1
|
Calhoun JC, Damania B, Griffith JD, Costantini LM. Electron microscopy mapping of the DNA-binding sites of monomeric, dimeric, and multimeric KSHV RTA protein. J Virol 2023; 97:e0063723. [PMID: 37750723 PMCID: PMC10617422 DOI: 10.1128/jvi.00637-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/19/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus associated with several human cancers, typically in patients with compromised immune systems. Herpesviruses establish lifelong infections in hosts in part due to the two phases of infection: the dormant and active phases. Effective antiviral treatments to prevent the production of new viruses are needed to treat KSHV. A detailed microscopy-based investigation of the molecular interactions between viral protein and viral DNA revealed how protein-protein interactions play a role in DNA-binding specificity. This analysis will lead to a more in-depth understanding of KSHV DNA replication and serve as the basis for anti-viral therapies that disrupt and prevent the protein-DNA interactions, thereby decreasing spread to new hosts.
Collapse
Affiliation(s)
- Jayla C. Calhoun
- Biological and Biomedical Sciences Department, North Carolina Central University, Durham, North Carolina, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jack D. Griffith
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lindsey M. Costantini
- Biological and Biomedical Sciences Department, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Calhoun JC, Damania B, Griffith JD, Costantini LM. Electron microscopy mapping of the DNA-binding sites of monomeric, dimeric, and multimeric KSHV RTA protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538939. [PMID: 37205529 PMCID: PMC10187201 DOI: 10.1101/2023.05.01.538939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Molecular interactions between viral DNA and viral-encoded protein are a prerequisite for successful herpesvirus replication and production of new infectious virions. Here, we examined how the essential Kaposi's sarcoma-associated herpesvirus (KSHV) protein, RTA, binds to viral DNA using transmission electron microscopy (TEM). Previous studies using gel-based approaches to characterize RTA binding are important for studying the predominant form(s) of RTA within a population and identifying the DNA sequences that RTA binds with high affinity. However, using TEM we were able to examine individual protein-DNA complexes and capture the various oligomeric states of RTA when bound to DNA. Hundreds of images of individual DNA and protein molecules were collected and then quantified to map the DNA binding positions of RTA bound to the two KSHV lytic origins of replication encoded within the KSHV genome. The relative size of RTA or RTA bound to DNA were then compared to protein standards to determine whether RTA complexed with DNA was monomeric, dimeric, or formed larger oligomeric structures. We successfully analyzed a highly heterogenous dataset and identified new binding sites for RTA. This provides direct evidence that RTA forms dimers and high order multimers when bound to KSHV origin of replication DNA sequences. This work expands our understanding of RTA binding, and demonstrates the importance of employing methodologies that can characterize highly heterogenic populations of proteins. Importance Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus associated with several human cancers, typically in patients with compromised immune systems. Herpesviruses establish lifelong infections in hosts in part due to the two phases of infection: the dormant and active phases. Effective antiviral treatments to prevent the production of new viruses are needed to treat KSHV. A detailed microscopy-based investigation of the molecular interactions between viral protein and viral DNA revealed how protein-protein interactions play a role in DNA binding specificity. This analysis will lead to a more in depth understanding of KSHV DNA replication and serve as the basis for anti-viral therapies that disrupt and prevent the protein-DNA interactions, thereby decreasing spread to new hosts.
Collapse
Affiliation(s)
- Jayla C. Calhoun
- Biological and Biomedical Sciences Department, North Carolina Central University, Durham, North Carolina, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lindsey M. Costantini
- Biological and Biomedical Sciences Department, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Samarina N, Ssebyatika G, Tikla T, Waldmann JY, Abere B, Nanna V, Marasco M, Carlomagno T, Krey T, Schulz TF. Recruitment of phospholipase Cγ1 to the non-structural membrane protein pK15 of Kaposi Sarcoma-associated herpesvirus promotes its Src-dependent phosphorylation. PLoS Pathog 2021; 17:e1009635. [PMID: 34143834 PMCID: PMC8244865 DOI: 10.1371/journal.ppat.1009635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/30/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
Kaposi Sarcoma-associated herpesvirus (KSHV) causes three human malignancies, Kaposi Sarcoma (KS), Primary Effusion Lymphoma (PEL) and the plasma cell variant of multicentric Castleman’s Disease (MCD), as well as an inflammatory cytokine syndrome (KICS). Its non-structural membrane protein, pK15, is among a limited set of viral proteins expressed in KSHV-infected KS tumor cells. Following its phosphorylation by Src family tyrosine kinases, pK15 recruits phospholipase C gamma 1 (PLCγ1) to activate downstream signaling cascades such as the MEK/ERK, NFkB and PI3K pathway, and thereby contributes to the increased proliferation and migration as well as the spindle cell morphology of KSHV-infected endothelial cells. Here, we show that a phosphorylated Y481EEVL motif in pK15 preferentially binds into the PLCγ1 C-terminal SH2 domain (cSH2), which is involved in conformational changes occurring during the activation of PLCγ1 by receptor tyrosine kinases. We determined the crystal structure of a pK15 12mer peptide containing the phosphorylated pK15 Y481EEVL motif in complex with a shortened PLCγ1 tandem SH2 (tSH2) domain. This structure demonstrates that the pK15 peptide binds to the PLCγ1 cSH2 domain in a position that is normally occupied by the linker region connecting the PLCγ1 cSH2 and SH3 domains. We also show that longer pK15 peptides containing the phosphorylated pK15 Y481EEVL motif can increase the Src-mediated phosphorylation of the PLCγ1 tSH2 region in vitro. This pK15-induced increase in Src-mediated phosphorylation of PLCγ1 can be inhibited with the small pK15-derived peptide which occupies the PLCγ1 cSH2 domain. Our findings thus suggest that pK15 may act as a scaffold protein to promote PLCγ1 activation in a manner similar to the cellular scaffold protein SLP-76, which has been shown to promote PLCγ1 activation in the context of T-cell receptor signaling. Reminiscent of its positional homologue in Epstein-Barr Virus, LMP2A, pK15 may therefore mimic aspects of antigen-receptor signaling. Our findings also suggest that it may be possible to inhibit the recruitment and activation of PLCγ1 pharmacologically. Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) causes three human malignancies (Kaposi Sarcoma, Primary Effusion Lymphoma, Multicentric Castleman’s Disease) and an inflammatory condition, KICS. One of its non-structural membrane proteins, pK15, is expressed in tumor cells and has previously been shown to contribute to its ability to reactivate from latency and to its pathogenetic properties in endothelial cells by recruiting the cellular signaling enzyme phospholipase Cγ1 (PLCγ1). Here we investigate the interaction of pK15 with PLCγ1, report the structure of a PLCγ1 domain in complex with a pK15 peptide and show that pK15 primes PLCγ1 for phosphorylation by the cellular kinase Src. We also show that the pK15-dependent activation of PLCγ1 can be inhibited with a small peptide. Our findings therefore identify the pK15-PLCγ1 interaction as a putative druggable target and provide the basis for the development of small molecule inhibitors that could perhaps serve to inhibit KSHV replication and pathogenesis.
Collapse
Affiliation(s)
- Naira Samarina
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Braunschweig Site, Hannover, Germany
| | | | - Tanvi Tikla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Braunschweig Site, Hannover, Germany
| | - Ja-Yun Waldmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Braunschweig Site, Hannover, Germany
| | - Bizunesh Abere
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Braunschweig Site, Hannover, Germany
| | - Vittoria Nanna
- Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | | | - Teresa Carlomagno
- Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Braunschweig Site, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Braunschweig Site, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
4
|
Choi YB, Cousins E, Nicholas J. Novel Functions and Virus-Host Interactions Implicated in Pathogenesis and Replication of Human Herpesvirus 8. Recent Results Cancer Res 2021; 217:245-301. [PMID: 33200369 DOI: 10.1007/978-3-030-57362-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human herpesvirus 8 (HHV-8) is classified as a γ2-herpesvirus and is related to Epstein-Barr virus (EBV), a γ1-herpesvirus. One important aspect of the γ-herpesviruses is their association with neoplasia, either naturally or in animal model systems. HHV-8 is associated with B-cell-derived primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD), endothelial-derived Kaposi's sarcoma (KS), and KSHV inflammatory cytokine syndrome (KICS). EBV is also associated with a number of B-cell malignancies, such as Burkitt's lymphoma, Hodgkin's lymphoma, and posttransplant lymphoproliferative disease, in addition to epithelial nasopharyngeal and gastric carcinomas. Despite the similarities between these viruses and their associated malignancies, the particular protein functions and activities involved in key aspects of virus biology and neoplastic transformation appear to be quite distinct. Indeed, HHV-8 specifies a number of proteins for which counterparts had not previously been identified in EBV, other herpesviruses, or even viruses in general, and these proteins are believed to play vital functions in virus biology and to be involved centrally in viral pathogenesis. Additionally, a set of microRNAs encoded by HHV-8 appears to modulate the expression of multiple host proteins to provide conditions conductive to virus persistence within the host and possibly contributing to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Young Bong Choi
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA.
| | - Emily Cousins
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
5
|
The landscape of transcription initiation across latent and lytic KSHV genomes. PLoS Pathog 2019; 15:e1007852. [PMID: 31188901 PMCID: PMC6590836 DOI: 10.1371/journal.ppat.1007852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/24/2019] [Accepted: 05/20/2019] [Indexed: 11/19/2022] Open
Abstract
Precise promoter annotation is required for understanding the mechanistic basis of transcription initiation. In the context of complex genomes, such as herpesviruses where there is extensive genic overlap, identification of transcription start sites (TSSs) is particularly problematic and cannot be comprehensively accessed by standard RNA sequencing approaches. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus and the etiological agent of Kaposi's sarcoma and the B cell lymphoma primary effusion lymphoma (PEL). Here, we leverage RNA annotation and mapping of promoters for analysis of gene expression (RAMPAGE) and define KSHV TSSs transcriptome-wide and at nucleotide resolution in two widely used models of KSHV infection, namely iSLK.219 cells and the PEL cell line TREx-BCBL1-RTA. By mapping TSSs over a 96 h time course of reactivation we confirm 48 of 50 previously identified TSSs. Moreover, we identify over 100 novel transcription start site clusters (TSCs) in each cell line. Our analyses identified cell-type specific differences in TSC positions as well as promoter strength, and defined motifs within viral core promoters. Collectively, by defining TSSs at high resolution we have greatly expanded the transcriptional landscape of the KSHV genome and identified transcriptional control mechanisms at play during KSHV lytic reactivation.
