1
|
Tan X, Zhou W, Jing S, Shen W, Lu B. Decoding codon usage in human papillomavirus type 59. Virus Genes 2025; 61:313-323. [PMID: 40038214 PMCID: PMC12052745 DOI: 10.1007/s11262-025-02148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Human Papillomavirus Type 59 (HPV-59) is a high-risk subtype linked to cervical and other cancers. However, its codon usage patterns remain underexplored despite their importance in understanding viral behavior and vaccine optimization. This study reveals a mild codon usage bias in HPV-59, with a notable preference for A/T-ending codons and 29 favored codons, primarily ending in A or T. Additionally, CpG dinucleotides were significantly underrepresented, potentially aiding immune evasion. Analyses using the Parity Rule 2, Effective Number of Codons plot, and neutrality plot indicate that both mutational pressure and natural selection shape codon usage, with natural selection playing a dominant role. The virus's codon usage moderately aligns with human translational machinery, as shown by the Isoacceptor tRNA pool, Codon Adaptation Index, and Relative Codon Deoptimization Index, reflecting an evolutionary balance between protein synthesis efficiency and host compatibility. These findings provide valuable insights into HPV-59 biology, offering guidance for developing optimized vaccines.
Collapse
Affiliation(s)
- Xiaochun Tan
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 South Central Road, Jiaxing, 314000, China
| | - Wenyi Zhou
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 South Central Road, Jiaxing, 314000, China
| | - Shunyou Jing
- Department of Clinical Laboratory, Sichuan Provincial Women's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China
| | - Weifeng Shen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 South Central Road, Jiaxing, 314000, China
| | - Binbin Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 South Central Road, Jiaxing, 314000, China.
| |
Collapse
|
2
|
Li J, Shuai S. CocoVax: a web server for codon-based deoptimization of viral genes in live attenuated vaccine design. Nucleic Acids Res 2025:gkaf358. [PMID: 40297995 DOI: 10.1093/nar/gkaf358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Viral infections pose major economic and public health challenges worldwide, with vaccines as a critical tool for prevention. Synonymous recoding of viral genes through codon and codon-pair deoptimization offers a promising approach to design live attenuated vaccines (LAVs) by reducing viral fitness without altering protein sequences. This strategy has been successfully applied to develop vaccines for a range of pathogens affecting human and livestock. To support this approach, we developed CocoVax, the first web server dedicated to codon and codon-pair deoptimization for LAV design. CocoVax features four modules, Virus Database, Gene Recoder, Sequence Evaluator, and Reference Library, guiding users through the entire vaccine development process. With its intuitive interface, CocoVax enables rapid generation of vaccine candidates using only a pathogen's gene sequence, providing a valuable resource for researchers in virology and vaccine development. CocoVax is freely accessible at https://comics.med.sustech.edu.cn/cocovax with no login required.
Collapse
Affiliation(s)
- Jiaxuan Li
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Wu Y, Gao S, Liu G, Wang M, Tan R, Huang B, Tan W. Development of viral infectious clones and their applications based on yeast and bacterial artificial chromosome platforms. MOLECULAR BIOMEDICINE 2025; 6:26. [PMID: 40295404 PMCID: PMC12037452 DOI: 10.1186/s43556-025-00266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/26/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
Infectious Clones represent a foundational technique in the field of reverse genetics, allowing for the construction and manipulation of full-length viral genomes. The main methods currently used for constructing viral infectious clones include Transformation-associated recombination (TAR), which is based on Yeast Artificial Chromosome (YAC) and Bacterial Artificial Chromosome (BAC). The YAC and BAC systems are powerful tools that enable the clones and manipulation of large DNA fragments, making them well-suited for the construction of full-length viral genomes. These methods have been successfully applied to construct infectious clones for a wide range of viruses, including coronaviruses, herpesviruses, flaviviruses and baculoviruses. The rescued recombinant viruses from these infectious clones have been widely used in various research areas, such as vaccine development, antiviral drug screening, pathogenesis and virulence studies, gene therapy and vector design. However, as different viruses possess unique biological characteristics, the challenge remains in how to rapidly obtain infectious clones for future research. In summary, this review introduced the development and applications of infectious clones, with a focus on the YAC, BAC and combined YAC-BAC technologies. We emphasize the importance of these platforms in various research areas and aim to provide deeper insights that can advance the platform and broaden its application horizons.
Collapse
Affiliation(s)
- Yiyi Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China
| | - Shangqing Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China
| | - Guanya Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China
- School of Public Health, Baotou Medical College, Baotou City, Inner Mongolia Autonomous Region, 014040, China
| | - Mengwei Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China
| | - Ruixiao Tan
- College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Baoying Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China.
| | - Wenjie Tan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China.
- School of Public Health, Baotou Medical College, Baotou City, Inner Mongolia Autonomous Region, 014040, China.
| |
Collapse
|
4
|
Huang X, Yu C, Lu L. Isolation and characterization of a roseophage representing a novel genus in the N4-like Rhodovirinae subfamily distributed in estuarine waters. BMC Genomics 2025; 26:295. [PMID: 40133813 PMCID: PMC11934525 DOI: 10.1186/s12864-025-11463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Roseobacteraceae, often referred to as the marine roseobacter clade (MRC), are pivotal constituents of bacterial communities in coastal and pelagic marine environments. During the past two decades, 75 roseophages that infect various Roseobacteraceae lineages have been isolated. The N4-like roseophage clade, which encompasses 15 members, represents the largest clade among these roseophages. N4-like phages form a monophyletic group, classified as family Schitoviridae. And all N4-like roseophages form a unique clade within Schitoviridae and has been classified as the Rhodovirinae subfamily. RESULTS In this study, we isolated a novel roseophage, vB_DshP-R7L, that infects Dinoroseobacter shibae DFL12 from Xiamen Bay in the East China Sea. Conserved genes of Schitoviridae have been identified in the genome of vB_DshP-R7L, and following phylogenetic analysis suggests that the newly isolated phage is a member of the Rhodovirinae subfamily and represents the sole member of a novel genus, Gonggongvirus. The genome of vB_DshP-R7L harbors six auxiliary metabolic genes (AMGs), most of which potentially enhance DNA de novo synthesis. Additionally, a gene encoding ribosomal protein was identified. Comparative genomic analysis of AMG content among Rhodovirinae indicates a distinct evolutionary history characterized by independent ancient horizontal gene transfer events. Read-mapping analysis reveals the prevalence of vB_DshP-R7L and other Rhodovirinae roseophages in estuarine waters. CONCLUSIONS Our work illustrates the genomic features of a novel roseophage clade among the subfamily Rhodovirinae. The AMG content of vB_DshP-R7L is under severe purification selection, which reveals their possible ecological importance. We also demonstrated that vB_DshP-R7L and other Rhodovirinae roseophages are only detected in estuaries. Our isolation and characterization of this novel phage expands the understanding of the phylogeny, gene transfer history, and biogeography of Rhodovirinae infecting marine Roseobacteraceae.
Collapse
Affiliation(s)
- Xingyu Huang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Chen Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Longfei Lu
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Ministry of Natural Resources, Fourth Institute of Oceanography, Beihai, 536000, China.
| |
Collapse
|
5
|
Rahman SU, Hu Y, Rehman HU, Alrashed MM, Attia KA, Ullah U, Liang H. Analysis of synonymous codon usage bias of Lassa virus. Virus Res 2025; 353:199528. [PMID: 39832535 PMCID: PMC11815952 DOI: 10.1016/j.virusres.2025.199528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/17/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Lassa virus genome consists of two single-stranded, negative-sense RNA segments that lie in the genus Arenavirus. The disease associated with the Lassa virus is distributed all over the world, with approximately 3,000,000-5,000,000 infections diagnosed annually in West Africa. It shows high health risks to the human being. Previous research used the evolutionary time scale and adaptive evolution to describe the Lassa virus population pattern. However, it is still unclear how the Lassa virus takes advantage of synonymous codons. In this study, we analyzed the codon usage bias in 162 Lassa virus strains by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results disclosed that LASV strains are rich in A/T. The average ENC value indicated a low codon usage bias in LASVs. The ENC-plot, neutrality plot and parity rule 2 plot demonstrated that, besides mutational pressure, other factors like natural selection also contributed to codon usage bias. This study is significant because it described the pattern of codon usage in the genomes of the Lassa viruses and provided the information needed for a fundamental evolutionary study of them.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, PR China; Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - Yikui Hu
- Department of Neurology, Wuhan Wuchang Hospital, Wuhan, PR China
| | - Hassan Ur Rehman
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - May M Alrashed
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia.
| | - Ubaid Ullah
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - Huiying Liang
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, PR China.
| |
Collapse
|
6
|
Ren J, Li Q, Shen W, Tan X. Decoding Codon Usage Patterns in High-Risk Human Papillomavirus Genomes: A Comprehensive Analysis. Curr Microbiol 2025; 82:148. [PMID: 39987223 DOI: 10.1007/s00284-025-04131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Human Papillomavirus (HPV) is a major contributor to various human cancers, particularly cervical cancer. Despite its significant impact, the codon usage bias in high-risk HPV types has not been extensively studied. Understanding this bias, however, could provide valuable insights into the virus itself and inform the optimization of vaccine design. This study explores codon usage bias within the genomes of 17 high-risk HPV types (HPV-16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, and 82) through comparative analysis. While overall codon usage preference across these genotypes is not highly significant, a notable trend emerges in the preference for codons ending in A or U, with 24 out of 26 favored codons (Relative Synonymous Codon Usage > 1) ending in A or U. Moreover, no common optimal codons are shared among the 17 genomes. The study also identifies the underrepresentation of CpG and ApA dinucleotides, alongside the overrepresentation of CpA and UpG, which likely contribute to codon usage preferences that may influence viral replication and immune evasion strategies. Integrated analysis further suggests that natural selection is the primary force driving codon usage bias in these high-risk HPV genomes. Additionally, these HPVs exhibit a limited set of favored codons shared with humans, potentially minimizing competition for translation resources. This study offers new insights into codon usage bias in high-risk HPVs and underscores the importance of this understanding for optimizing vaccine design.
Collapse
Affiliation(s)
- Jiahuan Ren
- Emergency Department, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Qijia Li
- Department of Clinical Laboratory, Sichuan Provincial Women's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China
| | - Weifeng Shen
- Department of Clinical Laboratory, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaochun Tan
- Department of Clinical Laboratory, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
7
|
Thomas PD, Ferrer MF, Lozano MJ, Gómez RM. Comparative genetic analysis of pathogenic and attenuated strains of Junín virus. Genetica 2025; 153:12. [PMID: 39921799 DOI: 10.1007/s10709-025-00228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Junín virus (JUNV) is a mammarenavirus that causes Argentine hemorrhagic fever (AHF). Mammarenaviruses are RNA viruses with an ambisense, bi-segmented genome containing four genes encoding the glycoproteins (GPC), the nucleoprotein (NP), the RNA polymerase (L) and the matrix protein (Z). Several JUNV strains with different pathogenicity have already been fully sequenced. We performed a comprehensive and comparative analysis of their genetic differences and phylogeny, focusing on the synonymous codon usage patterns of the JUNV proteins. We found a nucleotide identity of > 95% between strains, with significant differences between all genes for GC% and Z and L genes for GC3%. Analysis of relative synonymous codon usage showed that codons AGA and AGG of the amino acid arginine were overrepresented, while CGC, CGA and CGG of arginine, GCG of alanine, ACG of threonine, CCG of proline and TCG of serine were underrepresented in the GPC, NP and L genes. A weak codon usage bias was observed, with GPC having a significantly higher effective number of codons. Moreover, selection could explain at least 83% of the observed bias. Analysis of the codon adaptation index revealed a better adaptation for B cells and kidney and a lower one for endothelial cells. We also observed a possible reassortment event between the MC2 and Romero strains. This work provides a new perspective on the genetic diversity of JUNV strains, which may contribute to the development of new approaches for future research into the evolutionary model, origin and host adaptation of JUNV causing AHF.
