1
|
Anantha J, Goulding SR, Tuboly E, O'Mahony AG, Moloney GM, Lomansey G, McCarthy CM, Collins LM, Sullivan AM, O'Keeffe GW. NME1 Protects Against Neurotoxin-, α-Synuclein- and LRRK2-Induced Neurite Degeneration in Cell Models of Parkinson's Disease. Mol Neurobiol 2022; 59:61-76. [PMID: 34623600 PMCID: PMC8786793 DOI: 10.1007/s12035-021-02569-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterised by the progressive degeneration of midbrain dopaminergic neurons, coupled with the intracellular accumulation of α-synuclein. Axonal degeneration is a central part of the pathology of PD. While the majority of PD cases are sporadic, some are genetic; the G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is the most common genetic form. The application of neurotrophic factors to protect dopaminergic neurons is a proposed experimental therapy. One such neurotrophic factor is growth differentiation factor (GDF)5. GDF5 is a dopaminergic neurotrophic factor that has been shown to upregulate the expression of a protein called nucleoside diphosphate kinase A (NME1). However, whether NME1 is neuroprotective in cell models of axonal degeneration of relevance to PD is unknown. Here we show that treatment with NME1 can promote neurite growth in SH-SY5Y cells, and in cultured dopaminergic neurons treated with the neurotoxin 6-hydroxydopamine (6-OHDA). Similar effects of NME1 were found in SH-SY5Y cells and dopaminergic neurons overexpressing human wild-type α-synuclein, and in stable SH-SY5Y cell lines carrying the G2019S LRRK2 mutation. We found that the effects of NME1 require the RORα/ROR2 receptors. Furthermore, increased NF-κB-dependent transcription was partially required for the neurite growth-promoting effects of NME1. Finally, a combined bioinformatics and biochemical analysis of the mitochondrial oxygen consumption rate revealed that NME1 enhanced mitochondrial function, which is known to be impaired in PD. These data show that recombinant NME1 is worthy of further study as a potential therapeutic agent for axonal protection in PD.
Collapse
Affiliation(s)
- Jayanth Anantha
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Susan R Goulding
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Adam G O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gareth Lomansey
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Louise M Collins
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
- Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Qi YF, Liu M, Zhang Y, Liu W, Xiao H, Luo B. EBV down-regulates COX-2 expression via TRAF2 and ERK signal pathway in EBV-associated gastric cancer. Virus Res 2019; 272:197735. [PMID: 31473273 DOI: 10.1016/j.virusres.2019.197735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus-associated gastric cancer (EBVaGC) accounts for nearly 10% of gastric cancer. Cyclooxygenase-2 (COX-2) plays a crucial role in cancer progression. However, there is no experimental study on the regulation mechanism of EBV on COX-2 in EBVaGC. To understand more about the tumorigenic mechanism of EBVaGC, the study investigated the role of EBV encode latent membrane protein LMP1 and LMP2A in the regulation of COX-2. The expression of COX-2 was examined in EBVaGC and EBV negative gastric cancer (EBVnGC) cell lines. The plasmids were transfected in SGC7901 to overexpress LMP1/2A. Small interfering RNA (si-RNA) targeting LMP1/2A in GT38 and targeting TRAF2 in SGC7901 were used to detect the expression of COX-2. Furthermore, si-ERK1/2 and the MEK inhibitor PD0325901 were used to investigate whether p-ERK participate in the regulation of COX-2 in SGC7901. The overexpression of LMP1 or LMP2A in SGC7901 down-regulates both COX-2 and TRAF2 expression, and knockdown of LMP1 or LMP2A in GT38 resulted in a certain recovery of COX-2 and TRAF2 expression. Moreover, si-TRAF2 indicated that a sharp down-regulation of COX-2. And the decrease of p-ERK also mediates the inhibitory effect of LMP1 on COX-2. In summary, overexpression of LMP1 and LMP2A inhibits COX-2, which is mediated by a decrease of TRAF2, and p-ERK is involved in the inhibition of COX-2 by LMP1 in gastric cancer.
Collapse
Affiliation(s)
- Yi-Fan Qi
- Department of Medical microbiology, School of Basic Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Mengyang Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 19 Jiangsu Road, Qingdao, 266021, China
| | - Yan Zhang
- Department of Medical microbiology, School of Basic Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China; Department of Clinical Laboratory, Central Hospital of Zibo, 19 Gongqingtuan Road, ZiBo, 255036, China
| | - Wen Liu
- Department of Medical microbiology, School of Basic Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Hua Xiao
- Department of Medical microbiology, School of Basic Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Bing Luo
- Department of Medical microbiology, School of Basic Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| |
Collapse
|
3
|
Rivera-Soto R, Damania B. Modulation of Angiogenic Processes by the Human Gammaherpesviruses, Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus. Front Microbiol 2019; 10:1544. [PMID: 31354653 PMCID: PMC6640166 DOI: 10.3389/fmicb.2019.01544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis is the biological process by which new blood vessels are formed from pre-existing vessels. It is considered one of the classic hallmarks of cancer, as pathological angiogenesis provides oxygen and essential nutrients to growing tumors. Two of the seven known human oncoviruses, Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), belong to the Gammaherpesvirinae subfamily. Both viruses are associated with several malignancies including lymphomas, nasopharyngeal carcinomas, and Kaposi’s sarcoma. The viral genomes code for a plethora of viral factors, including proteins and non-coding RNAs, some of which have been shown to deregulate angiogenic pathways and promote tumor growth. In this review, we discuss the ability of both viruses to modulate the pro-angiogenic process.
Collapse
Affiliation(s)
- Ricardo Rivera-Soto
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Kaul R, Purushothaman P, Uppal T, Verma SC. KSHV lytic proteins K-RTA and K8 bind to cellular and viral chromatin to modulate gene expression. PLoS One 2019; 14:e0215394. [PMID: 30998737 PMCID: PMC6472759 DOI: 10.1371/journal.pone.0215394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
The oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) has two distinct life cycles with lifelong latent/non-productive and a sporadic lytic-reactivating/productive phases in the infected immune compromised human hosts. The virus reactivates from latency in response to various chemical or environmental stimuli, which triggers the lytic cascade and leads to the expression of immediate early gene, i.e. Replication and Transcription Activator (K-RTA). K-RTA, the latent-to-lytic switch protein, activates the expression of early (E) and late (L) lytic genes by transactivating multiple viral promoters. Expression of K-RTA is shown to be sufficient and essential to switch the latent virus to enter into the lytic phase of infection. Similarly, the virus-encoded bZIP family of protein, K8 also plays an important role in viral lytic DNA replication. Although, both K-RTA and K8 are found to be the ori-Lyt binding proteins and are required for lytic DNA replication, the detailed DNA-binding profile of these proteins in the KSHV and host genomes remains uncharacterized. In this study, using chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq) assay, we performed a comprehensive analysis of K-RTA and K8 binding sites in the KSHV and human genomes in order to identify specific DNA binding sequences/motifs. We identified two novel K-RTA binding motifs, (i.e. AGAGAGAGGA/motif RB and AGAAAAATTC/motif RV) and one K8 binding motif (i.e. AAAATGAAAA/motif KB), respectively. The binding of K-RTA/K8 proteins with these motifs and resulting transcriptional modulation of downstream genes was further confirmed by DNA electrophoretic gel mobility shift assay (EMSA), reporter promoter assay, Chromatin Immunoprecipitation (ChIP) assay and mRNA quantitation assay. Our data conclusively shows that K-RTA/K8 proteins specifically bind to these motifs on the host/viral genomes to modulate transcription of host/viral genes during KSHV lytic reactivation.
