1
|
Tabrez S, Akand SK, Ali R, Naqvi IH, Soleja N, Mohsin M, Ahmed MZ, Saleem M, Parvez S, Akhter Y, Rub A. Leishmania donovani modulates host miRNAs regulating cholesterol biosynthesis for its survival. Microbes Infect 2024; 26:105379. [PMID: 38885758 DOI: 10.1016/j.micinf.2024.105379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Cholesterol reduction by intracellular protozoan parasite Leishmania donovani (L. donovani), causative agent of leishmaniasis, impairs antigen presentation, pro-inflammatory cytokine secretion and host-protective membrane-receptor signaling in macrophages. Here, we studied the miRNA mediated regulation of cholesterol biosynthetic genes to understand the possible mechanism of L. donovani-induced cholesterol reduction and therapeutic importance of miRNAs in leishmaniasis. System-scale genome-wide microtranscriptome screening was performed to identify the miRNAs involved in the regulation of expression of key cholesterol biosynthesis regulatory genes through miRanda3.0. 11 miRNAs out of 2823, showing complementarity with cholesterol biosynthetic genes were finally selected for expression analysis. These selected miRNAs were differentially regulated in THP-1 derived macrophages and in primary human macrophages by L. donovani. Correlation of expression and target validation through luciferase assay suggested two key miRNAs, hsa-miR-1303 and hsa-miR-874-3p regulating the key genes hmgcr and hmgcs1 respectively. Inhibition of hsa-mir-1303 and hsa-miR-874-3p augmented the expression of targets and reduced the parasitemia in macrophages. This study will also provide the platform for the development of miRNA-based therapy against leishmaniasis.
Collapse
Affiliation(s)
- Shams Tabrez
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Sajjadul Kadir Akand
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Rahat Ali
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Irshad Husain Naqvi
- Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Neha Soleja
- Department of Bioscience, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohd Mohsin
- Department of Bioscience, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed Saleem
- National Institute of Science Education and Research (NISER), Bhubaneswar, P.O Jatni, Khurda, Odisha, 752050, India
| | - Suhel Parvez
- Department of Toxicology, Jamia Hamdard, New Delhi-110062, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
2
|
Foo CX, Fessler MB, Ronacher K. Oxysterols in Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:125-147. [PMID: 38036878 DOI: 10.1007/978-3-031-43883-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols have emerged as important bioactive lipids in the immune response to infectious diseases. This chapter discusses our current knowledge of oxysterols and their receptors in bacterial and viral infections of the respiratory and gastrointestinal tracts. Oxysterols are produced in response to infections and have multiple roles including chemotaxis of immune cells to the site of infection and regulation of inflammation. Some oxysterols have been shown to possess antiviral or antibacterial activity.Lastly, we delve into the emerging mechanisms of action of oxysterols. Oxysterols can enhance host cell resistance via reduction of membrane accessible cholesterol, modulate membrane immune signalling, and impact inflammasome activation and efferocytosis.
Collapse
Affiliation(s)
- Cheng X Foo
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Katharina Ronacher
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Nguyen C, Saint-Pol J, Dib S, Pot C, Gosselet F. 25-Hydroxycholesterol in health and diseases. J Lipid Res 2024; 65:100486. [PMID: 38104944 PMCID: PMC10823077 DOI: 10.1016/j.jlr.2023.100486] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.
Collapse
Affiliation(s)
- Cindy Nguyen
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Julien Saint-Pol
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Shiraz Dib
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Caroline Pot
- Department of Clinical Neurosciences, Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Gosselet
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France.
