1
|
Wang F, Gao Z, Chen B, Jiang Z, Renner DM, Li J, Tolufashe G, Du Y, Guo JT, Chang J. Modes of action of a small molecule antiviral compound targeting yellow fever virus NS4B protein. Proc Natl Acad Sci U S A 2025; 122:e2505498122. [PMID: 40378003 DOI: 10.1073/pnas.2505498122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 05/18/2025] Open
Abstract
Yellow fever virus (YFV) replicates its RNA genome in membranous vesicles derived from the invagination of endoplasmic reticulum membranes, designated as replication organelles (ROs). Nonstructural protein 4B (NS4B) of flaviviruses play essential roles in the biogenesis of ROs and evasion of innate immune responses. We report herein that the binding of an antiviral agent, acetic acid benzodiazepine (BDAA), to YFV NS4B not only rapidly inhibits YFV RNA synthesis, but also induces the activation of cytoplasmic double-stranded RNA (dsRNA)-sensing pathways to accelerate the apoptosis of infected cells. Genetic analyses revealed that all the three cytoplasmic dsRNA-sensing pathways contribute to YFV induction of apoptosis, whereas only retinoic acid-inducible gene I-like receptors and RNase L pathways are required for BDAA acceleration of infected cell death. Our findings support the notion that BDAA binding of NS4B impairs the integrity of ROs, leading to the inhibition of viral RNA synthesis and exposure of viral RNA replication intermediates for the activation of dsRNA sensors and acceleration of infected cell apoptosis. The unprecedented modes of action support the ongoing development of a potent BDAA derivative as a therapeutic agent of yellow fever that continues threatening the lives of millions of people.
Collapse
Affiliation(s)
- Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | - Zhao Gao
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | - Bo Chen
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | | | | | - Jiaqi Li
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | | | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | | |
Collapse
|
2
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [PMID: 40134841 PMCID: PMC11612872 DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
3
|
Schmidt HM, Horner SM. Towards a Universal Translator: Decoding the PTMs That Regulate Orthoflavivirus Infection. Viruses 2025; 17:287. [PMID: 40007042 PMCID: PMC11861903 DOI: 10.3390/v17020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Post-translational modifications (PTMs) serve as critical regulators of protein function across biological systems, including during viral infection. For orthoflaviviruses, including human pathogens like dengue, Zika, and West Nile viruses, PTMs on viral proteins regulate multiple aspects of the viral lifecycle and pathogenesis. Here, we review the mechanisms by which PTMs regulate orthoflavivirus infection in both vertebrate and arthropod hosts. We examine how ubiquitination and glycosylation on the viral envelope proteins facilitate viral entry and how phosphorylation, SUMOylation, and acetylation on non-structural proteins modulate viral RNA replication. Additionally, we describe how PTMs on viral structural proteins dynamically regulate viral assembly and egress. We also describe how PTMs can influence tissue tropism and host-specific pathogenesis, with some modifications showing divergent functions between arthropod vectors and vertebrate hosts, and how the host antiviral response can trigger specific PTMs on viral proteins to restrict infection, highlighting PTMs as key mediators of host-pathogen interactions. While significant progress has been made in identifying PTMs on viral proteins, many questions remain about their temporal dynamics, mechanisms of action, and conservation across the orthoflavivirus genus. Understanding how PTMs regulate orthoflavivirus infection may reveal new therapeutic strategies, particularly given recent advances in targeting specific protein modifications for disease treatment.
Collapse
Affiliation(s)
- Hannah M. Schmidt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Stacy M. Horner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Ding R, Edwards TC, Goswami P, Wilson DJ, Dreis CD, Ye Y, Geraghty RJ, Chen L. p97 Inhibitors Possessing Antiviral Activity Against SARS-CoV-2 and Low Cytotoxicity. Pharmaceuticals (Basel) 2025; 18:131. [PMID: 39861192 PMCID: PMC11768289 DOI: 10.3390/ph18010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Background: p97 (also known as valosin-containing protein, VCP) is a member of the AAA+ ATPase family and is intimately associated with protein quality control and homeostasis regulation. Therefore, pharmaceutical inhibition of p97 has been actively pursued as an anticancer strategy. Recently, p97 has emerged as an important pro-viral host factor and p97 inhibitors are being evaluated as potential antiviral agents. Methods: We designed and synthesized novel p97 inhibitors based on the rearrangement of the central fused ring of our previously reported p97 inhibitors. These compounds were tested for inhibition of p97, cytotoxicity, and antiviral activity against SARS-CoV-2. Molecular docking was also performed on selected inhibitors to shed light on their binding modes. Results: Among these new p97 inhibitors, two compounds possess enhanced anti-p97 activity over their parent compounds. More significantly, these two inhibitors exhibit strong antiviral activity against SARS-CoV-2 at doses with no significant cytotoxicity. Molecular docking reveals no major change of the binding mode relative to that of their parent compounds, further supporting our design strategy. Conclusions: These compounds are structurally novel p97 inhibitors that display low toxicity and possess promising antiviral activity against SARS-CoV-2 and potentially other viruses. Further structural exploration is therefore justified and improved analogs will serve as useful tools for studying p97 as a promising host antiviral target.
Collapse
Affiliation(s)
- Rui Ding
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Tiffany C. Edwards
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Prithwish Goswami
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Daniel J. Wilson
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Christine D. Dreis
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Liqiang Chen
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| |
Collapse
|
5
|
Rodrigo I, Albentosa-González L, Romero de Ávila MJ, Bassi MR, Sempere RN, Clemente-Casares P, Arias A. Ubiquitin-like modifier-activating enzyme 1 interacts with Zika virus NS5 and promotes viral replication in the infected cell. J Gen Virol 2025; 106:002063. [PMID: 39773572 PMCID: PMC11708914 DOI: 10.1099/jgv.0.002063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Translation errors, impaired folding or environmental stressors (e.g. infection) can all lead to an increase in the presence of misfolded proteins. These activate cellular responses to their removal, including intracellular protein degradation activities. Protein ubiquitylation is involved in two major degradation pathways, the ubiquitin-proteasome system and selective autophagy. In humans, the ubiquitin-like modifier-activating enzyme 1 (UBA1) is the primary E1 enzyme in the ubiquitin conjugation cascade. Viruses have evolved to exploit protein degradation pathways to complete their infection cycles. Zika virus (ZIKV) is an emerging orthoflavivirus causing serious neurologic disorders in neonates (congenital microcephaly) and adults (Guillain-Barré syndrome). Non-structural protein 5 (NS5), the largest and most conserved protein in the orthoflaviviruses, catalyses the synthesis and capping of new viral genomes. In addition to viral RNA replication in the cytoplasm, ZIKV NS5 is translocated into the nucleus to interfere with host antiviral responses. Here, we demonstrate that ZIKV NS5 co-immunoprecipitates with cellular UBA1. Immunofluorescence assays suggest that this interaction takes place primarily in the nucleus of an infected cell, although colocalization of both proteins is also detected in the cytosol. RNA interference-mediated depletion of UBA1 leads to reduced virus titres in the infected cells, while transient overexpression of UBA1 favours faster replication kinetics, with higher virus titres and protein levels detected. Moreover, UBA1-targeting drugs cause significant drops in virus infectivity. These results support a proviral role for UBA1 during ZIKV infection and encourage the potential use of inhibitors against this enzyme or its NS5-interacting epitopes as potential therapeutic targets.