Collapse
|
6
|
Kaposi's Sarcoma-Associated Herpesvirus Nonstructural Membrane Protein pK15 Recruits the Class II Phosphatidylinositol 3-Kinase PI3K-C2α To Activate Productive Viral Replication. J Virol 2018; 92:JVI.00544-18. [PMID: 29950425 DOI: 10.1128/jvi.00544-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/24/2018] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) causes the angiogenic tumor KS and two B-cell malignancies. The KSHV nonstructural membrane protein encoded by the open reading frame (ORF) K15 recruits and activates several cellular proteins, including phospholipase Cγ1 (PLCγ1), components of the NF-κB pathway, as well as members of the Src family of nonreceptor tyrosine kinases, and thereby plays an important role in the activation of angiogenic and inflammatory pathways that contribute to the pathogenesis of KS as well as KSHV productive (lytic) replication. In order to identify novel cellular components involved in the biology of pK15, we immunoprecipitated pK15 from KSHV-infected endothelial cells and identified associated proteins by label-free quantitative mass spectrometry. Cellular proteins interacting with pK15 point to previously unappreciated cellular processes, such as the endocytic pathway, that could be involved in the function of pK15. We found that the class II phosphatidylinositol 3-kinase (PI3K) PI3K-C2α, which is involved in the endocytosis of activated receptor tyrosine kinases and their signaling from intracellular organelles, interacts and colocalizes with pK15 in vesicular structures abundant in the perinuclear area. Further functional analysis revealed that PI3K-C2α contributes to the pK15-dependent phosphorylation of PLCγ1 and Erk1/2. PI3K-C2α also plays a role in KSHV lytic replication, as evidenced by the reduced expression of the viral lytic genes K-bZIP and ORF45 as well as the reduced release of infectious virus in PI3K-C2α-depleted KSHV-infected endothelial cells. Taken together, our results suggest a role of the cellular PI3K-C2α protein in the functional properties of the KSHV pK15 protein.IMPORTANCE The nonstructural membrane protein encoded by open reading frame K15 of Kaposi's sarcoma-associated herpesvirus (KSHV) (HHV8) activates several intracellular signaling pathways that contribute to the angiogenic properties of KSHV in endothelial cells and to its reactivation from latency. A detailed understanding of how pK15 activates these intracellular signaling pathways is a prerequisite for targeting these processes specifically in KSHV-infected cells. By identifying pK15-associated cellular proteins using a combination of immunoprecipitation and mass spectrometry, we provide evidence that pK15-dependent signaling may occur from intracellular vesicles and rely on the endocytotic machinery. Specifically, a class II PI3K, PI3K-C2α, is recruited by pK15 and involved in pK15-dependent intracellular signaling and viral reactivation from latency. These findings are of importance for future intervention strategies that aim to disrupt the activation of intracellular signaling by pK15 in order to antagonize KSHV productive replication and tumorigenesis.
Collapse
|
7
|
Expression and Subcellular Localization of the Kaposi's Sarcoma-Associated Herpesvirus K15P Protein during Latency and Lytic Reactivation in Primary Effusion Lymphoma Cells. J Virol 2017; 91:JVI.01370-17. [PMID: 28835496 DOI: 10.1128/jvi.01370-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 11/20/2022] Open
Abstract
The K15P membrane protein of Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with multiple cellular signaling pathways and is thought to play key roles in KSHV-associated endothelial cell angiogenesis, regulation of B-cell receptor (BCR) signaling, and the survival, activation, and proliferation of BCR-negative primary effusion lymphoma (PEL) cells. Although full-length K15P is ∼45 kDa, numerous lower-molecular-weight forms of the protein exist as a result of differential splicing and poorly characterized posttranslational processing. K15P has been reported to localize to numerous subcellular organelles in heterologous expression studies, but there are limited data concerning the sorting of K15P in KSHV-infected cells. The relationships between the various molecular weight forms of K15P, their subcellular distribution, and how these may differ in latent and lytic KSHV infections are poorly understood. Here we report that a cDNA encoding a full-length, ∼45-kDa K15P reporter protein is expressed as an ∼23- to 24-kDa species that colocalizes with the trans-Golgi network (TGN) marker TGN46 in KSHV-infected PEL cells. Following lytic reactivation by sodium butyrate, the levels of the ∼23- to 24-kDa protein diminish, and the full-length, ∼45-kDa K15P protein accumulates. This is accompanied by apparent fragmentation of the TGN and redistribution of K15P to a dispersed peripheral location. Similar results were seen when lytic reactivation was stimulated by the KSHV protein replication and transcription activator (RTA) and during spontaneous reactivation. We speculate that expression of different molecular weight forms of K15P in distinct cellular locations reflects the alternative demands placed upon the protein in the latent and lytic phases.IMPORTANCE The K15P protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is thought to play key roles in disease, including KSHV-associated angiogenesis and the survival and growth of primary effusion lymphoma (PEL) cells. The protein exists in multiple molecular weight forms, and its intracellular trafficking is poorly understood. Here we demonstrate that the molecular weight form of a reporter K15P molecule and its intracellular distribution change when KSHV switches from its latent (quiescent) phase to the lytic, infectious state. We speculate that expression of different molecular weight forms of K15P in distinct cellular locations reflects the alternative demands placed upon the protein in the viral latent and lytic stages.
