1
|
Sakudo A, Furusaki K, Onishi R, Onodera T, Yoshikawa Y. A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals. Microorganisms 2025; 13:507. [PMID: 40142400 PMCID: PMC11946018 DOI: 10.3390/microorganisms13030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants and coral are separated, the crystals of the mesoscopic structure can be reformed by applying a high voltage under a specific set of conditions. A suspension of these mesoscopic crystals in water (CAC-717) can be used as an effective disinfectant. CAC-717 exhibits universal virucidal activity against both enveloped and non-enveloped viruses as well as bactericidal and anti-prion activity. Moreover, in comparison to sodium hypochlorite, the potency of CAC-717 as a disinfectant is less susceptible to organic substances such as albumin. The disinfection activity of CAC-717 is maintained for at least 6 years and 4 months after storage at room temperature. CAC-717 is non-irritating and harmless to humans and animals, making it a promising biosafe disinfectant. This review explores the disinfection activity of CAC-717 as well as the potential and future uses of this material.
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan;
| | - Koichi Furusaki
- Mineral Activation Technical Research Center, Omuta 836-0041, Fukuoka, Japan
| | - Rumiko Onishi
- Santa Mineral Co., Ltd., Minato-ku 105-0013, Tokyo, Japan
| | - Takashi Onodera
- Environmental Science for Sustainable Development, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan;
- Research Center for Food Safety, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan
| | - Yasuhiro Yoshikawa
- School of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan;
- Environmental Science for Sustainable Development, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan;
- Institute of Environmental Microbiology, Kyowa Kako Co., Ltd., Machida 194-0035, Tokyo, Japan
| |
Collapse
|
2
|
Herzog L, Reine F, Castille J, Passet B, Moudjou M, Bonnet R, Torres JM, Rezaei H, Vilotte JL, Béringue V, Igel A. Optimization and evaluation of new decontamination procedures inactivating human prions. J Hosp Infect 2025; 160:109-117. [PMID: 39952613 DOI: 10.1016/j.jhin.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/19/2024] [Indexed: 02/17/2025]
Abstract
BACKGROUND Prions are protein-only infectious agents for which no prophylactic or curative treatment exists. There is a need for formulations effective against human prions and robust in-vitro and in-vivo evaluation protocols. AIM To compare infectivity bioassays with those of their protein misfolding cyclic amplification (PMCA) counterparts to propose a robust method for evaluating prionicide treatments against human prions. METHODS Stainless steel wires were contaminated with two humanized prion strains. The wires were then treated with different protocols based on a new formulation termed TFD Premium and World Health Organization (WHO) references. Residual prion seeding activity and infectivity on the wire and in wastewater were quantified using mb-PMCA and ad-hoc bioassays. For vCJD, PMCA compared humanized prions and a human-derived prion isolate. FINDINGS TFD Premium was more efficient at decontaminating humanized prions than 1 N NaOH for 1 h at room temperature. Tg650-sCJD-VV2 was more resistant to inactivation than vCJD prions. For vCJD, strain from both sources showed similar resistant profile against TFD Premium. Finally, there was perfect alignment between the highly sensitive PMCA cell-free assay and the bioassays. CONCLUSION This study identified a new formulation called TFD Premium, which outperforms or equals the WHO reference methods against human prions and is suitable for manual and automated reprocessing of medical devices in healthcare facilities.
Collapse
Affiliation(s)
- L Herzog
- Molecular Virology Immunology (VIM) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - F Reine
- Molecular Virology Immunology (VIM) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - J Castille
- Animal Genetics and Integrative Biology (GABI) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - B Passet
- Animal Genetics and Integrative Biology (GABI) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - M Moudjou
- Molecular Virology Immunology (VIM) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - R Bonnet
- FB Product, Torcé viviers en charnie, France
| | - J M Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Madrid, Spain
| | - H Rezaei
- Molecular Virology Immunology (VIM) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - J-L Vilotte
- Animal Genetics and Integrative Biology (GABI) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - V Béringue
- Molecular Virology Immunology (VIM) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France
| | - A Igel
- Molecular Virology Immunology (VIM) Unit, Université Paris-Saclay, INRAE, UVSQ, Jouy-en-Josas, France; FB Product, Torcé viviers en charnie, France.
| |
Collapse
|
3
|
Groveman BR, Race B, Hughson AG, Haigh CL. Sodium hypochlorite inactivation of human CJD prions. PLoS One 2024; 19:e0312837. [PMID: 39509453 PMCID: PMC11542847 DOI: 10.1371/journal.pone.0312837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Prion diseases are transmissible, fatal neurologic diseases of mammals caused by the accumulation of mis-folded, disease associated prion protein (PrPd). Creutzfeldt-Jakob Disease (CJD) is the most common human prion disease and can occur by sporadic onset (sCJD) (~85% of CJD cases), genetic mutations in the prion protein gene (10-15%) or iatrogenic transmission (rare). PrPd is difficult to inactivate and many methods to reduce prion infectivity are dangerous, caustic, expensive, or impractical. Identifying viable and safe methods for decontamination of CJD exposed materials is critically important for medical facilities and research institutions. Previous research has shown that concentrated sodium hypochlorite (bleach) was effective at inactivation of CJD prions derived from brains of mice or guinea pigs. Unfortunately, human prions adapted to rodents may mis-fold differently than in humans, and the rodent adapted prions may not have the same resistance or susceptibility to inactivation present in bona fide CJD prions. To confirm that bleach was efficacious against human sourced CJD prions, we exposed different subtypes of sCJD-infected human brain homogenates to different concentrations of bleach for increasing exposure times. Initial and residual prion seeding activity following inactivation were measured using Real-Time Quaking Induced Conversion. In addition, we tested how passage of human sCJD into either transgenic mice that expressed human prion protein, or transmission of CJD to human cerebral organoids (CO), two common laboratory practices, may affect CJD prions' susceptibility to bleach inactivation. Our results show that bleach is effective against human sourced sCJD prions, and both treatment time and concentration of bleach were important factors for CJD inactivation. CJD derived from human brains, transgenic mouse brains or CO were all susceptible to inactivation with as low as a 10 percent bleach solution with a 30-minute exposure time or a 50 percent bleach solution with as little as a 1-minute exposure time.
Collapse
Affiliation(s)
- Bradley R. Groveman
- The Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- The Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Andrew G. Hughson
- The Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Cathryn L. Haigh
- The Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
4
|
Simmons SM, Payne VL, Hrdlicka JG, Taylor J, Larsen PA, Wolf TM, Schwabenlander MD, Yuan Q, Bartz JC. Rapid and sensitive determination of residual prion infectivity from prion-decontaminated surfaces. mSphere 2024; 9:e0050424. [PMID: 39189773 PMCID: PMC11423590 DOI: 10.1128/msphere.00504-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/21/2024] [Indexed: 08/28/2024] Open
Abstract
Prion diseases are untreatable fatal transmissible neurodegenerative diseases that affect a wide range of mammals, including humans, and are caused by PrPSc, the infectious self-templating conformation of the host-encoded protein, PrPC. Prion diseases can be transmitted via surfaces (e.g., forceps, EEG electrodes) in laboratory and clinical settings. Here, we use a combination of surface swabbing and real-time quaking-induced conversion (RT-QuIC) to test for residual surface-associated prions following prion disinfection. We found that treatment of several prion-contaminated laboratory and clinically relevant surfaces with either water or 70% EtOH resulted in robust detection of surface-associated prions. In contrast, treatment of surfaces with sodium hypochlorite resulted in a failure to detect surface-associated prions. RT-QuIC analysis of prion-contaminated stainless steel wires paralleled the findings of the surface swab studies. Importantly, animal bioassay and RT-QuIC analysis of the same swab extracts are in agreement. We report on conditions that may interfere with the assay that need to be taken into consideration before using this technique. Overall, this method can be used to survey laboratory and clinical surfaces for prion infectivity following prion decontamination protocols.IMPORTANCEPrion diseases can be accidentally transmitted in clinical and occupational settings. While effective means of prion decontamination exist, methods for determining the effectiveness are only beginning to be described. Here, we analyze surface swab extracts using real-time quaking-induced conversion (RT-QuIC) to test for residual prions following prion disinfection of relevant clinical and laboratory surfaces. We found that this method can rapidly determine the efficacy of surface prion decontamination. Importantly, examination of surface extracts with RT-QuIC and animal bioassay produced similar findings, suggesting that this method can accurately assess the reduction in prion titer. We identified surface contaminants that interfere with the assay, which may be found in clinical and laboratory settings. Overall, this method can enhance clinical and laboratory prion safety measures.
Collapse
Affiliation(s)
- Sara M. Simmons
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | | | - Jay G. Hrdlicka
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Jack Taylor
- Biostatistical Core Facility, Creighton University, Omaha, Nebraska, USA
| | - Peter A. Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Tiffany M. Wolf
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Marc D. Schwabenlander
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Qi Yuan
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Prion Research Center, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
5
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Adkin A, Andreoletti O, Griffin J, Lanfranchi B, Ortiz‐Pelaez A, Ordonez AA. BSE risk posed by ruminant collagen and gelatine derived from bones. EFSA J 2024; 22:e8883. [PMID: 39015303 PMCID: PMC11249823 DOI: 10.2903/j.efsa.2024.8883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
The European Commission requested an estimation of the BSE risk (C-, L- and H-BSE) from gelatine and collagen derived from ovine, caprine or bovine bones, and produced in accordance with Regulation (EC) No 853/2004, or Regulation (EC) No 1069/2009 and its implementing Regulation (EU) No 142/2011. A quantitative risk assessment was developed to estimate the BSE infectivity, measured in cattle oral infectious dose 50 (CoID50), in a small size batch of gelatine including one BSE-infected bovine or ovine animal at the clinical stage. The model was built on a scenario where all ruminant bones could be used for the production of gelatine and high-infectivity tissues remained attached to the skull (brain) and vertebral column (spinal cord). The risk and exposure pathways defined for humans and animals, respectively, were identified. Exposure routes other than oral via food and feed were considered and discussed but not assessed quantitatively. Other aspects were also considered as integrating evidence, like the epidemiological situation of the disease, the species barrier, the susceptibility of species to BSE and the assumption of an exponential dose-response relationship to determine the probability of BSE infection in ruminants. Exposure to infectivity in humans cannot be directly translated to risk of disease because the transmission barrier has not yet been quantified, although it is considered to be substantial, i.e. much greater amounts of infectivity would be needed to successfully infect a human and greater in the oral than in the parenteral route of exposure. The probability that no new case of BSE in the cattle or small ruminant population would be generated through oral exposure to gelatine made of ruminant bones is 99%-100% (almost certain) This conclusion is based on the current state of knowledge, the epidemiological situation of the disease and the current practices, and is also valid for collagen.