Collapse
Affiliation(s)
- Imanol Rodrigo
- Unidad de Medicina Molecular, Instituto de Biomedicina de UCLM (IB-UCLM), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - Laura Albentosa-González
- Unidad de Medicina Molecular, Instituto de Biomedicina de UCLM (IB-UCLM), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
- Facultad de Farmacia, UCLM, Albacete, Spain
| | - María José Romero de Ávila
- Unidad de Medicina Molecular, Instituto de Biomedicina de UCLM (IB-UCLM), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - Maria Rosaria Bassi
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raquel Navarro Sempere
- Departamento de Biología Molecular, Investigación y Desarrollo de Ensayos Agroalimentarios SL (IDEAGRO an Alltech Company), 30564 Lorquí, Spain
| | - Pilar Clemente-Casares
- Unidad de Medicina Molecular, Instituto de Biomedicina de UCLM (IB-UCLM), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
- Facultad de Farmacia, UCLM, Albacete, Spain
| | - Armando Arias
- Unidad de Medicina Molecular, Instituto de Biomedicina de UCLM (IB-UCLM), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos y de Montes y Biotecnología (ETSIAMB), UCLM, Albacete, Spain
| |
Collapse
|
6
|
Xie Y, Cao J, Gan S, Xu L, Zhang D, Qian S, Xu F, Ding Q, Schoggins JW, Fan W. TRIM32 inhibits Venezuelan equine encephalitis virus infection by targeting a late step in viral entry. PLoS Pathog 2024; 20:e1012312. [PMID: 39527628 PMCID: PMC11581401 DOI: 10.1371/journal.ppat.1012312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Alphaviruses are mosquito borne RNA viruses that are a reemerging public health threat. Alphaviruses have a broad host range, and can cause diverse disease outcomes like arthritis, and encephalitis. The host ubiquitin proteasome system (UPS) plays critical roles in regulating cellular processes to control the infections with various viruses, including alphaviruses. Previous studies suggest alphaviruses hijack UPS for virus infection, but the molecular mechanisms remain poorly characterized. In addition, whether certain E3 ubiquitin ligases or deubiquitinases act as alphavirus restriction factors remains poorly understood. Here, we employed a cDNA expression screen to identify E3 ubiquitin ligase TRIM32 as a novel intrinsic restriction factor against alphavirus infection, including VEEV-TC83, SINV, and ONNV. Ectopic expression of TRIM32 reduces alphavirus infection, whereas depletion of TRIM32 with CRISPR-Cas9 increases infection. We demonstrate that TRIM32 inhibits alphaviruses through a mechanism that is independent of the TRIM32-STING-IFN axis. Combining reverse genetics and biochemical assays, we found that TRIM32 interferes with genome translation after membrane fusion, prior to replication of the incoming viral genome. Furthermore, our data indicate that the monoubiquitination of TRIM32 is important for its antiviral activity. Notably, we also show two TRIM32 pathogenic mutants R394H and D487N, related to Limb-girdle muscular dystrophy (LGMD), have a loss of antiviral activity against VEEV-TC83. Collectively, these results reveal that TRIM32 acts as a novel intrinsic restriction factor suppressing alphavirus infection and provides insights into the interaction between alphaviruses and the host UPS.
Collapse
Affiliation(s)
- Yifan Xie
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jie Cao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shuyi Gan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lingdong Xu
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Dongjie Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Suhong Qian
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Qiang Ding
- School of Medical Sciences, Tsinghua University, Beijing, China
| | - John W. Schoggins
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Wenchun Fan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Infectious Diseases of Children’s Hospital, Zhejiang University School of Medicine, National Clinical Center for Children’s Health, Hangzhou, China
| |
Collapse
|
7
|
Bernardo-Menezes LC, Agrelli A, Oliveira ASLED, Azevedo EDAN, Morais CNLD. Zika virus: Critical crosstalk between pathogenesis, cytopathic effects, and macroautophagy. J Cell Biochem 2024; 125:e30438. [PMID: 37334850 DOI: 10.1002/jcb.30438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Zika virus (ZIKV) is a re-emerging positive-sense RNA arbovirus. Its genome encodes a polyprotein that is cleaved by proteases into three structural proteins (Envelope, pre-Membrane, and Capsid) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). These proteins have essential functions in viral replication cycle, cytopathic effects, and host cellular response. When infected by ZIKV, host cells promote macroautophagy, which is believed to favor virus entry. Although several authors have attempted to understand this link between macroautophagy and viral infection, little is known. Herein, we performed a narrative review of the molecular connection between macroautophagy and ZIKV infection while focusing on the roles of the structural and nonstructural proteins. We concluded that ZIKV proteins are major virulence factors that modulate host-cell machinery to its advantage by disrupting and/or blocking specific cellular systems and organelles' function, such as endoplasmic reticulum stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lucas Coêlho Bernardo-Menezes
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Almerinda Agrelli
- Laboratory of Nanostructured Materials (LMNANO), Strategic Technologies Center of Northeast (CETENE), Recife, Pernambuco, Brazil
| | | | - Elisa de Almeida Neves Azevedo
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Clarice Neuenschwander Lins de Morais
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
8
|
Sreepangi S, Baha H, Opoku LA, Jones NX, Konadu M, Alem F, Barrera MD, Narayanan A. Host-Driven Ubiquitination Events in Vector-Transmitted RNA Virus Infections as Options for Broad-Spectrum Therapeutic Intervention Strategies. Viruses 2024; 16:1727. [PMID: 39599842 PMCID: PMC11599102 DOI: 10.3390/v16111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Many vector-borne viruses are re-emerging as public health threats, yet our understanding of the virus-host interactions critical for productive infection remains limited. The ubiquitination of proteins, including host- and pathogen-derived proteins is a highly prominent and consistent post-translational modification that regulates protein function through signaling and degradation. Viral proteins are documented to hijack the host ubiquitination machinery to modulate multiple host processes including antiviral defense mechanisms. The engagement of the host ubiquitination machinery in the post-translational modification of viral proteins to support aspects of the viral life cycle including assembly and egress is also well documented. Exploring the role ubiquitination plays in the life cycle of vector-transmitted viral pathogens will increase the knowledge base pertinent to the impact of host-enabled ubiquitination of viral and host proteins and the consequences on viral pathogenesis. In this review, we explore E3 ligase-regulated ubiquitination pathways functioning as proviral and viral restriction factors in the context of acutely infectious, vector-transmitted viral pathogens and the potential for therapeutically targeting them for countermeasures development.