Collapse
|
8
|
Mekuria ZH, El-Hage C, Ficorilli NP, Washington EA, Gilkerson JR, Hartley CA. Mapping B lymphocytes as major reservoirs of naturally occurring latent equine herpesvirus 5 infection. J Gen Virol 2017; 98:461-470. [DOI: 10.1099/jgv.0.000668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Zelalem H Mekuria
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, VIC 3010, Australia
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Centre, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Charles El-Hage
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, VIC 3010, Australia
| | - Nino P Ficorilli
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, VIC 3010, Australia
| | - Elizabeth A Washington
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, VIC 3010, Australia
| | - James R Gilkerson
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, VIC 3010, Australia
| | - Carol A Hartley
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
9
|
Expression of the Antisense-to-Latency Transcript Long Noncoding RNA in Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2017; 91:JVI.01698-16. [PMID: 27928018 DOI: 10.1128/jvi.01698-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023] Open
Abstract
The regulation of latency is central to herpesvirus biology. Recent transcriptome-wide surveys have uncovered evidence for promiscuous transcription across the entirety of the Kaposi's sarcoma-associated herpesvirus (KSHV) genome and postulated the existence of multiple viral long noncoding RNAs (lncRNAs). Next-generation sequencing studies are highly dependent on the specific experimental approach and particular algorithms of analysis and therefore benefit from independent confirmation of the results. The antisense-to-latency transcript (ALT) lncRNA was discovered by genome-tiling microarray (Chandriani et al., J Virol 86:7934-7942, 2010, https://doi.org/10.1128/JVI.00645-10). To characterize ALT in detail, we physically isolated this lncRNA by a strand-specific hybrid capture assay and then employed transcriptome sequencing and novel reverse transcription-PCR (RT-PCR) assays to distinguish all RNA species in the KSHV latency region. These methods confirm that ALT initiates at positions 120739/121012 and encodes a single splice site, which is shared with the 3'-coterminal K14-vGPCR/ORF74 mRNA, terminating at 130873 (GenBank accession number GQ994935), resulting in an ∼10,000-nucleotide transcript. No shorter ALT isoforms were identified. This study also identified a novel intron within the LANA 5' untranslated region using a splice acceptor at 127888. In summary, ALT joins PAN/nut1/T1.1 as a bona fide lncRNA of KSHV with potentially important roles in viral gene regulation and pathogenesis. IMPORTANCE Increasing data support the importance of noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and lncRNAs, which have been shown to exert critical regulatory functions without coding for recognizable proteins. Defining the sequences of these ncRNAs is essential for future studies aiming to functionally characterize a specific ncRNA. Most lncRNA studies are highly dependent on high-throughput sequencing and bioinformatic analyses, few studies follow up on the initial predictions, and analyses are at times discordant. The manuscript characterizes one key viral lncRNA, ALT, by physically isolating ALT and by a sequencing-independent assay. It provides for a simple assay to monitor lncRNA expression in experimental and clinical samples. ALT is expressed antisense to the major viral latency transcripts encoding LANA as well as the viral miRNAs and thus has the potential to regulate this key part of the viral life cycle.
Collapse
|
10
|
Biswas B, Kandpal M, Jauhari UK, Vivekanandan P. Genome-wide analysis of G-quadruplexes in herpesvirus genomes. BMC Genomics 2016; 17:949. [PMID: 27871228 PMCID: PMC5117502 DOI: 10.1186/s12864-016-3282-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background G-quadruplexes are increasingly recognized as regulatory elements in human, animal, bacterial and plant genomes. The presence and function of G-quadruplexes are not well studied among herpesviruses; in particular, there are no systematic genome-wide analysis of these important secondary structures in herpesvirus genomes. Results We performed genome-wide analysis of putative quadruplex sequences (PQS) in human herpesviruses. We found unusually high PQS densities among human herpesviruses. PQS are enriched in the repeat regions and regulatory regions of human herpesviruses. Interestingly, PQS densities are higher in regulatory regions of immediate early genes compared to early and late genes in most herpesviruses. In addition, the majority of genes functionally conserved across human herpesviruses contain one or more PQS within the regulatory regions. We also describe the existence of unique intramolecular PQS repeats or repetitive G-quadruplex motifs in herpesviruses. Functional studies confirm a role for G-quadruplexes in regulating the gene expression of human herpesviruses. Conclusion The pervasiveness of PQS, their enrichment and conservation at specific genomic locations suggest that these structural entities may represent a novel class of functional elements in herpesviruses. Our findings provide the necessary framework for studies on the biological role of G-quadruplexes in herpesviruses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3282-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Banhi Biswas
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Manish Kandpal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Utkarsh Kumar Jauhari
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
11
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
12
|
Fan W, Tang Q, Shen C, Qin D, Lu C, Yan Q. Preparation and characterization of polyclonal antibody against Kaposi's sarcoma-associated herpesvirus lytic gene encoding RTA. Folia Microbiol (Praha) 2015; 60:473-81. [PMID: 25832009 DOI: 10.1007/s12223-015-0387-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/15/2015] [Indexed: 12/30/2022]
Abstract
Replication and transcription activator (RTA) is a critical lytic protein encoded by Kaposi's sarcoma-associated herpesvirus (KSHV). To prepare rabbit polyclonal antibody against RTA, three antigenic polypeptides of KSHV RTA were initially synthesized. The fragment of RTA was cloned into p3FlagBsd to construct the recombinant plasmid, pRTA-Flag. 293 T and EA.hy926 cells were transfected with pRTA-Flag to obtain RTA-Flag fusion protein, which was detected using anti-Flag antibody. Next, New Zealand white rabbits were immunized with keyhole limpet hemocyanin-conjugated peptides to generate polyclonal antibodies against RTA. Enzyme-linked immunosorbent assays were performed to characterize the polyclonal antibodies, and the titers of the polyclonal antibodies against RTA were greater than 1:11,000. Western blotting and immunofluorescence assay revealed that the prepared antibody reacted specifically with the RTA-Flag fusion protein as well as the native viral protein in KSHV-infected primary effusion lymphoma cells. Collectively, our work successfully constructed the recombinant expression vector, pRTA-Flag, and prepared the polyclonal antibody against RTA, which was valuable for investigating the biochemical and biological functions of the critical KSHV lytic gene.