Collapse
|
6
|
Heinzer D, Avar M, Pfammatter M, Moos R, Schwarz P, Buhmann MT, Kuhn B, Mauerhofer S, Rosenberg U, Aguzzi A, Hornemann S. Advancing surgical instrument safety: A screen of oxidative and alkaline prion decontaminants using real-time quaking-induced conversion with prion-coated steel beads as surgical instrument mimetic. PLoS One 2024; 19:e0304603. [PMID: 38870196 PMCID: PMC11175539 DOI: 10.1371/journal.pone.0304603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Iatrogenic transmission of prions, the infectious agents of fatal Creutzfeldt-Jakob disease, through inefficiently decontaminated medical instruments remains a critical issue. Harsh chemical treatments are effective, but not suited for routine reprocessing of reusable surgical instruments in medical cleaning and disinfection processes due to material incompatibilities. The identification of mild detergents with activity against prions is therefore of high interest but laborious due to the low throughput of traditional assays measuring prion infectivity. Here, we report the establishment of TESSA (sTainlESs steel-bead Seed Amplification assay), a modified real-time quaking induced cyclic amplification (RT-QuIC) assay that explores the propagation activity of prions with stainless steel beads. TESSA was applied for the screening of about 70 different commercially available and novel formulations and conditions for their prion inactivation efficacy. One hypochlorite-based formulation, two commercially available alkaline formulations and a manual alkaline pre-cleaner were found to be highly effective in inactivating prions under conditions simulating automated washer-disinfector cleaning processes. The efficacy of these formulations was confirmed in vivo in a murine prion infectivity bioassay, yielding a reduction of the prion titer for bead surface adsorbed prions below detectability. Our data suggest that TESSA represents an effective method for a rapid screening of prion-inactivating detergents, and that alkaline and oxidative formulations are promising in reducing the risk of potential iatrogenic prion transmission through insufficiently decontaminated instrument surfaces.
Collapse
Affiliation(s)
- Daniel Heinzer
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Merve Avar
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | - Rita Moos
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Iwamaru Y, Furusaki K, Sugiura K, Haritani M, Onodera T. Ceramic absorbed with calcium bicarbonate mesoscopic crystals partially inactivate scrapie prions. Microbiol Immunol 2023; 67:447-455. [PMID: 37517033 DOI: 10.1111/1348-0421.13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders affecting both humans and animals. The causative agent, prion, is extremely resistant to common disinfection procedures. Thus, effective prion inactivation strategies using relatively safe and less corrosive disinfectants are required. A solution containing CAC-717, mesoscopic crystals of calcium bicarbonate, exerts both antimicrobial and virucidal activities without apparent harmful effects. This study demonstrated that combined treatment with CAC-717 absorbed on ceramic (CAC-717 ceramic) and sodium dodecyl sulfate (SDS) substantially reduced the protein misfolding cyclic amplification (PMCA) seeding activity of Chandler strain scrapie mouse-brain homogenates (ScBH). Additionally, bioassays demonstrated that ScBH-inoculated mice treated with CAC-717 ceramic in combination with sodium dodecyl sulfate (SDS) did not develop disease. Furthermore, this combination effectively inactivated PMCA seeding activity on ScBH-coated stainless-steel wires below the detection limit. Overall, the findings suggest that combined treatment with CAC-717 ceramic and SDS represents a promising and less damaging approach for prion inactivation.
Collapse
Affiliation(s)
- Yoshifumi Iwamaru
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Koichi Furusaki
- Mineral Activation Technical Research Center, Omuta, Fukuoka, Japan
| | - Katsuaki Sugiura
- Environmental Science for Sustainable Development, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Haritani
- Environmental Science for Sustainable Development, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Onodera
- Environmental Science for Sustainable Development, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
8
|
Baune C, Groveman BR, Hughson AG, Thomas T, Twardoski B, Priola S, Chesebro B, Race B. Efficacy of Wex-cide 128 disinfectant against multiple prion strains. PLoS One 2023; 18:e0290325. [PMID: 37616303 PMCID: PMC10449212 DOI: 10.1371/journal.pone.0290325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Prion diseases are transmissible, fatal neurologic diseases that include Creutzfeldt-Jakob Disease (CJD) in humans, chronic wasting disease (CWD) in cervids, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. Prions are extremely difficult to inactivate and established methods to reduce prion infectivity are often dangerous, caustic, expensive, or impractical. Identifying viable and safe methods for treating prion contaminated materials is important for hospitals, research facilities, biologists, hunters, and meat-processors. For three decades, some prion researchers have used a phenolic product called Environ LpH (eLpH) to inactivate prions. ELpH has been discontinued, but a similar product, Wex-cide 128, containing the similar phenolic chemicals as eLpH is now available. In the current study, we directly compared the anti-prion efficacy of eLpH and Wex-cide 128 against prions from four different species (hamster 263K, cervid CWD, mouse 22L and human CJD). Decontamination was performed on either prion infected brain homogenates or prion contaminated steel wires and mouse bioassay was used to quantify the remaining prion infectivity. Our data show that both eLpH and Wex-cide 128 removed 4.0-5.5 logs of prion infectivity from 22L, CWD and 263K prion homogenates, but only about 1.25-1.50 logs of prion infectivity from human sporadic CJD. Wex-cide 128 is a viable substitute for inactivation of most prions from most species, but the resistance of CJD to phenolic inactivation is a concern and emphasizes the fact that inactivation methods should be confirmed for each target prion strain.
Collapse
Affiliation(s)
- Chase Baune
- The Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bradley R. Groveman
- The Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Andrew G. Hughson
- The Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Barry Twardoski
- Office of Operations Management, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Suzette Priola
- The Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bruce Chesebro
- The Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- The Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
9
|
Han JY, Park KJ, Park HC, Lee YR, Moore RA, Sohn HJ, Choi YP. Autoclave treatment fails to completely inactivate DLB alpha-synuclein seeding activity. Biochem Biophys Rep 2023; 34:101446. [PMID: 36923008 PMCID: PMC10009011 DOI: 10.1016/j.bbrep.2023.101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Synucleinopathies are characterized by the deposition of alpha-synuclein (α-syn) aggregates in brain tissue. Pathological α-syn aggregates propagate in a prion-like manner and display prion-like biochemical properties. Using RT-QuIC, we measured α-syn seeding activity from brains of Dementia with Lewy body (DLB) patients post autoclave. Here, we show that autoclaving at 121 °C removes one to two log10 of α-syn seeding activity but the remaining 50% seeding dose (SD50) is more than 107/mg tissue. DLB brain samples autoclaved at 132 °C still revealed an SD50 of approximately 106/mg tissue. Our data suggest that DLB α-syn seeds are incompletely inactivated by standard autoclave, thus highlighting the need for evaluating laboratory procedures that fully inactivate them.
Collapse
Affiliation(s)
- Jung-Youn Han
- Laboratory Animal Center, Division of Research Strategy, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kyung-Je Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hoo-Chang Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yu-Ran Lee
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | | | - Hyun-Joo Sohn
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Young Pyo Choi
- Laboratory Animal Center, Division of Research Strategy, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
10
|
Kinetics of the reduction of Creutzfeldt-Jakob disease prion seeding activity by steam sterilization support the use of validated 134°C programmes. J Hosp Infect 2023; 132:125-132. [PMID: 36216171 DOI: 10.1016/j.jhin.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Prions are renowned for their distinct resistance to chemical or physical inactivation, including steam sterilization. Impaired efficacy of inactivation poses a risk to patients for iatrogenic transmission of Creutzfeldt-Jakob disease (CJD) via contaminated surgical instruments. AIMS Most established prion inactivation methods were validated against scrapie agents, although those were found to be generally less thermostable than human prions. Thus, knowledge gaps regarding steam-sterilization kinetics of CJD prions should be filled and current guidelines reviewed accordingly. METHODS Prion inactivation through widely recommended steam sterilization at 134°C was assessed for several holding times by analysing the residual prion seeding activity using protein misfolding cyclic amplification (PMCA). FINDINGS Scrapie 263K was found to be the least thermoresistant prion strain showing no seeding activity after 1.5 min at 134°C, while variant CJD was the most stable one demonstrating some seeding activity even after 18 min of steam sterilization. Sporadic CJD subtype VV2 exhibited residual seeding activity after 3 min, but no detectable activity after 5 min at 134°C. CONCLUSION Validated steam sterilization for 5 min at 134°C as previously recommended for the routine reprocessing of surgical instruments in contact with high-risk tissues is able to substantially reduce the seeding activity of CJD agents, provided that no fixating chemical disinfection has been performed prior to sterilization and that thorough cleaning has reduced the protein load on the surface to less than 100 μg per instrument.
Collapse
|
11
|
Harm TA, Smith JD, Cassmann ED, Greenlee JJ. Combinatorial treatment of brain samples from sheep with scrapie using sodium percarbonate, sodium dodecyl sulfate, and proteinase K increases survival time in inoculated susceptible sheep. Res Vet Sci 2022; 152:497-503. [PMID: 36162234 DOI: 10.1016/j.rvsc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
The agent of scrapie is resistant to most chemical and physical methods of inactivation. Prions bind to soils, metals, and various materials and persist in the environment confounding the control of prion diseases. Most methods of prion inactivation require severe conditions such as prolong exposure to sodium hypochlorite or autoclaving, which may not be suitable for field conditions. We evaluated the efficacy of a combinatorial approach to inactivation of US scrapie strain x124 under the mild conditions of treating scrapie-affected brain homogenate with sodium percarbonate (SPC), sodium dodecyl sulfate (SDS), or in combination followed by proteinase K (PK) digestion at room temperature. Western blot analysis of treated brain homogenate demonstrates partial reduction in PrPSc immunoreactivity. Genetically susceptible VRQ/ARQ Suffolk sheep were oronasally inoculated with 1 g of SPC (n = 1), SDS (n = 2), SDS + PK (n = 2), and SPC + SDS + PK (n = 4) treated brain homogenate. Sheep were assessed daily for clinical signs, euthanized at the development of clinical disease, and tissues were assessed for accumulation of PrPSc. Scrapie status in all sheep was determined by western blot, enzyme immunoassay, and immunohistochemistry. Mean incubation periods (IPs) for SPC (11.9 months, 0% survival), SDS (12.6 months, 0% survival), SDS + PK (14.0 months, 0% survival), and SPC + SDS + PK (12.5 months, 25% survival) were increased compared to positive control sheep (n = 2, 10.7 months, 0% survival) by 1.2, 1.9, 3.3, and 1.8 months, respectively. Treatment did not influence PrPSc accumulation and distribution at the clinical stage of disease. Differences in mean IPs and survival indicates partial but not complete reduction in scrapie infectivity.
