
| | - Vivek Rosario
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India.
| | - Carl Britto
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK.
| | - Mary Dias
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India; Department of Microbiology, St. John's Medical College Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India.
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Murali-Krishna Kaja
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Pediatrics, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Anita Shet
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, 415 N Washington St, Baltimore 21231, USA.
| |
Collapse
|
41
|
Transmission-clearance trade-offs indicate that dengue virulence evolution depends on epidemiological context. Nat Commun 2018; 9:2355. [PMID: 29907741 PMCID: PMC6003961 DOI: 10.1038/s41467-018-04595-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
An extensive body of theory addresses the topic of pathogen virulence evolution, yet few studies have empirically demonstrated the presence of fitness trade-offs that would select for intermediate virulence. Here we show the presence of transmission-clearance trade-offs in dengue virus using viremia measurements. By fitting a within-host model to these data, we further find that the interaction between dengue and the host immune response can account for the observed trade-offs. Finally, we consider dengue virulence evolution when selection acts on the virus’s production rate. By combining within-host model simulations with empirical findings on how host viral load affects human-to-mosquito transmission success, we show that the virus’s transmission potential is maximized at production rates associated with intermediate virulence and that the optimal production rate critically depends on dengue’s epidemiological context. These results indicate that long-term changes in dengue’s global distribution impact the invasion and spread of virulent dengue virus genotypes. Theory predicts that pathogens will evolve towards intermediate virulence, yet the necessary trade-offs invoked by this theory have rarely been demonstrated empirically. Here, the authors show that dengue virus dynamics exhibit a trade-off between transmission and clearance rates.
Collapse
|
42
|
Viral immunogenicity determines epidemiological fitness in a cohort of DENV-1 infection in Brazil. PLoS Negl Trop Dis 2018; 12:e0006525. [PMID: 29813061 PMCID: PMC5993327 DOI: 10.1371/journal.pntd.0006525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/08/2018] [Accepted: 05/14/2018] [Indexed: 01/17/2023] Open
Abstract
The dynamics of dengue virus (DENV) circulation depends on serotype, genotype and lineage replacement and turnover. In São José do Rio Preto, Brazil, we observed that the L6 lineage of DENV-1 (genotype V) remained the dominant circulating lineage even after the introduction of the L1 lineage. We investigated viral fitness and immunogenicity of the L1 and L6 lineages and which factors interfered with the dynamics of DENV epidemics. The results showed a more efficient replicative fitness of L1 over L6 in mosquitoes and in human and non-human primate cell lines. Infections by the L6 lineage were associated with reduced antigenicity, weak B and T cell stimulation and weak host immune system interactions, which were associated with higher viremia. Our data, therefore, demonstrate that reduced viral immunogenicity and consequent greater viremia determined the increased epidemiological fitness of DENV-1 L6 lineage in São José do Rio Preto.
Collapse
|
43
|
Dos Passos Cunha M, Ortiz-Baez AS, de Melo Freire CC, de Andrade Zanotto PM. Codon adaptation biases among sylvatic and urban genotypes of Dengue virus type 2. INFECTION GENETICS AND EVOLUTION 2018; 64:207-211. [PMID: 29792991 PMCID: PMC7106335 DOI: 10.1016/j.meegid.2018.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/09/2018] [Accepted: 05/20/2018] [Indexed: 11/29/2022]
Abstract
Dengue virus (DENV) emerged from the sylvatic environment and colonized urban settings, being sustained in a human-Aedes-human transmission chain, mainly by the bites of females of the anthropophilic species Aedes aegypti. Herein, we sought evidence for fine-tuning in viral codon usage, possibly due to viral adaptation to human transmission. We compared the codon adaptation of DENV serotype 2 (DENV-2) genotypes from urban and sylvatic habitats and tried to correlate the findings with key evolutionary determinants. We found that DENV-2 codons of urban and sylvatic genotypes had a higher CAI to humans than to Ae. aegypti. Remarkably, we found no significant differences in codon adaptation to human between urban American/Asian and sylvatic DENV-2 genotypes. Moreover, CAI values were significantly different, when comparing all genotypes to Ae. aegypti codon preferences, with lower values for sylvatic than urban genotypes. In summary, our findings suggest the presence of a molecular signature among the genotypes that circulate in sylvatic and urban environments, and may help explain the trafficking of DENV-2 strains to an urban cycle. DENV-2 codons of all genotypes had a higher CAI to humans than to Ae. Aegypti. CAI values for the sylvatic genotype were the lowest in humans and Ae. Aegypti. Similar CAI values were recovered for the American/Asian and the Sylvatic genotypes.