Collapse
Affiliation(s)
- Weifei Fan
- Department of Oncology, Jiangsu Province Official Hospital, 65 Jiangsu Road, Nanjing, 210024, People's Republic of China
| | - Qiao Tang
- Department of Clinical Laboratory, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Chenyou Shen
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Di Qin
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
13
|
Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, Bellare P, Holdorf M, Weissman JS, Ganem D. KSHV 2.0: a comprehensive annotation of the Kaposi's sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog 2014; 10:e1003847. [PMID: 24453964 PMCID: PMC3894221 DOI: 10.1371/journal.ppat.1003847] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/20/2013] [Indexed: 01/08/2023] Open
Abstract
Productive herpesvirus infection requires a profound, time-controlled remodeling of the viral transcriptome and proteome. To gain insights into the genomic architecture and gene expression control in Kaposi's sarcoma-associated herpesvirus (KSHV), we performed a systematic genome-wide survey of viral transcriptional and translational activity throughout the lytic cycle. Using mRNA-sequencing and ribosome profiling, we found that transcripts encoding lytic genes are promptly bound by ribosomes upon lytic reactivation, suggesting their regulation is mainly transcriptional. Our approach also uncovered new genomic features such as ribosome occupancy of viral non-coding RNAs, numerous upstream and small open reading frames (ORFs), and unusual strategies to expand the virus coding repertoire that include alternative splicing, dynamic viral mRNA editing, and the use of alternative translation initiation codons. Furthermore, we provide a refined and expanded annotation of transcription start sites, polyadenylation sites, splice junctions, and initiation/termination codons of known and new viral features in the KSHV genomic space which we have termed KSHV 2.0. Our results represent a comprehensive genome-scale image of gene regulation during lytic KSHV infection that substantially expands our understanding of the genomic architecture and coding capacity of the virus. Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing agent in immunocompromised patients that establishes long-lasting infections in its hosts. Initially described in 1994 and extensively studied ever since, KSHV molecular biology is understood in broad outline, but many detailed questions are still to be resolved. After almost two decades, specific aspects pertaining to the organization of the KSHV genome as well as the fate of the viral transcripts during the productive stages of infection remain unexplored. Here we use a systematic genome-wide approach to investigate changes in gene and protein expression during the productive stage of infection known as the lytic cycle. We found that the viral genome has a large coding capacity, capable of generating at least 45% more products than initially anticipated by bioinformatic analyses alone, and that it uses multiple strategies to expand its coding capacity well beyond what is determined solely by the DNA sequence of its genome. We also provide an expanded and highly detailed annotation of known and new genomic features in KSHV. We have termed this new architectural and functional annotation KSHV 2.0. Our results indicate that viral genomes are more complex than anticipated, and that they are subject to tight mechanisms of regulation to ensure correct gene expression.
Collapse
Affiliation(s)
- Carolina Arias
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
- * E-mail:
| | - Ben Weisburd
- Novartis Vaccines and Diagnostics, Bioinformatics, Emeryville, California, United States of America
| | - Noam Stern-Ginossar
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexandre Mercier
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Alexis S. Madrid
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Priya Bellare
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Meghan Holdorf
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Don Ganem
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| |
Collapse
|
14
|
Cousins E, Nicholas J. Molecular biology of human herpesvirus 8: novel functions and virus-host interactions implicated in viral pathogenesis and replication. Recent Results Cancer Res 2014; 193:227-68. [PMID: 24008302 PMCID: PMC4124616 DOI: 10.1007/978-3-642-38965-8_13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman's disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of "accessory" genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus-host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein-coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Emily Cousins
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Baltimore, MD, 21287, USA,
| | | |
Collapse
|
15
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus which establishes latent infection in endothelial and B cells, as well as in primary effusion lymphoma (PEL). During latency, the viral genome exists as a circular DNA minichromosome (episome) and is packaged into chromatin analogous to human chromosomes. Only a small subset of promoters, those which drive latent RNAs, are active in latent episomes. In general, nucleosome depletion ("open chromatin") is a hallmark of eukaryotic regulatory elements such as promoters and transcriptional enhancers or insulators. We applied formaldehyde-assisted isolation of regulatory elements (FAIRE) followed by next-generation sequencing to identify regulatory elements in the KSHV genome and integrated these data with previously identified locations of histone modifications, RNA polymerase II occupancy, and CTCF binding sites. We found that (i) regions of open chromatin were not restricted to the transcriptionally defined latent loci; (ii) open chromatin was adjacent to regions harboring activating histone modifications, even at transcriptionally inactive loci; and (iii) CTCF binding sites fell within regions of open chromatin with few exceptions, including the constitutive LANA promoter and the vIL6 promoter. FAIRE-identified nucleosome depletion was similar among B and endothelial cell lineages, suggesting a common viral genome architecture in all forms of latency.