Collapse
Affiliation(s)
- Pablo Daniel Thomas
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - María Florencia Ferrer
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Mauricio J Lozano
- Laboratorio de Genómica y Ecología Molecular de Microorganismos del Suelo asociados con Plantas, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| | - Ricardo Martín Gómez
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| |
Collapse
|
8
|
See SA, Bhassu S, Tang SS, Yusoff K. Newly developed mRNA vaccines induce immune responses in Litopenaeus vannamei shrimps during primary vaccination. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105264. [PMID: 39299363 DOI: 10.1016/j.dci.2024.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
White spot syndrome virus (WSSV) causes highly destructive infection in crustacean aquaculture, often resulting in 100% mortality within a week. However, there is lack of studies addressing the safety issues of WSSV vaccines in shrimps. In this study, WSSV VP28 mRNA vaccines were developed using codon deoptimization approach. These vaccines were administered to Litopenaeus vannamei shrimps at various dosages to access their safety and the shrimps' immune responses using quantification PCR (qPCR). The findings of this study indicate that the expression level of codon deoptimized VP28 mRNA vaccines are lower compared to the wild type VP28 vaccines, as observed through a comparison of bioinformatic predictions and experimental results. Additionally, the total haemocyte count (THC) in shrimps injected with codon deoptimized VP28 vaccine was higher than those injected with wild type VP28 vaccines. Furthermore, the expression of immune-related genes differed between codon deoptimized and wild type VP28 vaccines. In summary, the results suggest that 0.01 μg codon deoptimized VP28-D1 mRNA vaccine is the most promising WSSV mRNA vaccine, displaying low pathogenicity and expression in shrimps. To the best of our knowledge, this research represents the first attempt to attenuate WSSV using codon deoptimization method and development of a potential mRNA vaccine for shrimp purpose. The study addresses an important gap in shrimp vaccine research, offering potential solutions for WSSV control in shrimps.
Collapse
Affiliation(s)
- SiouNing Aileen See
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| | - Swee Seong Tang
- Microbial Biochemistry Laboratory, Division of Microbiology and Molecular Genetic, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khatijah Yusoff
- Malaysia Genome Vaccine Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
9
|
Bravo IG, Belkhir S, Paget-Bailly P. Why HPV16? Why, now, HPV42? How the discovery of HPV42 in rare cancers provides an opportunity to challenge our understanding about the transition between health and disease for common members of the healthy microbiota. FEMS Microbiol Rev 2024; 48:fuae029. [PMID: 39562287 PMCID: PMC11644485 DOI: 10.1093/femsre/fuae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
In 2022, a bioinformatic, agnostic approach identified HPV42 as causative agent of a rare cancer, later confirmed experimentally. This unexpected association offers an opportunity to reconsider our understanding about papillomavirus infections and cancers. We have expanded our knowledge about the diversity of papillomaviruses and the diseases they cause. Yet, we still lack answers to fundamental questions, such as what makes HPV16 different from the closely related HPV31 or HPV33; or why the very divergent HPV13 and HPV32 cause focal epithelial hyperplasia, while HPV6 or HPV42 do not, despite their evolutionary relatedness. Certain members of the healthy skin microbiota are associated to rare clinical conditions. We propose that a focus on cellular phenotypes, most often transient and influenced by intrinsic and extrinsic factors, may help understand the continuum between health and disease. A conceptual switch is required towards an interpretation of biology as a diversity of states connected by transition probabilities, rather than quasi-deterministic programs. Under this perspective, papillomaviruses may only trigger malignant transformation when specific viral genotypes interact with precise cellular states. Drawing on Canguilhem's concepts of normal and pathological, we suggest that understanding the transition between fluid cellular states can illuminate how commensal-like infections transition from benign to malignant.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Sophia Belkhir
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Philippe Paget-Bailly
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| |
Collapse
|
10
|
Berche P. The dangerous biology of pathogenic germs. C R Biol 2024; 347:77-86. [PMID: 39297602 DOI: 10.5802/crbiol.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 10/11/2024]
Abstract
The convergence of biotechnologies with other disciplines, including computer science and Artificial Intelligence (AI), may make it possible to carry out dangerous genetic manipulations on pathogenic germs, as the gain-of-function experiments exacerbating virulence, as those carried out on myxoviruses and coronaviruses. Moreover, it is now possible to chemically synthesise any microorganism from in silico sequences, including the most dangerous viruses (poxviruses, Ebola, etc.), whose sequences are accessible. It might even be possible to use AI to design new germs that could be used as biological weapons.
Collapse
|
11
|
Tan X, Xie Y, Jiang C, Li H, Lu Y, Shen W, Chen J. Codon usage bias of human papillomavirus type 33 and 58: A comprehensive analysis. J Basic Microbiol 2024; 64:e2300636. [PMID: 38346260 DOI: 10.1002/jobm.202300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 05/03/2024]
Abstract
Cervical cancer is closely linked to specific strains of human papillomavirus (HPV), notably HPV-33 and HPV-58, which exhibit a significant prevalence among women in China. Nevertheless, the codon usage bias in HPV-33 and HPV-58 is not well comprehended. The objective of this research is to analyze the codon usage patterns HPV-33 and HPV-58, pinpoint the primary factors that influence codon preference. The overall preference for codon usage in two HPV genotypes is not significant. Both HPV genotypes exhibit a preference for codons that end with A/U. The GC3 content for HPV-33 is 25.43% ± 0.35%, and for HPV-58, it is 29.44% ± 0.57%. Out of the 26 favored codons in HPV-33 and HPV-58 (relative synonymous codon usage (RSCU) > 1), 25 conclude with A/U. Principal component analysis (PCA) shows a tight clustering of the entire genome sequences of HPV-33 and HPV-58, suggesting a similarity in their RSCU preferences. Moreover, an examination of dinucleotide abundance indicated that translation selection influenced the development of a distinctive dinucleotide usage pattern in HPV-33 and HPV-58. Additionally, a combined analysis involving an effective number of codons plot, parity rule 2, and neutrality analysis demonstrated that, for HPV-33 and HPV-58, the primary determinant influencing codon usage preference is natural selection. HPV-33 and HPV-58 exhibit a restricted set of favored codons in common with humans, potentially mitigating competition for translation resources. Our discoveries could provide valuable perspectives on the evolutionary patterns and codon usage preferences of HPV-33 and HPV-58 viruses, contributing to the development and application of relevant HPV subtype vaccines.
Collapse
Affiliation(s)
- Xiaochun Tan
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yucheng Xie
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chaoyue Jiang
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hui Li
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yu Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weifeng Shen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jing Chen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
12
|
Paremskaia AI, Kogan AA, Murashkina A, Naumova DA, Satish A, Abramov IS, Feoktistova SG, Mityaeva ON, Deviatkin AA, Volchkov PY. Codon-optimization in gene therapy: promises, prospects and challenges. Front Bioeng Biotechnol 2024; 12:1371596. [PMID: 38605988 PMCID: PMC11007035 DOI: 10.3389/fbioe.2024.1371596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Codon optimization has evolved to enhance protein expression efficiency by exploiting the genetic code's redundancy, allowing for multiple codon options for a single amino acid. Initially observed in E. coli, optimal codon usage correlates with high gene expression, which has propelled applications expanding from basic research to biopharmaceuticals and vaccine development. The method is especially valuable for adjusting immune responses in gene therapies and has the potenial to create tissue-specific therapies. However, challenges persist, such as the risk of unintended effects on protein function and the complexity of evaluating optimization effectiveness. Despite these issues, codon optimization is crucial in advancing gene therapeutics. This study provides a comprehensive review of the current metrics for codon-optimization, and its practical usage in research and clinical applications, in the context of gene therapy.
Collapse
Affiliation(s)
- Anastasiia Iu Paremskaia
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Anna A. Kogan
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Anastasiia Murashkina
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Daria A. Naumova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Anakha Satish
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Ivan S. Abramov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
- The MCSC named after A. S. Loginov, Moscow, Russia
| | - Sofya G. Feoktistova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Olga N. Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Andrei A. Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Pavel Yu Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
- The MCSC named after A. S. Loginov, Moscow, Russia
| |
Collapse
|
13
|
Khalil AM, Nogales A, Martínez-Sobrido L, Mostafa A. Antiviral responses versus virus-induced cellular shutoff: a game of thrones between influenza A virus NS1 and SARS-CoV-2 Nsp1. Front Cell Infect Microbiol 2024; 14:1357866. [PMID: 38375361 PMCID: PMC10875036 DOI: 10.3389/fcimb.2024.1357866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Following virus recognition of host cell receptors and viral particle/genome internalization, viruses replicate in the host via hijacking essential host cell machinery components to evade the provoked antiviral innate immunity against the invading pathogen. Respiratory viral infections are usually acute with the ability to activate pattern recognition receptors (PRRs) in/on host cells, resulting in the production and release of interferons (IFNs), proinflammatory cytokines, chemokines, and IFN-stimulated genes (ISGs) to reduce virus fitness and mitigate infection. Nevertheless, the game between viruses and the host is a complicated and dynamic process, in which they restrict each other via specific factors to maintain their own advantages and win this game. The primary role of the non-structural protein 1 (NS1 and Nsp1) of influenza A viruses (IAV) and the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively, is to control antiviral host-induced innate immune responses. This review provides a comprehensive overview of the genesis, spatial structure, viral and cellular interactors, and the mechanisms underlying the unique biological functions of IAV NS1 and SARS-CoV-2 Nsp1 in infected host cells. We also highlight the role of both non-structural proteins in modulating viral replication and pathogenicity. Eventually, and because of their important role during viral infection, we also describe their promising potential as targets for antiviral therapy and the development of live attenuated vaccines (LAV). Conclusively, both IAV NS1 and SARS-CoV-2 Nsp1 play an important role in virus-host interactions, viral replication, and pathogenesis, and pave the way to develop novel prophylactic and/or therapeutic interventions for the treatment of these important human respiratory viral pathogens.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Madrid, Spain
| | - Luis Martínez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
14
|
Gurjar P, Khan AA, Alanazi AM, Vasil'ev VG, Zouganelis G, Alexiou A. Molecular Dissection of Herpes Simplex Virus Type 1 to Elucidate Molecular Mechanisms Behind Latency and Comparison of Its Codon Usage Patterns with Genes Modulated During Alzheimer's Disease as a Part of Host-Pathogen Interaction. J Alzheimers Dis 2024; 97:1111-1123. [PMID: 38306057 DOI: 10.3233/jad-231083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
BACKGROUND Herpes simplex virus type 1 (HSV-1) is associated with Alzheimer's disease, which goes into a cycle of latency and reactivation. The present study was envisaged to understand the reasons for latency and specific molecular patterns present in the HSV-1. OBJECTIVE The objective is the molecular dissection of Herpes simplex virus type 1 to elucidate molecular mechanisms behind latency and compare its codon usage patterns with genes modulated during Alzheimer's disease as a part of host-pathogen interaction. METHODS In the present study, we tried to investigate the potential reasons for the latency of HSV-1 virus bioinformatically by determining the CpG patterns. Also, we investigated the codon usage pattern, the presence of rare codons, codon context, and protein properties. RESULTS The top 222 codon pairs graded based on their frequency in the HSV-1 genome revealed that with only one exception (CUG-UUU), all other codon pairs have codons ending with G/C. Considering it an extension of host-pathogen interaction, we compared HSV-1 codon usage with that of codon usage of genes modulated during Alzheimer's disease, and we found that CGT and TTT are only two codons that exhibited similar codon usage patterns and other codons showed statistically highly significant different codon preferences. Dinucleotide CpG tends to mutate to TpG, suggesting the presence of mutational forces and the imperative role of CpG methylation in HSV-1 latency. CONCLUSIONS Upon comparison of codon usage between HSV-1 and Alzheimer's disease genes, no similarities in codon usage were found as a part of host-pathogen interaction. CpG methylation plays an imperative role in latency HSV-1.