Collapse
Affiliation(s)
- Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Pravinkumar Purushothaman
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| |
Collapse
|
5
|
Mahmoudvand S, Shokri S, Taherkhani R, Farshadpour F. Hepatitis C virus core protein modulates several signaling pathways involved in hepatocellular carcinoma. World J Gastroenterol 2019; 25:42-58. [PMID: 30643357 PMCID: PMC6328967 DOI: 10.3748/wjg.v25.i1.42] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer, and hepatitis C virus (HCV) infection plays a major role in HCC development. The molecular mechanisms by which HCV infection leads to HCC are varied. HCV core protein is an important risk factor in HCV-associated liver pathogenesis and can modulate several signaling pathways involved in cell cycle regulation, cell growth promotion, cell proliferation, apoptosis, oxidative stress and lipid metabolism. The dysregulation of signaling pathways such as transforming growth factor β (TGF-β), vascular endothelial growth factor (VEGF), Wnt/β-catenin (WNT), cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptor α (PPARα) by HCV core protein is implicated in the development of HCC. Therefore, it has been suggested that this protein be considered a favorable target for further studies in the development of HCC. In addition, considering the axial role of these signaling pathways in HCC, they are considered druggable targets for cancer therapy. Therefore, using strategies to limit the dysregulation effects of core protein on these signaling pathways seems necessary to prevent HCV-related HCC.
Collapse
Affiliation(s)
- Shahab Mahmoudvand
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Reza Taherkhani
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Fatemeh Farshadpour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| |
Collapse
|
6
|
Abstract
Breast cancer has a high incidence worldwide. The results of substantial studis reveal that inflammation plays an important role in the initiation, development, and aggressiveness of many malignancies. The use of celecoxib, a novel NSAID, is repetitively associated with the reduced risk of the occurrence and progression of a number of types of cancer, particularly breast cancer. This observation is also substantiated by various meta-analyses. Clinical trials have been implemented on integration treatment of celecoxib and shown encouraging results. Celecoxib could be treated as a potential candidate for antitumor agent. There are, nonetheless, some unaddressed questions concerning the precise mechanism underlying the anticancer effect of celecoxib as well as its activity against different types of cancer. In this review, we discuss different mechanisms of anticancer effect of celecoxib as well as preclinical/clinical results signifying this beneficial effect.
Collapse
Affiliation(s)
- Jieqing Li
- Department of Breast Surgery, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China.,Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ;
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ;
| | - Wei Cao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,Department of Nuclear Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA, ;
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA, ;
| |
Collapse
|
7
|
Puts GS, Leonard MK, Pamidimukkala NV, Snyder DE, Kaetzel DM. Nuclear functions of NME proteins. J Transl Med 2018; 98:211-218. [PMID: 29058704 PMCID: PMC6136249 DOI: 10.1038/labinvest.2017.109] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
The NME family of proteins is composed of 10 isoforms, designated NME1-10, which are diverse in their enzymatic activities and patterns of subcellular localization. Each contains a conserved domain associated with a nucleoside diphosphate kinase (NDPK) function, although not all are catalytically active. Several of the NME isoforms (NME1, NME5, NME7, and NME8) also exhibit a 3'-5' exonuclease activity, suggesting roles in DNA proofreading and repair. NME1 and NME2 have been shown to translocate to the nucleus, although they lack a canonical nuclear localization signal. Binding of NME1 and NME2 to DNA does not appear to be sequence-specific in a strict sense, but instead is directed to single-stranded regions and/or other non-B-form structures. NME1 and NME2 have been identified as potential canonical transcription factors that regulate gene transcription through their DNA-binding activities. Indeed, the NME1 and NME2 isoforms have been shown to regulate gene expression programs in a number of cellular settings, and this regulatory function has been proposed to underlie their well-recognized ability to suppress the metastatic phenotype of cancer cells. Moreover, NME1 and, more recently, NME3, have been implicated in repair of both single- and double-stranded breaks in DNA. This suggests that reduced expression of NME proteins could contribute to the genomic instability that drives cancer progression. Clearly, a better understanding of the nuclear functions of NME1 and possibly other NME isoforms could provide critical insights into mechanisms underlying malignant progression in cancer. Indeed, clinical data indicate that the subcellular localization of NME1 may be an important prognostic marker in some cancers. This review summarizes putative functions of nuclear NME proteins in DNA binding, transcription, and DNA damage repair, and highlights their possible roles in cancer progression.
Collapse
|
8
|
Puts GS, Leonard MK, Pamidimukkala NV, Snyder DE, Kaetzel DM. Nuclear functions of NME proteins. J Transl Med 2018. [PMID: 29058704 DOI: 10.38/labinvest.2017.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The NME family of proteins is composed of 10 isoforms, designated NME1-10, which are diverse in their enzymatic activities and patterns of subcellular localization. Each contains a conserved domain associated with a nucleoside diphosphate kinase (NDPK) function, although not all are catalytically active. Several of the NME isoforms (NME1, NME5, NME7, and NME8) also exhibit a 3'-5' exonuclease activity, suggesting roles in DNA proofreading and repair. NME1 and NME2 have been shown to translocate to the nucleus, although they lack a canonical nuclear localization signal. Binding of NME1 and NME2 to DNA does not appear to be sequence-specific in a strict sense, but instead is directed to single-stranded regions and/or other non-B-form structures. NME1 and NME2 have been identified as potential canonical transcription factors that regulate gene transcription through their DNA-binding activities. Indeed, the NME1 and NME2 isoforms have been shown to regulate gene expression programs in a number of cellular settings, and this regulatory function has been proposed to underlie their well-recognized ability to suppress the metastatic phenotype of cancer cells. Moreover, NME1 and, more recently, NME3, have been implicated in repair of both single- and double-stranded breaks in DNA. This suggests that reduced expression of NME proteins could contribute to the genomic instability that drives cancer progression. Clearly, a better understanding of the nuclear functions of NME1 and possibly other NME isoforms could provide critical insights into mechanisms underlying malignant progression in cancer. Indeed, clinical data indicate that the subcellular localization of NME1 may be an important prognostic marker in some cancers. This review summarizes putative functions of nuclear NME proteins in DNA binding, transcription, and DNA damage repair, and highlights their possible roles in cancer progression.
Collapse
Affiliation(s)
- Gemma S Puts
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Kathryn Leonard
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nidhi V Pamidimukkala
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Devin E Snyder
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David M Kaetzel
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
NM23/NDPK proteins in transcription regulatory functions and chromatin modulation: emerging trends. J Transl Med 2018; 98:175-181. [PMID: 29083410 PMCID: PMC5854247 DOI: 10.1038/labinvest.2017.98] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/23/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022] Open
Abstract
NM23/NDPK proteins have been studied for their metastasis suppressor role but the molecular pathways involved in this process are not very vivid. Nucleotide binding and kinase activities of NM23 proteins implicated in anti-metastatic effects have been widely studied. In addition to these, transcriptional regulation adds another arm to the versatility of NM23 proteins that together with the other functions may contribute to better understanding of underlying mechanisms. In this review we discuss emerging reports describing the role of NM23 proteins in gene regulation and chromatin modulation in association with other factors or on their own.
Collapse
|
10
|
Oncogenic Epstein-Barr virus recruits Nm23-H1 to regulate chromatin modifiers. J Transl Med 2018; 98:258-268. [PMID: 29035376 PMCID: PMC6053075 DOI: 10.1038/labinvest.2017.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022] Open
Abstract
In cancer progression, metastasis is a major cause of poor survival of patients and can be targeted for therapeutic interventions. The first discovered metastatic-suppressor Nm23-H1 possesses nucleoside diphosphate kinase, histidine kinase, and DNase activity as a broad-spectrum enzyme. Recent advances in cancer metastasis have opened new ways for the development of therapeutic molecular approaches. In this review, we provide a summary of the current understanding of Nm23/NDPKs in the context of viral oncogenesis. We also focused on Nm23-H1-mediated cellular events with an emphasis on chromatin modifications. How Nm23-H1 modulates the activities of chromatin modifiers through interaction with Epstein-Barr virus-encoded oncogenic antigens and related crosstalks are discussed in the context of other oncogenic viruses. We also described the current understanding of the cellular and viral interactions of Nm23-H1 and their reference to transcription regulation and metastasis. Further, we summarized the recent therapeutic approaches targeting Nm23 and its potential links to pathways that can be exploited by oncogenic viruses.