Collapse
Affiliation(s)
- Sanskruthi Sreepangi
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Haseebullah Baha
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Lorreta Aboagyewa Opoku
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Naomi X. Jones
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Maame Konadu
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Farhang Alem
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA;
| | - Michael D. Barrera
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
9
|
Bartak M, Krahel WD, Chodkowski M, Grel H, Walczak J, Pallepati A, Komorowski M, Cymerys J. ATPase Valosin-Containing Protein (VCP) Is Involved During the Replication and Egress of Sialodacryoadenitis Virus (SDAV) in Neurons. Int J Mol Sci 2024; 25:11633. [PMID: 39519185 PMCID: PMC11546310 DOI: 10.3390/ijms252111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Sialodacryoadenitis virus (SDAV) has been identified as the etiological agent responsible for the respiratory system and salivary gland infections in rats. The existing literature on SDAV infections is insufficient to address the topic adequately, particularly in relation to the central nervous system. In order to ascertain how SDAV gains access to neuronal cells and subsequently exits, our attention was focused on the small molecule valosin-containing protein (VCP), which is an ATPase. VCP is acknowledged for its function in the ubiquitin-mediated proteasomal degradation of proteins, including those of viral origin. To ascertain the potential influence of VCP on SDAV replication and egress, high-content screening was employed to determine the viral titer and protein content. Western blot analysis was employed to ascertain the relative expression of VCP. Real-time imaging of SDAV-infected cells and confocal imaging for qualitative morphological analysis were conducted. The Eeyarestatin I (EerI) inhibitor was employed to disrupt VCP involvement in the endoplasmic reticulum-associated protein degradation pathway (ERAD) in both pre- and post-incubation systems, with concentrations of 5 μM/mL and 25 μM/mL, respectively. We demonstrated for the first time that SDAV productively replicates in cultured primary neurons. VCP expression is markedly elevated during SDAV infection. The application of 5 μM/mL EerI in the post-treatment system yielded a statistically significant inhibition of the SDAV yield. It is likely that this modulates the efficacy of virion assembly by arresting viral proteins in the submembrane area.
Collapse
Affiliation(s)
- Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| | - Weronika D. Krahel
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| | - Marcin Chodkowski
- Division of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, Kozielska 4 St., 01-063 Warsaw, Poland;
| | - Hubert Grel
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Jarosław Walczak
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland; (J.W.); (A.P.); (M.K.)
| | - Adithya Pallepati
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland; (J.W.); (A.P.); (M.K.)
- Laboratory of Single-Molecule Biophysics, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4 St., 02-109 Warsaw, Poland
| | - Michał Komorowski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland; (J.W.); (A.P.); (M.K.)
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| |
Collapse
|
10
|
Velez-Brochero M, Behera P, Afreen KS, Odle A, Rajsbaum R. Ubiquitination in viral entry and replication: Mechanisms and implications. Adv Virus Res 2024; 119:1-38. [PMID: 38897707 DOI: 10.1016/bs.aivir.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The ubiquitination process is a reversible posttranslational modification involved in many essential cellular functions, such as innate immunity, cell signaling, trafficking, protein stability, and protein degradation. Viruses can use the ubiquitin system to efficiently enter host cells, replicate and evade host immunity, ultimately enhancing viral pathogenesis. Emerging evidence indicates that enveloped viruses can carry free (unanchored) ubiquitin or covalently ubiquitinated viral structural proteins that can increase the efficiency of viral entry into host cells. Furthermore, viruses continuously evolve and adapt to take advantage of the host ubiquitin machinery, highlighting its importance during virus infection. This review discusses the battle between viruses and hosts, focusing on how viruses hijack the ubiquitination process at different steps of the replication cycle, with a specific emphasis on viral entry. We discuss how ubiquitination of viral proteins may affect tropism and explore emerging therapeutics strategies targeting the ubiquitin system for antiviral drug discovery.
Collapse
Affiliation(s)
- Maria Velez-Brochero
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Padmanava Behera
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Kazi Sabrina Afreen
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Abby Odle
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Ricardo Rajsbaum
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States.
| |
Collapse
|
11
|
Song GY, Huang XY, He MJ, Zhou HY, Li RT, Tian Y, Wang Y, Cheng ML, Chen X, Zhang RR, Zhou C, Zhou J, Fang XY, Li XF, Qin CF. A single amino acid substitution in the capsid protein of Zika virus contributes to a neurovirulent phenotype. Nat Commun 2023; 14:6832. [PMID: 37884553 PMCID: PMC10603150 DOI: 10.1038/s41467-023-42676-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Increasing evidence shows the African lineage Zika virus (ZIKV) displays a more severe neurovirulence compared to the Asian ZIKV. However, viral determinants and the underlying mechanisms of enhanced virulence phenotype remain largely unknown. Herein, we identify a panel of amino acid substitutions that are unique to the African lineage of ZIKVs compared to the Asian lineage by phylogenetic analysis and sequence alignment. We then utilize reverse genetic technology to generate recombinant ZIKVs incorporating these lineage-specific substitutions based on an infectious cDNA clone of Asian ZIKV. Through in vitro characterization, we discover a mutant virus with a lysine to arginine substitution at position 101 of capsid (C) protein (termed K101R) displays a larger plaque phenotype, and replicates more efficiently in various cell lines. Moreover, K101R replicates more efficiently in mouse brains and induces stronger inflammatory responses than the wild type (WT) virus in neonatal mice. Finally, a combined analysis reveals the K101R substitution promotes the production of mature C protein without affecting its binding to viral RNA. Our study identifies the role of K101R substitution in the C protein in contributing to the enhanced virulent phenotype of the African lineage ZIKV, which expands our understanding of the complexity of ZIKV proteins.
Collapse
Affiliation(s)
- Guang-Yuan Song
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Xing-Yao Huang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Meng-Jiao He
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Hang-Yu Zhou
- Suzhou Institute of System Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 215123, Suzhou, Jiangsu, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Ying Tian
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Yan Wang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Meng-Li Cheng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Chao Zhou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Jia Zhou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Xian-Yang Fang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
| | - Cheng-Feng Qin
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China.