Collapse
Affiliation(s)
- Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Azmat Ali Khan
- Department of Pharmaceutical Chemistry, Pharmaceutical Biotechnology Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amer M Alanazi
- Department of Pharmaceutical Chemistry, Pharmaceutical Biotechnology Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - George Zouganelis
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Derby, UK
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med, Vienna, Austria
| |
Collapse
|
15
|
Forni D, Pozzoli U, Cagliani R, Clerici M, Sironi M. Dinucleotide biases in RNA viruses that infect vertebrates or invertebrates. Microbiol Spectr 2023; 11:e0252923. [PMID: 37800906 PMCID: PMC10714974 DOI: 10.1128/spectrum.02529-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/12/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Akin to a molecular signature, dinucleotide composition can be exploited by the zinc-finger antiviral protein (ZAP) to restrict CpG-rich (and UpA-rich) RNA viruses. ZAP evolved in tetrapods, and it is not encoded by invertebrates and fish. Because a systematic analysis is missing, we analyzed the genomes of RNA viruses that infect vertebrates or invertebrates. We show that vertebrate single-stranded (ss) RNA(+) viruses and, to a lesser extent, double-stranded RNA viruses tend to have stronger CpG bias than invertebrate viruses. Conversely, ssRNA(-) viruses have similar dinucleotide composition whether they infect vertebrates or invertebrates. Analysis of ssRNA(+) viruses that infect mammals, reptiles, and fish indicated that ZAP is unlikely to be a major driver of CpG depletion. We also show that, compared to other coronaviruses, the genome of SARS-CoV-2 is not homogeneously CpG-depleted. Our study provides new insights into virus evolution and strategies for recoding RNA virus genomes.
Collapse
Affiliation(s)
- Diego Forni
- Bioinformatics Lab, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics Lab, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics Lab, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Bioinformatics Lab, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| |
Collapse
|
16
|
Xu M, Zhu L, Ge A, Liu Y, Chen S, Wei Z, Zheng Y, Tong L, Wang Z, Fei R, Wang J, Zhang C. Construction of pseudorabies virus variant attenuated vaccine: codon deoptimization of US3 and UL56 genes based on PRV gE/TK deletion strain. Front Microbiol 2023; 14:1248573. [PMID: 37881250 PMCID: PMC10595036 DOI: 10.3389/fmicb.2023.1248573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023] Open
Abstract
Since 2011, pseudorabies based on the pseudorabies virus (PRV) variant has emerged as a serious health issue in pig farms in China. The PRV gE/TK or gE/gI/TK deletion strains protect against emerging PRV variants. However, these variants may cause lethal infections in newborn piglets without PRV antibodies. Previous studies have shown that codon deoptimization of a virulence gene causes virus attenuation. Accordingly, we deoptimized US3-S (US3 gene encoding a short isoform that represents approximately 95% of the total US3 transcription) and UL56 genes (first 10 or all codons) of PRV gE/TK deletion strain (PRVΔTK&gE-AH02) to generate six recombinant PRVs through bacterial artificial chromosome technology. In swine testicular cells, recombinant PRVs with all codon deoptimization of US3-S or UL56 genes were grown to lower titers than the parental virus. Notably, US3-S or UL56 with all codon deoptimization reduced mRNA and protein expressions. Subsequently, the safety and immunogenicity of recombinant PRVs with codon deoptimization of US3-S or UL56 are evaluated as vaccine candidates in mice and piglets. The mice inoculated with recombinant PRVs with codon deoptimization of US3-S or UL56 showed exceptional survival ability without severe clinical signs. All codons deoptimized (US3-S and UL56) significantly decreased virus load and attenuated pathological changes in the brains of the mice. Moreover, the protection efficiency offered by recombinant PRVs with codon deoptimization of US3-S or UL56 showed similar effects to PRVΔTK&gE-AH02. Remarkably, the 1-day-old PRV antibody-negative piglets inoculated with PRVΔTK&gE-US3-ST-CD (a recombinant PRV with all codon deoptimization of US3-S) presented no abnormal clinical symptoms, including fever. The piglets inoculated with PRVΔTK&gE-US3-ST-CD showed a high serum neutralization index against the PRV variant. In conclusion, these results suggest using codon deoptimization to generate innovative live attenuated PRV vaccine candidates.
Collapse
Affiliation(s)
- Mengwei Xu
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Laixu Zhu
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Aimin Ge
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Yamei Liu
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Saisai Chen
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ziwen Wei
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yating Zheng
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ling Tong
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhisheng Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Rongmei Fei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jichun Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chuanjian Zhang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
17
|
Han S, Lee P, Choi HJ. Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants. Pharmaceutics 2023; 15:2114. [PMID: 37631328 PMCID: PMC10458847 DOI: 10.3390/pharmaceutics15082114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Given the limitations of conventional invasive vaccines, such as the requirement for a cold chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive vaccines have gained significant attention. Although numerous approaches for formulating and administrating non-invasive vaccines have emerged, each of them faces its own challenges associated with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have created novel supplementary materials and delivery systems. The goal of this review article is to provide vaccine formulation researchers with the most up-to-date information on vaccine formulation and the immunological mechanisms available, to identify the technical challenges associated with the commercialization of non-invasive vaccines, and to guide future research and development efforts.
Collapse
Affiliation(s)
| | | | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.H.); (P.L.)
| |
Collapse
|
18
|
Medina GN, Spinard E, Azzinaro PA, Rodriguez-Calzada M, Gutkoska J, Kloc A, Rieder EA, Taillon BE, Mueller S, de Los Santos T, Segundo FDS. Deoptimization of FMDV P1 Region Results in Robust Serotype-Independent Viral Attenuation. Viruses 2023; 15:1332. [PMID: 37376631 DOI: 10.3390/v15061332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Foot-and-mouth disease (FMD), caused by the FMD virus (FMDV), is a highly contagious disease of cloven-hoofed livestock that can have severe economic impacts. Control and prevention strategies, including the development of improved vaccines, are urgently needed to effectively control FMD outbreaks in endemic settings. Previously, we employed two distinct strategies (codon pair bias deoptimization (CPD) and codon bias deoptimization (CD)) to deoptimize various regions of the FMDV serotype A subtype A12 genome, which resulted in the development of an attenuated virus in vitro and in vivo, inducing varying levels of humoral responses. In the current study, we examined the versatility of the system by using CPD applied to the P1 capsid coding region of FMDV serotype A subtype, A24, and another serotype, Asia1. Viruses carrying recoded P1 (A24-P1Deopt or Asia1-P1Deopt) exhibited different degrees of attenuation (i.e., delayed viral growth kinetics and replication) in cultured cells. Studies in vivo using a mouse model of FMD demonstrated that inoculation with the A24-P1Deopt and Asia1-P1Deopt strains elicited a strong humoral immune response capable of offering protection against challenge with homologous wildtype (WT) viruses. However, different results were obtained in pigs. While clear attenuation was detected for both the A24-P1Deopt and Asia1-P1Deopt strains, only a limited induction of adaptive immunity and protection against challenge was detected, depending on the inoculated dose and serotype deoptimized. Our work demonstrates that while CPD of the P1 coding region attenuates viral strains of multiple FMDV serotypes/subtypes, a thorough assessment of virulence and induction of adaptive immunity in the natural host is required in each case in order to finely adjust the degree of deoptimization required for attenuation without affecting the induction of protective adaptive immune responses.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Edward Spinard
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
| | - Paul A Azzinaro
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
| | - Monica Rodriguez-Calzada
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
- ORISE-PIADC Research Participation Program, Oak Ridge, TN 37831, USA
| | - Joseph Gutkoska
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
| | - Anna Kloc
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT 06516, USA
| | - Elizabeth A Rieder
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
| | | | | | | | - Fayna Diaz-San Segundo
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
- National Institute of Health, NIAID, DMID, OBRRTR, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Yu-Ping Z, Jing L, Teng H, Zhi-Fang Y, Ting Z, Yan-Chun C, Zhi-Mei Z, Yu-Ting F, Jun-Hui T, Qing-Hai Y, Ding-Kai W, Guo-Liang L, Xiao-Lei Y, Li Y, Hong-Bo C, Jian-Feng W, Rui-Ju J, Lei Y, Wei C, Wei Y, Ming-Xue X, Qiong-Zhou Y, Jing P, Li S, Chao H, Yan D, Lu-Kui C, Jian Z, Yu W, Hong-Sen L, Wei H, Zhao-Jun M, Chang-Gui L, Qi-Han L, Jing-Si Y. Evaluation of the immunization effectiveness of bOPV booster immunization and IPV revaccination. NPJ Vaccines 2023; 8:44. [PMID: 36934085 PMCID: PMC10024706 DOI: 10.1038/s41541-023-00642-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
To provide a basis for further optimization of the polio sequential immunization schedule, this study evaluated the effectiveness of booster immunization with one dose of bivalent oral poliovirus vaccine (bOPV) at 48 months of age after different primary polio immunization schedules. At 48 months of age, one dose of bOPV was administered, and their poliovirus types 1-3 (PV1, PV2, and PV3, respectively)-specific neutralizing antibody levels were determined. Participants found to be negative for any type of PV-specific neutralizing antibody at 24, 36, or 48 months of age were re-vaccinated with inactivated polio vaccine (IPV). The 439 subjects who received a bOPV booster immunization at the age of 48 months had lower PV2-specific antibody levels compared with those who received IPV. One dose of IPV during basic polio immunization induced the lowest PV2-specific antibody levels. On the basis of our findings, to ensure that no less than 70% of the vaccinated have protection efficiency, we recommend the following: if basic immunization was conducted with 1IPV + 2bOPV (especially Sabin strain-based IPV), a booster immunization with IPV is recommended at 36 months of age, whereas if basic immunization was conducted with 2IPV + 1bOPV, a booster immunization with IPV is recommended at 48 months of age. A sequential immunization schedule of 2IPV + 1bOPV + 1IPV can not only maintain high levels of antibody against PV1 and PV3 but also increases immunity to PV2 and induces early intestinal mucosal immunity, with relatively good safety. Thus, this may be the best sequential immunization schedule for polio in countries or regions at high risk for polio.