Collapse
Affiliation(s)
- Marielton Dos Passos Cunha
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Ayda Susana Ortiz-Baez
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | | | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
44
|
Pollett S, Melendrez MC, Maljkovic Berry I, Duchêne S, Salje H, Cummings DAT, Jarman RG. Understanding dengue virus evolution to support epidemic surveillance and counter-measure development. INFECTION GENETICS AND EVOLUTION 2018; 62:279-295. [PMID: 29704626 DOI: 10.1016/j.meegid.2018.04.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022]
Abstract
Dengue virus (DENV) causes a profound burden of morbidity and mortality, and its global burden is rising due to the co-circulation of four divergent DENV serotypes in the ecological context of globalization, travel, climate change, urbanization, and expansion of the geographic range of the Ae.aegypti and Ae.albopictus vectors. Understanding DENV evolution offers valuable opportunities to enhance surveillance and response to DENV epidemics via advances in RNA virus sequencing, bioinformatics, phylogenetic and other computational biology methods. Here we provide a scoping overview of the evolution and molecular epidemiology of DENV and the range of ways that evolutionary analyses can be applied as a public health tool against this arboviral pathogen.
Collapse
Affiliation(s)
- S Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Marie Bashir Institute, University of Sydney, NSW, Australia; Institute for Global Health Sciences, University of California at San Francisco, CA, USA.
| | - M C Melendrez
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - I Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - S Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia
| | - H Salje
- Institut Pasteur, Paris, France; Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - D A T Cummings
- Johns Hopkins School of Public Health, Baltimore, MD, USA; University of Florida, FL, USA
| | - R G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
45
|
Duangkhae P, Erdos G, Ryman KD, Watkins SC, Falo LD, Marques ETA, Barratt-Boyes SM. Interplay between Keratinocytes and Myeloid Cells Drives Dengue Virus Spread in Human Skin. J Invest Dermatol 2017; 138:618-626. [PMID: 29106931 DOI: 10.1016/j.jid.2017.10.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/08/2017] [Accepted: 10/08/2017] [Indexed: 01/19/2023]
Abstract
The skin is the site of dengue virus (DENV) transmission following the bite of an infected mosquito, but the contribution of individual cell types within skin to infection is unknown. We studied the dynamics of DENV infection in human skin explants using quantitative in situ imaging. DENV replicated primarily in the epidermis and induced a transient IFN-α response. DENV infected a wide range of cells, including Langerhans cells, macrophages, dermal dendritic cells, mast cells, fibroblasts, and lymphatic endothelium, but keratinocytes were the earliest targets of infection and made up 60% of infected cells over time. Virus inoculation led to recruitment and infection of Langerhans cells, macrophages, and dermal dendritic cells, and these cells emigrated from skin in increased numbers as a result of infection. DENV induced expression of proinflammatory cytokines and chemokines by infected keratinocytes. Blocking keratinocyte-derived IL-1β alone reduced infection of Langerhans cells, macrophages, and dermal dendritic cells by 75-90% and reduced the overall number of infected cells in dermis by 65%. These data show that the innate response of infected keratinocytes attracts virus-permissive myeloid cells that inadvertently spread DENV infection. Our findings highlight a role for keratinocytes and their interplay with myeloid cells in dengue.