Collapse
Affiliation(s)
- Tyler A Harm
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Jodi D Smith
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States of America
| | - Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America.
| |
Collapse
|
12
|
Recent Advances in Prion Inactivation by Plasma Sterilizer. Int J Mol Sci 2022; 23:ijms231810241. [PMID: 36142166 PMCID: PMC9499420 DOI: 10.3390/ijms231810241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 12/31/2022] Open
Abstract
Prions, which cause transmissible spongiform encephalopathies (TSEs), are a notorious group of infectious agents with possibly the highest resistance to complete inactivation. Although various gas plasma instruments have been developed, studies on prion inactivation using gas plasma instruments are limited. Among them, the hydrogen peroxide gas plasma instrument, STERRAD® (Advanced Sterilization Products; ASP, Johnson & Johnson, Irvine, CA, USA), is recommended for prion inactivation of heat-sensitive medical devices. However, STERRAD® is not a plasma sterilizer but a hydrogen peroxide gas sterilizer. In STERRAD®, plasma generated by radio frequency (RF) discharge removes excess hydrogen peroxide gas and does not contribute to sterilization. This is also supported by evidence that the instrument was not affected by the presence or absence of RF gas plasma. However, recent studies have shown that other gas plasma instruments derived from air, nitrogen, oxygen, Ar, and a mixture of gases using corona, dielectric barrier, microwave, and pulse discharges can inactivate scrapie prions. As inactivation studies on prions other than scrapie are limited, further accumulation of evidence on the effectiveness of gas plasma using human-derived prion samples is warranted for practical purposes.
Collapse
|
13
|
Kostelanska M, Holada K. Prion Strains Differ in Susceptibility to Photodynamic Oxidation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030611. [PMID: 35163872 PMCID: PMC8840242 DOI: 10.3390/molecules27030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
Prion disorders, or transmissible spongiform encephalophaties (TSE), are fatal neurodegenerative diseases affecting mammals. Prion-infectious particles comprise of misfolded pathological prion proteins (PrPTSE). Different TSEs are associated with distinct PrPTSE folds called prion strains. The high resistance of prions to conventional sterilization increases the risk of prion transmission in medical, veterinary and food industry practices. Recently, we have demonstrated the ability of disulfonated hydroxyaluminum phthalocyanine to photodynamically inactivate mouse RML prions by generated singlet oxygen. Herein, we studied the efficiency of three phthalocyanine derivatives in photodynamic treatment of seven mouse adapted prion strains originating from sheep, human, and cow species. We report the different susceptibilities of the strains to photodynamic oxidative elimination of PrPTSE epitopes: RML, A139, Fu-1 > mBSE, mvCJD > ME7, 22L. The efficiency of the phthalocyanine derivatives in the epitope elimination also differed (AlPcOH(SO3)2 > ZnPc(SO3)1-3 > SiPc(OH)2(SO3)1-3) and was not correlated to the yields of generated singlet oxygen. Our data suggest that the structural properties of both the phthalocyanine and the PrPTSE strain may affect the effectiveness of the photodynamic prion inactivation. Our finding provides a new option for the discrimination of prion strains and highlights the necessity of utilizing range of prion strains when validating the photodynamic prion decontamination procedures.
Collapse
|
14
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fernández Escámez P, Spiropoulos J, Iulietto MF, Ortiz‐Peláez A, Alvarez‐Ordóñez A. Evaluation of the application for new alternative biodiesel production process for rendered fat including Category 1 animal by-products (BDI-RepCat ® process, AT). EFSA J 2021; 19:e06511. [PMID: 33889218 PMCID: PMC8048768 DOI: 10.2903/j.efsa.2021.6511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A new alternative method for the production of biodiesel from rendered fat, including animal by-product (ABP) Category 1 tallow, was evaluated. The method consists of a conversion phase, based on esterification and transesterification in a single step (at temperature ≥ 200°C, pressure ≥ 70 bar with a retention time ≥ 15 min), using MgO as a catalyst and in the presence of methanol (10-15%), followed by vacuum distillation (at ≥ 150°C, ≤ 10 mbar) of the end-product, biodiesel and the co-product, glycerine. Prions (PrPS c), which are abnormal isoforms of the prion protein, were considered by the applicant to be the most resistant hazard. In accordance with previous EFSA Opinions and current expert evaluation, a reduction in prion infectivity, or detectable PrPS c, of at least 6 log10 should be achieved for the process to be considered equivalent to the processing method laid down in the Regulation (EU) No 142/2011. Published data from an experimental replication of the conversion step of the biodiesel production process under consideration were provided, which showed an at least 6 log10 reduction in detectable PrPS c, by Western blot, in tallow that had been spiked with murine and human prion strains. In addition, it was demonstrated that the presence of methanol does not affect the recovery or detection of PrPS c from a biodiesel substrate. Based on scientific literature, the vacuum distillation step has been shown to be capable of achieving an additional 3 log10 reduction in PrPS c. Therefore, the proposed alternative method is considered to be at least equivalent to the processing method laid down in the legislation for the production of biodiesel from raw materials including Category 1 ABP.
Collapse
|
15
|
Moudjou M, Castille J, Passet B, Herzog L, Reine F, Vilotte JL, Rezaei H, Béringue V, Igel-Egalon A. Improving the Predictive Value of Prion Inactivation Validation Methods to Minimize the Risks of Iatrogenic Transmission With Medical Instruments. Front Bioeng Biotechnol 2020; 8:591024. [PMID: 33335894 PMCID: PMC7736614 DOI: 10.3389/fbioe.2020.591024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Prions are pathogenic infectious agents responsible for fatal, incurable neurodegenerative diseases in animals and humans. Prions are composed exclusively of an aggregated and misfolded form (PrPSc) of the cellular prion protein (PrPC). During the propagation of the disease, PrPSc recruits and misfolds PrPC into further PrPSc. In human, iatrogenic prion transmission has occurred with incompletely sterilized medical material because of the unusual resistance of prions to inactivation. Most commercial prion disinfectants validated against the historical, well-characterized laboratory strain of 263K hamster prions were recently shown to be ineffective against variant Creutzfeldt-Jakob disease human prions. These observations and previous reports support the view that any inactivation method must be validated against the prions for which they are intended to be used. Strain-specific variations in PrPSc physico-chemical properties and conformation are likely to explain the strain-specific efficacy of inactivation methods. Animal bioassays have long been used as gold standards to validate prion inactivation methods, by measuring reduction of prion infectivity. Cell-free assays such as the real-time quaking-induced conversion (RT-QuIC) assay and the protein misfolding cyclic amplification (PMCA) assay have emerged as attractive alternatives. They exploit the seeding capacities of PrPSc to exponentially amplify minute amounts of prions in biospecimens. European and certain national medicine agencies recently implemented their guidelines for prion inactivation of non-disposable medical material; they encourage or request the use of human prions and cell-free assays to improve the predictive value of the validation methods. In this review, we discuss the methodological and technical issues regarding the choice of (i) the cell-free assay, (ii) the human prion strain type, (iii) the prion-containing biological material. We also introduce a new optimized substrate for high-throughput PMCA amplification of human prions bound on steel wires, as translational model for prion-contaminated instruments.
Collapse
Affiliation(s)
- Mohammed Moudjou
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Johan Castille
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Bruno Passet
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Fabienne Reine
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Human Rezaei
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Vincent Béringue
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Angélique Igel-Egalon
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France.,FB.INT'L, Montigny-le-Bretonneux, France
| |
Collapse
|
16
|
Eraña H, Pérez-Castro MÁ, García-Martínez S, Charco JM, López-Moreno R, Díaz-Dominguez CM, Barrio T, González-Miranda E, Castilla J. A Novel, Reliable and Highly Versatile Method to Evaluate Different Prion Decontamination Procedures. Front Bioeng Biotechnol 2020; 8:589182. [PMID: 33195153 PMCID: PMC7658626 DOI: 10.3389/fbioe.2020.589182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/14/2020] [Indexed: 01/16/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of invariably fatal neurodegenerative disorders. The causal agent is an aberrantly folded isoform (PrPSc or prion) of the endogenous prion protein (PrPC) which is neurotoxic and amyloidogenic and induces misfolding of its physiological counterpart. The intrinsic physical characteristics of these infectious proteinaceous pathogens makes them highly resistant to the vast majority of physicochemical decontamination procedures used typically for standard disinfection. This means prions are highly persistent in contaminated tissues, the environment (surfaces) and, of great concern, on medical and surgical instruments. Traditionally, decontamination procedures for prions are tested on natural isolates coming from the brain of infected individuals with an associated high heterogeneity resulting in highly variable results. Using our novel ability to produce highly infectious recombinant prions in vitro we adapted the system to enable recovery of infectious prions from contaminated materials. This method is easy to perform and, importantly, results in highly reproducible propagation in vitro. It exploits the adherence of infectious prion protein to beads of different materials allowing accurate and repeatable assessment of the efficacy of disinfectants of differing physicochemical natures to eliminate infectious prions. This method is technically easy, requires only a small shaker and a standard biochemical technique and could be performed in any laboratory.