Collapse
Affiliation(s)
- Zhao Yu-Ping
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
- Kunming Science and Technology Innovation Centre for Research, Development and Industrialization of New Outbreaks and Emerging Highly Pathogenic Pathogens Vaccines, Kunming, China
| | - Li Jing
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
- Kunming Science and Technology Innovation Centre for Research, Development and Industrialization of New Outbreaks and Emerging Highly Pathogenic Pathogens Vaccines, Kunming, China
| | - Huang Teng
- GuangXi Province Center for Disease Prevention and Control, Nanning, China
| | - Ying Zhi-Fang
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhao Ting
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
- Kunming Science and Technology Innovation Centre for Research, Development and Industrialization of New Outbreaks and Emerging Highly Pathogenic Pathogens Vaccines, Kunming, China
| | - Che Yan-Chun
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Zhao Zhi-Mei
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Fu Yu-Ting
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Tao Jun-Hui
- Liujiang District Center for Disease Prevention and Control, Liuzhou, China
| | - Yang Qing-Hai
- Liucheng County Center for Disease Prevention and Control, Liuzhou, China
| | - Wei Ding-Kai
- Rong'an County Center for Disease Prevention and Control, Liuzhou, China
| | - Li Guo-Liang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
- Kunming Science and Technology Innovation Centre for Research, Development and Industrialization of New Outbreaks and Emerging Highly Pathogenic Pathogens Vaccines, Kunming, China
| | - Yang Xiao-Lei
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
- Kunming Science and Technology Innovation Centre for Research, Development and Industrialization of New Outbreaks and Emerging Highly Pathogenic Pathogens Vaccines, Kunming, China
| | - Yi Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
- Kunming Science and Technology Innovation Centre for Research, Development and Industrialization of New Outbreaks and Emerging Highly Pathogenic Pathogens Vaccines, Kunming, China
| | - Chen Hong-Bo
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
| | - Wang Jian-Feng
- National Institutes for Food and Drug Control, Beijing, China
| | - Jiang Rui-Ju
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Yu Lei
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
| | - Cai Wei
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
| | - Yang Wei
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
| | - Xie Ming-Xue
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
| | - Yin Qiong-Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Pu Jing
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Shi Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Hong Chao
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Deng Yan
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
| | - Cai Lu-Kui
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
- Kunming Science and Technology Innovation Centre for Research, Development and Industrialization of New Outbreaks and Emerging Highly Pathogenic Pathogens Vaccines, Kunming, China
| | - Zhou Jian
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Wen Yu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
| | - Li Hong-Sen
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
- Kunming Science and Technology Innovation Centre for Research, Development and Industrialization of New Outbreaks and Emerging Highly Pathogenic Pathogens Vaccines, Kunming, China
| | - Huang Wei
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China
- Kunming Science and Technology Innovation Centre for Research, Development and Industrialization of New Outbreaks and Emerging Highly Pathogenic Pathogens Vaccines, Kunming, China
| | - Mo Zhao-Jun
- GuangXi Province Center for Disease Prevention and Control, Nanning, China.
| | - Li Chang-Gui
- National Institutes for Food and Drug Control, Beijing, China.
| | - Li Qi-Han
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China.
| | - Yang Jing-Si
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
- National Local Joint Engineering Research Center for Biological Products of Viral Infectious Diseases, Kunming, China.
- Kunming Science and Technology Innovation Centre for Research, Development and Industrialization of New Outbreaks and Emerging Highly Pathogenic Pathogens Vaccines, Kunming, China.
| |
Collapse
|
20
|
Sharma D, Baas T, Nogales A, Martinez-Sobrido L, Gromiha MM. CoDe: a web-based tool for codon deoptimization. BIOINFORMATICS ADVANCES 2023; 3:vbac102. [PMID: 36698765 PMCID: PMC9832946 DOI: 10.1093/bioadv/vbac102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Summary We have developed a web-based tool, CoDe (Codon Deoptimization) that deoptimizes genetic sequences based on different codon usage bias, ultimately reducing expression of the corresponding protein. The tool could also deoptimize the sequence for a specific region and/or selected amino acid(s). Moreover, CoDe can highlight sites targeted by restriction enzymes in the wild-type and codon-deoptimized sequences. Importantly, our web-based tool has a user-friendly interface with flexible options to download results. Availability and implementation The web-based tool CoDe is freely available at https://web.iitm.ac.in/bioinfo2/codeop/landing_page.html. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Divya Sharma
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tracey Baas
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Madrid 28130, Spain
| | | | - M Michael Gromiha
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
21
|
Polio and Its Epidemiology. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
22
|
Gonçalves-Carneiro D, Mastrocola E, Lei X, DaSilva J, Chan YF, Bieniasz PD. Rational attenuation of RNA viruses with zinc finger antiviral protein. Nat Microbiol 2022; 7:1558-1567. [PMID: 36075961 PMCID: PMC9519448 DOI: 10.1038/s41564-022-01223-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Attenuation of a virulent virus is a proven approach for generating vaccines but can be unpredictable. For example, synonymous recoding of viral genomes can attenuate replication but sometimes results in pleiotropic effects that confound rational vaccine design. To enable specific, conditional attenuation of viruses, we examined target RNA features that enable zinc finger antiviral protein (ZAP) function. ZAP recognized CpG dinucleotides and targeted CpG-rich RNAs for depletion, but RNA features such as CpG numbers, spacing and surrounding nucleotide composition that enable specific modulation by ZAP were undefined. Using synonymously mutated HIV-1 genomes, we defined several sequence features that govern ZAP sensitivity and enable stable attenuation. We applied rules derived from experiments with HIV-1 to engineer a mutant enterovirus A71 genome whose attenuation was stable and strictly ZAP-dependent, both in cell culture and in mice. The conditionally attenuated enterovirus A71 mutant elicited neutralizing antibodies that were protective against wild-type enterovirus A71 infection and disease in mice. ZAP sensitivity can thus be readily applied for the rational design of conditionally attenuated viral vaccines.
Collapse
Affiliation(s)
| | - Emily Mastrocola
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Xiao Lei
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Yoke Fun Chan
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
23
|
Wang X, Sun J, Lu L, Pu FY, Zhang DR, Xie FQ. Evolutionary dynamics of codon usages for peste des petits ruminants virus. Front Vet Sci 2022; 9:968034. [PMID: 36032280 PMCID: PMC9412750 DOI: 10.3389/fvets.2022.968034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important agent of contagious, acute and febrile viral diseases in small ruminants, while its evolutionary dynamics related to codon usage are still lacking. Herein, we adopted information entropy, the relative synonymous codon usage values and similarity indexes and codon adaptation index to analyze the viral genetic features for 45 available whole genomes of PPRV. Some universal, lineage-specific, and gene-specific genetic features presented by synonymous codon usages of the six genes of PPRV that encode N, P, M, F, H and L proteins reflected evolutionary plasticity and independence. The high adaptation of PPRV to hosts at codon usages reflected high viral gene expression, but some synonymous codons that are rare in the hosts were selected in high frequencies in the viral genes. Another obvious genetic feature was that the synonymous codons containing CpG dinucleotides had weak tendencies to be selected in viral genes. The synonymous codon usage patterns of PPRV isolated during 2007–2008 and 2013–2014 in China displayed independent evolutionary pathway, although the overall codon usage patterns of these PPRV strains matched the universal codon usage patterns of lineage IV. According to the interplay between nucleotide and synonymous codon usages of the six genes of PPRV, the evolutionary dynamics including mutation pressure and natural selection determined the viral survival and fitness to its host.
Collapse
Affiliation(s)
- Xin Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Sun
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Lei Lu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei-yang Pu
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - De-rong Zhang
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Fu-qiang Xie
- Maxillofacial Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Fu-qiang Xie
| |
Collapse
|
24
|
Wang Q, Lyu X, Cheng J, Fu Y, Lin Y, Abdoulaye AH, Jiang D, Xie J. Codon Usage Provides Insights into the Adaptive Evolution of Mycoviruses in Their Associated Fungi Host. Int J Mol Sci 2022; 23:7441. [PMID: 35806445 PMCID: PMC9267111 DOI: 10.3390/ijms23137441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Codon usage bias (CUB) could reflect co-evolutionary changes between viruses and hosts in contrast to plant and animal viruses, and the systematic analysis of codon usage among the mycoviruses that infect plant pathogenic fungi is limited. We performed an extensive analysis of codon usage patterns among 98 characterized RNA mycoviruses from eight phytopathogenic fungi. The GC and GC3s contents of mycoviruses have a wide variation from 29.35% to 64.62% and 24.32% to 97.13%, respectively. Mycoviral CUB is weak, and natural selection plays a major role in the formation of mycoviral codon usage pattern. In this study, we demonstrated that the codon usage of mycoviruses is similar to that of some host genes, especially those involved in RNA biosynthetic process and transcription, suggesting that CUB is a potential evolutionary mechanism that mycoviruses adapt to in their hosts.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yanping Fu
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yang Lin
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Assane Hamidou Abdoulaye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
25
|
Wang X, Sun J, Zheng Y, Xie F. Dispersion of synonymous codon usage patterns in hepatitis E virus genomes derived from various hosts. J Basic Microbiol 2022; 62:975-983. [PMID: 35778820 DOI: 10.1002/jobm.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/01/2022] [Accepted: 06/11/2022] [Indexed: 11/09/2022]
Abstract
Hepatitis E virus (HEV) is an important zoonotic pathogen infecting a wide range of host species. It has a positive-sense, single-stranded RNA genome encoding three open reading frames (ORFs). Synonymous codon usages of viruses essentially determine their survival and adaptation to susceptible hosts. To better understand the interplay between the ever-expanding host range and synonymous codon usages of HEV, we quantified the dispersion of synonymous codon usages of HEV genomes isolated from different hosts via Vs calculation and information entropy. HEV ORFs show species-specific synonymous codon usage patterns. Ruminant-derived HEV ORFs own the most synonymous codons with stable usage patterns (Vs value <0.1) which leads to the stable overall codon usage patterns (R value being close to zero). Swine-derived HEV ORFs own more concentrated synonymous codons than those from wild boar. Compared with HEV strains isolated from other hosts, the human-derived HEV exhibits a distinct pattern at the overall codon usage (R < 0). Generally, ORF1 contains more synonymous codons with stable usage patterns (Vs < 0.1) than those of ORFs 2 and 3. Moreover, ORF3 contains more synonymous codons with varied patterns (Vs > 1.0) than ORFs 1 and 2. The host factor serving as one of the evolutionary dynamics probably influences synonymous codon usage patterns of the HEV genome. Taken together, synonymous codons with stable usage patterns in ORF1 might help to sustain the infection, while that with varied usage patterns in ORF3 may facilitate cross-species infection and expand the host range.