Collapse
|
11
|
Sharma S, Sengupta A, Chowdhury S. NM23/NDPK proteins in transcription regulatory functions and chromatin modulation: emerging trends. J Transl Med 2018. [PMID: 29083410 DOI: 10.38/labinvest.2017.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
NM23/NDPK proteins have been studied for their metastasis suppressor role but the molecular pathways involved in this process are not very vivid. Nucleotide binding and kinase activities of NM23 proteins implicated in anti-metastatic effects have been widely studied. In addition to these, transcriptional regulation adds another arm to the versatility of NM23 proteins that together with the other functions may contribute to better understanding of underlying mechanisms. In this review we discuss emerging reports describing the role of NM23 proteins in gene regulation and chromatin modulation in association with other factors or on their own.
Collapse
Affiliation(s)
- Shalu Sharma
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi, India
| | - Antara Sengupta
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shantanu Chowdhury
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi, India
- G.N.R. Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, New Delhi, India
| |
Collapse
|
12
|
Sheng Y, Xiong Y, Xu M, Kuang X, Wang D, Yang X. [Effect of Nm23-H1 Nuclear Localization on Proliferation of
Human Lung Adenocarcinoma Cell Line A549]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:226-232. [PMID: 28442010 PMCID: PMC5999672 DOI: 10.3779/j.issn.1009-3419.2017.04.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
背景与目的 现有研究发现Nm23-H1还存在胞核表达,而既往的研究都是以过表达或抑制胞浆Nm23-H1为研究手段,由于Nm23-H1本身缺乏核引导序列,其研究结果并不能真实反映或重复临床中Nm23-H1以胞核定位为主的实际生物学效应。因此,本研究通过构建带有核引导序列的Nm23-H1载体并转染A549细胞以探讨Nm23-H1从胞浆向胞核转位对肺癌细胞增殖的影响。 方法 采用基因重组技术构建带核定位信号序列的pLentis-CMV-NME1-IRES2-PURO慢病毒载体,酶切和测序鉴定正确后,稳定转染A549细胞后用Western blot和激光共聚焦检测Nm23-H1蛋白的定位和表达,用CCK-8法检测细胞的增殖,流式细胞术检测细胞周期变化。 结果 成功构建了核内定向表达Nm23-H1的慢病毒载体。转染组在72 h、96 h和120 h时增殖率与空载体组相比均显著升高(P < 0.000, 1)。空载体组A549细胞在G0期/G1期所占比例为35.69%,高于转染组的28.28%(t=1.461, P=0.217);而转染组细胞在G2期/M期所占比例为58.7%,空载体组为31.30%(t=4.560, P=0.010)。 结论 Nm23-H1在人肺腺癌A549细胞的核内过表达使细胞主要分布在G2期/M期并促进了细胞的体外增殖。
Collapse
Affiliation(s)
- Ya Sheng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Yanli Xiong
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Mingfang Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Xunjie Kuang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Xueqin Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
13
|
Gandhi J, Khera L, Gaur N, Paul C, Kaul R. Role of Modulator of Inflammation Cyclooxygenase-2 in Gammaherpesvirus Mediated Tumorigenesis. Front Microbiol 2017; 8:538. [PMID: 28400769 PMCID: PMC5368278 DOI: 10.3389/fmicb.2017.00538] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Chronic inflammation is recognized as a threat factor for cancer progression. Release of inflammatory molecules generates microenvironment which is highly favorable for development of tumor, cancer progression and metastasis. In cases of latent viral infections, generation of such a microenvironment is one of the major predisposing factors related to virus mediated tumorigenesis. Among various inflammatory mediators implicated in pathological process associated with cancer, the cyclooxygenase (COX) and its downstream effector molecules are of greater significance. Though the role of infectious agents in causing inflammation leading to transformation of cells has been more or less well established, however, the mechanism by which inflammation in itself modulates the events in life cycle of infectious agent is not very much clear. This is specifically important for gammaherpesviruses infections where viral life cycle is characterized by prolonged periods of latency when the virus remains hidden, immunologically undetectable and expresses only a very limited set of genes. Therefore, it is important to understand the mechanisms for role of inflammation in virus life cycle and tumorigenesis. This review is an attempt to summarize the latest findings highlighting the significance of COX-2 and its downstream signaling effectors role in life cycle events of gammaherpesviruses leading to progression of cancer.
Collapse
Affiliation(s)
- Jaya Gandhi
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Lohit Khera
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Nivedita Gaur
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Catherine Paul
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| |
Collapse
|
14
|
Perisa MM, Sarcevic B, Troselj KG, Grsic K, Sitic S, Seiwerth S. Expression of nm23-H1 and COX-2 in thyroid papillary carcinoma and microcarcinoma. Oncol Lett 2017; 13:3547-3555. [PMID: 28521457 PMCID: PMC5431143 DOI: 10.3892/ol.2017.5876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
The expression of non-metastatic expressed/non-metastatic 23 nucleoside diphosphate kinase 1 (nm23-H1) and cyclooxygenase 2 (COX-2) proteins in thyroid carcinoma have been analysed in a number of previous studies, but this requires further study. The current study focused on the expression levels of nm23-H1 and COX-2 in 130 human thyroid papillary carcinoma (PTC) tissues. Of the 130 PTC tissues, 55 were classified as microcarcinoma and may provide information on the development of the specific characteristics of this tumour type. Routine histopathological examination and immunohistochemical detection of nm23-H1 and COX-2 expression was performed on 130 PTC tissues from patients treated in the Clinical Hospital for Tumours (Zagreb, Croatia) between January 2000 and December 2007. The stain intensity of nm23-H1 and COX-2 proteins was compared with the characteristics of the patients and the tumour. The highest overall expression rate of nm23-H1 and COX-2 was 90 and 67.6%, respectively, and the joint expression of these proteins was statistically significant. The median expression level of nm23-H1 was significantly increased in the classical and follicular histological group of the PTC tissues compared with tissues from other histological groups. The median expression level of COX-2 was significantly increased in the follicular histological group, and reduced in the diffuse-sclerosing group of PTC tissues. All the metastatic microcarcinoma tissues had increased expression levels of the two proteins in comparison with microcarcinoma tissues without lymph node metastases; however, this variation was only statistically significant for COX-2 expression levels. Therefore the results of the current study indicate that COX-2 protein levels may be able to differentiate which thyroid papillary microcarcinoma tumours possess metastatic potential.