Collapse
Affiliation(s)
- Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Atlas Molecular Pharma S. L., Bizkaia Technology Park, Derio, Spain
| | - Miguel Ángel Pérez-Castro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Sandra García-Martínez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Atlas Molecular Pharma S. L., Bizkaia Technology Park, Derio, Spain
| | - Jorge M Charco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Atlas Molecular Pharma S. L., Bizkaia Technology Park, Derio, Spain
| | - Rafael López-Moreno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Carlos M Díaz-Dominguez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Tomás Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Ezequiel González-Miranda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Atlas Molecular Pharma S. L., Bizkaia Technology Park, Derio, Spain
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
17
|
Stevenson M, Uttley L, Oakley JE, Carroll C, Chick SE, Wong R. Interventions to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease: a cost-effective modelling review. Health Technol Assess 2020; 24:1-150. [PMID: 32122460 PMCID: PMC7103914 DOI: 10.3310/hta24110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Creutzfeldt-Jakob disease is a fatal neurological disease caused by abnormal infectious proteins called prions. Prions that are present on surgical instruments cannot be completely deactivated; therefore, patients who are subsequently operated on using these instruments may become infected. This can result in surgically transmitted Creutzfeldt-Jakob disease. OBJECTIVE To update literature reviews, consultation with experts and economic modelling published in 2006, and to provide the cost-effectiveness of strategies to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease. METHODS Eight systematic reviews were undertaken for clinical parameters. One review of cost-effectiveness was undertaken. Electronic databases including MEDLINE and EMBASE were searched from 2005 to 2017. Expert elicitation sessions were undertaken. An advisory committee, convened by the National Institute for Health and Care Excellence to produce guidance, provided an additional source of information. A mathematical model was updated focusing on brain and posterior eye surgery and neuroendoscopy. The model simulated both patients and instrument sets. Assuming that there were potentially 15 cases of surgically transmitted Creutzfeldt-Jakob disease between 2005 and 2018, approximate Bayesian computation was used to obtain samples from the posterior distribution of the model parameters to generate results. Heuristics were used to improve computational efficiency. The modelling conformed to the National Institute for Health and Care Excellence reference case. The strategies evaluated included neither keeping instruments moist nor prohibiting set migration; ensuring that instruments were kept moist; prohibiting instrument migration between sets; and employing single-use instruments. Threshold analyses were undertaken to establish prices at which single-use sets or completely effective decontamination solutions would be cost-effective. RESULTS A total of 169 papers were identified for the clinical review. The evidence from published literature was not deemed sufficiently strong to take precedence over the distributions obtained from expert elicitation. Forty-eight papers were identified in the review of cost-effectiveness. The previous modelling structure was revised to add the possibility of misclassifying surgically transmitted Creutzfeldt-Jakob disease as another neurodegenerative disease, and assuming that all patients were susceptible to infection. Keeping instruments moist was estimated to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease cases and associated costs. Based on probabilistic sensitivity analyses, keeping instruments moist was estimated to on average result in 2.36 (range 0-47) surgically transmitted Creutzfeldt-Jakob disease cases (across England) caused by infection occurring between 2019 and 2023. Prohibiting set migration or employing single-use instruments reduced the estimated risk of surgically transmitted Creutzfeldt-Jakob disease cases further, but at considerable cost. The estimated costs per quality-adjusted life-year gained of these strategies in addition to keeping instruments moist were in excess of £1M. It was estimated that single-use instrument sets (currently £350-500) or completely effective cleaning solutions would need to cost approximately £12 per patient to be cost-effective using a £30,000 per quality-adjusted life-year gained value. LIMITATIONS As no direct published evidence to implicate surgery as a cause of Creutzfeldt-Jakob disease has been found since 2005, the estimations of potential cases from elicitation are still speculative. A particular source of uncertainty was in the number of potential surgically transmitted Creutzfeldt-Jakob disease cases that may have occurred between 2005 and 2018. CONCLUSIONS Keeping instruments moist is estimated to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease cases and associated costs. Further surgical management strategies can reduce the risks of surgically transmitted Creutzfeldt-Jakob disease but have considerable associated costs. STUDY REGISTRATION This study is registered as PROSPERO CRD42017071807. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 11. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Matt Stevenson
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Lesley Uttley
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Jeremy E Oakley
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Christopher Carroll
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | | | - Ruth Wong
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Bélondrade M, Jas-Duval C, Nicot S, Bruyère-Ostells L, Mayran C, Herzog L, Reine F, Torres JM, Fournier-Wirth C, Béringue V, Lehmann S, Bougard D. Correlation between Bioassay and Protein Misfolding Cyclic Amplification for Variant Creutzfeldt-Jakob Disease Decontamination Studies. mSphere 2020; 5:e00649-19. [PMID: 31996421 PMCID: PMC6992370 DOI: 10.1128/msphere.00649-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/05/2020] [Indexed: 12/20/2022] Open
Abstract
To date, approximately 500 iatrogenic Creutzfeldt-Jakob disease cases have been reported worldwide, most of them resulting from cadaveric dura mater graft and from the administration of prion-contaminated human growth hormone. The unusual resistance of prions to decontamination processes, their large tissue distribution, and the uncertainty about the prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the general population lead to specific recommendations regarding identification of tissue at risk and reprocessing of reusable medical devices, including the use of dedicated treatment for prion inactivation. We previously described an in vitro assay, called Surf-PMCA, which allowed us to classify prion decontamination treatments according to their efficacy on vCJD prions by monitoring residual seeding activity (RSA). Here, we used a transgenic mouse line permissive to vCJD prions to study the correlation between the RSA measured in vitro and the in vivo infectivity. Implantation in mouse brains of prion-contaminated steel wires subjected to different decontamination procedures allows us to demonstrate a good concordance between RSA measured by Surf-PMCA (in vitro) and residual infectivity (in vivo). These experiments emphasize the strength of the Surf-PMCA method as a rapid and sensitive assay for the evaluation of prion decontamination procedures and also confirm the lack of efficacy of several marketed reagents on vCJD prion decontamination.IMPORTANCE Creutzfeldt-Jakob diseases are neurodegenerative disorders for which transmission linked to medical procedures have been reported in hundreds of patients. As prion diseases, they are characterized by an unusual resistance to conventional decontamination processes. Moreover, their large tissue distribution and the ability of prions to attach to many surfaces raised the risk of transmission in health care facilities. It is therefore of major importance that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated for prion inactivation. We previously described an in vitro assay, which allowed us to classify accurately prion decontamination treatments according to their efficacy on variant Creutzfeldt-Jakob disease. The significance of this study is in demonstrating the concordance between previous in vitro results and infectivity studies in transgenic mice. Furthermore, commercial reagents currently used in hospitals were tested by both protocols, and we observed that most of them were ineffective on human prions.
Collapse
Affiliation(s)
- Maxime Bélondrade
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Christelle Jas-Duval
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
- VIM INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Simon Nicot
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Lilian Bruyère-Ostells
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Charly Mayran
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | | | - Fabienne Reine
- VIM INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Madrid, Spain
| | - Chantal Fournier-Wirth
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | | | - Sylvain Lehmann
- CHRU de Montpellier and Université de Montpellier, IRMB, INSERM U1183, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Daisy Bougard
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Ellett LJ, Revill ZT, Koo YQ, Lawson VA. Strain variation in treatment and prevention of human prion diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:121-145. [PMID: 32958230 DOI: 10.1016/bs.pmbts.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases describe a number of different human disorders that differ in their clinical phenotypes, which are nonetheless united by their transmissible nature and common pathology. Clinical variation in the absence of a conventional infectious agent is believed to be encoded by different conformations of the misfolded prion protein. This misfolded protein is the target of methods designed to prevent disease transmission in a surgical setting and reduction of the misfolded seed or preventing its continued propagation have been the focus of therapeutic strategies. It is therefore possible that strain variation may influence the efficacy of prevention and treatment approaches. Historically, an understanding of prion disease transmission and pathogenesis has been focused on research tools developed using agriculturally relevant strains of prion disease. However, an increased understanding of the molecular biology of human prion disorders has highlighted differences not only between different forms of the disease affecting humans and animals but also within diseases such as Creutzfeldt-Jakob Disease (CJD), which is represented by several sporadic CJD specific conformations and an additional conformation associated with variant CJD. In this chapter we will discuss whether prion strain variation can affect the efficacy of methods used to decontaminate prions and whether strain variation in pre-clinical models of prion disease can be used to identify therapeutic strategies that have the best possible chance of success in the clinic.
Collapse
Affiliation(s)
- Laura J Ellett
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Zoe T Revill
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Yong Qian Koo
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Victoria A Lawson
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
20
|
Abstract
The prion strain, surface type, and matrix containing PrPSc can influence PrPSc surface adsorption. The cumulative effect of these factors can result in strain- and soil-specific differences in prion bioavailability. Environmental weathering processes can result in decreases in PrPSc conversion efficiency and infectivity. Little is known about how incomplete inactivation of surface-bound PrPSc affects transmission and prion strain emergence. Here, we show that strain interference occurs with soil-bound prions and that altering the ratios of prion strains by strain-specific inactivation can affect strain emergence. Additionally, we identify a novel mechanism of inhibition of prion conversion by environmental treatment-induced changes at the soil-protein interface altering strain emergence. These novel findings suggest that environmental factors can influence strain emergence of surface-bound prions. Prions can persist in the environment for extended periods of time after adsorption to surfaces, including soils, feeding troughs, or fences. Prion strain- and soil-specific differences in prion adsorption, infectivity, and response to inactivation may be involved in strain maintenance or emergence of new strains in a population. Extensive proteinase K (PK) digestion of Hyper (HY) and Drowsy (DY) PrPSc resulted in a greater reduction in the level of DY PrPSc than of HY PrPSc. Use of the PK-digested material in protein misfolding cyclic amplification strain interference (PMCAsi) resulted in earlier emergence of HY PrPSc than of undigested controls. This result established that strain-specific alteration of the starting ratios of conversion-competent HY and DY PrPSc can alter strain emergence. We next investigated whether environmentally relevant factors such as surface binding and weathering could alter strain emergence. Adsorption of HY and DY PrPSc to silty clay loam (SCL), both separately and combined, resulted in DY interfering with the emergence of HY in PMCAsi in a manner similar to that seen with unbound controls. Similarly, repeated cycles of wetting and drying of SCL-bound HY and DY PrPSc did not alter the emergence of HY PrPSc compared to untreated controls. Importantly, these data indicate that prion strain interference can occur when prions are bound to surfaces. Interestingly, we found that drying of adsorbed brain homogenate on SCL could restore its ability to interfere with the emergence of HY, suggesting a novel strain interference mechanism. Overall, these data provide evidence that the emergence of a strain from a mixture can be influenced by nonhost factors. IMPORTANCE The prion strain, surface type, and matrix containing PrPSc can influence PrPSc surface adsorption. The cumulative effect of these factors can result in strain- and soil-specific differences in prion bioavailability. Environmental weathering processes can result in decreases in PrPSc conversion efficiency and infectivity. Little is known about how incomplete inactivation of surface-bound PrPSc affects transmission and prion strain emergence. Here, we show that strain interference occurs with soil-bound prions and that altering the ratios of prion strains by strain-specific inactivation can affect strain emergence. Additionally, we identify a novel mechanism of inhibition of prion conversion by environmental treatment-induced changes at the soil-protein interface altering strain emergence. These novel findings suggest that environmental factors can influence strain emergence of surface-bound prions.
Collapse
|
21
|
Williams K, Hughson AG, Chesebro B, Race B. Inactivation of chronic wasting disease prions using sodium hypochlorite. PLoS One 2019; 14:e0223659. [PMID: 31584997 PMCID: PMC6777796 DOI: 10.1371/journal.pone.0223659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 11/18/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal prion disease that can infect deer, elk and moose. CWD has now been detected in 26 states of the USA, 3 Canadian provinces, South Korea, Norway, Sweden and Finland. CWD continues to spread from endemic areas, and new foci of infections are frequently detected. As increasing numbers of cervids become infected, the likelihood for human exposure increases. To date, no cases of CWD infection in humans have been confirmed, but experience with the BSE zoonosis in the United Kingdom suggests exposure to CWD should be minimized. Specifically, hunters, meat processors and others in contact with tissues from potentially CWD-infected cervids need a practical method to decontaminate knives, saws and other equipment. Prions are notoriously difficult to inactivate, and most effective methods require chemicals or sterilization processes that are either dangerous, caustic, expensive or not readily available. Although corrosive, sodium hypochlorite (bleach) is widely available and affordable and has been shown to inactivate prion agents including those that cause scrapie, bovine spongiform encephalopathy and Creutzfeldt-Jakob disease. In the current study, we confirm that bleach is an effective disinfectant for CWD prions and establish minimum times and bleach concentrations to eliminate prion seeding activity from stainless steel and infected brain homogenate solutions. We found that a five-minute treatment with a 40% dilution of household bleach was effective at inactivating CWD seeding activity from stainless-steel wires and CWD-infected brain homogenates. However, bleach was not able to inactivate CWD seeding activity from solid tissues in our studies.