Collapse
Affiliation(s)
- Xin Wang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Sun
- Department of Endocrine, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yueyan Zheng
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Fuqiang Xie
- Department of Stomatology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
26
|
Lorenzo MM, Nogales A, Chiem K, Blasco R, Martínez-Sobrido L. Vaccinia Virus Attenuation by Codon Deoptimization of the A24R Gene for Vaccine Development. Microbiol Spectr 2022; 10:e0027222. [PMID: 35583360 PMCID: PMC9241885 DOI: 10.1128/spectrum.00272-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Poxviruses have large DNA genomes, and they are able to infect multiple vertebrate and invertebrate animals, including humans. Despite the eradication of smallpox, poxvirus infections still remain a significant public health concern. Vaccinia virus (VV) is the prototypic member in the poxviridae family and it has been used extensively for different prophylactic applications, including the generation of vaccines against multiple infectious diseases and/or for oncolytic treatment. Many attempts have been pursued to develop novel attenuated forms of VV with improved safety profiles for their implementation as vaccines and/or vaccines vectors. We and others have previously demonstrated how RNA viruses encoding codon-deoptimized viral genes are attenuated, immunogenic and able to protect, upon a single administration, against challenge with parental viruses. In this study, we employed the same experimental approach based on the use of misrepresented codons for the generation of a recombinant (r)VV encoding a codon-deoptimized A24R gene, which is a key component of the viral RNA polymerase. Similar to our previous studies with RNA viruses, the A24R codon-deoptimized rVV (v-A24cd) was highly attenuated in vivo but able to protect, after a single intranasal dose administration, against an otherwise lethal challenge with parental VV. These results indicate that poxviruses can be effectively attenuated by synonymous codon deoptimization and open the possibility of using this methodology alone or in combination with other experimental approaches for the development of attenuated vaccines for the treatment of poxvirus infection, or to generate improved VV-based vectors. Moreover, this approach could be applied to other DNA viruses. IMPORTANCE The family poxviridae includes multiple viruses of medical and veterinary relevance, being vaccinia virus (VV) the prototypic member in the family. VV was used during the smallpox vaccination campaign to eradicate variola virus (VARV), which is considered a credible bioterrorism threat. Because of novel innovations in genetic engineering and vaccine technology, VV has gained popularity as a viral vector for the development of vaccines against several infectious diseases. Several approaches have been used to generate attenuated VV for its implementation as vaccine and/or vaccine vector. Here, we generated a rVV containing a codon-deoptimized A24R gene (v-A24cd), which encodes a key component of the viral RNA polymerase. v-A24cd was stable in culture cells and highly attenuated in vivo but able to protect against a subsequent lethal challenge with parental VV. Our findings support the use of this approach for the development of safe, stable, and protective live-attenuated VV and/or vaccine vectors.
Collapse
Affiliation(s)
- María M. Lorenzo
- Departamento de Biotecnología, Centro Nacional INIA, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Animal Health Research Centre (CISA), National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Kevin Chiem
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Rafael Blasco
- Departamento de Biotecnología, Centro Nacional INIA, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
27
|
Exogenous Rubella Virus Capsid Proteins Enhance Virus Genome Replication. Pathogens 2022; 11:pathogens11060683. [PMID: 35745537 PMCID: PMC9228353 DOI: 10.3390/pathogens11060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Enhanced replication of rubella virus (RuV) and replicons by de novo synthesized viral structural proteins has been previously described. Such enhancement can occur by viral capsid proteins (CP) alone in trans. It is not clear whether the CP in the virus particles, i.e., the exogenous CP, modulate viral genome replication. In this study, we found that exogenous RuV CP also enhanced viral genome replication, either when used to package replicons or when mixed with RNA during transfection. We demonstrated that CP does not affect the translation efficiency from genomic (gRNA) or subgenomic RNA (sgRNA), the intracellular distribution of the non-structural proteins (NSP), or sgRNA synthesis. Significantly active RNA replication was observed in transfections supplemented with recombinant CP (rCP), which was supported by accumulated genomic negative-strand RNA. rCP was found to restore replication of a few mutants in NSP but failed to fully restore replicons known to have defects in the positive-strand RNA synthesis. By monitoring the amount of RuV RNA following transfection, we found that all RuV replicon RNAs were well-retained in the presence of rCP within 24 h of post-transfection, compared to non-RuV RNA. These results suggest that the exogenous RuV CP increases efficiency of early viral genome replication by modulating the stage(s) prior to and/or at the initiation of negative-strand RNA synthesis, possibly through a general mechanism such as protecting viral RNA.
Collapse
|
28
|
Gaunt ER, Digard P. Compositional biases in RNA viruses: Causes, consequences and applications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1679. [PMID: 34155814 PMCID: PMC8420353 DOI: 10.1002/wrna.1679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023]
Abstract
If each of the four nucleotides were represented equally in the genomes of viruses and the hosts they infect, each base would occur at a frequency of 25%. However, this is not observed in nature. Similarly, the order of nucleotides is not random (e.g., in the human genome, guanine follows cytosine at a frequency of ~0.0125, or a quarter the number of times predicted by random representation). Codon usage and codon order are also nonrandom. Furthermore, nucleotide and codon biases vary between species. Such biases have various drivers, including cellular proteins that recognize specific patterns in nucleic acids, that once triggered, induce mutations or invoke intrinsic or innate immune responses. In this review we examine the types of compositional biases identified in viral genomes and current understanding of the evolutionary mechanisms underpinning these trends. Finally, we consider the potential for large scale synonymous recoding strategies to engineer RNA virus vaccines, including those with pandemic potential, such as influenza A virus and Severe Acute Respiratory Syndrome Coronavirus Virus 2. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Eleanor R. Gaunt
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| | - Paul Digard
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| |
Collapse
|
29
|
Si F, Jiang L, Yu R, Wei W, Li Z. Study on the Characteristic Codon Usage Pattern in Porcine Epidemic Diarrhea Virus Genomes and Its Host Adaptation Phenotype. Front Microbiol 2021; 12:738082. [PMID: 34733253 PMCID: PMC8558211 DOI: 10.3389/fmicb.2021.738082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), which classified in the genus Alphacoronavirus, family Coronaviridae, is one of the most important pathogens that cause heavy economic losses in pig industry. Although intensive mutation and recombination analysis of PEDV strains were provided, systematic genome analysis were needed to elucidate the evolution mechanism and codon usage adaptation profiles of the pathogen. Here, a comprehensive investigation was carried out to reveal the systematic evolutionary processes of synonymous codon usage and host-adapted evolution phenotype of PEDV genome. We found a low codon usage bias (CUB) in PEDV genome and that nucleotide compositions, natural selection, mutation pressure and geographical diversity shapes the codon usage patterns of PEDV, with natural selection dominated the overall codon usage bias in PEDV than the others. By using the relative codon deoptimization index (RCDI) and similarity index (SiD) analysis, we observed that genotype II PEDV strains showed the highest level of adaptation phenotype to Sus scrofa than another divergent clade. To the best of our knowledge, this is the first comprehensive report elaborating the codon usage and host adaptation of PEDV. The findings offer an insight into our understanding of factors involved in PEDV evolution, adaptation and fitness toward their hosts.
Collapse
Affiliation(s)
- Fusheng Si
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ruisong Yu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhen Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
30
|
Hansen CA, Barrett ADT. The Present and Future of Yellow Fever Vaccines. Pharmaceuticals (Basel) 2021; 14:ph14090891. [PMID: 34577591 PMCID: PMC8468696 DOI: 10.3390/ph14090891] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/05/2022] Open
Abstract
The disease yellow fever (YF) is prevented by a live-attenuated vaccine, termed 17D, which has been in use since the 1930s. One dose of the vaccine is thought to give lifelong (35+ years) protective immunity, and neutralizing antibodies are the correlate of protection. Despite being a vaccine-preventable disease, YF remains a major public health burden, causing an estimated 109,000 severe infections and 51,000 deaths annually. There are issues of supply and demand for the vaccine, and outbreaks in 2016 and 2018 resulted in fractional dosing of the vaccine to meet demand. The World Health Organization (WHO) has established the “Eliminate Yellow Fever Epidemics” (EYE) initiative to reduce the burden of YF over the next 10 years. As with most vaccines, the WHO has recommendations to assure the quality, safety, and efficacy of the YF vaccine. These require the use of live 17D vaccine only produced in embryonated chicken eggs, and safety evaluated in non-human primates only. Thus, any second-generation vaccines would require modification of WHO recommendations if they were to be used in endemic countries. There are multiple second-generation YF vaccine candidates in various stages of development that must be shown to be non-inferior to the current 17D vaccine in terms of safety and immunogenicity to progress through clinical trials to potential licensing. The historic 17D vaccine continues to shape the global vaccine landscape in its use in the generation of multiple licensed recombinant chimeric live vaccines and vaccine candidates, in which its structural protein genes are replaced with those of other viruses, such as dengue and Japanese encephalitis. There is no doubt that the YF 17D live-attenuated vaccine will continue to play a role in the development of new vaccines for YF, as well as potentially for many other pathogens.
Collapse
Affiliation(s)
- Clairissa A. Hansen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-4036, USA;
| | - Alan D. T. Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-4036, USA;
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-4036, USA
- Correspondence:
| |
Collapse
|
31
|
Pintó RM, Bosch A. The Codon Usage Code for Cotranslational Folding of Viral Capsids. Genome Biol Evol 2021; 13:evab089. [PMID: 33914886 PMCID: PMC8410136 DOI: 10.1093/gbe/evab089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Codon bias is common to all organisms and is the result of mutation, drift, and selection. Selection for the efficiency and accuracy of translation is well recognized as a factor shaping the codon usage. In contrast, fewer studies report the control of the rate of translation as an additional selective pressure influencing the codon usage of an organism. Experimental molecular evolution using RNA virus populations is a powerful tool for the identification of mechanisms underlying the codon bias. Indeed, the role of deoptimized codons on the cotranslational folding has been proven in the capsids of two fecal-orally transmitted picornaviruses, poliovirus, and the hepatitis A virus, emphasizing the role of the frequency of codons in determining the phenotype. However, most studies on virus codon usage rely only on computational analyses, and experimental studies should be encouraged to clearly define the role of selection on codon evolution.