Collapse
Affiliation(s)
- Marija Milkovic Perisa
- Department of Pathology, School of Medicine, University Hospital for Tumours, Sisters of Charity Clinical Hospital Center, Zagreb 10000, Croatia.,Department of Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Bozena Sarcevic
- Department of Pathology, School of Medicine, University Hospital for Tumours, Sisters of Charity Clinical Hospital Center, Zagreb 10000, Croatia
| | - Koraljka Gall Troselj
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Bošković Institute, Zagreb 10000, Croatia
| | - Kresimir Grsic
- Division of Head and Neck Surgery, Department of Surgical Oncology, University Hospital for Tumours, Sisters of Charity Clinical Hospital Center, Zagreb 10000, Croatia
| | - Sanda Sitic
- Department of Pathology, School of Medicine, University Hospital for Tumours, Sisters of Charity Clinical Hospital Center, Zagreb 10000, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
15
|
Rao S, Pankove RA, Mi J, Elsey J, Arbiser JL. Chemoprevention and Angiogenesis. ANGIOGENESIS-BASED DERMATOLOGY 2017:123-144. [DOI: 10.1007/978-1-4471-7314-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Shi Y, Gao Z, Liu C, Huang X, Song Y, Ping L, Zhou L, Zhao M, Huang X, Lai Y, Du T, Li M. [Expression and prognostic value of COX- 2, p16(INK4A) and p53 in patients with classical Hodgkin lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 36:926-32. [PMID: 26632465 PMCID: PMC7342425 DOI: 10.3760/cma.j.issn.0253-2727.2015.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
目的 观察环氧化酶2(COX-2)、周期素依赖激酶抑制剂p16(p16INK4A)、p53蛋白在经典型霍奇金淋巴瘤(cHL)患者中的表达,探讨其与患者预后的相关性。 方法 收集52例cHL患者的标本,采用免疫组织化学染色法检测相关蛋白,采用原位杂交技术检测EBV及EBV编码的小mRNA(EBER)。结合患者临床及随访资料分析COX-2、p16INK4A、p53蛋白表达与预后的相关性。 结果 52例患者中男女比例1.6∶1,患者发病年龄22~68岁,均为淋巴结内原发。52例患者中COX-2阳性者28例(53.8%),p16INK4A阳性者25例(48.1%),p53阳性者42例(80.8%)。按照患者年龄(以中位年龄为界)、性别(男/女)、EBV感染(有/无)、B症状(有/无)及Ann-Arbor分期(Ⅰ~Ⅱ/Ⅲ~Ⅳ期)进行分组,分别与COX-2、p16INK4A、p53表达进行相关性分析,结果显示仅p53表达与Ann-Arbor分期有关(P=0.027)。三者间表达的相关性分析结果显示,COX-2表达与p53相关(P=0.008),而与p16INK4A无关(P=0.246),16INK4A与p53表达无关(P=0.958)。单因素分析结果显示COX-2表达是影响患者无事件生存(EFS)的不良预后因素(P=0.003);采用COX比例风险回归模型进行多因素分析结果显示COX-2表达是影响患者EFS的独立不良预后因素(HR=0.091,95%CI 0.017~0.505,P=0.006)。 结论 COX-2、p16INK4A、p53在cHL患者中有较高表达率;与患者EBV感染状态均无相关性;COX-2表达是影响患者EFS的独立不良预后因素。
Collapse
Affiliation(s)
- Yunfei Shi
- Department of Pathology, Peking University, HealthScience Center. Beijing 100191, China
| | - Zifen Gao
- Department of Pathology, Peking University, HealthScience Center. Beijing 100191, China
| | - Cuiling Liu
- Department of Pathology, Peking University, HealthScience Center. Beijing 100191, China
| | - Xin Huang
- Department of Pathology, Peking University, HealthScience Center. Beijing 100191, China
| | - Yuqin Song
- Department of Pathology, Peking University, HealthScience Center. Beijing 100191, China
| | - Lingyan Ping
- Department of Pathology, Peking University, HealthScience Center. Beijing 100191, China
| | - Lixin Zhou
- Department of Pathology, Peking University, HealthScience Center. Beijing 100191, China
| | - Min Zhao
- Department of Pathology, Peking University, HealthScience Center. Beijing 100191, China
| | - Xiaozheng Huang
- Department of Pathology, Peking University, HealthScience Center. Beijing 100191, China
| | - Yumei Lai
- Department of Pathology, Peking University, HealthScience Center. Beijing 100191, China
| | - Tingting Du
- Department of Pathology, Peking University, HealthScience Center. Beijing 100191, China
| | - Min Li
- Department of Pathology, Peking University, HealthScience Center. Beijing 100191, China
| |
Collapse
|
17
|
Gandhi J, Gaur N, Khera L, Kaul R, Robertson ES. COX-2 induces lytic reactivation of EBV through PGE2 by modulating the EP receptor signaling pathway. Virology 2015; 484:1-14. [PMID: 26057147 PMCID: PMC4567511 DOI: 10.1016/j.virol.2015.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/28/2015] [Accepted: 05/11/2015] [Indexed: 01/12/2023]
Abstract
Inflammation is one of the predisposing factors known to be associated with Epstein Barr Virus (EBV) mediated tumorigenesis. However it is not well understood whether inflammation in itself plays a role in regulating the life cycle of this infectious agent. COX-2, a key mediator of the inflammatory processes is frequently over-expressed in EBV positive cancer cells. In various tumors, PGE2 is the principle COX-2 regulated downstream product which exerts its effects on cellular processes through the EP1-4 receptors. In this study, we further elucidated how upregulated COX-2 levels can modulate the events in EBV life cycle related to latency-lytic reactivation. Our data suggest a role for upregulated COX-2 on modulation of EBV latency through its downstream effector PGE2. This study demonstrates a role for increased COX-2 levels in modulation of EBV latency. This is important for understanding the pathogenesis of EBV-associated cancers in people with chronic inflammatory conditions.
Collapse
Affiliation(s)
- Jaya Gandhi
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Nivedita Gaur
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Lohit Khera
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, India.
| | - Erle S Robertson
- Department of Microbiology and Tumour Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
18
|
|
19
|
Gaur N, Gandhi J, Robertson ES, Verma SC, Kaul R. Epstein-Barr virus latent antigens EBNA3C and EBNA1 modulate epithelial to mesenchymal transition of cancer cells associated with tumor metastasis. Tumour Biol 2015; 36:3051-60. [PMID: 25501510 PMCID: PMC4793920 DOI: 10.1007/s13277-014-2941-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022] Open
Abstract
Epithelial-mesenchymal transition is an important mechanism in cancer invasiveness and metastasis. We had previously reported that cancer cells expressing Epstein-Barr virus (EBV) latent viral antigens EBV nuclear antigen EBNA3C and/ or EBNA1 showed higher motility and migration potential and had a propensity for increased metastases when tested in nude mice model. We now show that both EBNA3C and EBNA1 can modulate cellular pathways critical for epithelial to mesenchymal transition of cancer cells. Our data confirms that presence of EBNA3C or EBNA1 result in upregulation of transcriptional repressor Slug and Snail, upregulation of intermediate filament of mesenchymal origin vimentin, upregulation of transcription factor TCF8/ZEB1, downregulation as well as disruption of tight junction zona occludens protein ZO-1, downregulation of cell adhesion molecule E-cadherin, and nuclear translocation of β-catenin. We further show that the primary tumors as well as metastasized lesions derived from EBV antigen-expressing cancer cells in nude mice model display EMT markers expression pattern suggesting their greater propensity to mesenchymal transition.
Collapse
Affiliation(s)
- Nivedita Gaur
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Jaya Gandhi
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Erle S. Robertson
- Department of Microbiology and Tumour Virology Program, Abramson Cancer Centre, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada Reno, Reno, NV, USA
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
20
|
The EBNA3 Family: Two Oncoproteins and a Tumour Suppressor that Are Central to the Biology of EBV in B Cells. Curr Top Microbiol Immunol 2015; 391:61-117. [PMID: 26428372 DOI: 10.1007/978-3-319-22834-1_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus nuclear antigens EBNA3A , EBNA3B and EBNA3C are a family of three large latency-associated proteins expressed in B cells induced to proliferate by the virus. Together with the other nuclear antigens (EBNA-LP, EBNA2 and EBNA1), they are expressed from a polycistronic transcription unit that is probably unique to B cells. However, compared with the other EBNAs, hitherto the EBNA3 proteins were relatively neglected and their roles in EBV biology rather poorly understood. In recent years, powerful new technologies have been used to show that these proteins are central to the latency of EBV in B cells, playing major roles in reprogramming the expression of host genes affecting cell proliferation, survival, differentiation and immune surveillance. This indicates that the EBNA3s are critical in EBV persistence in the B cell system and in modulating B cell lymphomagenesis. EBNA3A and EBNA3C are necessary for the efficient proliferation of EBV-infected B cells because they target important tumour suppressor pathways--so operationally they are considered oncoproteins. In contrast, it is emerging that EBNA3B restrains the oncogenic capacity of EBV, so it can be considered a tumour suppressor--to our knowledge the first to be described in a tumour virus. Here, we provide a general overview of the EBNA3 genes and proteins. In particular, we describe recent research that has highlighted the complexity of their functional interactions with each other, with specific sites on the human genome and with the molecular machinery that controls transcription and epigenetic states of diverse host genes.