Collapse
Affiliation(s)
- Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Andrew G. Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
22
|
Processing of high-titer prions for mass spectrometry inactivates prion infectivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1174-1180. [PMID: 30282615 DOI: 10.1016/j.bbapap.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/20/2018] [Accepted: 08/18/2018] [Indexed: 12/15/2022]
Abstract
Prions represent a class of universally fatal and transmissible neurodegenerative disorders that affect humans and other mammals. The prion agent contains a pathologically aggregated form of the host prion protein that can transmit infectivity without any bacterial or viral component and is thus difficult to inactivate using disinfection protocols designed for infectious microorganisms. Methods for prion inactivation include treatment with acids, bases, detergents, bleach, prolonged autoclaving and incineration. During these procedures, the sample is often either destroyed or damaged such that further analysis for research purposes is compromised. In this study we show that a straightforward denaturation and in-gel protease digestion protocol used to prepare prion-infected samples for mass spectroscopy leads to the loss of at least 7 logs of prion infectivity, yielding a final product that fails to transmit prion disease in vivo. We further show that the resultant sample remains suitable for mass spectrometry-based protein identifications. Thus, the procedure described can be used to prepare prion-infected samples for mass spectrometry analysis with greatly reduced biosafety concerns.
Collapse
|
23
|
Rehbein P, Schwalbe H. Improved high-yield expression, purification and refolding of recombinant mammalian prion proteins under aerosol-free elevated biological safety conditions. Protein Expr Purif 2018; 150:53-60. [PMID: 29751084 DOI: 10.1016/j.pep.2018.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 11/28/2022]
Abstract
Production of recombinant prion proteins is of crucial relevance in food technology (analytical standards, assay development) but also in basic research, most importantly structural biology (NMR, X-ray diffraction). Structural approaches conveniently allow for sophisticated investigation of prion disease pathogenesis, but usually require large amounts of sample material. Recently, working with recombinant prion proteins has been recategorized to biosafety levels > S1 as infectious prions may readily be generated de novo and become airborne via aerosols. Heterologous expression should therefore be established with appropriately adjusted safety precautions. We have developed a protocol for high-yield expression, purification and refolding of recombinant mammalian prion proteins at elevated biological safety levels by introducing means of abolishing aerosol formation and propagation.
Collapse
Affiliation(s)
- Peter Rehbein
- Institute for Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany.
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Observance of Sterilization Protocol Guideline Procedures of Critical Instruments for Preventing Iatrogenic Transmission of Creutzfeldt-Jakob Disease in Dental Practice in France, 2017. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050853. [PMID: 29693615 PMCID: PMC5981892 DOI: 10.3390/ijerph15050853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 11/30/2022]
Abstract
Effective sterilization of reusable instruments contaminated by Creutzfeldt–Jakob disease in dental care is a crucial issue for public health. The present cross-sectional study investigated how the recommended procedures for sterilization were implemented by French dental practices in real-world settings. A sample of dental practices was selected in the French Rhône-Alpes region. Data were collected by a self-questionnaire in 2016. Sterilization procedures (n = 33) were classified into 4 groups: (1) Pre-sterilization cleaning of reusable instruments; (2) Biological verification of sterilization cycles—Monitoring steam sterilization procedures; (3) Autoclave performance and practitioner knowledge of autoclave use; (4) Monitoring and documentation of sterilization procedures—Tracking and tracing the instrumentation. Answers were provided per procedure, along with the global implementation of procedures within a group (over 80% correctly performed). Then it was verified how adherence to procedure groups varied with the size of the dental practice and the proportion of dental assistants within the team. Among the 179 questionnaires available for the analyses, adherence to the recommended procedures of sterilization noticeably varied between practices, from 20.7% to 82.6%. The median percentages of procedures correctly implemented per practice were 58.1%, 50.9%, 69.2% and 58.2%, in Groups 1, 2, 3 and 4, respectively (corresponding percentages for performing over 80% of the procedures in the group: 23.4%, 6.6%, 46.6% and 38.6%). Dental practices ≥ 3 dental units performed significantly better (>80%) procedures of Groups 2 and 4 (p = 0.01 and p = 0.002, respectively), while no other significant associations emerged. As a rule, practices complied poorly with the recommended procedures, despite partially improved results in bigger practices. Specific training regarding sterilization procedures and a better understanding of the reasons leading to their non-compliance are needed.
Collapse
|
25
|
Tarutani A, Arai T, Murayama S, Hisanaga SI, Hasegawa M. Potent prion-like behaviors of pathogenic α-synuclein and evaluation of inactivation methods. Acta Neuropathol Commun 2018; 6:29. [PMID: 29669601 PMCID: PMC5907316 DOI: 10.1186/s40478-018-0532-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The concept that abnormal protein aggregates show prion-like propagation between cells has been considered to explain the onset and progression of many neurodegenerative diseases. Indeed, both synthetic amyloid-like fibrils and pathogenic proteins extracted from patients’ brains induce self-templated amplification and cell-to-cell transmission in vitro and in vivo. However, it is unclear whether exposure to exogenous prion-like proteins can potentially cause these diseases in humans. Here, we investigated in detail the prion-like seeding activities of several kinds of pathogenic α-synuclein (α-syn), including synthetic fibrils and detergent-insoluble fractions extracted from brains of patients with α-synucleinopathies. Exposure to synthetic α-syn fibrils at concentrations above 100 pg/mL caused seeded aggregation of α-syn in SH-SY5Y cells, and seeded aggregation was also observed in C57BL/6 J mice after intracerebral inoculation of at least 0.1 μg/animal. α-Syn aggregates extracted from brains of multiple system atrophy (MSA) patients showed higher seeding activity than those extracted from patients with dementia with Lewy bodies (DLB), and their potency was similar to that of synthetic α-syn fibrils. We also examined the effects of various methods that have been reported to inactivate abnormal prion proteins (PrPSc), including autoclaving at various temperatures, exposure to sodium dodecyl sulfate (SDS), and combined treatments. The combination of autoclaving and 1% SDS substantially reduced the seeding activities of synthetic α-syn fibrils and α-syn aggregates extracted from MSA brains. However, single treatment with 1% SDS or generally used sterilization conditions proved insufficient to prevent accumulation of pathological α-syn. In conclusion, α-syn aggregates derived from MSA patients showed a potent prion-like seeding activity, which could be efficiently reduced by combined use of SDS and autoclaving.
Collapse
|
26
|
Dehydration of Prions on Environmentally Relevant Surfaces Protects Them from Inactivation by Freezing and Thawing. J Virol 2018; 92:JVI.02191-17. [PMID: 29386284 DOI: 10.1128/jvi.02191-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/24/2018] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) is an emerging prion disease in North America. Recent identification of CWD in wild cervids from Norway raises the concern of the spread of CWD in Europe. CWD infectivity can enter the environment through live animal excreta and carcasses where it can bind to soil. Well-characterized hamster prion strains and CWD field isolates in unadsorbed or soil-adsorbed forms that were either hydrated or dehydrated were subjected to repeated rounds of freezing and thawing. We found that 500 cycles of repeated freezing and thawing of hydrated samples significantly decreased the abundance of PrPSc and reduced protein misfolding cyclic amplification (PMCA) seeding activity that could be rescued by binding to soil. Importantly, dehydration prior to freezing and thawing treatment largely protected PrPSc from degradation, and the samples maintained PMCA seeding activity. We hypothesize that redistribution of water molecules during the freezing and thawing process alters the stability of PrPSc aggregates. Overall, these results have significant implications for the assessment of prion persistence in the environment.IMPORTANCE Prions excreted into the environment by infected animals, such as elk and deer infected with chronic wasting disease, persist for years and thus facilitate horizontal transmission of the disease. Understanding the fate of prions in the environment is essential to control prion disease transmission. The significance of our study is that it provides information on the possibility of prion degradation and inactivation under natural weathering processes. This information is significant for remediation of prion-contaminated environments and development of prion disease control strategies.
Collapse
|
27
|
Woerman AL, Kazmi SA, Patel S, Freyman Y, Oehler A, Aoyagi A, Mordes DA, Halliday GM, Middleton LT, Gentleman SM, Olson SH, Prusiner SB. MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol 2018; 135:49-63. [PMID: 28849371 DOI: 10.1007/s00401-017-1762-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/23/2023]
Abstract
In multiple system atrophy (MSA), progressive neurodegeneration results from the protein α-synuclein misfolding into a self-templating prion conformation that spreads throughout the brain. MSA prions are transmissible to transgenic (Tg) mice expressing mutated human α-synuclein (TgM83+/-), inducing neurological disease following intracranial inoculation with brain homogenate from deceased patient samples. Noting the similarities between α-synuclein prions and PrP scrapie (PrPSc) prions responsible for Creutzfeldt-Jakob disease (CJD), we investigated MSA transmission under conditions known to result in PrPSc transmission. When peripherally exposed to MSA via the peritoneal cavity, hind leg muscle, and tongue, TgM83+/- mice developed neurological signs accompanied by α-synuclein prions in the brain. Iatrogenic CJD, resulting from PrPSc prion adherence to surgical steel instruments, has been investigated by incubating steel sutures in contaminated brain homogenate before implantation into mouse brain. Mice studied using this model for MSA developed disease, whereas wire incubated in control homogenate had no effect on the animals. Notably, formalin fixation did not inactivate α-synuclein prions. Formalin-fixed MSA patient samples also transmitted disease to TgM83+/- mice, even after incubating in fixative for 244 months. Finally, at least 10% sarkosyl was found to be the concentration necessary to partially inactivate MSA prions. These results demonstrate the robustness of α-synuclein prions to denaturation. Moreover, they establish the parallel characteristics between PrPSc and α-synuclein prions, arguing that clinicians should exercise caution when working with materials that might contain α-synuclein prions to prevent disease.