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
| |
Collapse
|
12
|
Wei R, Cao Y, Wu H, Liu X, Jiang M, Luo X, Deng Z, Wang Z, Ke M, Zhu Y, Chen S, Gu C, Yang Y. Inhibition of VCP modulates NF-κB signaling pathway to suppress multiple myeloma cell proliferation and osteoclast differentiation. Aging (Albany NY) 2023; 15:8220-8236. [PMID: 37606987 PMCID: PMC10497005 DOI: 10.18632/aging.204965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, in which the dysfunction of the ubiquitin-proteasome pathway is associated with the pathogenesis. The valosin containing protein (VCP)/p97, a member of the AAA+ ATPase family, possesses multiple functions to regulate the protein quality control including ubiquitin-proteasome system and molecular chaperone. VCP is involved in the occurrence and development of various tumors while still elusive in MM. VCP inhibitors have gradually shown great potential for cancer treatment. This study aims to identify if VCP is a therapeutic target in MM and confirm the effect of a novel inhibitor of VCP (VCP20) on MM. We found that VCP was elevated in MM patients and correlated with shorter survival in clinical TT2 cohort. Silencing VCP using siRNA resulted in decreased MM cell proliferation via NF-κB signaling pathway. VCP20 evidently inhibited MM cell proliferation and osteoclast differentiation. Moreover, exosomes containing VCP derived from MM cells partially alleviated the inhibitory effect of VCP20 on cell proliferation and osteoclast differentiation. Mechanism study revealed that VCP20 inactivated the NF-κB signaling pathway by inhibiting ubiquitination degradation of IκBα. Furthermore, VCP20 suppressed MM cell proliferation, prolonged the survival of MM model mice and improved bone destruction in vivo. Collectively, our findings suggest that VCP is a novel target in MM progression. Targeting VCP with VCP20 suppresses malignancy progression of MM via inhibition of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rongfang Wei
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhao Cao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongjie Wu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingmei Jiang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xian Luo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhendong Deng
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ze Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengying Ke
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Siqing Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Yin P, Jian X, Liu Y, Liu Y, Lv L, Cui H, Zhang L. Elucidating cellular interactome of chikungunya virus identifies host dependency factors. Virol Sin 2023; 38:497-507. [PMID: 37182691 PMCID: PMC10436055 DOI: 10.1016/j.virs.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/11/2023] [Indexed: 05/16/2023] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito-transmitted RNA virus causing joint and muscle pain. To better understand how CHIKV rewires the host cell and usurps host cell functions, we generated a systematic CHIKV-human protein-protein interaction map and revealed several novel connections that will inform further mechanistic studies. One of these novel interactions, between the viral protein E1 and STIP1 homology and U-box containing protein 1 (STUB1), was found to mediate ubiquitination of E1 and degrade E1 through the proteasome. Capsid associated with G3BP1, G3BP2 and AAA+ ATPase valosin-containing protein (VCP). Furthermore, VCP inhibitors blocked CHIKV infection, suggesting VCP could serve as a therapeutic target. Further work is required to fully understand the functional consequences of these interactions. Given that CHIKV proteins are conserved across alphaviruses, many virus-host protein-protein interactions identified in this study might also exist in other alphaviruses. Construction of interactome of CHIKV provides the basis for further studying the function of alphavirus biology.
Collapse
Affiliation(s)
- Peiqi Yin
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250013, China; NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Xia Jian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Yihan Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yuwen Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Lu Lv
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Haoran Cui
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
14
|
Abstract
Zika virus (ZIKV) is an emerging virus from the Flaviviridae family that is transmitted to humans by mosquito vectors and represents an important health problem. Infections in pregnant women are of major concern because of potential devastating consequences during pregnancy and have been associated with microcephaly in newborns. ZIKV has a unique ability to use the host machinery to promote viral replication in a tissue-specific manner, resulting in characteristic pathological disorders. Recent studies have proposed that the host ubiquitin system acts as a major determinant of ZIKV tropism by providing the virus with an enhanced ability to enter new cells. In addition, ZIKV has developed mechanisms to evade the host immune response, thereby allowing the establishment of viral persistence and enhancing viral pathogenesis. We discuss recent reports on the mechanisms used by ZIKV to replicate efficiently, and we highlight potential new areas of research for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Maria I Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
| | - Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Current affiliation: Center for Virus-Host-Innate-Immunity; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases; and Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA;
| |
Collapse
|
15
|
Ahlstedt BA, Ganji R, Raman M. The functional importance of VCP to maintaining cellular protein homeostasis. Biochem Soc Trans 2022; 50:1457-1469. [PMID: 36196920 PMCID: PMC9704522 DOI: 10.1042/bst20220648] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
The AAA-ATPase (ATPases associated with diverse cellular activities) valosin-containing protein (VCP), is essential for many cellular pathways including but not limited to endoplasmic reticulum-associated degradation (ERAD), DNA damage responses, and cell cycle regulation. VCP primarily identifies ubiquitylated proteins in these pathways and mediates their unfolding and degradation by the 26S proteasome. This review summarizes recent research on VCP that has uncovered surprising new ways that this ATPase is regulated, new aspects of recognition of substrates and novel pathways and substrates that utilize its activity.
Collapse
Affiliation(s)
- Brittany A. Ahlstedt
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, U.S.A
| | - Rakesh Ganji
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, U.S.A
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, U.S.A
| |
Collapse
|
16
|
Rodrigo I, Ballesta C, Nunes EB, Pérez P, García-Arriaza J, Arias A. Eeyarestatin I, an inhibitor of the valosin-containing protein, exhibits potent virucidal activity against the flaviviruses. Antiviral Res 2022; 207:105416. [PMID: 36113629 DOI: 10.1016/j.antiviral.2022.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
Abstract
Cellular responses to stress generally lead to the activation of the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Several lines of study support that ERAD may be playing a proviral role during flaviviral infection. A key host factor in ERAD is the valosin-containing protein (VCP), an ATPase which ushers ubiquitin-tagged proteins to degradation by the proteasome. VCP exhibits different proviral activities, such as engaging in the biogenesis of viral replication organelles and facilitating flavivirus genome uncoating after the viral particle entry. To investigate the possible antiviral value of drugs targeting VCP, we tested two inhibitors: eeyarestatin I (EEY) and xanthohumol (XAN). Both compounds were highly effective in suppressing Zika virus (ZIKV) and Usutu virus (USUV) replication during infection in cell culture. Further analysis revealed an unexpected virucidal activity for EEY, but not for XAN. Preincubation of ZIKV or USUV with EEY before inoculation to cells resulted in significant decreases in infectivity in a dose- and time-dependent manner. Viral genomes in samples previously treated with EEY were more sensitive to propidium monoazide, an intercalating agent, with 10- to 100-fold decreases observed in viral RNA levels, supporting that EEY affects viral particle integrity. Altogether, these results support that EEY is a strong virucide against two unrelated flaviviruses, encouraging further studies to investigate its potential use as a broad-acting drug or the development of improved derivatives in the treatment of flaviviral infection.