Collapse
Affiliation(s)
- Parichat Duangkhae
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Geza Erdos
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kate D Ryman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon C Watkins
- Center for Biologic Imaging, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Louis D Falo
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ernesto T A Marques
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Aggeu Magalhães Research Center, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
| | - Simon M Barratt-Boyes
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
46
|
Han P, Ye W, Lv X, Ma H, Weng D, Dong Y, Cheng L, Chen H, Zhang L, Xu Z, Lei Y, Zhang F. DDX50 inhibits the replication of dengue virus 2 by upregulating IFN-β production. Arch Virol 2017; 162:1487-1494. [PMID: 28181036 DOI: 10.1007/s00705-017-3250-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/13/2017] [Indexed: 02/03/2023]
Abstract
Dengue virus (DENV) infects approximately 390 million people per year, and each of the four DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) is capable of causing infection. At present, there is no antiviral drug available for the treatment of DENV. Several DExD/H-box helicases have been shown to be involved in the antiviral immune response or viral replication. In the present study, we investigated the role of DDX50 in DENV-2 RNA replication. Our data showed that the level of DENV-2 RNA increased in DDX50 knockdown cells during an early stage of viral infection and decreased in DDX50-overexpressing cells. DDX50, in conjunction with RIG-I and MDA5, upregulated the production of IFN-β in infected cells through an additive effect on the IFN-β promoter. Furthermore, transcription of several IFN-stimulated genes was increased in DDX50-overexpressing cells infected with DENV-2. These results provide evidence that DDX50 negatively regulates DENV-2 replication during the early stages of infection by inducing IFN-β production.
Collapse
Affiliation(s)
- Peijun Han
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Wei Ye
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Xin Lv
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Hongwei Ma
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Daihui Weng
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Yangchao Dong
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Linfeng Cheng
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Hesong Chen
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Liang Zhang
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Zhikai Xu
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Yingfeng Lei
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China.
| | - Fanglin Zhang
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China.
| |
Collapse
|
47
|
Ramos-Castañeda J, Barreto dos Santos F, Martínez-Vega R, Galvão de Araujo JM, Joint G, Sarti E. Dengue in Latin America: Systematic Review of Molecular Epidemiological Trends. PLoS Negl Trop Dis 2017; 11:e0005224. [PMID: 28068335 PMCID: PMC5221820 DOI: 10.1371/journal.pntd.0005224] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/01/2016] [Indexed: 01/02/2023] Open
Abstract
Dengue, the predominant arthropod-borne viral disease affecting humans, is caused by one of four distinct serotypes (DENV-1, -2, -3 or -4). A literature analysis and review was undertaken to describe the molecular epidemiological trends in dengue disease and the knowledge generated in specific molecular topics in Latin America, including the Caribbean islands, from 2000 to 2013 in the context of regional trends in order to identify gaps in molecular epidemiological knowledge and future research needs. Searches of literature published between 1 January 2000 and 30 November 2013 were conducted using specific search strategies for each electronic database that was reviewed. A total of 396 relevant citations were identified, 57 of which fulfilled the inclusion criteria. All four dengue virus serotypes were present and co-circulated in many countries over the review period (with the predominance of individual serotypes varying by country and year). The number of countries in which more than one serotype circulated steadily increased during the period under review. Molecular epidemiology data were found for Argentina, Bolivia, Brazil, the Caribbean region, Colombia, Ecuador, Mexico and Central America, Paraguay, Peru and Venezuela. Distinct lineages with different dynamics were found in each country, with co-existence, extinction and replacement of lineages occurring over the review period. Despite some gaps in the literature limiting the possibility for comparison, our review has described the molecular epidemiological trends of dengue infection. However, several gaps in molecular epidemiological information across Latin America and the Caribbean were identified that provide avenues for future research; in particular, sequence determination of the dengue virus genome is important for more precise phylogenetic classification and correlation with clinical outcome and disease severity. The wide distribution of the mosquito vector and the co-circulation of multiple dengue virus serotypes has led to increases in the incidence of dengue in the Americas, where it is a major public health concern. Identifying molecular epidemiological trends may help to identify the reasons for the re-emergence of dengue across Latin America and the Caribbean, and, in turn, enable disease control and management. We conducted this review using well defined methods to search for and identify relevant research according to predetermined inclusion criteria. The objective was to obtain a clearer understanding of changes occurring within dengue serotypes that have resulted in substantial genetic diversity and the emergence of endemic and epidemic strains in different parts of the region. There remain fundamental gaps in our understanding of the epidemiological and evolutionary dynamics of dengue and its relation with disease, and it is not possible to correlate accurately spatial or temporal trends in disease epidemiology, disease severity, or the genetic diversity of DENV. It is important to maintain comprehensive epidemiological surveillance throughout the region (including sequencing of viral strains) to detect new DENV lineages and to understand the regional patterns of DENV dissemination.