Collapse
|
21
|
Banerjee S, Jha HC, Robertson ES. Regulation of the metastasis suppressor Nm23-H1 by tumor viruses. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:207-24. [PMID: 25199839 DOI: 10.1007/s00210-014-1043-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/21/2014] [Indexed: 12/16/2022]
Abstract
Metastasis is the most common cause of cancer mortality. To increase the survival of patients, it is necessary to develop more effective methods for treating as well as preventing metastatic diseases. Recent advancement of knowledge in cancer metastasis provides the basis for development of targeted molecular therapeutics aimed at the tumor cell or its interaction with the host microenvironment. Metastasis suppressor genes (MSGs) are promising targets for inhibition of the metastasis process. During the past decade, functional significance of these genes, their regulatory pathways, and related downstream effector molecules have become a major focus of cancer research. Nm23-H1, first in the family of Nm23 human homologues, is a well-characterized, anti-metastatic factor linked with a large number of human malignancies. Mounting evidence to date suggests an important role for Nm23-H1 in reducing virus-induced tumor cell motility and migration. A detailed understanding of the molecular association between oncogenic viral antigens with Nm23-H1 may reveal the underlying mechanisms for tumor virus-associated malignancies. In this review, we will focus on the recent advances to our understanding of the molecular basis of oncogenic virus-induced progression of tumor metastasis by deregulation of Nm23-H1.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
22
|
Al-Salam S, Awwad A, Sudhadevi M, Daoud S, Nagelkerke NJD, Castella A, Chong SM, Alashari M. Epstein-Barr virus infection correlates with the expression of COX-2, p16(INK4A) and p53 in classic Hodgkin lymphoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:2765-2777. [PMID: 24294363 PMCID: PMC3843257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/05/2013] [Indexed: 06/02/2023]
Abstract
Classic Hodgkin lymphoma (cHL), a germinal-center related B cell neoplasm in almost all cases, is characterized by scarcity of the neoplastic Hodgkin/Reed-Sternberg (H/RS) cells. Epstein-Barr virus (EBV) has been shown to affect cell cycle and regulation of apoptosis. In total, 95 cases of cHL were studied. Five-micrometer sections were prepared and stained with hematoxylin and eosin and immunohistochemical streptavidin-biotin methods for EBV-LMP-1, COX-2, p53, p16, ki-67 and cleaved caspase-3. In-situ hybridization for EBV encoded RNA was used to confirm the detection of EBV in H/RS. There were 49 nodular sclerosis, 32 mixed cellularity, 8 lymphocyte-rich, and 6 lymphocyte-depleted subtypes in this series of cases. EBV, COX-2, p16(INK4A) and p53 were detected in 55% (52/95), 64% (61/95), 62% (59/95), and 65% (62/95) of the cases respectively. EBV was detected in 62% (38/61), 70% (41/59), and 69% (43/62) of COX2, p16 and p53 positive cases respectively. On the other hand, EBV-non-infected cases of cHL are associated with 59% (20/34), 69% (25/36), and 73% (24/33) of COX2, p16 and p53 negative cases respectively. In conclusion, EBV infection is associated with the expression of COX-2, p16(INK4A) and p53. EBV might be the dominant factor in determining the expression of these three proteins.
Collapse
Affiliation(s)
- Suhail Al-Salam
- Department of Pathology, Faculty of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Aktham Awwad
- Department of Laboratory Medicine, Tawam Hospital in Affiliation with Johns Hopkins International MedicineAl Ain, United Arab Emirates
| | - Manjusha Sudhadevi
- Department of Pathology, Faculty of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sayel Daoud
- Department of Laboratory Medicine, Tawam Hospital in Affiliation with Johns Hopkins International MedicineAl Ain, United Arab Emirates
| | - Nico JD Nagelkerke
- Department of Pathology, Faculty of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Antonio Castella
- Department of Pathology, Faculty of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - SM Chong
- Department of Pathology, Yong Loo Lin School of Medicine, National University SingaporeSingapore
| | - Mouied Alashari
- Department of Laboratory Medicine, Tawam Hospital in Affiliation with Johns Hopkins International MedicineAl Ain, United Arab Emirates
| |
Collapse
|
23
|
Paul AG, Chandran B, Sharma-Walia N. Cyclooxygenase-2-prostaglandin E2-eicosanoid receptor inflammatory axis: a key player in Kaposi's sarcoma-associated herpes virus associated malignancies. Transl Res 2013; 162:77-92. [PMID: 23567332 PMCID: PMC7185490 DOI: 10.1016/j.trsl.2013.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 02/13/2013] [Accepted: 03/15/2013] [Indexed: 12/28/2022]
Abstract
The role of cyclooxygenase-2 (COX-2), its lipid metabolite prostaglandin E2 (PGE2), and Eicosanoid (EP) receptors (EP; 1-4) underlying the proinflammatory mechanistic aspects of Burkitt's lymphoma, nasopharyngeal carcinoma, cervical cancer, prostate cancer, colon cancer, and Kaposi's sarcoma (KS) is an active area of investigation. The tumorigenic potential of COX-2 and PGE2 through EP receptors forms the mechanistic context underlying the chemotherapeutic potential of nonsteroidal anti-inflammatory drugs (NSAIDs). Although role of the COX-2 is described in several viral associated malignancies, the biological significance of the COX-2/PGE2/EP receptor inflammatory axis is extensively studied only in Kaposi's sarcoma-associated herpes virus (KSHV/HHV-8) associated malignancies such as KS, a multifocal endothelial cell tumor and primary effusion lymphoma (PEL), a B cell-proliferative disorder. The purpose of this review is to summarize the salient findings delineating the molecular mechanisms downstream of COX-2 involving PGE2 secretion and its autocrine and paracrine interactions with EP receptors (EP1-4), COX-2/PGE2/EP receptor signaling regulating KSHV pathogenesis and latency. KSHV infection induces COX-2, PGE2 secretion, and EP receptor activation. The resulting signal cascades modulate the expression of KSHV latency genes (latency associated nuclear antigen-1 [LANA-1] and viral-Fas (TNFRSF6)-associated via death domain like interferon converting enzyme-like- inhibitory protein [vFLIP]). vFLIP was also shown to be crucial for the maintenance of COX-2 activation. The mutually interdependent interactions between viral proteins (LANA-1/vFLIP) and COX-2/PGE2/EP receptors was shown to play key roles in the biological mechanisms involved in KS and PEL pathogenesis such as blockage of apoptosis, cell cycle regulation, transformation, proliferation, angiogenesis, adhesion, invasion, and immune-suppression. Understanding the COX-2/PGE2/EP axis is very important to develop new safer and specific therapeutic modalities for KS and PEL. In addition to COX-2 being a therapeutic target, EP receptors represent ideal targets for pharmacologic agents as PGE2 analogues and their blockers/antagonists possess antineoplastic activity, without the reported gastrointestinal and cardiovascular toxicity observed with few a NSAIDs.