Collapse
|
28
|
Giles K, Woerman AL, Berry DB, Prusiner SB. Bioassays and Inactivation of Prions. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023499. [PMID: 28246183 DOI: 10.1101/cshperspect.a023499] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The experimental study of prions requires a model for their propagation. However, because prions lack nucleic acids, the simple techniques used to replicate bacteria and viruses are not applicable. For much of the history of prion research, time-consuming bioassays in animals were the only option for measuring infectivity. Although cell models and other in vitro tools for the propagation of prions have been developed, they all suffer limitations, and animal bioassays remain the gold standard for measuring infectivity. A wealth of recent data argues that both β-amyloid (Aβ) and tau proteins form prions that cause Alzheimer's disease, and α-synuclein forms prions that cause multiple system atrophy and Parkinson's disease. Cell and animal models that recapitulate some of the key features of cell-to-cell spreading and distinct strains of prions can now be measured.
Collapse
Affiliation(s)
- Kurt Giles
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158.,Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Amanda L Woerman
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158.,Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - David B Berry
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158.,Department of Neurology, University of California, San Francisco, San Francisco, California 94158.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
29
|
McGlinchey RP, Lee JC. Reversing the amyloid trend: Mechanism of fibril assembly and dissolution of the repeat domain from a human functional amyloid. Isr J Chem 2017; 57:613-621. [PMID: 28993712 PMCID: PMC5630176 DOI: 10.1002/ijch.201600080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Amyloids are traditionally observed in the context of disease. However, there is growing momentum that these structures can serve a beneficial role where the amyloid carries out a specific function. These so called 'functional amyloids' have all the structural hallmarks of disease-associated amyloids, raising the question as to what differentiates a well-behaved benign amyloid from a lethally destructive one. Here, we review our work on the repeat domain (RPT) from Pmel17, an important functional amyloid involved in melanin biosynthesis. Particularly, we focused our attention on the unique reversible aggregation-disaggregation process of RPT that is controlled strictly by solution pH. This pH dependence of RPT amyloid formation functions as a switch to control fibril assembly and maintains the benign nature that is associated with functional amyloids.
Collapse
Affiliation(s)
- Ryan P. McGlinchey
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Jennifer C. Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
30
|
Botsios S, Tittman S, Manuelidis L. Rapid chemical decontamination of infectious CJD and scrapie particles parallels treatments known to disrupt microbes and biofilms. Virulence 2016; 6:787-801. [PMID: 26556670 DOI: 10.1080/21505594.2015.1098804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative human CJD and sheep scrapie are diseases caused by several different transmissible encephalopathy (TSE) agents. These infectious agents provoke innate immune responses in the brain, including late-onset abnormal prion protein (PrP-res) amyloid. Agent particles that lack detectable PrP sequences by deep proteomic analysis are highly infectious. Yet these agents, and their unusual resistance to denaturation, are often evaluated by PrP amyloid disruption. To reexamine the intrinsic resistance of TSE agents to denaturation, a paradigm for less resistant viruses and microbes, we developed a rapid and reproducible high yield agent isolation procedure from cultured cells that minimized PrP amyloid and other cellular proteins. Monotypic neuronal GT1 cells infected with the FU-CJD or 22L scrapie agents do not have complex brain changes that can camouflage infectious particles and prevent their disruption, and there are only 2 reports on infectious titers of any human CJD strain treated with chemical denaturants. Infectious titers of both CJD and scrapie were reduced by >4 logs with Thiourea-urea, a treatment not previously tested. A mere 5 min exposure to 4M GdnHCl at 22°C reduced infectivity by >5 logs. Infectious 22L particles were significantly more sensitive to denaturation than FU-CJD particles. A protocol using sonication with these chemical treatments may effectively decontaminate complicated instruments, such as duodenoscopes that harbor additional virulent microbes and biofilms associated with recent iatrogenic infections.
Collapse
Affiliation(s)
- Sotirios Botsios
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| | - Sarah Tittman
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| | - Laura Manuelidis
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| |
Collapse
|
31
|
Inactivation of Prions and Amyloid Seeds with Hypochlorous Acid. PLoS Pathog 2016; 12:e1005914. [PMID: 27685252 PMCID: PMC5042475 DOI: 10.1371/journal.ppat.1005914] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/04/2016] [Indexed: 11/19/2022] Open
Abstract
Hypochlorous acid (HOCl) is produced naturally by neutrophils and other cells to kill conventional microbes in vivo. Synthetic preparations containing HOCl can also be effective as microbial disinfectants. Here we have tested whether HOCl can also inactivate prions and other self-propagating protein amyloid seeds. Prions are deadly pathogens that are notoriously difficult to inactivate, and standard microbial disinfection protocols are often inadequate. Recommended treatments for prion decontamination include strongly basic (pH ≥~12) sodium hypochlorite bleach, ≥1 N sodium hydroxide, and/or prolonged autoclaving. These treatments are damaging and/or unsuitable for many clinical, agricultural and environmental applications. We have tested the anti-prion activity of a weakly acidic aqueous formulation of HOCl (BrioHOCl) that poses no apparent hazard to either users or many surfaces. For example, BrioHOCl can be applied directly to skin and mucous membranes and has been aerosolized to treat entire rooms without apparent deleterious effects. Here, we demonstrate that immersion in BrioHOCl can inactivate not only a range of target microbes, including spores of Bacillus subtilis, but also prions in tissue suspensions and on stainless steel. Real-time quaking-induced conversion (RT-QuIC) assays showed that BrioHOCl treatments eliminated all detectable prion seeding activity of human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, cervine chronic wasting disease, sheep scrapie and hamster scrapie; these findings indicated reductions of ≥103- to 106-fold. Transgenic mouse bioassays showed that all detectable hamster-adapted scrapie infectivity in brain homogenates or on steel wires was eliminated, representing reductions of ≥~105.75-fold and >104-fold, respectively. Inactivation of RT-QuIC seeding activity correlated with free chlorine concentration and higher order aggregation or destruction of proteins generally, including prion protein. BrioHOCl treatments had similar effects on amyloids composed of human α-synuclein and a fragment of human tau. These results indicate that HOCl can block the self-propagating activity of prions and other amyloids. Many serious diseases have been linked to pathogenic states of various proteins. These naturally occurring proteins can be corrupted to form aggregates such as prions and amyloids that propagate in and between tissues by acting as seeds that convert the normal form of the protein into more of the pathological form. For example, corrupted prion protein can cause fatal transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease in humans, chronic wasting disease in cervids and bovine spongiform encephalopathy. Other amyloid-forming protein aggregates are pathogenic in Parkinson’s, Alzheimer’s, and other diseases. The fact that prions and amyloids are composed predominantly of tough, tightly packed proteins makes them unusually resistant to conventional microbial disinfection procedures. Infectious prions can persist indefinitely in, or on, a variety of materials such as tissues, fluids, tools, instruments, and environmental surfaces, making it important to identify decontaminants that are effective without being dangerous or damaging. Here we show that hypochlorous acid, a disinfectant that is produced naturally by certain cells within the body, has strong anti-prion and anti-amyloid activity. We find that a non-irritating and broadly applicable hypochlorous acid preparation can disinfect prions in tissue homogenates and on stainless steel wires serving as surrogates for surgical instruments.
Collapse
|
32
|
Chesney AR, Booth CJ, Lietz CB, Li L, Pedersen JA. Peroxymonosulfate Rapidly Inactivates the Disease-Associated Prion Protein. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7095-105. [PMID: 27247993 PMCID: PMC5337124 DOI: 10.1021/acs.est.5b06294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Prions, the etiological agents in transmissible spongiform encephalopathies, exhibit remarkable resistance to most methods of inactivation that are effective against conventional pathogens. Prions are composed of pathogenic conformers of the prion protein (PrP(TSE)). Some prion diseases are transmitted, in part, through environmental routes. The recalcitrance of prions to inactivation may lead to a persistent reservoir of infectivity that contributes to the environmental maintenance of epizootics. At present, few methods exist to remediate prion-contaminated land surfaces. Here we conducted a proof-of-principle study to examine the ability of peroxymonosulfate to degrade PrP(TSE). We find that peroxymonosulfate rapidly degrades PrP(TSE) from two species. Transition-metal-catalyzed decomposition of peroxymonosulfate to produce sulfate radicals appears to enhance degradation. We further demonstrate that exposure to peroxymonosulfate significantly reduced PrP(C) to PrP(TSE) converting ability as measured by protein misfolding cyclic amplification, used as a proxy for infectivity. Liquid chromatography-tandem mass spectrometry revealed that exposure to peroxymonosulfate results in oxidative modifications to methionine and tryptophan residues. This study indicates that peroxymonosulfate may hold promise for decontamination of prion-contaminated surfaces.
Collapse
Affiliation(s)
- Alexandra R. Chesney
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| | - Clarissa J. Booth
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| | | | - Lingjun Li
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin, Madison, WI 53706, USA
| | - Joel A. Pedersen
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
- Department of Soil Science, University of Wisconsin, Madison, WI 53706, USA
- Corresponding Author: tel: (608) 263-4971; fax: (608) 265-2595;
| |
Collapse
|
33
|
Kim Y, Rodriguez AE, Nowzari H. The Risk of Prion Infection through Bovine Grafting Materials. Clin Implant Dent Relat Res 2016; 18:1095-1102. [PMID: 26856530 DOI: 10.1111/cid.12391] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bovine-derived grafting materials are frequently used in a variety of bone augmentation techniques. The aim of this paper is to assess the unique safety issue of bovine-derived grafting materials that is rarely addressed in dental literature: risk of bovine spongiform encephalopathy (BSE). METHODS The validity of the current BSE diagnostic methods, surveillance and epidemiological trends in affected countries, and BSE infectivity in bovine bone before and after manufacturing processing were reviewed and analyzed. RESULTS Prion screening has significant limits. Humans are not safe from the infection of prion disease of other species. Prions can and do break the species barrier. There is evidence there may be tens of thousands of infectious carriers in the western countries alone. This raises concern about the potential for perpetuation of infection via medical procedures. CONCLUSION The limited ability to screen prions within the animal genome, along with a long latency period to manifestation of the disease (1 to over 50 years) in infected patients, provides a framework for discussing posible long-term risks of the xenografts that are used so extensively in dentistry. We suggest abolishing the use of bovine bone.
Collapse
Affiliation(s)
- Yeoungsug Kim
- Private practice, K-205, Banpodong 929, Sechogu, Seoul, Korea
| | - Angel Emmanuel Rodriguez
- Resident, Periodontology and Oral Biology Program, Henry M. Goldman School of Dental Medicine, Boston University
| | - Hessam Nowzari
- Private practice, 120 South Spalding Drive, Suite 201, Beverly Hills, CA, 90212, USA
| |
Collapse
|
34
|
Belondrade M, Nicot S, Béringue V, Coste J, Lehmann S, Bougard D. Rapid and Highly Sensitive Detection of Variant Creutzfeldt-Jakob Disease Abnormal Prion Protein on Steel Surfaces by Protein Misfolding Cyclic Amplification: Application to Prion Decontamination Studies. PLoS One 2016; 11:e0146833. [PMID: 26800081 PMCID: PMC4723062 DOI: 10.1371/journal.pone.0146833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022] Open
Abstract
The prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE) by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA) technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA). This assay allowed the specific detection of minute quantities (10−8 brain dilution) of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions.