Collapse
Affiliation(s)
- José Ramos-Castañeda
- Instituto Nacional de Salud Publica, Centro de Investigaciones sobre Enfermedades Infecciosas, Morelos, Mexico
| | - Flavia Barreto dos Santos
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz/ Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Josélio Maria Galvão de Araujo
- Laboratório de Biologia Molecular de Doenças Infecciosas e do Câncer, Departamento de Microbiologia e Parasitologia; Instituto de Medicina Tropical do Rio Grande do Norte; Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Graham Joint
- Synercom Ltd, Macclesfield, Cheshire, United Kingdom
| | | |
Collapse
|
48
|
Martina BE, Barzon L, Pijlman GP, de la Fuente J, Rizzoli A, Wammes LJ, Takken W, van Rij RP, Papa A. Human to human transmission of arthropod-borne pathogens. Curr Opin Virol 2016; 22:13-21. [PMID: 27915056 DOI: 10.1016/j.coviro.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022]
Abstract
Human-to-human (H2H) transmitted arthropod-borne pathogens are a growing burden worldwide, with malaria and dengue being the most common mosquito-borne H2H transmitted diseases. The ability of vectors to get infected by humans during a blood meal to further propel an epidemic depends on complex interactions between pathogens, vectors and humans, in which human interventions and demographic and environmental conditions play a significant role. Herein, we discuss the distal and proximal drivers affecting H2H vector-borne pathogen transmission and identify knowledge gaps and future perspectives.
Collapse
Affiliation(s)
- Byron E Martina
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, The Netherlands; Artemis One Health Research Institute, Utrecht, The Netherlands
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (Trento), Italy
| | - Linda J Wammes
- Department of Microbiology & Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
49
|
Drivers of Inter-individual Variation in Dengue Viral Load Dynamics. PLoS Comput Biol 2016; 12:e1005194. [PMID: 27855153 PMCID: PMC5113863 DOI: 10.1371/journal.pcbi.1005194] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022] Open
Abstract
Dengue is a vector-borne viral disease of humans that endemically circulates in many tropical and subtropical regions worldwide. Infection with dengue can result in a range of disease outcomes. A considerable amount of research has sought to improve our understanding of this variation in disease outcomes and to identify predictors of severe disease. Contributing to this research, patterns of viral load in dengue infected patients have been quantified, with analyses indicating that peak viral load levels, rates of viral load decline, and time to peak viremia are useful predictors of severe disease. Here, we take a complementary approach to understanding patterns of clinical manifestation and inter-individual variation in viral load dynamics. Specifically, we statistically fit mathematical within-host models of dengue to individual-level viral load data to test virological and immunological hypotheses explaining inter-individual variation in dengue viral load. We choose between alternative models using model selection criteria to determine which hypotheses are best supported by the data. We first show that the cellular immune response plays an important role in regulating viral load in secondary dengue infections. We then provide statistical support for the process of antibody-dependent enhancement (but not original antigenic sin) in the development of severe disease in secondary dengue infections. Finally, we show statistical support for serotype-specific differences in viral infectivity rates, with infectivity rates of dengue serotypes 2 and 3 exceeding those of serotype 1. These results contribute to our understanding of dengue viral load patterns and their relationship to the development