| |
Collapse
|
4
|
Yousefi P, Gholami A, Mehrjo M, Razizadeh MH, Akhavan M, Karampoor S, Tabibzadeh A. The role of cholesterol 25-hydroxylase in viral infections: Mechanisms and implications. Pathol Res Pract 2023; 249:154783. [PMID: 37660656 DOI: 10.1016/j.prp.2023.154783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Viral infections pose significant threats to human health, causing various diseases with varying severity. The intricate interactions between viruses and host cells determine the outcome of infection, including viral replication, immune responses, and disease progression. Cholesterol 25-hydroxylase (CH25H) is an enzyme that catalyzes the conversion of cholesterol to 25-hydroxycholesterol (25HC), a potent antiviral molecule. In recent years, increasing evidence has highlighted the critical involvement of CH25H in modulating immune responses and influencing viral infections. Notably, the review discusses the implications of CH25H in viral pathogenesis and the development of therapeutic strategies. It examines the interplay between CH25H and viral immune evasion mechanisms, highlighting the potential of viral antagonism of CH25H to enhance viral replication and pathogenesis. Furthermore, it explores the therapeutic potential of targeting CH25H or modulating its downstream signaling pathways as a strategy to control viral infections and enhance antiviral immune responses. This comprehensive review demonstrates the crucial role of CH25H in viral infections, shedding light on its mechanisms of action in viral entry, replication, and immune modulation. Understanding the complex interplay between CH25H and viral infections may pave the way for novel therapeutic approaches and the development of antiviral strategies aimed at exploiting the antiviral properties of CH25H and enhancing host immune responses against viral pathogens. In the current review, we tried to provide an overview of the antiviral activity and importance of CH25H in viral pathogenesis.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Gholami
- School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohsen Mehrjo
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Mandana Akhavan
- Department of Microbiology, Faculty of Medical Sciences, Islamic Azad University, Arak Branch, Arak, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Song YJ, Zhang J, Xiao J, Feng H, Xu Z, Nie P, Chang MX. Piscine Vitamin D Receptors Vdra/Vdrb in the Absence of Vitamin D Are Utilized by Grass Carp Reovirus for Promoting Viral Replication. Microbiol Spectr 2023; 11:e0128723. [PMID: 37466438 PMCID: PMC10433867 DOI: 10.1128/spectrum.01287-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
The vitamin D receptor (VDR) plays a pivotal role in the biological actions of vitamin D (VitD). However, little is known about the functions of VDR in the production of viral inclusion bodies (VIBs). Using a representative strain of grass carp reovirus (GCRV) genotype I, GCRV-873, we show that GCRV-873 recruits grass carp Vdrs for promoting the production of VIBs in the absence of VitD. Inhibition of cholesterol synthesis by lovastatin impairs the production of VIBs and blocks the effects of grass carp Vdrs in promoting the production of VIBs in the absence of VitD. Furthermore, grass carp Vdrs are found to form the Vdra-Vdrb heterodimer, which is vital for 3-hydroxy-3-methylglutaryl-coenzyme A reductase (hmgcr)-dependent cholesterol synthesis and GCRV replication. Intriguingly in the presence of VitD, grass carp Vdra but not Vdrb forms the heterodimer with the retinoid X receptor beta b (Rxrbb), which induces the transcription of those genes involved in the RIG-I-like receptor (RLR) antiviral signaling pathway for inhibiting GCRV infection. Furthermore, the VitD-activated Vdra-Vdrb heterodimer attenuates the transcription of the RLR antiviral signaling pathway induced by VitD. In the presence of VitD, a balance between the Vdra-Rxrbb heterodimers as coactivators and Vdra-Vdrb heterodimers as corepressors in affecting the transcriptional regulation of the RLR antiviral signaling pathway may eventually determine the outcome of GCRV infection. Transfection with VitD can abolish the effect of grass carp Vdrs in promoting GCRV replication in a dose-dependent manner. Taken together, these findings demonstrate that GCRV utilizes host Vdrs to increase hmgcr-dependent cholesterol synthesis for promoting its replication, which can be prevented by VitD treatment. IMPORTANCE Grass carp reovirus (GCRV) is the causative agent of grass carp hemorrhagic disease, which seriously harms freshwater fish. Although many positive or negative regulators of GCRV infection have been identified in teleosts, little is known about the molecular mechanisms by which GCRV utilizes host factors to generate its infectious compartments beneficial for viral replication and infection. Here, we show that in the absence of VitD, the GCRV-873 strain utilizes host vitamin D receptors Vdra/Vdrb to increase hmgcr-dependent cholesterol synthesis for promoting the production of VIBs, which are important functional sites for aquareovirus replication and assembly. The negative regulation of Vdrs during viral infection can be prevented by VitD treatment. Thus, this present work broadens understanding of the pivotal roles of Vdrs in the interaction between the host and GCRV in the absence or presence of VitD, which might provide a rational basis for developing novel anti-GCRV strategies.