Collapse
Affiliation(s)
- Maxime Belondrade
- Laboratoire TransDiag, UMR 1058, Etablissement Français du Sang Pyrénées-Méditerranée, Montpellier, France
| | - Simon Nicot
- Laboratoire TransDiag, UMR 1058, Etablissement Français du Sang Pyrénées-Méditerranée, Montpellier, France
| | - Vincent Béringue
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Joliette Coste
- Laboratoire TransDiag, UMR 1058, Etablissement Français du Sang Pyrénées-Méditerranée, Montpellier, France
| | - Sylvain Lehmann
- CHRU de Montpellier and Université de Montpellier, IRMB, INSERM U1183, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Daisy Bougard
- Laboratoire TransDiag, UMR 1058, Etablissement Français du Sang Pyrénées-Méditerranée, Montpellier, France
- * E-mail:
| |
Collapse
|
35
|
Scientific Opinion on a request for a review of a scientific publication concerning the zoonotic potential of ovine scrapie prions. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
36
|
Prion amplification and hierarchical Bayesian modeling refine detection of prion infection. Sci Rep 2015; 5:8358. [PMID: 25665713 PMCID: PMC5389033 DOI: 10.1038/srep08358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/19/2015] [Indexed: 12/05/2022] Open
Abstract
Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15–100%) than IHC of obex (brain stem, 76.56%, CI 57.00–91.46%) or retropharyngeal lymph node (90.06%, CI 74.13–98.70%) tissues, or both (98.99%, CI 90.01–100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50–32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.
Collapse
|
37
|
|
38
|
Belay ED, Schonberger LB, Brown P, Priola SA, Chesebro B, Will RG, Asher DM. Disinfection and Sterilization of Prion-Contaminated Medical Instruments. Infect Control Hosp Epidemiol 2015; 31:1304-6; author reply 1306-8. [DOI: 10.1086/657579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Nizhnikov AA, Alexandrov AI, Ryzhova TA, Mitkevich OV, Dergalev AA, Ter-Avanesyan MD, Galkin AP. Proteomic screening for amyloid proteins. PLoS One 2014; 9:e116003. [PMID: 25549323 PMCID: PMC4280166 DOI: 10.1371/journal.pone.0116003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
Despite extensive study, progress in elucidation of biological functions of amyloids and their role in pathology is largely restrained due to the lack of universal and reliable biochemical methods for their discovery. All biochemical methods developed so far allowed only identification of glutamine/asparagine-rich amyloid-forming proteins or proteins comprising amyloids that form large deposits. In this article we present a proteomic approach which may enable identification of a broad range of amyloid-forming proteins independently of specific features of their sequences or levels of expression. This approach is based on the isolation of protein fractions enriched with amyloid aggregates via sedimentation by ultracentrifugation in the presence of strong ionic detergents, such as sarkosyl or SDS. Sedimented proteins are then separated either by 2D difference gel electrophoresis or by SDS-PAGE, if they are insoluble in the buffer used for 2D difference gel electrophoresis, after which they are identified by mass-spectrometry. We validated this approach by detection of known yeast prions and mammalian proteins with established capacity for amyloid formation and also revealed yeast proteins forming detergent-insoluble aggregates in the presence of human huntingtin with expanded polyglutamine domain. Notably, with one exception, all these proteins contained glutamine/asparagine-rich stretches suggesting that their aggregates arose due to polymerization cross-seeding by human huntingtin. Importantly, though the approach was developed in a yeast model, it can easily be applied to any organism thus representing an efficient and universal tool for screening for amyloid proteins.
Collapse
Affiliation(s)
- Anton A. Nizhnikov
- Dept. of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Tatyana A. Ryzhova
- Dept. of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga V. Mitkevich
- A.N. Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Dergalev
- A.N. Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Alexey P. Galkin
- Dept. of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
40
|
Abstract
Mice overexpressing the prion protein (PrP) sequence from various host species are widely used for measuring infectious titers in prion disease. However, the impact that the transgene expression level might have on the susceptibility to infection raises some concerns about the final biological relevance of these models. Here we report that endpoint titration of a sheep scrapie isolate in sheep and in mice overexpressing the ovine PrP results in similar estimates of the infectious titer.
Collapse
|
41
|
Belay ED, Blase J, Sehulster LM, Maddox RA, Schonberger LB. Management of neurosurgical instruments and patients exposed to Creutzfeldt-Jakob disease. Infect Control Hosp Epidemiol 2013; 34:1272-80. [PMID: 24225612 PMCID: PMC4748700 DOI: 10.1086/673986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To summarize the approaches used to manage exposure of patients to inadequately sterilized neurosurgical instruments contaminated as a result of Creutzfeldt-Jakob disease (CJD). METHODS Information on past CJD exposure incidents reported to the Centers for Disease Control and Prevention (CDC) was aggregated and summarized. In addition, inactivation studies were reviewed, and data from selected publications were provided for reference. RESULTS Nineteen incidents of patient exposure to potentially CJD-contaminated instruments were reported to the CDC, including 17 that involved intracranial procedures and 2 that involved ophthalmologic procedures. In more than 50% of incidents, the neurosurgical procedures were performed for diagnostic work up of the index patients. At least 12 of the hospitals had multiple neurosurgical sets, and the CJD-contaminated instruments could not be identified in 11 of 19 hospitals. In 12 of 15 hospitals with neurosurgical incidents, a decision was made to notify patients of their potential exposure. CONCLUSIONS Neurosurgical instruments used for treatment of patients with suspected or diagnosed CJD or patients whose diagnosis is unclear should be promptly identified and sterilized using recommended CJD decontamination protocols. Inability to trace instruments complicates appropriate management of exposure incidents. The feasibility of instituting instrument tracking procedures should be considered.
Collapse
Affiliation(s)
- Ermias D Belay
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | | |
Collapse
|
42
|
Bechtel K, Geschwind MD. Ethics in prion disease. Prog Neurobiol 2013; 110:29-44. [PMID: 23906487 PMCID: PMC3818451 DOI: 10.1016/j.pneurobio.2013.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 07/05/2013] [Accepted: 07/06/2013] [Indexed: 12/13/2022]
Abstract
This paper is intended to discuss some of the scientific and ethical issues that are created by increased research efforts towards earlier diagnosis, as well as to treatment of, human prion diseases (and related dementias), including the resulting consequences for individuals, their families, and society. Most patients with prion disease currently are diagnosed when they are about 2/3 of the way through their disease course (Geschwind et al., 2010a; Paterson et al., 2012b), when the disease has progressed so far that even treatments that stop the disease process would probably have little benefit. Although there are currently no treatments available for prion diseases, we and others have realized that we must diagnose patients earlier and with greater accuracy so that future treatments have hope of success. As approximately 15% of prion diseases have a autosomal dominant genetic etiology, this further adds to the complexity of ethical issues, particularly regarding when to conduct genetic testing, release of genetic results, and when or if to implement experimental therapies. Human prion diseases are both infectious and transmissible; great care is required to balance the needs of the family and individual with both public health needs and strained hospital budgets. It is essential to proactively examine and address the ethical issues involved, as well as to define and in turn provide best standards of care.
Collapse
Affiliation(s)
- Kendra Bechtel
- Memory and Aging Center, University of California, San Francisco, United States
| | | |
Collapse
|
43
|
Ding N, Neumann NF, Price LM, Braithwaite SL, Balachandran A, Mitchell G, Belosevic M, Gamal El-Din M. Kinetics of ozone inactivation of infectious prion protein. Appl Environ Microbiol 2013; 79:2721-30. [PMID: 23416994 PMCID: PMC3623189 DOI: 10.1128/aem.03698-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/06/2013] [Indexed: 01/20/2023] Open
Abstract
The kinetics of ozone inactivation of infectious prion protein (PrP(Sc), scrapie 263K) was investigated in ozone-demand-free phosphate-buffered saline (PBS). Diluted infectious brain homogenates (IBH) (0.01%) were exposed to a predetermined ozone dose (10.8 ± 2.0 mg/liter) at three pHs (pH 4.4, 6.0, and 8.0) and two temperatures (4°C and 20°C). The inactivation of PrP(Sc) was quantified by determining the in vitro destruction of PrP(Sc) templating properties using the protein misfolding cyclic amplification (PMCA) assay and bioassay, which were shown to correlate well. The inactivation kinetics were characterized by both Chick-Watson (CW) and efficiency factor Hom (EFH) models. It was found that the EFH model fit the experimental data more appropriately. The efficacy of ozone inactivation of PrP(Sc) was both pH and temperature dependent. Based on the EFH model, CT (disinfectant concentration multiplied by contact time) values were determined for 2-log10, 3-log10, and 4-log10 inactivation at the conditions under which they were achieved. Our results indicated that ozone is effective for prion inactivation in ozone-demand-free water and may be applied for the inactivation of infectious prion in prion-contaminated water and wastewater.
Collapse
Affiliation(s)
- Ning Ding
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Norman F. Neumann
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
- Provincial Laboratory for Public Health, Edmonton, Alberta, Canada
| | - Luke M. Price
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | - Miodrag Belosevic
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
44
|
Hirata A, Hori Y, Koga Y, Okada J, Sakudo A, Ikuta K, Kanaya S, Takano K. Enzymatic activity of a subtilisin homolog, Tk-SP, from Thermococcus kodakarensis in detergents and its ability to degrade the abnormal prion protein. BMC Biotechnol 2013; 13:19. [PMID: 23448268 PMCID: PMC3599501 DOI: 10.1186/1472-6750-13-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/26/2013] [Indexed: 11/17/2022] Open
Abstract
Background Tk-SP is a member of subtilisin-like serine proteases from a hyperthermophilic archaeon Thermococcus kodakarensis. It has been known that the hyper-stable protease, Tk-SP, could exhibit enzymatic activity even at high temperature and in the presence of chemical denaturants. In this work, the enzymatic activity of Tk-SP was measured in the presence of detergents and EDTA. In addition, we focused to demonstrate that Tk-SP could degrade the abnormal prion protein (PrPSc), a protease-resistant isoform of normal prion protein (PrPC). Results Tk-SP was observed to maintain its proteolytic activity with nonionic surfactants and EDTA at 80°C. We optimized the condition in which Tk-SP functions efficiently, and demonstrated that the enzyme is highly stable in the presence of 0.05% (w/v) nonionic surfactants and 0.01% (w/v) EDTA, retaining up to 80% of its activity. Additionally, we also found that Tk-SP can degrade PrPSc to a level undetectable by western-blot analysis. Conclusions Our results indicate that Tk-SP has a great potential for technological applications, such as thermo-stable detergent additives. In addition, it is also suggested that Tk-SP-containing detergents can be developed to decrease the secondary infection risks of transmissible spongiform encephalopathies (TSE).