Collapse
Affiliation(s)
- Rosa M Pintó
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Sun H, Harrington C, Gerloff N, Mandelbaum M, Jeffries-Miles S, Apostol LNG, Valencia MALD, Shaukat S, Angez M, Sharma DK, Nalavade UP, Pawar SD, Pukuta Simbu E, Andriamamonjy S, Razafindratsimandresy R, Vega E. Validation of a redesigned pan-poliovirus assay and real-time PCR platforms for the global poliovirus laboratory network. PLoS One 2021; 16:e0255795. [PMID: 34358268 PMCID: PMC8345876 DOI: 10.1371/journal.pone.0255795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/25/2021] [Indexed: 11/19/2022] Open
Abstract
Surveillance and detection of polioviruses (PV) remain crucial to monitoring eradication progress. Intratypic differentiation (ITD) using the real-time RT-PCR kit is key to the surveillance workflow, where viruses are screened after cell culture isolation before a subset are verified by sequencing. The ITD kit is a series of real-time RT-PCR assays that screens cytopathic effect (CPE)-positive cell cultures using the standard WHO method for virus isolation. Because ITD screening is a critical procedure in the poliovirus identification workflow, validation of performance of real-time PCR platforms is a core requirement for the detection of poliovirus using the ITD kit. In addition, the continual update and improvement of the ITD assays to simplify interpretation in all platforms is necessary to ensure that all real-time machines are capable of detecting positive real-time signals. Four platforms (ABI7500 real-time systems, Bio-Rad CFX96, Stratagene MX3000P, and the Qiagen Rotor-Gene Q) were validated with the ITD kit and a redesigned poliovirus probe. The poliovirus probe in the real-time RT-PCR pan-poliovirus (PanPV) assay was re-designed with a double-quencher (Zen™) to reduce background fluorescence and potential false negatives. The updated PanPV probe was evaluated with a panel consisting of 184 polioviruses and non-polio enteroviruses. To further validate the updated PanPV probe, the new assay was pilot tested in five Global Polio Laboratory Network (GPLN) laboratories (Madagascar, India, Philippines, Pakistan, and Democratic Republic of Congo). The updated PanPV probe performance was shown to reduce background fluorescence and decrease the number of false positives compared to the standard PanPV probe.
Collapse
Affiliation(s)
- Hong Sun
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Chelsea Harrington
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nancy Gerloff
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mark Mandelbaum
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Stacey Jeffries-Miles
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | | | | | - Mehar Angez
- National Institute of Health, Islamabad, Pakistan
| | | | | | | | - Elisabeth Pukuta Simbu
- National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo, Congo
| | | | | | - Everardo Vega
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
33
|
Wahid R, Mercer L, Macadam A, Carlyle S, Stephens L, Martin J, Chumakov K, Laassri M, Petrovskaya S, Smits SL, Stittelaar KJ, Gast C, Weldon WC, Konopka-Anstadt JL, Steven Oberste M, Van Damme P, De Coster I, Rüttimann R, Bandyopadhyay A, Konz J. Assessment of genetic changes and neurovirulence of shed Sabin and novel type 2 oral polio vaccine viruses. NPJ Vaccines 2021; 6:94. [PMID: 34326330 PMCID: PMC8322168 DOI: 10.1038/s41541-021-00355-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Abstract
Sabin-strain oral polio vaccines (OPV) can, in rare instances, cause disease in recipients and susceptible contacts or evolve to become circulating vaccine-derived strains with the potential to cause outbreaks. Two novel type 2 OPV (nOPV2) candidates were designed to stabilize the genome against the rapid reversion that is observed following vaccination with Sabin OPV type 2 (mOPV2). Next-generation sequencing and a modified transgenic mouse neurovirulence test were applied to shed nOPV2 viruses from phase 1 and 2 studies and shed mOPV2 from a phase 4 study. The shed mOPV2 rapidly reverted in the primary attenuation site (domain V) and increased in virulence. In contrast, the shed nOPV2 viruses showed no evidence of reversion in domain V and limited or no increase in neurovirulence in mice. Based on these results and prior published data on safety, immunogenicity, and shedding, the nOPV2 viruses are promising alternatives to mOPV2 for outbreak responses.
Collapse
Affiliation(s)
- Rahnuma Wahid
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA.
| | - Laina Mercer
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Andrew Macadam
- National Institute for Biological Standards and Control (NIBSC), Hertfordshire, UK
| | - Sarah Carlyle
- National Institute for Biological Standards and Control (NIBSC), Hertfordshire, UK
| | - Laura Stephens
- National Institute for Biological Standards and Control (NIBSC), Hertfordshire, UK
| | - Javier Martin
- National Institute for Biological Standards and Control (NIBSC), Hertfordshire, UK
| | - Konstantin Chumakov
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
- Global Virus Network Center of Excellence, Baltimore, MD, USA
| | - Majid Laassri
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Svetlana Petrovskaya
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Saskia L Smits
- Viroclinics Biosciences B.V., Rotterdam, the Netherlands
| | - Koert J Stittelaar
- Viroclinics Xplore, Viroclinics Biosciences B.V., Rotterdam, the Netherlands
| | - Chris Gast
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - William C Weldon
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - M Steven Oberste
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Ilse De Coster
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Ricardo Rüttimann
- Fighting Infectious Diseases in Emerging Countries (FIDEC), Miami, FL, USA
| | | | - John Konz
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| |
Collapse
|
34
|
Abstract
Atypical porcine pestivirus (APPV) has been identified as the main causative agent for congenital tremor (CT) type A-II in piglets, which is threatening the health of the global swine herd. However, the evolution of APPV remains largely unknown. In this study, phylogenetic analysis showed that APPV could be divided into three phylogroups (I, II, and III). Phylogroups I and II included viral strains from China, while phylogroup III contained strains from Europe, North America, and Asia. Phylogroups I and II are tentatively thought to be of Chinese origin. Next, compositional property analysis revealed that a high frequency of nucleotide A and A-end codons was used in the APPV genome. Intriguingly, the analysis of preferred codons revealed that the AGA[Arg] and AGG[Arg] were overrepresented. Dinucleotide CC was found to be overrepresented, and dinucleotide CG was underrepresented. Furthermore, it was found that the weak codon usage bias of APPV was mainly dominated by selection pressures versus mutational forces. The codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses showed that the codon usage patterns of phylogroup II and III were more similar to the one of a pig than phylogroup I, suggesting that phylogroup II and III may be more adaptive to pigs. Overall, this study provides insights into APPV evolution through phylogeny and codon usage pattern analysis.
Collapse
Affiliation(s)
- Shuonan Pan
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Huiguang Wu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
35
|
Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates preclinical safety and efficacy. Proc Natl Acad Sci U S A 2021; 118:2102775118. [PMID: 34193524 PMCID: PMC8307828 DOI: 10.1073/pnas.2102775118] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This work demonstrates the feasibility of rationally designing and synthesizing vaccine candidates for testing in response to an emerging disease in real world conditions. Furthermore, using a live attenuated codon-pair–deoptimized virus approach ensures that all components of the host immune system will be engaged, and potential effects from the vector sequences from hybrid live viruses are avoided. Evidence from other codon-deoptimized viruses suggests that COVI-VAC will be resistant to reversion and loss of potency due to antigenic drift. The ease of large-scale virus growth under permissive conditions coupled with the potential for single-dose intranasal administration make COVI-VAC an appealing candidate for clinical testing for possible use in mass immunization programs. Successfully combating the COVID-19 pandemic depends on mass vaccination with suitable vaccines to achieve herd immunity. Here, we describe COVI-VAC, the only live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine currently in clinical development. COVI-VAC was developed by recoding a segment of the viral spike protein with synonymous suboptimal codon pairs (codon-pair deoptimization), thereby introducing 283 silent (point) mutations. In addition, the furin cleavage site within the spike protein was deleted from the viral genome for added safety of the vaccine strain. Except for the furin cleavage site deletion, the COVI-VAC and parental SARS-CoV-2 amino acid sequences are identical, ensuring that all viral proteins can engage with the host immune system of vaccine recipients. COVI-VAC was temperature sensitive in vitro yet grew robustly (>107 plaque forming units/mL) at the permissive temperature. Tissue viral loads were consistently lower, lung pathology milder, and weight loss reduced in Syrian golden hamsters (Mesocricetus auratus) vaccinated intranasally with COVI-VAC compared to those inoculated with wild-type (WT) virus. COVI-VAC inoculation generated spike IgG antibody levels and plaque reduction neutralization titers similar to those in hamsters inoculated with WT virus. Upon challenge with WT virus, COVI-VAC vaccination reduced lung challenge viral titers, resulted in undetectable virus in the brain, and protected hamsters from almost all SARS-CoV-2–associated weight loss. Highly attenuated COVI-VAC is protective at a single intranasal dose in a relevant in vivo model. This, coupled with its large-scale manufacturing potential, supports its potential use in mass vaccination programs.
Collapse
|
36
|
Das JK, Roy S. Comparative analysis of human coronaviruses focusing on nucleotide variability and synonymous codon usage patterns. Genomics 2021; 113:2177-2188. [PMID: 34019999 PMCID: PMC8131179 DOI: 10.1016/j.ygeno.2021.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 01/04/2023]
Abstract
The prevailing COVID-19 pandemic has drawn the attention of the scientific community to study the evolutionary origin of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). This study is a comprehensive quantitative analysis of the protein-coding sequences of seven human coronaviruses (HCoVs) to decipher the nucleotide sequence variability and codon usage patterns. It is essential to understand the survival ability of the viruses, their adaptation to hosts, and their evolution. The current analysis revealed a high abundance of the relative dinucleotide (odds ratio), GC and CT pairs in the first and last two codon positions, respectively, as well as a low abundance of the CG pair in the last two positions of the codon, which might be related to the evolution of the viruses. A remarkable level of variability of GC content in the third position of the codon among the seven coronaviruses was observed. Codons with high RSCU values are primarily from the aliphatic and hydroxyl amino acid groups, and codons with low RSCU values belong to the aliphatic, cyclic, positively charged, and sulfur-containing amino acid groups. In order to elucidate the evolutionary processes of the seven coronaviruses, a phylogenetic tree (dendrogram) was constructed based on the RSCU scores of the codons. The severe and mild categories CoVs were positioned in different clades. A comparative phylogenetic study with other coronaviruses depicted that SARS-CoV-2 is close to the CoV isolated from pangolins (Manis javanica, Pangolin-CoV) and cats (Felis catus, SARS(r)-CoV). Further analysis of the effective number of codon (ENC) usage bias showed a relatively higher bias for SARS-CoV and MERS-CoV compared to SARS-CoV-2. The ENC plot against GC3 suggested that the mutational bias might have a role in determining the codon usage variation among candidate viruses. A codon adaptability study on a few human host parasites (from different kingdoms), including CoVs, showed a diverse adaptability pattern. SARS-CoV-2 and SARS-CoV exhibit relatively lower but similar codon adaptability compared to MERS-CoV.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Department of Pediatrics, Johns Hopkins University School of Medicine, MD, USA.
| | - Swarup Roy
- Network Reconstruction & Analysis (NetRA) Lab, Department of Computer Applications, Sikkim University, Gangtok, India.
| |
Collapse
|
37
|
Pereira-Gómez M, Carrau L, Fajardo Á, Moreno P, Moratorio G. Altering Compositional Properties of Viral Genomes to Design Live-Attenuated Vaccines. Front Microbiol 2021; 12:676582. [PMID: 34276608 PMCID: PMC8278477 DOI: 10.3389/fmicb.2021.676582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
Live-attenuated vaccines have been historically used to successfully prevent numerous diseases caused by a broad variety of RNA viruses due to their ability to elicit strong and perdurable immune-protective responses. In recent years, various strategies have been explored to achieve viral attenuation by rational genetic design rather than using classic and empirical approaches, based on successive passages in cell culture. A deeper understanding of evolutionary implications of distinct viral genomic compositional aspects, as well as substantial advances in synthetic biology technologies, have provided a framework to achieve new viral attenuation strategies. Herein, we will discuss different approaches that are currently applied to modify compositional features of viruses in order to develop novel live-attenuated vaccines.