Collapse
|
16
|
Gao J, Cai Q, Lu J, Jha HC, Robertson ES. Upregulation of cellular Bcl-2 by the KSHV encoded RTA promotes virion production. PLoS One 2011; 6:e23892. [PMID: 21901143 PMCID: PMC3162012 DOI: 10.1371/journal.pone.0023892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022] Open
Abstract
Apoptosis of virus infected cells can restrict or dampen full blown virus propagation and this can serve as a protective mechanism against virus infection. Consequently, viruses can also delay programmed cell death by enhancing the expression of anti-apoptotic proteins. Human Bcl-2 is expressed on the surface of the mitochondrial membrane and functions as the regulator of the delicate balance between cell survival and apoptosis. In this report, we showed that the replication and transcription activator (RTA) encoded by KSHV ORF 50, a key regulator for KSHV reactivation from latent to lytic infection, upregulates the mRNA and protein levels of Bcl-2 in 293 cells, and TPA-induced KSHV-infected cells. Further analysis revealed that upregulation of the cellular Bcl-2 promoter by RTA is dose-dependent and acts through targeting of the CCN9GG motifs within the Bcl-2 promoter. The Bcl-2 P2 but not the P1 promoter is primarily responsive to RTA. The results of ChIP confirmed the direct interaction of RTA protein with the CCN9GG motifs. Knockdown of cellular Bcl-2 by lentivirus-delivered small hairpin RNA (shRNA) resulted in increased cell apoptosis and decreased virion production in KSHV-infected cells. These findings provide an insight into another mechanism by which KSHV utilizes the intrinsic apoptosis signaling pathways for prolonging the survival of lytically infected host cells to allow for maximum production of virus progeny.
Collapse
Affiliation(s)
- Jianming Gao
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | | | | |
Collapse
|
17
|
Replication and transcription activator (RTA) of murine gammaherpesvirus 68 binds to an RTA-responsive element and activates the expression of ORF18. J Virol 2011; 85:11338-50. [PMID: 21849436 DOI: 10.1128/jvi.00561-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The replication and transcription activator (RTA), mainly encoded by open reading frame 50, is an immediate-early gene product that is conserved among all characterized gammaherpesviruses. Previous studies have demonstrated that RTA proteins of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) can activate the promoter of many viral early lytic genes through direct or indirect mechanisms. Murine gammaherpesvirus 68 (MHV-68) is genetically related to KSHV and EBV, and the RTA homologue from MHV-68 also initiates the lytic cycle of gene expression. Although two RTA-dependent promoters had been identified in MHV-68, the mechanism of the interaction between RTA and the promoters was not characterized. In this study, we first identified an RTA-responsive promoter in the left origin of lytic replication region of MHV-68 through a reporter assay and mapped a 27-bp RTA-responsive element (RRE) through systematic deletions. Interestingly, sequence analysis identified a second RRE in this region. An electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay showed that RTA can bind directly to these two RREs in vitro or in vivo. Mutagenesis studies have further characterized the nucleotides important for mediating RTA binding by an EMSA. Moreover, we engineered RRE-deleted viruses and demonstrated in the context of the viral genome that one of the RREs mediates the RTA-dependent activation of an essential lytic gene, ORF18, during de novo infection. To our knowledge, this is the first time that RTA binding sites in MHV-68 have been identified. Since ORF18 regulates viral late gene expression, our study has also contributed to the delineation of the expression cascade of gammaherpesvirus lytic genes.
Collapse
|
18
|
Cai Q, Verma SC, Lu J, Robertson ES. Molecular biology of Kaposi's sarcoma-associated herpesvirus and related oncogenesis. Adv Virus Res 2010; 78:87-142. [PMID: 21040832 PMCID: PMC3142360 DOI: 10.1016/b978-0-12-385032-4.00003-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kaposi's Sarcoma-associated Herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is the most recently identified human tumor virus,and is associated with the pathogenesis of Kaposi's sarcoma and two lymphoproliferative disorders known to occur frequently in AIDS patients-primary effusion lymphoma and multicentric Castleman disease. In the 15 years since its discovery, intense studies have demonstrated an etiologic role for KSHV in the development of these malignancies. Here, we review the recent advances linked to understanding KSHV latent and lytic life cycle and the molecular mechanisms of KSHV-mediated oncogenesis in terms of transformation, cell signaling, cell growth and survival, angiogenesis, immune invasion and response to microenvironmental stress, and highlight the potential therapeutic targets for blocking KSHV tumorigenesis.