Collapse
Affiliation(s)
- Azumi Hirata
- Laboratory of Biological Chemistry, Department of Biomolecular Chemistry, Kyoto Prefectural University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Smith JD, Nicholson EM, Foster GH, Greenlee JJ. Exposure of RML scrapie agent to a sodium percarbonate-based product and sodium dodecyl sulfate renders PrPSc protease sensitive but does not eliminate infectivity. BMC Vet Res 2013; 9:8. [PMID: 23311930 PMCID: PMC3599183 DOI: 10.1186/1746-6148-9-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/08/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Prions, the causative agents of the transmissible spongiform encephalopathies, are notoriously difficult to inactivate. Current decontamination recommendations by the World Health Organization include prolonged exposure to 1 N sodium hydroxide or > 20,000 ppm sodium hypochlorite, or autoclaving. For decontamination of large stainless steel surfaces and equipment as in abattoirs, for example, these methods are harsh or unsuitable. The current study was designed to evaluate the effectiveness of a commercial product containing sodium percarbonate to inactivate prions. Samples of mouse brain infected with a mouse-adapted strain of the scrapie agent (RML) were exposed to a sodium percarbonate-based product (SPC-P). Treated samples were evaluated for abnormal prion protein (PrPSc)-immunoreactivity by western blot analysis, and residual infectivity by mouse bioassay. RESULTS Exposure to a 21% solution of SPC-P or a solution containing either 2.1% or 21% SPC-P in combination with sodium dodecyl sulfate (SDS) resulted in increased proteinase K sensitivity of PrPSc. Limited reductions in infectivity were observed depending on treatment condition. A marginal effect on infectivity was observed with SPC-P alone, but an approximate 2-3 log10 reduction was observed with the addition of SDS, though exposure to SDS alone resulted in an approximate 2 log10 reduction. CONCLUSIONS This study demonstrates that exposure of a mouse-adapted scrapie strain to SPC-P does not eliminate infectivity, but does render PrPSc protease sensitive.
Collapse
Affiliation(s)
- Jodi D Smith
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Gregory H Foster
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| |
Collapse
|
46
|
VerCauteren KC, Pilon JL, Nash PB, Phillips GE, Fischer JW. Prion remains infectious after passage through digestive system of American crows (Corvus brachyrhynchos). PLoS One 2012; 7:e45774. [PMID: 23082115 PMCID: PMC3474818 DOI: 10.1371/journal.pone.0045774] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 08/24/2012] [Indexed: 11/19/2022] Open
Abstract
Avian scavengers, such as American crows (Corvus brachyrhynchos), have potential to translocate infectious agents (prions) of transmissible spongiform encephalopathy (TSE) diseases including chronic wasting disease, scrapie, and bovine spongiform encephalopathy. We inoculated mice with fecal extracts obtained from 20 American crows that were force-fed material infected with RML-strain scrapie prions. These mice all evinced severe neurological dysfunction 196–231 d postinoculation ( = 198; 95% CI: 210–216) and tested positive for prion disease. Our results suggest a large proportion of crows that consume prion-positive tissue are capable of passing infectious prions in their feces ( = 1.0; 95% CI: 0.8–1.0). Therefore, this common, migratory North American scavenger could play a role in the geographic spread of TSE diseases.
Collapse
Affiliation(s)
- Kurt C VerCauteren
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA.
| | | | | | | | | |
Collapse
|
47
|
Wagenführ K, Beekes M. Harnessing prions as test agents for the development of broad-range disinfectants. Prion 2012; 6:1-6. [PMID: 22453169 DOI: 10.4161/pri.6.1.18556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of disinfectants with broad-range efficacy against bacteria, viruses, fungi, protozoa and prions constitutes an ongoing challenge. Prions, the causative agents of transmissible spongiform encephalopathies (TSEs) such as Creutzfeldt-Jakob disease (CJD) or its variant (vCJD) rank among the pathogens with the highest resistance to disinfection. Pilot studies have shown that procedures devised for prion disinfection were also highly effective against microbial pathogens. This fueled the idea to systematically exploit prions as test pathogens for the identification of new potential broad-range disinfectants. Prions essentially consist of misfolded, aggregated prion protein (PrP) and putatively replicate by nucleation-dependent, or seeded PrP polymerization. Recently, we have been able to establish PrP seeding activity as a quantitative in vitro indicator for the disinfection of 263K scrapie prions on steel wires used as surrogates for medical instruments. The seeding activity on wires re-processed in different disinfectants could be (1) biochemically determined by quantitative protein misfolding cyclic amplification (qPMCA), (2) biologically detected after qPMCA in a cell assay and (3) correctly translated into residual titres of scrapie infectivity. Our approach will substantially facilitate the identification of disinfectants with efficacy against prions as promising candidates for a further microbiological validation of broad-range activity.
Collapse
Affiliation(s)
- Katja Wagenführ
- P24 -Transmissible Spongiform Encephalopathies, Robert Koch-Institut, Berlin, Germany
| | | |
Collapse
|
48
|
Giles K, De Nicola GF, Patel S, Glidden DV, Korth C, Oehler A, DeArmond SJ, Prusiner SB. Identification of I137M and other mutations that modulate incubation periods for two human prion strains. J Virol 2012; 86:6033-41. [PMID: 22438549 PMCID: PMC3372217 DOI: 10.1128/jvi.07027-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/06/2012] [Indexed: 11/20/2022] Open
Abstract
We report here the transmission of human prions to 18 new transgenic (Tg) mouse lines expressing 8 unique chimeric human/mouse prion proteins (PrP). Extracts from brains of two patients, who died of sporadic Creutzfeldt-Jakob disease (sCJD), contained either sCJD(MM1) or sCJD(VV2) prion strains and were used for inocula. Mice expressing chimeric PrP showed a direct correlation between expression level and incubation period for sCJD(MM1) prions irrespective of whether the transgene encoded methionine (M) or valine (V) at polymorphic residue 129. Tg mice expressing chimeric transgenes encoding V129 were unexpectedly resistant to infection with sCJD(VV2) prions, and when transmission did occur, it was accompanied by a change in strain type. The transmission of sCJD(MM1) prions was modulated by single amino acid reversions of each human PrP residue in the chimeric sequence. Reverting human residue 137 in the chimeric transgene from I to M prolonged the incubation time for sCJD(MM1) prions by more than 100 days; structural analyses suggest a profound change in the orientation of amino acid side chains with the I→M mutation. These findings argue that changing the surface charge in this region of PrP greatly altered the interaction between PrP isoforms during prion replication. Our studies contend that strain-specified replication of prions is modulated by PrP sequence-specific interactions between the prion precursor PrP(C) and the infectious product PrP(Sc).
Collapse
Affiliation(s)
- Kurt Giles
- Institute for Neurodegenerative Diseases
- Departments of Neurology
| | | | | | | | | | - Abby Oehler
- Pathology, University of California San Francisco, San Francisco, California, USA
| | - Stephen J. DeArmond
- Institute for Neurodegenerative Diseases
- Pathology, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
49
|
Calvert G, Murray CA, Smith AJ, Hurrell D. Availability of manufacturers' information on efficacy and compatibility of detergents used for cleaning dental instruments. Br Dent J 2012; 212:E16. [PMID: 22627254 DOI: 10.1038/sj.bdj.2012.419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2012] [Indexed: 11/09/2022]
Abstract
AIM To review physico-chemical data supplied for commercially available detergents marketed for manual and/or ultrasonic cleansing of reusable dental instruments. METHOD Manufacturers/suppliers of commercially available detergents for manual or ultrasonic cleaning of dental instruments within primary dental care were invited to supply product information. A structured questionnaire requested details on a range of physical and chemical properties for each detergent. RESULTS Seventeen detergent manufacturers/suppliers, encompassing 31 commercially available detergents were identified. Ten of the 17 manufacturers provided information on 23 (74%) of the detergent formulations. Nine detergents were of neutral pH, ten mild alkalis (pH 7.5-10.5) and four strong alkalis (pH >10.5). Sixteen detergents were recommended for ultrasonic and manual cleaning, four stated ultrasonic use and three manual only. Ten detergents cited enzymatic activity as their main mode of action, but only six manufacturers provided detailed information. Four detergents recommended by manufacturers as suitable for manual washing had a strong alkaline pH (>10.5), presenting chemical hazards to users. Two strong alkaline detergents did not warn users of potential adverse effects of such alkaline solutions (corrosion) upon aluminium containing instruments. Only one detergent had investigated the potential toxicity of detergent residuals remaining on instruments after reprocessing. CONCLUSION It has proven challenging to collate physico-chemical data on detergents suitable for use in manual and/or ultrasonic cleaning of dental instruments in general dental practice. Standardisation of information on the nature and efficacy of dental detergents in a readily accessible form would be beneficial to dental practice.
Collapse
Affiliation(s)
- G Calvert
- Infection and Immunity Research Group, University of Glasgow Dental School and Hospital, Glasgow, UK.
| | | | | | | |
Collapse
|
50
|
Electrolysis-assisted sonication for removal of proteinaceous contamination from surgical grade stainless steel. J Hosp Infect 2012; 81:41-9. [PMID: 22440405 DOI: 10.1016/j.jhin.2012.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/31/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Current methods used for the detection of residual proteinaceous contamination vary in sensitivity and specificity. This is of concern because it increases the risk for transmission of neurodegenerative diseases such as spongiform encephalopathies. AIM To determine the effectiveness of electrolysis-assisted sonication (EAS) for removing residual proteinaceous contamination from surgical grade stainless steel. METHODS EAS was used to clean surgical grade 316L stainless steel that had been contaminated with the protein bovine serum albumin. Using nitrogen, an abundant element in proteins, as a marker for the presence of protein, X-ray photoelectron spectroscopy (XPS) was used to quantify the amount of protein remaining on the substrate surface. Cathodic, anodic and dual polarization modes of EAS were investigated using 0.1% NaCl solution (w/v, in deionized water) as the electrolyte medium and 13 V as the polarization voltage. FINDING EAS under dual polarization was found to be the most effective method for removing the residual protein layer down to an estimated XPS detection limit of 10 ng/cm(2). Surface roughness and hardness of the stainless steel remained unchanged following EAS treatment, indicating that the procedure does not compromise the material's properties. CONCLUSION This relatively inexpensive and quick method of cleaning medical devices using an easily accessible salt-based electrolyte solution may offer a cost-effective strategy for cleaning medical and dental devices made of stainless steel in the future.
Collapse
|