Collapse
MESH Headings
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antineoplastic Agents/pharmacology
- Cyclooxygenase 2/metabolism
- Dinoprostone/metabolism
- Gene Expression Regulation, Viral
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/drug therapy
- Lymphoma, Primary Effusion/metabolism
- Receptors, Eicosanoid/metabolism
- Sarcoma, Kaposi/drug therapy
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Signal Transduction
- Virus Latency/genetics
Collapse
Affiliation(s)
- Arun George Paul
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| |
Collapse
|
24
|
Harris RE, Beebe J, Alshafie GA. Reduction in cancer risk by selective and nonselective cyclooxygenase-2 (COX-2) inhibitors. J Exp Pharmacol 2012; 4:91-6. [PMID: 27186121 PMCID: PMC4863307 DOI: 10.2147/jep.s23826] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We conducted a series of epidemiologic studies to evaluate the chemopreventive effects of aspirin, ibuprofen, and selective cyxlooxygenase-2 (COX-2) inhibitors (coxibs) against cancers of the breast, colon, prostate, and lung. Composite results across all four cancer sites revealed that regular intake of 325 mg aspirin, 200 mg ibuprofen, or standard dosages of coxibs (200 mg celecoxib or 25 mg rofecoxib) produced risk reductions of 49%, 59%, and 64%, respectively. Use of coxibs for at least 2 years was associated with risk reductions of 71%, 70%, 55%, and 60% for breast cancer, colon cancer, prostate cancer and lung cancer, respectively. Effects of ibuprofen were similar to selective coxibs, and slightly stronger than aspirin. These observed effects are consistent with the relative COX-2 selectivity of ibuprofen, coxibs, and aspirin. Acetaminophen, an analgesic without COX-2 activity, had no effect. Overexpression of COX-2 and increased prostaglandin biosynthesis correlates with carcinogenesis and metastasis at most anatomic sites. These results indicate that regular intake of nonselective or selective COX-2 inhibiting agents protects against the development of major forms of cancer.
Collapse
Affiliation(s)
- Randall E Harris
- College of Medicine and College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Joanne Beebe
- College of Medicine and College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Galal A Alshafie
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
25
|
Epigenetic deregulation of the COX pathway in cancer. Prog Lipid Res 2012; 51:301-13. [PMID: 22580191 DOI: 10.1016/j.plipres.2012.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 01/12/2023]
Abstract
Inflammation is a major cause of cancer and may condition its progression. The deregulation of the cyclooxygenase (COX) pathway is implicated in several pathophysiological processes, including inflammation and cancer. Although, its targeting with nonsteroidal antiinflammatory drugs (NSAIDs) and COX-2 selective inhibitors has been investigated for years with promising results at both preventive and therapeutic levels, undesirable side effects and the limited understanding of the regulation and functionalities of the COX pathway compromise a more extensive application of these drugs. Epigenetics is bringing additional levels of complexity to the understanding of basic biological and pathological processes. The deregulation of signaling and biosynthetic pathways by epigenetic mechanisms may account for new molecular targets in cancer therapeutics. Genes of the COX pathway are seldom mutated in neoplastic cells, but a large proportion of them show aberrant expression in different types of cancer. A growing body of evidence indicates that epigenetic alterations play a critical role in the deregulation of the genes of the COX pathway. This review summarizes the current knowledge on the contribution of epigenetic processes to the deregulation of the COX pathway in cancer, getting insights into how these alterations may be relevant for the clinical management of patients.
Collapse
|
26
|
Saha A, Robertson ES. Functional modulation of the metastatic suppressor Nm23-H1 by oncogenic viruses. FEBS Lett 2011; 585:3174-84. [PMID: 21846466 DOI: 10.1016/j.febslet.2011.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 12/17/2022]
Abstract
Evidence over the last two decades from a number of disciplines has solidified some fundamental concepts in metastasis, a major contributor to cancer associated deaths. However, significant advances have been made in controlling this critical cellular process by focusing on targeted therapy. A key set of factors associated with this invasive phenotype is the nm23 family of over twenty metastasis-associated genes. Among the eight known isoforms, Nm23-H1 is the most studied potential anti-metastatic factor associated with human cancers. Importantly, a growing body of work has clearly suggested a critical role for Nm23-H1 in limiting tumor cell motility and progression induced by several tumor viruses, including Epstein-Barr virus (EBV), Kaposi's sarcoma associated herpes virus (KSHV) and human papilloma virus (HPV). A more in depth understanding of the interactions between tumor viruses encoded antigens and Nm23-H1 will facilitate the elucidation of underlying mechanism(s) which contribute to virus-associated cancers. Here, we review recent studies to explore the molecular links between human oncogenic viruses and progression of metastasis, in particular the deregulation of Nm23-H1 mediated suppression.
Collapse
Affiliation(s)
- Abhik Saha
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
27
|
Saha A, Kaul R, Murakami M, Robertson ES. Tumor viruses and cancer biology: Modulating signaling pathways for therapeutic intervention. Cancer Biol Ther 2010; 10:961-78. [PMID: 21084867 DOI: 10.4161/cbt.10.10.13923] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tumor viruses have provided relatively simple genetic systems, which can be manipulated for understanding the molecular mechanisms of the cellular transformation process. A growing body of information in the tumor virology field provides several prospects for rationally targeted therapies. However, further research is needed to better understand the multiple mechanisms utilized by these viruses in cancer progression in order to develop therapeutic strategies. Initially viruses were believed to be associated with cancers as causative agents only in animals. It was almost half a century before the first human tumor virus, Epstein-Barr virus (EBV), was identified in 1964. Subsequently, several human tumor viruses have been identified including Kaposi sarcoma associated herpesvirus (KSHV), human Papillomaviruses (HPV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human T lymphotropic virus (HTLV-1) and recently identified Merkel cell Polyomavirus (MCPyV). Tumor viruses are sub-categorized as either DNA viruses, which include EBV, KSHV, HPV, HBV, and MCPyV, or RNA viruses such as HCV and HTLV-1. Tumor-viruses induce oncogenesis through manipulating an array of different cellular pathways. These viruses initiate a series of cellular events, which lead to immortalization and proliferation of the infected cells by disrupting the mitotic checkpoint upon infection of the host cell. This is often accomplished by functional inhibition or proteasomal degradation of many tumor suppressor proteins by virally encoded gene products. The virally infected cells can either be eliminated via cell-mediated apoptosis or persist in a state of chronic infection. Importantly, the chronic persistence of infection by tumor viruses can lead to oncogenesis. This review discusses the major human tumor associated viruses and their ability to modulate numerous cell signaling pathways, which can be targeted for potential therapeutic approaches.
Collapse
Affiliation(s)
- Abhik Saha
- Department of Microbiology and Tumor Virology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
28
|
Choudhuri T, Murakami M, Kaul R, Sahu SK, Mohanty S, Verma SC, Kumar P, Robertson ES. Nm23-H1 can induce cell cycle arrest and apoptosis in B cells. Cancer Biol Ther 2010; 9:1065-78. [PMID: 20448457 DOI: 10.4161/cbt.9.12.11995] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nm23-H1 is a well-known tumor metastasis suppressor, which functions as a nucleoside-diphosphate kinase converting nucleoside diphosphates to nucleoside triphosphates with an expense of ATP. It regulates a variety of cellular activities, including proliferation, development, migration and differentiation known to be modulated by a series of complex signaling pathway. Few studies have addressed the mechanistic action of Nm23-H1 in the context of these cellular processes. To determine the downstream pathways modulated by Nm23-H1, we expressed Nm23-H1 in a Burkitt lymphoma derived B-cell line BJAB and performed pathway specific microarray analysis. The genes with significant changes in expression patterns were clustered in groups which are responsible for regulating cell cycle, p53 activities and apoptosis. We found a general reduction of cell cycle regulatory proteins including cyclins and cyclin dependent kinase inhibitors (anti proliferation), and upregulation of apoptotic genes which included caspase 3, 9 and Bcl-x. Nm23-H1 was also found to upregulate p53 and downregulate p21 expression. A number of these genes were validated by real time PCR and results from promoter assays indicated that Nm23-H1 expression downregulated cyclin D1 in a dose responsive manner. Further, we show that Nm23-H1 forms a complex with the cellular transcription factor AP1 to modulate cyclin D1 expression levels. BJAB cells expressing Nm23-H1 showed reduced proliferation rate and were susceptible to increased apoptosis which may in part be due to a direct interaction between Nm23-H1 and p53. These results suggest that Nm23-H1 may have a role in the regulation of cell cycle and apoptosis in human B-cells.