Collapse
Affiliation(s)
- Yun Jie Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Gong Z, Yan Z, Liu W, Luo B. Oncogenic viruses and host lipid metabolism: a new perspective. J Gen Virol 2023; 104. [PMID: 37279154 DOI: 10.1099/jgv.0.001861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
As noncellular organisms, viruses do not have their own metabolism and rely on the metabolism of host cells to provide energy and metabolic substances for their life cycles. Increasing evidence suggests that host cells infected with oncogenic viruses have dramatically altered metabolic requirements and that oncogenic viruses produce substances used for viral replication and virion production by altering host cell metabolism. We focused on the processes by which oncogenic viruses manipulate host lipid metabolism and the lipid metabolism disorders that occur in oncogenic virus-associated diseases. A deeper understanding of viral infections that cause changes in host lipid metabolism could help with the development of new antiviral agents as well as potential new therapeutic targets.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Zhiyong Yan
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
7
|
Jung D, Bachmann HS. Regulation of protein prenylation. Biomed Pharmacother 2023; 164:114915. [PMID: 37236024 DOI: 10.1016/j.biopha.2023.114915] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Prenyltransferases (PTases) are known to play a role in embryonic development, normal tissue homeostasis and cancer by posttranslationally modifying proteins involved in these processes. They are being discussed as potential drug targets in an increasing number of diseases, ranging from Alzheimer's disease to malaria. Protein prenylation and the development of specific PTase inhibitors (PTIs) have been subject to intense research in recent decades. Recently, the FDA approved lonafarnib, a specific farnesyltransferase inhibitor that acts directly on protein prenylation; and bempedoic acid, an ATP citrate lyase inhibitor that might alter intracellular isoprenoid composition, the relative concentrations of which can exert a decisive influence on protein prenylation. Both drugs represent the first approved agent in their respective substance class. Furthermore, an overwhelming number of processes and proteins that regulate protein prenylation have been identified over the years, many of which have been proposed as molecular targets for pharmacotherapy in their own right. However, certain aspects of protein prenylation, such as the regulation of PTase gene expression or the modulation of PTase activity by phosphorylation, have attracted less attention, despite their reported influence on tumor cell proliferation. Here, we want to summarize the advances regarding our understanding of the regulation of protein prenylation and the potential implications for drug development. Additionally, we want to suggest new lines of investigation that encompass the search for regulatory elements for PTases, especially at the genetic and epigenetic levels.
Collapse
Affiliation(s)
- Dominik Jung
- Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Hagen S Bachmann
- Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
8
|
Padilla-Parra S. Time-resolved single virus tracking and spectral imaging to understand HIV-1 entry and fusion. Biol Cell 2023; 115:e2200082. [PMID: 36440600 DOI: 10.1111/boc.202200082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Single Virus Tracking (SVT) is a key technique to understand how individual viral particles evolve during the infection cycle. In the case of the human immunodeficiency virus (HIV-1), this technology, which can be employed using a simple and affordable wide-field microscope, has proven to be very useful in the first steps of infection, such as the kinetics of the fusion reaction or the point of fusion within live cells. Here, we describe how SVT in combination with other spectral imaging approaches is a powerful technique to illuminate crucial mechanistic aspects of the HIV-1 fusion reaction. We also stress the role of our laboratory in elucidating a few mechanistic aspects of retroviral fusion employing SVT such as: (i) the role of dynamin, (ii) how metabolism modulates membrane composition and cholesterol and its impact in fusion, (iii) the importance of envelope glycoprotein (Env) intra- and inter-molecular dynamics for neutralization, or (iv) the time-resolved fusion stoichiometry in three characteristic steps for the HIV-1 prefusion step. These observations constitute a good testimony of the complexity of retroviral fusion and show the strength of SVT when applied to live cells and combined with quantitative spectral approaches. Finally, we propose several crucial remaining questions around HIV-1 fusion and how the combined use of these technologies, always in live cells, will be able to shed light into the intricacies of arguably the most important step of the HIV-1 infection cycle.