of severe dengue disease. They further have implications for understanding how dengue transmissibility may depend on the immune status of infected individuals and the identity of the infecting serotype. Dengue is an important vector-borne disease that infects four-hundred million individuals annually. Infection results in a wide range of clinical symptoms. Though many risk factors of dengue are known, the mechanisms explaining why an individual will suffer severe symptoms are poorly understood. Clinical studies have shown characteristics of viral load kinetics of dengue-infected individuals may be indicators of disease severity. However, viral load measurements vary considerably by individual. Here we use statistical methods to empirically test hypotheses that may explain variation in dengue viral load patterns by clinical manifestation and by serotype. We show that there is statistical support for antibodies being responsible for higher disease severity during secondary dengue infections and for high viral infectivity rates of dengue serotypes 2 and 3 relative to dengue 1. These results further understanding of the relationship between viral load patterns and severe dengue disease and have important implications for dengue transmissibility.
Collapse
|
50
|
Ashraf HM, Zahoor MK, Nasir S, Majeed HN, Zahoor S. Genetic Analysis of Aedes aegypti Using Random Amplified Polymorphic DNA (RAPD) Markers from Dengue Outbreaks in Pakistan. J Arthropod Borne Dis 2016; 10:546-559. [PMID: 28032107 PMCID: PMC5186745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/28/2015] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Keeping in view the havoc situation of dengue fever in Pakistan, the current study was designed to demonstrate the genetic variations, gene flow and rate of migration from Lahore and Faisalabad. METHODS The larvae were collected from both natural and artificial breeding places from each collection site. The adult mosquitoes were collected by means of sweep net and battery-operated aspirator. DNA extraction was performed using TNE buffer method. Ten GeneLink-A series RAPD primers were used for PCR amplification and the data was analyzed through POPGENE. RESULTS The number of amplification products produced per primer varied from 8-12, ranging from 200 to 2000 bp with an average of 10.0 bands per primer. The percentage of polymorphic loci amplified by each primer varied from 22.5 to 51%. The UPGMA dendrogram demonstrates two distinct groups from Faisalabad and Lahore populations. The genetic diversity ranged from 0.260 in Faisalabad to 0.294 in Lahore with a total heterozygosity of 0.379. The GST value for nine populations within Lahore was 0.131 (Nm= 3.317), whereas for nine populations in Faisalabad GST value was 0.117 (Nm= 3.773). The overall genetic variation among eighteen populations showed GST= 0.341 and Nm= 1.966. CONCLUSION The genetic relatedness and Nm value show that Ae. aegypti populations exhibit intra-population gene flow both in Faisalabad and Lahore. Although, both cities show a distinct pattern of genetic structure; however, few areas from both the cities show genetic similarity. The gene flow and the genetic relatedness in few populations of Lahore and Faisalabad cities need further investigation.
Collapse
Affiliation(s)
- Hafiz Muhammad Ashraf
- Department of Zoology, Government College University Faisalabad, Islamabad, Pakistan
| | - Muhammad Kashif Zahoor
- Department of Zoology, Government College University Faisalabad, Islamabad, Pakistan,Corresponding author: Dr Muhammad Kashif Zahoor, E-mail:
| | - Shabab Nasir
- Department of Zoology, Government College University Faisalabad, Islamabad, Pakistan
| | - Humara Naz Majeed
- Department Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, UK
| | - Sarwat Zahoor
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|