Collapse
Affiliation(s)
- Tathagata Choudhuri
- Division of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Matsumura T, Suzuki T, Aizawa K, Sawaki D, Munemasa Y, Ishida J, Nagai R. Regulation of transforming growth factor-beta-dependent cyclooxygenase-2 expression in fibroblasts. J Biol Chem 2010; 284:35861-71. [PMID: 19837676 DOI: 10.1074/jbc.m109.014639] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abnormal transforming growth factor-beta (TGF-beta) signaling is a critical contributor to the pathogenesis of various human diseases ranging from tissue fibrosis to tumor formation. Excessive TGF-beta signaling stimulates fibrotic responses. Recent research has focused in the main on the antiproliferative effects of TGF-beta in fibroblasts, and it is presently understood that TGF-beta-stimulated cyclooxygenase-2 (COX-2) induction in fibroblasts is essential for antifibroproliferative effects of TGF-beta. Both TGF-beta and COX-2 have been implicated in tumor growth, invasion, and metastasis, and therefore tumor-associated fibroblasts are a recent topic of interest. Here we report the identification of positive and negative regulatory factors of COX-2 expression induced by TGF-beta as determined using proteomic approaches. We show that TGF-beta coordinately up-regulates three factors, heterogeneous nuclear ribonucleoprotein A/B (HNRPAB), nucleotide diphosphate kinase A (NDPK A), and nucleotide diphosphate kinase A (NDPK B). Functional pathway analysis showed that HNRPAB augments mRNA and protein levels of COX-2 and subsequent prostaglandin E(2) (PGE(2)) production by suppressing degradation of COX-2 mRNA. In contrast, NDPK A and NDPK B attenuated mRNA and protein levels of COX-2 by affecting TGF-beta-Smad2/3/4 signaling at the receptor level. Collectively, we report on a new regulatory pathway of TGF-beta in controlling expression of COX-2 in fibroblasts, which advances our understanding of pathophysiological mechanisms of TGF-beta.
Collapse
Affiliation(s)
- Takayoshi Matsumura
- Departments of Cardiovascular Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Mörbt N, Mögel I, Kalkhof S, Feltens R, Röder-Stolinski C, Zheng J, Vogt C, Lehmann I, von Bergen M. Proteome changes in human bronchoalveolar cells following styrene exposure indicate involvement of oxidative stress in the molecular-response mechanism. Proteomics 2009; 9:4920-33. [PMID: 19862763 DOI: 10.1002/pmic.200800836] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Styrene is a volatile organic compound that is widely used as an intermediate in many industrial settings. There are known adverse health effects at environmentally significant concentrations, but little is known about the molecular effect of exposure to styrene at sub-acute toxic concentrations. We exposed human lung epithelial cells, at a wide range of concentrations (1 mg/m(3)-10 g/m(3)), to styrene and analyzed the effects on the proteome level by 2-DE, where 1380 proteins spots were detected and 266 were identified unambiguously by MS. A set of 16 protein spots were found to be significantly altered due to exposure to styrene at environmentally significant concentrations of 1-10 mg/m(3) (0.2-2.3 ppm). Among these, superoxide dismutase as well as biliverdin reductase A could be correlated with the molecular pathway of oxidative stress, while eukaryotic translation initiation factor 5A-1, ezrin, lamin B2 and voltage-dependent anion channel 2 have been reported to be involved in apoptosis. Treatment with styrene also caused the formation of styrene oxide-protein adducts, specifically for thioredoxin reductase 1. These results underline the relevance of oxidative stress as a primary molecular response mechanism of lung epithelial cells to styrene exposure at indoor-relevant concentrations.
Collapse
Affiliation(s)
- Nora Mörbt
- Department of Proteomics, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Epstein-Barr virus nuclear protein 3C domains necessary for lymphoblastoid cell growth: interaction with RBP-Jkappa regulates TCL1. J Virol 2009; 83:12368-77. [PMID: 19776126 DOI: 10.1128/jvi.01403-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes converted into lymphoblastoid cell lines (LCLs) by an Epstein-Barr virus that expresses a conditional EBNA3C require complementation with EBNA3C for growth under nonpermissive conditions. Complementation with relatively large EBNA3C deletion mutants identified amino acids (aa) 1 to 506 (which includes the RBP-Jkappa/CSL [RBP-Jkappa] binding domain) and 733 to 909 to be essential for LCL growth, aa 728 to 732 and 910 to 992 to be important for full wild-type (wt) growth, and only aa 507 to 727 to be unimportant (S. Maruo, Y. Wu, T. Ito, T. Kanda, E. D. Kieff, and K. Takada, Proc. Natl. Acad. Sci. USA 106:4419-4424, 2009). When mutants with smaller deletions were used, only aa 51 to 400 and 851 to 900 were essential for LCL growth; aa 447 to 544, 701 to 750, 801 to 850, and 901 to 992 were important for full wt growth; and aa 4 to 50, 401 to 450, 550 to 707, and 751 to 800 were unimportant. These data reduce the EBNA3C essential residues from 68% to 40% of the open reading frame. Point mutations confirmed RBP-Jkappa binding to be essential for wt growth and indicated that SUMO and CtBP binding interactions were important only for full wt growth. EBNA3C aa 51 to 150, 249 to 311, and 851 to 900 were necessary for maintaining LCL growth, but not RBP-Jkappa interaction, and likely mediate interactions with other key cell proteins. Moreover, all mutants null for LCL growth had fewer S+G(2)/M-phase cells at 14 days, consistent with EBNA3C interaction with RBP-Jkappa as well as aa 51 to 150, 249 to 311, and 851 to 900 being required to suppress p16(INK4A) (S. Maruo, Y. Wu, S. Ishikawa, T. Kanda, D. Iwakiri, and K. Takada, Proc. Natl. Acad. Sci. USA 103:19500-19505, 2006). We have confirmed that EBNA3C upregulates TCL1 and discovered that EBNA3C upregulates TCL1 through RBP-Jkappa, indicating a central role for EBNA3C interaction with RBP-Jkappa in mediating cell gene transcription.
Collapse
|
32
|
Murakami M, Kaul R, Kumar P, Robertson ES. Nucleoside diphosphate kinase/Nm23 and Epstein-Barr virus. Mol Cell Biochem 2009; 329:131-9. [PMID: 19412732 PMCID: PMC5958352 DOI: 10.1007/s11010-009-0123-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/16/2009] [Indexed: 12/19/2022]
Abstract
Nm23-H1 was discovered as the first metastasis suppressor gene about 20 years ago. Since then, extensive work has contributed to understanding its role in various cellular signaling pathways. Its association with a range of human cancers as well as its ability to regulate cell cycle and suppress metastasis has been explored. We have determined that the EBV-encoded nuclear antigens, EBNA3C and EBNA1, required for EBV-mediated lymphoproliferation and for maintenance EBV genome extrachromosomally in dividing mammalian cells, respectively, target and disrupt the physiological role of Nm23-H1 in the context of cell proliferation and cell migration. This review will focus on the interaction of Nm23-H1 with the Epstein-Barr virus nuclear antigens, EBNA3C and EBNA1 and the functional significance of this interaction as it relates to EBV pathogenesis.