Collapse
Affiliation(s)
- Marianoel Pereira-Gómez
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Lucía Carrau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Álvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
38
|
Roy A, Guo F, Singh B, Gupta S, Paul K, Chen X, Sharma NR, Jaishee N, Irwin DM, Shen Y. Base Composition and Host Adaptation of the SARS-CoV-2: Insight From the Codon Usage Perspective. Front Microbiol 2021; 12:548275. [PMID: 33889134 PMCID: PMC8057303 DOI: 10.3389/fmicb.2021.548275] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading rapidly all over the world and has raised grave concern globally. The present research aims to conduct a robust base compositional analysis of SARS-CoV-2 to reveal adaptive intricacies to the human host. Multivariate statistical analysis revealed a complex interplay of various factors including compositional constraint, natural selection, length of viral coding sequences, hydropathicity, and aromaticity of the viral gene products that are operational to codon usage patterns, with compositional bias being the most crucial determinant. UpG and CpA dinucleotides were found to be highly preferred whereas, CpG dinucleotide was mostly avoided in SARS-CoV-2, a pattern consistent with the human host. Strict avoidance of the CpG dinucleotide might be attributed to a strategy for evading a human immune response. A lower degree of adaptation of SARS-CoV-2 to the human host, compared to Middle East respiratory syndrome (MERS) coronavirus and SARS-CoV, might be indicative of its milder clinical severity and progression contrasted to SARS and MERS. Similar patterns of enhanced adaptation between viral isolates from intermediate and human hosts, contrasted with those isolated from the natural bat reservoir, signifies an indispensable role of the intermediate host in transmission dynamics and spillover events of the virus to human populations. The information regarding avoided codon pairs in SARS-CoV-2, as conferred by the present analysis, promises to be useful for the design of vaccines employing codon pair deoptimization based synthetic attenuated virus engineering.
Collapse
Affiliation(s)
- Ayan Roy
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Fucheng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Bhupender Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Shelly Gupta
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, India
| | - Xiaoyuan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Neeta Raj Sharma
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Nishika Jaishee
- Department of Botany, St Joseph's College, Darjeeling, India
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
39
|
Jordan-Paiz A, Franco S, Martínez MA. Impact of Synonymous Genome Recoding on the HIV Life Cycle. Front Microbiol 2021; 12:606087. [PMID: 33796084 PMCID: PMC8007914 DOI: 10.3389/fmicb.2021.606087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Synonymous mutations within protein coding regions introduce changes in DNA or messenger (m) RNA, without mutating the encoded proteins. Synonymous recoding of virus genomes has facilitated the identification of previously unknown virus biological features. Moreover, large-scale synonymous recoding of the genome of human immunodeficiency virus type 1 (HIV-1) has elucidated new antiviral mechanisms within the innate immune response, and has improved our knowledge of new functional virus genome structures, the relevance of codon usage for the temporal regulation of viral gene expression, and HIV-1 mutational robustness and adaptability. Continuous improvements in our understanding of the impacts of synonymous substitutions on virus phenotype - coupled with the decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments - have enhanced our ability to identify potential HIV-1 and host factors and other aspects involved in the infection process. In this review, we address how silent mutagenesis impacts HIV-1 phenotype and replication capacity. We also discuss the general potential of synonymous recoding of the HIV-1 genome to elucidate unknown aspects of the virus life cycle, and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
40
|
Lee MHP, Tan CW, Tee HK, Ong KC, Sam IC, Chan YF. Vaccine candidates generated by codon and codon pair deoptimization of enterovirus A71 protect against lethal challenge in mice. Vaccine 2021; 39:1708-1720. [PMID: 33640144 DOI: 10.1016/j.vaccine.2021.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
Enterovirus A71 (EV-A71) causes hand, foot and mouth disease (HFMD) in young children. It is associated with severe neurological complications and death. This study aims to develop a live-attenuated vaccine by codon deoptimization (CD) and codon-pair deoptimization (CPD) of EV-A71. CD is generated by introducing the least preferred codons for amino acids while CPD increases the presence of underrepresented codon pairs in the specific genes. CD and CPD chimeras were generated by synonymous mutations at the VP2, VP3, VP1 and 2A gene regions, designated as XYZ. All twelve deoptimized viruses were viable with similar replication kinetics, but the plaque sizes were inversely proportional to the level of deoptimization. All the deoptimized viruses showed attenuated growth in vitro with reduced viral protein expression at 48 h and lower viral RNA at 39 °C. Six-week-old ICR mice were immunized intraperitoneally with selected CD and CPD X and XY vaccine candidates covering the VP2-VP3 and VP2-VP3-VP1 genes, respectively. All vaccine candidates elicited high anti-EV-A71 IgG levels similar to wild-type (WT) EV-A71. The CD X and CPD X vaccines produced robust neutralizing antibodies but not the CD XY and CPD XY. On lethal challenge, offspring of mice immunized with WT, CD X and CPD X were fully protected, but the CD XY- and CPD XY-vaccinated mice had delayed symptoms and eventually died. Similarly, active immunization of 1-day-old suckling mice with CD X, CPD X and CD XY vaccine candidates provided complete immune protection but CPD XY only protected 40% of the challenged mice. Histology of the muscles from CD X- and CPD X-vaccinated mice showed minimal pathology compared to extensive inflammation in the post-challenged mock-vaccinated mice. Overall, we demonstrated that the CD X and CPD X elicited good neutralizing antibodies, conferred immune protection and are promising live-attenuated vaccine candidates for EV-A71.
Collapse
Affiliation(s)
- Michelle Hui Pheng Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chee Wah Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Han Kang Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
41
|
Tan X, Letendre JH, Collins JJ, Wong WW. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell 2021; 184:881-898. [PMID: 33571426 PMCID: PMC7897318 DOI: 10.1016/j.cell.2021.01.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
Synthetic biology is a design-driven discipline centered on engineering novel biological functions through the discovery, characterization, and repurposing of molecular parts. Several synthetic biological solutions to critical biomedical problems are on the verge of widespread adoption and demonstrate the burgeoning maturation of the field. Here, we highlight applications of synthetic biology in vaccine development, molecular diagnostics, and cell-based therapeutics, emphasizing technologies approved for clinical use or in active clinical trials. We conclude by drawing attention to recent innovations in synthetic biology that are likely to have a significant impact on future applications in biomedicine.
Collapse
Affiliation(s)
- Xiao Tan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
| | - Justin H Letendre
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Synthetic Biology Center, MIT, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
42
|
Directed attenuation to enhance vaccine immunity. PLoS Comput Biol 2021; 17:e1008602. [PMID: 33524036 PMCID: PMC7877766 DOI: 10.1371/journal.pcbi.1008602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/11/2021] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
Many viral infections can be prevented by immunizing with live, attenuated vaccines. Early methods of attenuation were hit-and-miss, now much improved by genetic engineering. However, even current methods operate on the principle of genetic harm, reducing the virus’s ability to grow. Reduced viral growth has the undesired side-effect of reducing the host immune response below that of infection with wild-type. Might some methods of attenuation instead lead to an increased immune response? We use mathematical models of the dynamics of virus with innate and adaptive immunity to explore the tradeoff between attenuation of virus pathology and immunity. We find that modification of some virus immune-evasion pathways can indeed reduce pathology yet enhance immunity. Thus, attenuated vaccines can, in principle, be directed to be safe yet create better immunity than is elicited by the wild-type virus. Live attenuated virus vaccines are among the most effective interventions to combat viral infections. Historically, the mechanism of attenuation has involved genetically reducing the viral growth rate, often achieved by adapting the virus to grow in a novel condition. More recent attenuation methods use genetic engineering but also are thought to impair viral growth rate. These classical attenuations typically result in a tradeoff whereby attenuation depresses the within-host viral load and pathology (which is beneficial to vaccine design), but reduces immunity (which is not beneficial). We use models to explore ways of directing the attenuation of a virus to avoid this tradeoff. We show that directed attenuation by interfering with (some) viral immune-evasion pathways can yield a mild infection but elicit higher levels of immunity than of the wild-type virus.
Collapse
|
43
|
Kalkowska DA, Pallansch MA, Wilkinson A, Bandyopadhyay AS, Konopka-Anstadt JL, Burns CC, Oberste MS, Wassilak SGF, Badizadegan K, Thompson KM. Updated Characterization of Outbreak Response Strategies for 2019-2029: Impacts of Using a Novel Type 2 Oral Poliovirus Vaccine Strain. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:329-348. [PMID: 33174263 PMCID: PMC7887065 DOI: 10.1111/risa.13622] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 05/06/2023]
Abstract
Delays in achieving the global eradication of wild poliovirus transmission continue to postpone subsequent cessation of all oral poliovirus vaccine (OPV) use. Countries must stop OPV use to end all cases of poliomyelitis, including vaccine-associated paralytic polio (VAPP) and cases caused by vaccine-derived polioviruses (VDPVs). The Global Polio Eradication Initiative (GPEI) coordinated global cessation of all type 2 OPV (OPV2) use in routine immunization in 2016 but did not successfully end the transmission of type 2 VDPVs (VDPV2s), and consequently continues to use type 2 OPV (OPV2) for outbreak response activities. Using an updated global poliovirus transmission and OPV evolution model, we characterize outbreak response options for 2019-2029 related to responding to VDPV2 outbreaks with a genetically stabilized novel OPV (nOPV2) strain or with the currently licensed monovalent OPV2 (mOPV2). Given uncertainties about the properties of nOPV2, we model different assumptions that appear consistent with the evidence on nOPV2 to date. Using nOPV2 to respond to detected cases may reduce the expected VDPV and VAPP cases and the risk of needing to restart OPV2 use in routine immunization compared to mOPV2 use for outbreak response. The actual properties, availability, and use of nOPV2 will determine its effects on type 2 poliovirus transmission in populations. Even with optimal nOPV2 performance, countries and the GPEI would still likely need to restart OPV2 use in routine immunization in OPV-using countries if operational improvements in outbreak response to stop the transmission of cVDPV2s are not implemented effectively.