Collapse
Affiliation(s)
- Sergi Padilla-Parra
- Faculty of Life Sciences & Medicine, Department of Infectious Diseases, King's College London, London, UK.,Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
9
|
Zhang L, Yi Y, Wang T, Song M, Guo K, Zhang Y. 25-hydroxycholesterol inhibits classical swine fever virus entry into porcine alveolar macrophages by depleting plasma membrane cholesterol. Vet Microbiol 2023; 278:109668. [PMID: 36709687 DOI: 10.1016/j.vetmic.2023.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Classical swine fever virus (CSFV) is an enveloped positive-sense RNA virus belonging to the Flaviviridae family. The virus utilizes cellular lipids and manipulates host lipid metabolism to ensure its replication, especially during virus invasion and replication steps. Therefore, identification of the molecular lipid metabolism pathways that are suitable targets is critical for the development of anti-CSFV therapeutics. In this study, we screened the anti-CSFV activity of 12 compounds targeting synthesis of cholesterol and fatty acids, cholesterol esters, and cholesterol transport. We found that 25-hydroxycholesterol (25HC), a regulator of cholesterol metabolism and transport, has potent anti-CSFV activity. Mechanistically, we showed that 25HC inhibited CSFV proliferation by blocking the entry of virions into porcine alveolar macrophages (3D4/21) by decreasing cholesterol abundance in the plasma membrane through activation of acyl-CoA:cholesterol acyltransferase (ACAT). Finally, we revealed that cholesterol 25-hydroxylase (CH25H), a redox enzyme that mediates 25HC production, also restricted CSFV infection via both enzyme activity-dependent and -independent mechanisms. Collectively, our results shed light on the mechanisms by which 25HC inhibits CSFV entry into cells and suggests a potential new therapeutic method against CSFV infection.
Collapse
Affiliation(s)
- Liang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanyan Yi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengzhao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Mao S, Ren J, Xu Y, Lin J, Pan C, Meng Y, Xu N. Studies in the antiviral molecular mechanisms of 25-hydroxycholesterol: Disturbing cholesterol homeostasis and post-translational modification of proteins. Eur J Pharmacol 2022; 926:175033. [PMID: 35598845 PMCID: PMC9119167 DOI: 10.1016/j.ejphar.2022.175033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Efficient antiviral drug discovery has been a pressing issue of global public health concern since the outbreak of coronavirus disease 2019. In recent years, numerous in vitro and in vivo studies have shown that 25-hydroxycholesterol (25HC), a reactive oxysterol catalyzed by cholesterol-25-hydroxylase, exerts broad-spectrum antiviral activity with high efficiency and low toxicity. 25HC restricts viral internalization and disturbs the maturity of viral proteins using multiple mechanisms. First, 25HC reduces lipid rafts and cholesterol in the cytomembrane by inhibiting sterol-regulatory element binding proteins-2, stimulating liver X receptor, and activating Acyl-coenzyme A: cholesterol acyl-transferase. Second, 25HC impairs endosomal pathways by restricting the function of oxysterol-binding protein or Niemann-pick protein C1, causing the virus to fail to release nucleic acid. Third, 25HC disturbs the prenylation of viral proteins by suppressing the sterol-regulatory element binding protein pathway and glycosylation by increasing the sensitivity of glycans to endoglycosidase. This paper reviews previous studies on the antiviral activity of 25HC in order to fully understand its role in innate immunity and how it may contribute to the development of urgently needed broad-spectrum antiviral drugs.
Collapse
|
11
|
Wang S, Wei J. Distinguishing the Pros and Cons of Metabolic Reprogramming in Oncolytic Virus Immunotherapy. Int J Cancer 2022; 151:1654-1662. [PMID: 35633046 DOI: 10.1002/ijc.34139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022]
Abstract
Oncolytic viruses (OVs) represent a class of cancer immunotherapies that rely on hijacking the host cell factory for replicative oncolysis and eliciting immune responses for tumor clearance. An increasing evidence suggests that the metabolic state of tumor cells and immune cells is a putative determinant of the efficacy of cancer immunotherapy. However, how therapeutic intervention with OVs affects metabolic fluxes within the tumor microenvironment (TME) remains poorly understood. Herein, we review the complexities of metabolic reprogramming involving the effects of viruses and their consequences on tumor cells and immune cells. We highlight the inherent drawback of oncolytic virotherapy, namely that treatment with OVs inevitably further exacerbates the depletion of nutrients and the accumulation of metabolic wastes in the TME, leading to a metabolic barrier to antitumor immune responses. We also describe targeted metabolic strategies that can be used to unlock the therapeutic potential of OVs.