Collapse
Affiliation(s)
- Imanol Rodrigo
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomedicas (CRIB), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain; Unidad de Biomedicina, UCLM-CSIC, Albacete, Spain
| | - Carlos Ballesta
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomedicas (CRIB), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain; Unidad de Biomedicina, UCLM-CSIC, Albacete, Spain
| | - Eliane Blanco Nunes
- Departamento de Vigilância em Zoonoses, Secretaria Municipal de Saúde Goiânia, Rodovia Go-020 km 08, Val Das Pombas, 75250-000, Goiânia, Goias State, Brazil
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologla (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologla (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Armando Arias
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomedicas (CRIB), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain; Unidad de Biomedicina, UCLM-CSIC, Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos, UCLM, Albacete, Spain.
| |
Collapse
|
17
|
Cai D, Liu L, Tian B, Fu X, Yang Q, Chen J, Zhang Y, Fang J, Shen L, Wang Y, Gou L, Zuo Z. Dual-Role Ubiquitination Regulation Shuttling the Entire Life Cycle of the Flaviviridae. Front Microbiol 2022; 13:835344. [PMID: 35602051 PMCID: PMC9120866 DOI: 10.3389/fmicb.2022.835344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a reversible protein post-translational modification that regulates various pivotal physiological and pathological processes in all eukaryotes. Recently, the antiviral immune response is enhanced by the regulation of ubiquitination. Intriguingly, Flaviviridae viruses can ingeniously hijack the ubiquitination system to help them survive, which has become a hot topic among worldwide researchers. The Flaviviridae family members, such as HCV and CSFV, can cause serious diseases of humans and animals around the world. The multiple roles of ubiquitination involved in the life cycle of Flaviviridae family would open new sight for future development of antiviral tactic. Here, we discuss recent advances with regard to functional roles of ubiquitination and some ubiquitin-like modifications in the life cycle of Flaviviridae infection, shedding new light on the antiviral mechanism research and therapeutic drug development.
Collapse
Affiliation(s)
- Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lingli Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingxin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiyuan Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yilin Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Animal Disease Prevention and Control Center, Agriculture and Rural Affairs Bureau of Luoping County, Luoping, China
| | - Jing Fang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhicai Zuo,
| |
Collapse
|
18
|
Fishburn AT, Pham OH, Kenaston MW, Beesabathuni NS, Shah PS. Let's Get Physical: Flavivirus-Host Protein-Protein Interactions in Replication and Pathogenesis. Front Microbiol 2022; 13:847588. [PMID: 35308381 PMCID: PMC8928165 DOI: 10.3389/fmicb.2022.847588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Flaviviruses comprise a genus of viruses that pose a significant burden on human health worldwide. Transmission by both mosquito and tick vectors, and broad host tropism contribute to the presence of flaviviruses globally. Like all viruses, they require utilization of host molecular machinery to facilitate their replication through physical interactions. Their RNA genomes are translated using host ribosomes, synthesizing viral proteins that cooperate with each other and host proteins to reshape the host cell into a factory for virus replication. Thus, dissecting the physical interactions between viral proteins and their host protein targets is essential in our comprehension of how flaviviruses replicate and how they alter host cell behavior. Beyond replication, even single interactions can contribute to immune evasion and pathogenesis, providing potential avenues for therapeutic intervention. Here, we review protein interactions between flavivirus and host proteins that contribute to virus replication, immune evasion, and disease.
Collapse
Affiliation(s)
- Adam T Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Oanh H Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Matthew W Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Nitin S Beesabathuni
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Priya S Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Zhang L, Lin J, Weng M, Wen Y, Zhang Y, Deng W. RPLP1, an NS4B-interacting protein, enhances production of CSFV through promoting translation of viral genome. Virulence 2022; 13:370-386. [PMID: 35129423 PMCID: PMC8824197 DOI: 10.1080/21505594.2022.2033500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Classical swine fever virus (CSFV), the etiological agent of classical swine fever (CSF), causes serious financial losses to the pig industry. Using yeast two-hybrid screening, we have previously identified ribosomal protein RPLP1 as a potential binding partner of CSFV NS4B. In this study, the interaction between host RPLP1 and CSFV NS4B was further characterized by co-immunoprecipitation (co-IP), glutathione S-transferase (GST) pulldown, and confocal microscopy. In addition, lentivirus-mediated shRNA knockdown of RPLP1 drastically attenuated CSFV growth, while stable overexpression of RPLP1 markedly enhanced CSFV production. Moreover, cellular RPLP1 expression was found to be significantly up-regulated along with CSFV infection. Dual-luciferase reporter assay showed that depletion of RPLP1 had no effects on the activity of CSFV internal ribosome entry site (IRES). In the first life cycle of CSFV, further studies revealed that RPLP1 depletion did not influence the intracellular viral RNA abundance but diminished the intracellular and extracellular progeny virus titers as well as the viral E2 protein expression, which indicates that RPLP1 is crucial for CSFV genome translation. In summary, this study demonstrated that RPLP1 interacts with CSFV NS4B and enhances virus production via promoting translation of viral genome.
Collapse
Affiliation(s)
- Longxiang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jihui Lin
- School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Maoyang Weng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen Deng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
20
|
Flavivirus recruits the valosin-containing protein-NPL4 complex to induce stress granule disassembly for efficient viral genome replication. J Biol Chem 2022; 298:101597. [PMID: 35063505 PMCID: PMC8857493 DOI: 10.1016/j.jbc.2022.101597] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Flaviviruses are human pathogens that can cause severe diseases, such as dengue fever and Japanese encephalitis, which can lead to death. Valosin-containing protein (VCP)/p97, a cellular ATPase associated with diverse cellular activities (AAA-ATPase), is reported to have multiple roles in flavivirus replication. Nevertheless, the importance of each role still has not been addressed. In this study, the functions of 17 VCP mutants that are reportedly unable to interact with the VCP cofactors were validated using the short-interfering RNA rescue experiments. Our findings of this study suggested that VCP exerts its functions in replication of the Japanese encephalitis virus by interacting with the VCP cofactor nuclear protein localization 4 (NPL4). We show that the depletion of NPL4 impaired the early stage of viral genome replication. In addition, we demonstrate that the direct interaction between NPL4 and viral nonstructural protein (NS4B) is critical for the translocation of NS4B to the sites of viral replication. Finally, we found that Japanese encephalitis virus and dengue virus promoted stress granule formation only in VCP inhibitor-treated cells and the expression of NS4B or VCP attenuated stress granule formation mediated by protein kinase R, which is generally known to be activated by type I interferon and viral genome RNA. These results suggest that the NS4B-mediated recruitment of VCP to the virus replication site inhibits cellular stress responses and consequently facilitates viral protein synthesis in the flavivirus-infected cells.