Collapse
Affiliation(s)
- Qiliang Cai
- Department of Microbiology, Abramson, Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
19
|
Wang L, Pietrek M, Brinkmann MM, Hävemeier A, Fischer I, Hillenbrand B, Dittrich-Breiholz O, Kracht M, Chanas S, Blackbourn DJ, Schulz TF. Identification and functional characterization of a spliced rhesus rhadinovirus gene with homology to the K15 gene of Kaposi's sarcoma-associated herpesvirus. J Gen Virol 2009; 90:1190-1201. [PMID: 19264656 DOI: 10.1099/vir.0.007971-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhesus monkey rhadinovirus (RRV) is a gamma-2 herpesvirus related to the human Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8). This study identified an alternatively spliced gene at the right side of the RRV genome (strain 17577) between open reading frame 75 and the terminal repeat region. Of its eight exons, the first seven encoded up to 12 transmembrane domains, whilst the eighth exon encoded a predicted C-terminal cytoplasmic domain. Structurally and positionally, this RRV gene therefore resembles the K15 gene of KSHV; it was provisionally named RK15 to avoid confusion with other RRV17577 genes. In ectopic expression studies, the 55 kDa RK15 protein isoform activated the JNK and NF-kappaB pathways, like the 45 kDa KSHV K15-encoded protein isoform. In contrast to K15, which activates angiogenic and inflammatory cytokines such as interleukin (IL)-8, IL-6 and CCL20, the range of cellular transcripts activated by the RRV K15 homologue was much more restricted, but included IL-6, IL-8 and FGF21. These data suggest functional differences between terminal membrane proteins at the right end of the genomes of Old World primate gamma-2 herpesviruses.
Collapse
Affiliation(s)
- Linding Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan 430071, PR China
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Marcel Pietrek
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Melanie M Brinkmann
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Anika Hävemeier
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Irina Fischer
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Bernd Hillenbrand
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Oliver Dittrich-Breiholz
- Institute of Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Michael Kracht
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Simon Chanas
- CRUK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - David J Blackbourn
- CRUK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
20
|
Chen J, Ye F, Xie J, Kuhne K, Gao SJ. Genome-wide identification of binding sites for Kaposi's sarcoma-associated herpesvirus lytic switch protein, RTA. Virology 2009; 386:290-302. [PMID: 19233445 PMCID: PMC2663009 DOI: 10.1016/j.virol.2009.01.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/27/2008] [Accepted: 01/22/2009] [Indexed: 12/22/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) encoded by ORF50 is a lytic switch protein for viral reactivation from latency. The expression of RTA activates the expression of downstream viral genes, and is necessary for triggering the full viral lytic program. Using chromatin immunoprecipitation assay coupled with a KSHV whole-genome tiling microarray (ChIP-on-chip) approach, we identified a set of 19 RTA binding sites in the KSHV genome in a KSHV-infected cell line BCBL-1. These binding sites are located in the regions of promoters, introns, or exons of KSHV genes including ORF8, ORFK4.1, ORFK5, PAN, ORF16, ORF29, ORF45, ORF50, ORFK8, ORFK10.1, ORF59, ORFK12, ORF71/72, ORFK14/ORF74, and ORFK15, the two origins of lytic replication OriLyt-L and OriLyt-R, and the microRNA cluster. We confirmed these RTA binding sites by ChIP and quantitative real-time PCR. We further mapped the RTA binding site in the first intron of the ORFK15 gene, and determined that it is RTA-responsive. The ORFK15 RTA binding sequence TTCCAGGAA TTCCTGGAA consists of a palindromic structure of two tandem repeats, of which each itself is also an imperfect inverted repeat. Reporter assay and electrophoretic mobility shift assay confirmed the binding of the RTA protein to this sequence in vitro. Sequence alignment with other RTA binding sites identified the RTA consensus binding motif as TTCCAGGAT(N)(0-16)TTCCTGGGA. Interestingly, most of the identified RTA binding sites contain only half or part of this RTA binding motif. These results suggest the complexity of RTA binding in vivo, and the involvement of other cellular or viral transcription factors during RTA transactivation of target genes.
Collapse
Affiliation(s)
- Jiguo Chen
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Fengchun Ye
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jianping Xie
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Kurt Kuhne
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Shou-Jiang Gao
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Tumor Virology Group, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuhan, China
| |
Collapse
|
21
|
Qin Y, Liu Z, Zhang T, Wang Y, Li X, Wang J. Generation and application of polyclonal antibody against replication and transcription activator of Kaposi's sarcoma-associated herpesvirus. Appl Biochem Biotechnol 2009; 160:1217-26. [PMID: 19333559 DOI: 10.1007/s12010-009-8604-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/03/2009] [Indexed: 10/20/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, the most common neoplasm in untreated HIV-1-infected individuals, and several B cell disorders. KSHV infection goes through lytic and latent phases, and the switch from latency to lytic replication is governed by viral replication and transcription activator (RTA). RTA consists of 691 amino acids, containing an N-terminal DNA-binding and a C-terminal activation domain. In the present study, polyclonal antibody against RTA was generated and evaluated. The C-terminal region of RTA (E482 approximately D691) was expressed in Escherichia coli, purified by affinity chromatography, and utilized to raise polyclonal antibody in BALB/c mice. High-affinity antisera were obtained, which successfully detected the antigen at a dilution of 1:13,500 for ELISA and 1:20,000 for Western blot analysis. The antibody can specifically recognize full-length RTA expressed in both E. coli and mammalian cells. Furthermore, endogenous RTA can be detected with the antibody in TPA-induced BCBL-1 cells under various conditions. These results suggested that the antibody is valuable for the investigation of biochemical properties and biological functions of RTA.