Collapse
Affiliation(s)
- Masanao Murakami
- Department of Microbiology and Tumor Virology Program of Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
33
|
Kaul R, Murakami M, Lan K, Choudhuri T, Robertson ES. EBNA3C can modulate the activities of the transcription factor Necdin in association with metastasis suppressor protein Nm23-H1. J Virol 2009; 83:4871-83. [PMID: 19116252 PMCID: PMC2682100 DOI: 10.1128/jvi.02286-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous studies have demonstrated the interaction between the Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) and the metastatic suppressor Nm23-H1 both in vitro and in vivo (C. Subramanian, M. A. Cotter II, and E. S. Robertson, Nat. Med. 7:350-355, 2001). Importantly EBNA3C can reverse the ability of Nm23-H1 to suppress migration of human cells in vitro. EBNA3C contributes to EBV-associated human cancers by regulating transcription of a number of cellular and viral promoters as well as targeting and altering the transcription activities of the metastasis suppressor Nm23-H1. Furthermore, Necdin is a cellular protein which is highly induced in terminally differentiated cells; it contributes to the regulation of cell growth and is also known to interact with viral oncoproteins. In this report, we show that Nm23-H1 and EBNA3C can modulate the biological functions of Necdin in the context of EBV infection and transformation. The levels of Necdin were consistently lower in EBV-positive cells, and EBNA3C could change the subcellular localization of Necdin as well as rescue cells from the antiangiogenic and antiproliferative effects mediated by Necdin. We also show that Necdin directly interacts with Nm23-H1, resulting in modulation of the biochemical function of Nm23-H1 as well as the biological function of Necdin. Both EBNA3C and Nm23-H1 were able to rescue not only Necdin-mediated transcriptional repression of the downstream vascular endothelial growth factor promoter but also Necdin-mediated growth suppression and antiangiogenic effects on cancer cells. The majority of this response was mediated through amino acid residues 191 to 222 of Necdin, which are also known to be important for nuclear matrix targeting. These studies suggest a role for Necdin in the regulation of downstream cellular targets in a hypoxic environment in virus-associated human cancers.
Collapse
Affiliation(s)
- Rajeev Kaul
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Murakami M, Meneses PI, Knight JS, Lan K, Kaul R, Verma SC, Robertson ES. Nm23-H1 modulates the activity of the guanine exchange factor Dbl-1. Int J Cancer 2008; 123:500-10. [PMID: 18470881 DOI: 10.1002/ijc.23568] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytoskeleton rearrangement is necessary for tumor invasion and metastasis. Cellular molecules whose role is to regulate components of the cytoskeletal structure can dictate changes in cellular morphology. One of these molecules is the suppressor of tumor metastasis Nm23-H1. The level of Nm23-H1 expression has been linked to the invasiveness and metastatic potential of human cancers including melanoma and breast cancer. In this report, we demonstrate an interaction between the suppressor of tumor metastasis Nm23-H1, and Dbl-1, an oncoprotein which is associated with guanine exchange and belongs to a family of Guanine Exchange Factors (GEF). Nm23-H1 also was shown to bind pDbl which is the proto-oncoprotein of Dbl. Interestingly, the interaction between Nm23-H1 and Dbl-1 rescues the suppression of the cell motility activity Nm23-H1. Moreover, this interaction results in loss of the ability of the Dbl-1 oncoprotein to function as a GEF for the critical Rho-GTPase family member Cdc42. The loss of GTP loading onto Cdc42 resulted in a dramatic reduction in adhesion stimulated ruffles and suggests that Nm23-H1 can negatively regulate cell migration and tumor metastasis by modulating the activity of Cdc42 through direct interaction with Dbl-1.
Collapse
Affiliation(s)
- Masanao Murakami
- Department of Microbiology, Tumor Virology Program of the Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cohesive scientific evidence from molecular, animal, and human investigations supports the hypothesis that aberrant induction of COX-2 and up-regulation of the prostaglandin cascade play a significant role in carcinogenesis, and reciprocally, blockade of the process has strong potential for cancer prevention and therapy. Supporting evidence includes the following: [1] expression of constitutive COX-2-catalyzed prostaglandin biosynthesis is induced by most cancer-causing agents including tobacco smoke and its components (polycylic aromatic amines, heterocyclic amines, nitrosamines), essential polyunsaturated fatty acids (unconjugated linoleic acid), mitogens, growth factors, proinflammatory cytokines, microbial agents, tumor promoters, and other epigenetic factors, [2] COX-2 expression is a characteristic feature of all premalignant neoplasms, [3] COX-2 expression is a characteristic feature of all malignant neoplasms, and expression intensifies with stage at detection and cancer progression and metastasis, [4] all essential features of carcinogenesis (mutagenesis, mitogenesis, angiogenesis, reduced apoptosis, metastasis, and immunosuppression) are linked to COX-2-driven prostaglandin (PGE-2) biosynthesis, [5] animal studies show that COX-2 up-regulation (in the absence of genetic mutations) is sufficient to stimulate the transformation of normal cells to invasive cancer and metastatic disease, [6] non-selective COX-2 inhibitors, such as aspirin and ibuprofen, reduce the risk of human cancer and precancerous lesions, and [7] selective COX-2 inhibitors, such as celecoxib, reduce the risk of human cancer and precancerous lesions at all anatomic sites thus far investigated. Results confirming that COX-2 blockade is effective for both cancer prevention and therapy have been tempered by observations that some COX2 inhibitors pose a risk to the cardiovascular system, and more studies are needed in order to determine if certain of these drugs can be taken at dosages that prevent cancer without increasing cardiovascular risk. It is emphasized that the "inflammogenesis model of cancer" is not mutually exclusive and may in fact be synergistic with the accumulation of somatic mutations in tumor suppressor genes and oncogenes or epigenetic factors in the development of cancer.
Collapse
Affiliation(s)
- Randall E Harris
- College of Medicine and School of Public Health, Center of Molecular Epidemiology and Environmental Health, The Ohio State University Medical Center, 310 West 10th Avenue, Columbus, Ohio 43210-1240, USA
| |
Collapse
|
36
|
Djavani MM, Crasta OR, Zapata JC, Fei Z, Folkerts O, Sobral B, Swindells M, Bryant J, Davis H, Pauza CD, Lukashevich IS, Hammamieh R, Jett M, Salvato MS. Early blood profiles of virus infection in a monkey model for Lassa fever. J Virol 2007; 81:7960-73. [PMID: 17522210 PMCID: PMC1951294 DOI: 10.1128/jvi.00536-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Acute arenavirus disease in primates, like Lassa hemorrhagic fever in humans, begins with flu-like symptoms and leads to death approximately 2 weeks after infection. Our goal was to identify molecular changes in blood that are related to disease progression. Rhesus macaques (Macaca mulatta) infected intravenously with a lethal dose of lymphocytic choriomeningitis virus (LCMV) provide a model for Lassa virus infection of humans. Blood samples taken before and during the course of infection were used to monitor gene expression changes that paralleled disease onset. Changes in blood showed major disruptions in eicosanoid, immune response, and hormone response pathways. Approximately 12% of host genes alter their expression after LCMV infection, and a subset of these genes can discriminate between virulent and non-virulent LCMV infection. Major transcription changes have been given preliminary confirmation by quantitative PCR and protein studies and will be valuable candidates for future validation as biomarkers for arenavirus disease.
Collapse
Affiliation(s)
- Mahmoud M Djavani
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Reynolds AE, Enquist LW. Biological interactions between herpesviruses and cyclooxygenase enzymes. Rev Med Virol 2006; 16:393-403. [PMID: 17006962 DOI: 10.1002/rmv.519] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Decades ago, medical researchers noted that non-steroidal anti-inflammatory drugs (NSAIDs), for example aspirin and indomethacin, modulate primary herpesvirus infections and diminish reactivation of latent herpesvirus infections. NSAIDs inhibit cyclooxygenase (COX) enzymes, molecules necessary for generation of prostaglandins. Numerous studies indicate that herpesvirus infections elicit elevated levels of cyclooxygenase 2 (COX-2) with a resultant increase in prostaglandin E(2) levels (PGE(2)). Thus, the biochemical pathway underlying the anti-herpetic mechanism of NSAIDs is linked to the inhibition of COX. The precise roles of COX-2 and PGE(2) in the viral life cycle are unknown. However, among the alphaherpesvirus, betaherpesvirus and gammaherpesvirus subfamilies, evolutionarily conserved mechanisms ensure modulated expression of COX molecules, underscoring their importance in viral replication and virus-host interactions.
Collapse
Affiliation(s)
- Ashley E Reynolds
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|