Collapse
Affiliation(s)
| | - Mark A. Pallansch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Amanda Wilkinson
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Jennifer L. Konopka-Anstadt
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C. Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M. Steven Oberste
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G. F. Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
44
|
Huang W, Guo Y, Li N, Feng Y, Xiao L. Codon usage analysis of zoonotic coronaviruses reveals lower adaptation to humans by SARS-CoV-2. INFECTION GENETICS AND EVOLUTION 2021; 89:104736. [PMID: 33516969 PMCID: PMC7843097 DOI: 10.1016/j.meegid.2021.104736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 12/25/2022]
Abstract
Since 2002, the world has witnessed major outbreaks of acute respiratory illness by three zoonotic coronaviruses (CoVs), which differ from each other in pathogenicity. Reasons for the lower pathogenicity of SARS-CoV-2 than the other two zoonotic coronaviruses, SARS-CoV and MERS-CoV, are not well understood. We herein compared the codon usage patterns of the three zoonotic CoVs causing severe acute respiratory syndromes and four human-specific CoVs (NL63, 229E, OC43, and HKU1) causing mild diseases. We found that the seven viruses have different codon usages, with SARS-CoV-2 having the lowest effective number of codons (ENC) among the zoonotic CoVs. Human codon adaptation index (CAI) analysis revealed that the CAI value of SARS-CoV-2 is the lowest among the zoonotic CoVs. The ENC and CAI values of SARS-CoV-2 were more similar to those of the less-pathogenic human-specific CoVs. To further investigate adaptive evolution within SARS-CoV-2, we examined codon usage patterns in 3573 genomes of SARS-CoV-2 collected over the initial 4 months of the pandemic. We showed that the ENC values and the CAI values of SARS-CoV-2 were decreasing over the period. The low ENC and CAI values could be responsible for the lower pathogenicity of SARS-CoV-2. While mutational pressure appears to shape codon adaptation in the overall genomes of SARS-CoV-2 and other zoonotic CoVs, the E gene of SARS-CoV-2, which has the highest codon usage bias, appears to be under strong natural selection. Data from the study contribute to our understanding of the pathogenicity and evolution of SARS-CoV-2 in humans.
Collapse
Affiliation(s)
- Wanyi Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
45
|
Diaz-San Segundo F, Medina GN, Spinard E, Kloc A, Ramirez-Medina E, Azzinaro P, Mueller S, Rieder E, de Los Santos T. Use of Synonymous Deoptimization to Derive Modified Live Attenuated Strains of Foot and Mouth Disease Virus. Front Microbiol 2021; 11:610286. [PMID: 33552021 PMCID: PMC7861043 DOI: 10.3389/fmicb.2020.610286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Foot-and-mouth disease (FMD) is one of the most economically important viral diseases that can affect livestock. In the last 70 years, use of an inactivated whole antigen vaccine has contributed to the eradication of disease from many developed nations. However, recent outbreaks in Europe and Eastern Asia demonstrated that infection can spread as wildfire causing economic and social devastation. Therefore, it is essential to develop new control strategies that could confer early protection and rapidly stop disease spread. Live attenuated vaccines (LAV) are one of the best choices to obtain a strong early and long-lasting protection against viral diseases. In proof of concept studies, we previously demonstrated that “synonymous codon deoptimization” could be applied to the P1 capsid coding region of the viral genome to derive attenuated FMDV serotype A12 strains. Here, we demonstrate that a similar approach can be extended to the highly conserved non-structural P2 and P3 coding regions, providing a backbone for multiple serotype FMDV LAV development. Engineered codon deoptimized P2, P3 or P2, and P3 combined regions were included into the A24Cruzeiro infectious clone optimized for vaccine production, resulting in viable progeny that exhibited different degrees of attenuation in cell culture, in mice, and in the natural host (swine). Derived strains were thoroughly characterized in vitro and in vivo. Our work demonstrates that overall, the entire FMDV genome tolerates codon deoptimization, highlighting the potential of using this technology to derive novel improved LAV candidates.
Collapse
Affiliation(s)
- Fayna Diaz-San Segundo
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States.,Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Edward Spinard
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States.,PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Anna Kloc
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States.,PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States.,Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States
| | - Paul Azzinaro
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | | | - Elizabeth Rieder
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Teresa de Los Santos
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| |
Collapse
|
46
|
Abstract
The development of safe and effective vaccines against viruses is central to disease control. With advancements in DNA synthesis technology, the production of synthetic viral genomes has fueled many research efforts that aim to generate attenuated viruses by introducing synonymous mutations. Elucidation of the mechanisms underlying virus attenuation through synonymous mutagenesis is revealing interesting new biology that can be exploited for vaccine development. Here, we review recent advancements in this field of synthetic virology and focus on the molecular mechanisms of attenuation by genetic recoding of viruses. We highlight the action of the zinc finger antiviral protein (ZAP) and RNase L, two proteins involved in the inhibition of viruses enriched for CpG and UpA dinucleotides, that are often the products of virus recoding algorithms. Additionally, we discuss current challenges in the field as well as studies that may illuminate how other host functions, such as translation, are potentially involved in the attenuation of recoded viruses.
Collapse
|
47
|
Singh T, Yadav SK, Vainstein A, Kumar V. Genome recoding strategies to improve cellular properties: mechanisms and advances. ABIOTECH 2021; 2:79-95. [PMID: 34377578 PMCID: PMC7675020 DOI: 10.1007/s42994-020-00030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022]
Abstract
The genetic code, once believed to be universal and immutable, is now known to contain many variations and is not quite universal. The basis for genome recoding strategy is genetic code variation that can be harnessed to improve cellular properties. Thus, genome recoding is a promising strategy for the enhancement of genome flexibility, allowing for novel functions that are not commonly documented in the organism in its natural environment. Here, the basic concept of genetic code and associated mechanisms for the generation of genetic codon variants, including biased codon usage, codon reassignment, and ambiguous decoding, are extensively discussed. Knowledge of the concept of natural genetic code expansion is also detailed. The generation of recoded organisms and associated mechanisms with basic targeting components, including aminoacyl-tRNA synthetase-tRNA pairs, elongation factor EF-Tu and ribosomes, are highlighted for a comprehensive understanding of this concept. The research associated with the generation of diverse recoded organisms is also discussed. The success of genome recoding in diverse multicellular organisms offers a platform for expanding protein chemistry at the biochemical level with non-canonical amino acids, genetically isolating the synthetic organisms from the natural ones, and fighting viruses, including SARS-CoV2, through the creation of attenuated viruses. In conclusion, genome recoding can offer diverse applications for improving cellular properties in the genome-recoded organisms.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| | | | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
48
|
Sweet C. Lessons from studies with murine cytomegalovirus that could lead to a safe live attenuated vaccine for human cytomegalovirus. Access Microbiol 2020; 2:acmi000147. [PMID: 33195979 PMCID: PMC7656186 DOI: 10.1099/acmi.0.000147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
Studies with a murine cytomegalovirus mutant tsm5 suggested two possible approaches to producing a live attenuated human cytomegalovirus vaccine. One approach would be to use a combination of five to six mutants where an attenuating mutation in the gene of one mutant is compensated by the wild-type version in a second mutant, which in turn has a mutation in a different gene compensated by the wild-type version in a third mutant, etc. Important genes in this approach could include those involved in DNA replication. The importance of the carboxy terminase of the primase gene (M70/UL70) for its function suggested a second approach where some of the natural codons in this region could be substituted with synonymous non-preferred (minor) codons that would reduce the replication fitness of the mutant.
Collapse
Affiliation(s)
- Clive Sweet
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
49
|
Loew L, Goonawardane N, Ratcliff J, Nguyen D, Simmonds P. Use of a small DNA virus model to investigate mechanisms of CpG dinucleotide-induced attenuation of virus replication. J Gen Virol 2020; 101:1202-1218. [PMID: 32783803 PMCID: PMC7879557 DOI: 10.1099/jgv.0.001477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/10/2020] [Indexed: 01/19/2023] Open
Abstract
Suppression of the CpG dinucleotide is widespread in RNA viruses infecting vertebrates and plants, and in the genomes of retroviruses and small mammalian DNA viruses. The functional basis for CpG suppression in the latter was investigated through the construction of mutants of the parvovirus, minute virus of mice (MVM) with increased CpG or TpA dinucleotides in the VP gene. CpG-high mutants displayed extraordinary attenuation in A9 cells compared to wild-type MVM (>six logs), while TpA elevation showed no replication effect. Attenuation was independent of Toll-like receptor 9 and STING-mediated DNA recognition pathways and unrelated to effects on translation efficiency. While translation from codon-optimized VP RNA was enhanced in a cell-free assay, MVM containing this sequence was highly attenuated. Further mutational analysis indicated that this arose through its increased numbers of CpG dinucleotides (7→70) and separately from its increased G+C content (42.3→57.4 %), which independently attenuated replication. CpG-high viruses showed impaired NS mRNA expression by qPCR and reduced NS and particularly VP protein expression detected by immunofluorescence and replication in A549 cells, effects reversed in zinc antiviral protein (ZAP) knockout cells, even though nuclear relocalization of VP remained defective. The demonstrated functional basis for CpG suppression in MVM and potentially other small DNA viruses and the observed intolerance of CpGs in coding sequences, even after codon optimization, has implications for the use of small DNA virus vectors in gene therapy and immunization.
Collapse
Affiliation(s)
- Lisa Loew
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
- Present address: Clinical Biomanufacturing Facility, University of Oxford, Old Road, Headington, Oxford OX3 7BN, UK
| | - Niluka Goonawardane
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Jeremy Ratcliff
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Dung Nguyen
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
50
|
Van Leuven JT, Ederer MM, Burleigh K, Scott L, Hughes RA, Codrea V, Ellington AD, Wichman HA, Miller CR. ΦX174 Attenuation by Whole-Genome Codon Deoptimization. Genome Biol Evol 2020; 13:5921183. [PMID: 33045052 PMCID: PMC7881332 DOI: 10.1093/gbe/evaa214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Natural selection acting on synonymous mutations in protein-coding genes influences genome composition and evolution. In viruses, introducing synonymous mutations in genes encoding structural proteins can drastically reduce viral growth, providing a means to generate potent, live-attenuated vaccine candidates. However, an improved understanding of what compositional features are under selection and how combinations of synonymous mutations affect viral growth is needed to predictably attenuate viruses and make them resistant to reversion. We systematically recoded all nonoverlapping genes of the bacteriophage ΦX174 with codons rarely used in its Escherichia coli host. The fitness of recombinant viruses decreases as additional deoptimizing mutations are made to the genome, although not always linearly, and not consistently across genes. Combining deoptimizing mutations may reduce viral fitness more or less than expected from the effect size of the constituent mutations and we point out difficulties in untangling correlated compositional features. We test our model by optimizing the same genes and find that the relationship between codon usage and fitness does not hold for optimization, suggesting that wild-type ΦX174 is at a fitness optimum. This work highlights the need to better understand how selection acts on patterns of synonymous codon usage across the genome and provides a convenient system to investigate the genetic determinants of virulence.
Collapse
Affiliation(s)
- James T Van Leuven
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| | | | - Katelyn Burleigh
- Department of Biological Science, University of Idaho.,Present address: Seattle Children's Research Institute, Seattle, WA
| | - LuAnn Scott
- Department of Biological Science, University of Idaho
| | - Randall A Hughes
- Applied Research Laboratories, University of Texas, Austin.,Present address: Biotechnology Branch, CCDC US Army Research Laboratory, Adelphi, MD
| | - Vlad Codrea
- Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - Andrew D Ellington
- Applied Research Laboratories, University of Texas, Austin.,Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - Holly A Wichman
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| | - Craig R Miller
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| |
Collapse
|