Collapse
|
21
|
Gao Z, Zhang X, Zhang L, Wu S, Ma J, Wang F, Zhou Y, Dai X, Bullitt E, Du Y, Guo JT, Chang J. A yellow fever virus NS4B inhibitor not only suppresses viral replication, but also enhances the virus activation of RIG-I-like receptor-mediated innate immune response. PLoS Pathog 2022; 18:e1010271. [PMID: 35061864 PMCID: PMC8809586 DOI: 10.1371/journal.ppat.1010271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 02/02/2022] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
Flavivirus infection of cells induces massive rearrangements of the endoplasmic reticulum (ER) membrane to form viral replication organelles (ROs) which segregates viral RNA replication intermediates from the cytoplasmic RNA sensors. Among other viral nonstructural (NS) proteins, available evidence suggests for a prominent role of NS4B, an ER membrane protein with multiple transmembrane domains, in the formation of ROs and the evasion of the innate immune response. We previously reported a benzodiazepine compound, BDAA, which specifically inhibited yellow fever virus (YFV) replication in cultured cells and in vivo in hamsters, with resistant mutation mapped to P219 of NS4B protein. In the following mechanistic studies, we found that BDAA specifically enhances YFV induced inflammatory cytokine response in association with the induction of dramatic structural alteration of ROs and exposure of double-stranded RNA (dsRNA) in virus-infected cells. Interestingly, the BDAA-enhanced cytokine response in YFV-infected cells is attenuated in RIG-I or MAD5 knockout cells and completely abolished in MAVS knockout cells. However, BDAA inhibited YFV replication at a similar extent in the parent cells and cells deficient of RIG-I, MDA5 or MAVS. These results thus provided multiple lines of biological evidence to support a model that BDAA interaction with NS4B may impair the integrity of YFV ROs, which not only inhibits viral RNA replication, but also promotes the release of viral RNA from ROs, which consequentially activates RIG-I and MDA5. Although the innate immune enhancement activity of BDAA is not required for its antiviral activity in cultured cells, its dual antiviral mechanism is unique among all the reported antiviral agents thus far and warrants further investigation in animal models in future. Emergence and re-emergence of yellow fever (YF) caused by the yellow fever virus (YFV) infection have posed a global public health threat in previously non-epidemic as well as endemic regions. The approximately 30% of mortality rate makes the outbreaks particularly devastating. In addition to the vaccination campaign and mosquito controls, antiviral drugs are important components in the toolbox for combating YF outbreaks. However, only two nucleotide analogue drugs developed for the treatment of other RNA virus infections are currently repurposed for the treatment of YF with uncertain clinical efficacy. BDAA is a benzodiazepine compound discovered as a potent YFV-specific antiviral agent in our laboratory. The work reported herein further demonstrates that BDAA interaction with the YFV NS4B protein may impair the integrity of viral RNA replication organelles, which not only inhibits viral RNA replication, but also results in the leakage of viral RNA into the cytoplasm to activate RIG-I-like RNA receptors and enhances the innate antiviral immune response. The unprecedented antiviral mechanism of BDAA highlights the essential role of the NS4B protein in viral RNA replication and the evasion of host cellular innate immunity.
Collapse
Affiliation(s)
- Zhao Gao
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Xuexiang Zhang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Lin Zhang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Shuo Wu
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Julia Ma
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Yan Zhou
- Bioinformatics and Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Cheng KW, Li S, Wang F, Ruiz-Lopez NM, Houerbi N, Chou TF. Impacts of p97 on Proteome Changes in Human Cells during Coronaviral Replication. Cells 2021; 10:cells10112953. [PMID: 34831176 PMCID: PMC8616207 DOI: 10.3390/cells10112953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Human coronavirus (HCoV) similar to other viruses rely on host cell machinery for both replication and to spread. The p97/VCP ATPase is associated with diverse pathways that may favor HCoV replication. In this study, we assessed the role of p97 and associated host responses in human lung cell line H1299 after HCoV-229E or HCoV-OC43 infection. Inhibition of p97 function by small molecule inhibitors shows antiviral activity, particularly at early stages of the virus life cycle, during virus uncoating and viral RNA replication. Importantly, p97 activity inhibition protects human cells against HCoV-induced cytopathic effects. The p97 knockdown also inhibits viral production in infected cells. Unbiased quantitative proteomics analyses reveal that HCoV-OC43 infection resulted in proteome changes enriched in cellular senescence and DNA repair during virus replication. Further analysis of protein changes between infected cells with control and p97 shRNA identifies cell cycle pathways for both HCoV-229E and HCoV-OC43 infection. Together, our data indicate a role for the essential host protein p97 in supporting HCoV replication, suggesting that p97 is a therapeutic target to treat HCoV infection.
Collapse
Affiliation(s)
- Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (F.W.); (N.M.R.-L.); (N.H.)
- Correspondence: (K.-W.C.); (T.-F.C.); Tel.: +1-626-395-6772 (T.-F.C.)
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (F.W.); (N.M.R.-L.); (N.H.)
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (F.W.); (N.M.R.-L.); (N.H.)
| | - Nallely M. Ruiz-Lopez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (F.W.); (N.M.R.-L.); (N.H.)
| | - Nadia Houerbi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (F.W.); (N.M.R.-L.); (N.H.)
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (F.W.); (N.M.R.-L.); (N.H.)
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (K.-W.C.); (T.-F.C.); Tel.: +1-626-395-6772 (T.-F.C.)
| |
Collapse
|
23
|
Zhang L, Zhou D, Li Q, Zhu S, Imran M, Duan H, Cao S, Ke S, Ye J. The Antiviral Effect of Novel Steroidal Derivatives on Flaviviruses. Front Microbiol 2021; 12:727236. [PMID: 34690968 PMCID: PMC8527100 DOI: 10.3389/fmicb.2021.727236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Flaviviruses are the major emerging arthropod-borne pathogens globally. However, there is still no practical anti-flavivirus approach. Therefore, existing and emerging flaviviruses desperately need active broad-spectrum drugs. In the present study, the antiviral effect of steroidal dehydroepiandrosterone (DHEA) and 23 synthetic derivatives against flaviviruses such as Japanese encephalitis virus (JEV), Zika virus (ZIKV), and Dengue virus (DENV) were appraised by examining the characteristics of virus infection both in vitro and in vivo. Our results revealed that AV1003, AV1004 and AV1017 were the most potent inhibitors of flavivirus propagation in cells. They mainly suppress the viral infection in the post-invasion stage in a dose-dependent manner. Furthermore, orally administered compound AV1004 protected mice from lethal JEV infection by increasing the survival rate and reducing the viral load in the brain of infected mice. These results indicate that the compound AV1004 might be a potential therapeutic drug against JEV infection. These DHEA derivatives may provide lead scaffolds for further design and synthesis of potential anti-flavivirus potential drugs.