Collapse
Affiliation(s)
- Yu Qin
- College of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Lambert PJ, Shahrier AZ, Whitman AG, Dyson OF, Reber AJ, McCubrey JA, Akula SM. Targeting the PI3K and MAPK pathways to treat Kaposi's-sarcoma-associated herpes virus infection and pathogenesis. Expert Opin Ther Targets 2007; 11:589-99. [PMID: 17465719 DOI: 10.1517/14728222.11.5.589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cells require the ability to appropriately respond to signals in their extracellular environment. To initiate, inhibit and control these processes, the cell has developed a complex network of signaling cascades. The phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways regulate several responses including mitosis, apoptosis, motility, proliferation, differentiation and many others. It is not surprising, therefore, that many viruses target the PI3K and MAPK pathways as a means to manipulate cellular function. Recently, Kaposi's sarcoma-associated herpes virus (KSHV) has been added to the list. KSHV manipulates the PI3K and MAPK pathways to control such divergent processes as cell survival, cellular migration, immune responses, and to control its own reactivation and lytic replication. Manipulation of the PI3K and MAPK pathways also plays a role in malignant transformation. Here, the authors review the potential to target the PI3K and MAPK signaling pathways to inhibit KSHV infection and pathogenesis.
Collapse
Affiliation(s)
- Phelps J Lambert
- Brody School of Medicine at East Carolina University, Department of Microbiology & Immunology, Greenville, NC 27834, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Greene W, Kuhne K, Ye F, Chen J, Zhou F, Lei X, Gao SJ. Molecular biology of KSHV in relation to AIDS-associated oncogenesis. Cancer Treat Res 2007; 133:69-127. [PMID: 17672038 PMCID: PMC2798888 DOI: 10.1007/978-0-387-46816-7_3] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
KSHV has been established as the causative agent of KS, PEL, and MCD, malignancies occurring more frequently in AIDS patients. The aggressive nature of KSHV in the context of HIV infection suggests that interactions between the two viruses enhance pathogenesis. KSHV latent infection and lytic reactivation are characterized by distinct gene expression profiles, and both latency and lytic reactivation seem to be required for malignant progression. As a sophisticated oncogenic virus, KSHV has evolved to possess a formidable repertoire of potent mechanisms that enable it to target and manipulate host cell pathways, leading to increased cell proliferation, increased cell survival, dysregulated angiogenesis, evasion of immunity, and malignant progression in the immunocompromised host. Worldwide, approximately 40.3 million people are currently living with HIV infection. Of these, a significant number are coinfected with KSHV. The complex interplay between the two viruses dramatically elevates the risk for development of KSHV-induced malignancies, KS, PEL, and MCD. Although HAART significantly reduces HIV viral load, the entire T-cell repertoire and immune function may not be completely restored. In fact, clinically significant immune deficiency is not necessary for the induction of KSHV-related malignancy. Because of variables such as lack of access to therapy noncompliance with prescribed treatment, failure to respond to treatment and the development of drug-resistant strains of HIV, KSHV-induced malignancies will continue to present as major health concerns.
Collapse
Affiliation(s)
- Whitney Greene
- Tiumor Virology Program, Children's Cancer Research Institute, Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The life cycle of KSHV, latency versus lytic replication, is mainly determined at the transcriptional regulation level. A viral immediate-early gene product, replication and transcription activator (RTA), has been identified as the molecular switch for initiation of the lytic gene expression program from latency. Here we review progress on two key questions: how RTA gene expression is controlled by viral proteins and cellular signals and how RTA regulates the expression of downstream viral genes. We summarize the interactions of RTA with cellular and other viral proteins. We also discuss critical issues that must be addressed in the near future.
Collapse
Affiliation(s)
- H Deng
- Center for Infection and Immunity, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, PR China
| | | | | |
Collapse
|
25
|
Brinkmann MM, Pietrek M, Dittrich-Breiholz O, Kracht M, Schulz TF. Modulation of host gene expression by the K15 protein of Kaposi's sarcoma-associated herpesvirus. J Virol 2006; 81:42-58. [PMID: 17050609 PMCID: PMC1797256 DOI: 10.1128/jvi.00648-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) contains several open reading frames (ORFs) encoding proteins capable of initiating signal transduction pathways. Among them is the K15 ORF, which consists of eight exons encoding a protein with 12 predicted transmembrane domains and a cytoplasmic C terminus. When transiently expressed, the 8-exon K15 transcript gives rise to a protein with an apparent molecular mass of 45 kDa. K15 interacts with cellular proteins, TRAF (tumor necrosis factor receptor-associated factor) and Src kinases, and activates AP-1, NF-kappaB, and the mitogen-activated protein kinases (MAPKs) c-jun-N-terminal kinase and extracellular signal-regulated kinase. This signaling activity of K15 is related to phosphorylation of Y(481) of the K15 SH2-B motif Y(481)EEV. In this study we demonstrate the expression of an endogenous 45-kDa K15 protein in KSHV BAC36-infected epithelial cells. This endogenous K15 protein shows the same intracellular localization as transiently expressed K15, and expression kinetic studies suggest it to be a lytic gene. We have further determined the downstream target genes of K15 signaling using DNA oligonucleotide microarrays. We demonstrate that K15 is capable of inducing expression of multiple cytokines and chemokines, including interleukin-8 (IL-8), IL-6, CCL20, CCL2, CXCL3, and IL-1alpha/beta, as well as expression of Dscr1 and Cox-2. In epithelial cells, K15-induced upregulation of most genes was dependent on phosphorylation of Y(481), whereas in endothelial cells mutation of Y(481) did not result in a complete loss of Dscr1 and Cox-2 expression and NFAT-activity. Our study establishes K15 as one of the KSHV lytic genes that are inducing expression of multiple cytokines, which have been shown to play an important role in KSHV-associated pathogenesis.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | | | | | | | | |
Collapse
|