Collapse
Affiliation(s)
- Luping Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Dengyuan Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qiuyan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shuo Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Imran
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shaoyong Ke
- National Biopesticide Engineering Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
The Biogenesis of Dengue Virus Replication Organelles Requires the ATPase Activity of Valosin-Containing Protein. Viruses 2021; 13:v13102092. [PMID: 34696522 PMCID: PMC8540793 DOI: 10.3390/v13102092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
The dengue virus (DENV) causes the most prevalent arthropod-borne viral disease worldwide. While its incidence is increasing in many countries, there is no approved antiviral therapy currently available. In infected cells, the DENV induces extensive morphological alterations of the endoplasmic reticulum (ER) to generate viral replication organelles (vRO), which include convoluted membranes (CM) and vesicle packets (VP) hosting viral RNA replication. The viral non-structural protein NS4B localizes to vROs and is absolutely required for viral replication through poorly defined mechanisms, which might involve cellular protein partners. Previous interactomic studies identified the ATPase valosin-containing protein (VCP) as a DENV NS4B-interacting host factor in infected cells. Using both pharmacological and dominant-negative inhibition approaches, we show, in this study, that VCP ATPase activity is required for efficient DENV replication. VCP associates with NS4B when expressed in the absence of other viral proteins while in infected cells, both proteins colocalize within large DENV-induced cytoplasmic structures previously demonstrated to be CMs. Consistently, VCP inhibition dramatically reduces the abundance of DENV CMs in infected cells. Most importantly, using a recently reported replication-independent plasmid-based vRO induction system, we show that de novo VP biogenesis is dependent on VCP ATPase activity. Overall, our data demonstrate that VCP ATPase activity is required for vRO morphogenesis and/or stability. Considering that VCP was shown to be required for the replication of other flaviviruses, our results argue that VCP is a pan-flaviviral host dependency factor. Given that new generation VCP-targeting drugs are currently evaluated in clinical trials for cancer treatment, VCP may constitute an attractive broad-spectrum antiviral target in drug repurposing approaches.
Collapse
|
25
|
Das P, Dudley JP. How Viruses Use the VCP/p97 ATPase Molecular Machine. Viruses 2021; 13:1881. [PMID: 34578461 PMCID: PMC8473244 DOI: 10.3390/v13091881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses are obligate intracellular parasites that are dependent on host factors for their replication. One such host protein, p97 or the valosin-containing protein (VCP), is a highly conserved AAA ATPase that facilitates replication of diverse RNA- and DNA-containing viruses. The wide range of cellular functions attributed to this ATPase is consistent with its participation in multiple steps of the virus life cycle from entry and uncoating to viral egress. Studies of VCP/p97 interactions with viruses will provide important information about host processes and cell biology, but also viral strategies that take advantage of these host functions. The critical role of p97 in viral replication might be exploited as a target for development of pan-antiviral drugs that exceed the capability of virus-specific vaccines or therapeutics.
Collapse
Affiliation(s)
- Poulami Das
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Jaquelin P. Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA;
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
26
|
Cordero-Rivera CD, De Jesús-González LA, Osuna-Ramos JF, Palacios-Rápalo SN, Farfan-Morales CN, Reyes-Ruiz JM, Del Ángel RM. The importance of viral and cellular factors on flavivirus entry. Curr Opin Virol 2021; 49:164-175. [PMID: 34171540 DOI: 10.1016/j.coviro.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The flavivirus are emerging and re-emerging arthropod-borne pathogens responsible for significant mortality and morbidity worldwide. The genus comprises more than 70 viruses, and despite genomic and structural similarities, infections by different flaviviruses result in different clinical presentations. In the absence of a safe and effective vaccine against these infections, the search for new strategies to inhibit viral infection is necessary. The life cycle of arboviruses begins with the entry process composed of multiple steps: attachment, internalization, endosomal escape and capsid uncoating. This mini-review describes factors and mechanisms involved in the viral entry as events required to take over the cellular machinery and host factors and cellular pathways commonly used by flaviviruses as possible approaches for developing broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Carlos Daniel Cordero-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Luis Adrián De Jesús-González
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Juan Fidel Osuna-Ramos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Selvin Noé Palacios-Rápalo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Carlos Noe Farfan-Morales
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - José Manuel Reyes-Ruiz
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Rosa María Del Ángel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico.
| |
Collapse
|
27
|
Analysis of Zika virus capsid-Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection. Nat Commun 2021; 12:2766. [PMID: 33986255 PMCID: PMC8119459 DOI: 10.1038/s41467-021-22966-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
The escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.
Collapse
|
28
|
Valosin-containing protein/p97 plays critical roles in the Japanese encephalitis virus life cycle. J Virol 2021; 95:JVI.02336-20. [PMID: 33731458 PMCID: PMC8139707 DOI: 10.1128/jvi.02336-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Host factors provide critical support for every aspect of the virus life cycle. We recently identified the valosin-containing protein (VCP)/p97, an abundant cellular ATPase with diverse cellular functions, as a host factor important for Japanese encephalitis virus (JEV) replication. In cultured cells, using siRNA-mediated protein depletion and pharmacological inhibitors, we show that VCP is crucial for replication of three flaviviruses: JEV, Dengue, and West Nile viruses. An FDA-approved VCP inhibitor, CB-5083, extended survival of mice in the animal model of JEV infection. While VCP depletion did not inhibit JEV attachment on cells, it delayed capsid degradation, potentially through the entrapment of the endocytosed virus in clathrin-coated vesicles (CCVs). Early during infection, VCP-depleted cells showed an increased colocalization of JEV capsid with clathrin, and also higher viral RNA levels in purified CCVs. We show that VCP interacts with the JEV nonstructural protein NS5 and is an essential component of the virus replication complex. The depletion of the major VCP cofactor UFD-1 also significantly inhibited JEV replication. Mechanistically, thus, VCP affected two crucial steps of the JEV life cycle - nucleocapsid release and RNA replication. Our study establishes VCP as a common host factor with a broad antiviral potential against flaviviruses.ImportanceJEV is the leading cause of viral encephalitis epidemics in South-east Asia, affecting majorly children with high morbidity and mortality. Identification of host factors is thus essential for the rational design of anti-virals that are urgently need as therapeutics. Here we have identified the VCP protein as one such host-factor. This protein is highly abundant in cells and engages in diverse functions and cellular pathways by its ability to interact with different co-factors. Using siRNA mediated protein knockdown, we show that this protein is essential for release of the viral RNA into the cell so that it can initiate replication. The protein plays a second crucial role for the formation of the JEV replication complex. FDA-approved drugs targeting VCP show enhanced mouse survival in JE model of disease, suggesting that this could be a druggable target for flavivirus infections.
Collapse
|
29
|
Valerdi KM, Hage A, van Tol S, Rajsbaum R, Giraldo MI. The Role of the Host Ubiquitin System in Promoting Replication of Emergent Viruses. Viruses 2021; 13:369. [PMID: 33652634 PMCID: PMC7996891 DOI: 10.3390/v13030369] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/28/2022] Open
Abstract
Ubiquitination of proteins is a post-translational modification process with many different cellular functions, including protein stability, immune signaling, antiviral functions and virus replication. While ubiquitination of viral proteins can be used by the host as a defense mechanism by destroying the incoming pathogen, viruses have adapted to take advantage of this cellular process. The ubiquitin system can be hijacked by viruses to enhance various steps of the replication cycle and increase pathogenesis. Emerging viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), flaviviruses like Zika and dengue, as well as highly pathogenic viruses like Ebola and Nipah, have the ability to directly use the ubiquitination process to enhance their viral-replication cycle, and evade immune responses. Some of these mechanisms are conserved among different virus families, especially early during virus entry, providing an opportunity to develop broad-spectrum antivirals. Here, we discuss the mechanisms used by emergent viruses to exploit the host ubiquitin system, with the main focus on the role of ubiquitin in enhancing virus replication.
Collapse
Affiliation(s)
- Karl M. Valerdi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| |
Collapse
|
30
|
Anton A, Mazeaud C, Freppel W, Gilbert C, Tremblay N, Sow AA, Roy M, Rodrigue-Gervais IG, Chatel-Chaix L. Valosin-containing protein ATPase activity regulates the morphogenesis of Zika virus replication organelles and virus-induced cell death. Cell Microbiol 2021; 23:e13302. [PMID: 33432690 DOI: 10.1111/cmi.13302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
With no available therapies, infections with Zika virus (ZIKV) constitute a major public health concern as they can lead to congenital microcephaly. In order to generate an intracellular environment favourable to viral replication, ZIKV induces endomembrane remodelling and the morphogenesis of replication factories via enigmatic mechanisms. In this study, we identified the AAA+ type ATPase valosin-containing protein (VCP) as a cellular interaction partner of ZIKV non-structural protein 4B (NS4B). Importantly, its pharmacological inhibition as well as the expression of a VCP dominant-negative mutant impaired ZIKV replication. In infected cells, VCP is relocalised to large ultrastructures containing both NS4B and NS3, which are reminiscent of dengue virus convoluted membranes. Moreover, short treatment with the VCP inhibitors NMS-873 or CB-5083 drastically decreased the abundance and size of ZIKV-induced convoluted membranes. Furthermore, NMS-873 treatment inhibited ZIKV-induced mitochondria elongation previously reported to be physically and functionally linked to convoluted membranes in case of the closely related dengue virus. Finally, VCP inhibition resulted in enhanced apoptosis of ZIKV-infected cells strongly suggesting that convoluted membranes limit virus-induced cytopathic effects. Altogether, this study identifies VCP as a host factor required for ZIKV life cycle and more precisely, for the maintenance of viral replication factories. Our data further support a model in which convoluted membranes regulate ZIKV life cycle by impacting on mitochondrial functions and ZIKV-induced death signals in order to create a cytoplasmic environment favourable to viral replication.
Collapse
Affiliation(s)
- Anaïs Anton
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Clément Mazeaud
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Wesley Freppel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Claudia Gilbert
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Nicolas Tremblay
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Marie Roy
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Ian Gaël Rodrigue-Gervais
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada.,Center of Excellence in Research on Orphan Diseases-Courtois Foundation (CERMO-FC), Montreal, Québec, Canada.,Réseau Intersectoriel de Recherche en Santé de l'Université du Québec (RISUQ), Québec, Canada
| |
Collapse
|
31
|
Wang Y, Soto-Acosta R, Ding R, Chen L, Geraghty RJ. Anti-HCMV activity by an irreversible p97 inhibitor LC-1310. Med Chem Res 2021; 30:440-448. [PMID: 33456290 PMCID: PMC7794631 DOI: 10.1007/s00044-020-02679-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022]
Abstract
The AAA+ (ATPase associated with various cellular activities) protein p97, also called valosin-containing protein, is a hexameric ring ATPase and uses ATP hydrolysis to unfold or extract proteins from biological complexes. Many cellular processes are affected by p97 including ER-associated degradation, DNA damage response, cell signaling (NF-κB), cell cycle progression, autophagy, and others. Not surprisingly, with its role in many fundamental cellular processes, p97 function is important for the replication of many viruses. We tested irreversible p97-targeting compounds for their ability to inhibit the replication of multiple viruses compared to the known p97 inhibitors NMS-873 and CB-5083. Our results indicate that overall cellular toxicity for p97 compounds provides a challenge for antivirals targeting p97. However, we identified one compound with sub-micromolar activity against human cytomegalovirus and improved cell viability to provide evidence for the potential of irreversible p97 inhibitors as antivirals. ![]()
Collapse
Affiliation(s)
- Yan Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
- Present Address: Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Ruben Soto-Acosta
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Rui Ding
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Liqiang Chen
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
32
|
Carro SD, Cherry S. Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses 2020; 13:E13. [PMID: 33374822 PMCID: PMC7824540 DOI: 10.3390/v13010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses are a group of positive-sense RNA viruses that are primarily transmitted through arthropod vectors and are capable of causing a broad spectrum of diseases. Many of the flaviviruses that are pathogenic in humans are transmitted specifically through mosquito vectors. Over the past century, many mosquito-borne flavivirus infections have emerged and re-emerged, and are of global importance with hundreds of millions of infections occurring yearly. There is a need for novel, effective, and accessible vaccines and antivirals capable of inhibiting flavivirus infection and ameliorating disease. The development of therapeutics targeting viral entry has long been a goal of antiviral research, but most efforts are hindered by the lack of broad-spectrum potency or toxicities associated with on-target effects, since many host proteins necessary for viral entry are also essential for host cell biology. Mosquito-borne flaviviruses generally enter cells by clathrin-mediated endocytosis (CME), and recent studies suggest that a subset of these viruses can be internalized through a specialized form of CME that has additional dependencies distinct from canonical CME pathways, and antivirals targeting this pathway have been discovered. In this review, we discuss the role and contribution of endocytosis to mosquito-borne flavivirus entry as well as consider past and future efforts to target endocytosis for therapeutic interventions.
Collapse
Affiliation(s)
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|