Collapse
Affiliation(s)
- Shiqun Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
12
|
Ding S, Yu B, van Vuuren AJ. Statins significantly repress rotavirus replication through downregulation of cholesterol synthesis. Gut Microbes 2021; 13:1955643. [PMID: 34369301 PMCID: PMC8354672 DOI: 10.1080/19490976.2021.1955643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rotavirus is the most common cause of severe diarrhea among infants and young children and is responsible for more than 200,000 pediatric deaths per year. There is currently no pharmacological treatment for rotavirus infection in clinical activity. Although cholesterol synthesis has been proven to play a key role in the infections of multiple viruses, little is known about the relationship between cholesterol biosynthesis and rotavirus replication. The models of rotavirus infected two cell lines and a human small intestinal organoid were used. We investigated the effects of cholesterol biosynthesis, including inhibition, enhancement, and their combinations on rotavirus replication on these models. The knockdown of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was built by small hairpin RNAs in Caco2 cells. In all these models, inhibition of cholesterol synthesis by statins or HMGCR knockdown had a significant inhibitory effect on rotavirus replication. The result was further confirmed by the other inhibitors: 6-fluoromevalonate, Zaragozic acid A and U18666A, in the cholesterol biosynthesis pathway. Conversely, enhancement of cholesterol production increased rotavirus replication, suggesting that cholesterol homeostasis is relevant for rotavirus replication. The effects of all these compounds toward rotavirus were further confirmed with a clinical rotavirus isolate. We concluded that rotavirus replication is dependent on cholesterol biosynthesis. To be specific, inhibition of cholesterol synthesis can downregulate rotavirus replication; on the contrary, rotavirus replication is upregulated. Statin treatment is potentially an effective novel clinical anti-rotavirus strategy.
Collapse
Affiliation(s)
- Shihao Ding
- Department Of Gastroenterology And Hepatology, Na-1001, Erasmus MC – University Medical Center Rotterdam, CA Rotterdam, Netherlands,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands,CONTACT Shihao Ding Department Of Gastroenterology And Hepatology, Na-1001, Erasmus MC – University Medical Center Rotterdam, CA Rotterdam, Netherlands
| | - Bingting Yu
- Department Of Gastroenterology And Hepatology, Na-1001, Erasmus MC – University Medical Center Rotterdam, CA Rotterdam, Netherlands
| | - Anneke J. van Vuuren
- Department Of Gastroenterology And Hepatology, Na-1001, Erasmus MC – University Medical Center Rotterdam, CA Rotterdam, Netherlands
| |
Collapse
|
13
|
Serquiña AKP, Tagawa T, Oh D, Mahesh G, Ziegelbauer JM. 25-Hydroxycholesterol Inhibits Kaposi's Sarcoma Herpesvirus and Epstein-Barr Virus Infections and Activates Inflammatory Cytokine Responses. mBio 2021; 12:e0290721. [PMID: 34781692 PMCID: PMC8593836 DOI: 10.1128/mbio.02907-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
Oncogenic gammaherpesviruses express viral products during latent and lytic infection that block the innate immune response. Previously, we found that Kaposi's sarcoma herpesvirus (KSHV/human herpesvirus-8) viral microRNAs (miRNAs) downregulate cholesterol biogenesis, and we hypothesized that this prevents the production of 25-hydroxycholesterol (25HC), a cholesterol derivative. 25HC blocks KSHV de novo infection of primary endothelial cells at a postentry step and decreases viral gene expression of LANA (latency-associated nuclear antigen) and RTA. Herein we expanded on this observation by determining transcriptomic changes associated with 25HC treatment of primary endothelial cells using RNA sequencing (RNA-Seq). We found that 25HC treatment inhibited KSHV gene expression and induced interferon-stimulated genes (ISGs) and several inflammatory cytokines (interleukin 8 [IL-8], IL-1α). Some 25HC-induced genes were partially responsible for the broadly antiviral effect of 25HC against several viruses. Additionally, we found that 25HC inhibited infection of primary B cells by a related oncogenic virus, Epstein-Barr virus (EBV/human herpesvirus-4) by suppressing key viral genes such as LMP-1 and inducing apoptosis. RNA-Seq analysis revealed that IL-1 and IL-8 pathways were induced by 25HC in both primary endothelial cells and B cells. We also found that the gene encoding cholesterol 25-hydroxylase (CH25H), which converts cholesterol to 25HC, can be induced by type I interferon (IFN) in human B cell-enriched peripheral blood mononuclear cells (PBMCs). We propose a model wherein viral miRNAs target the cholesterol pathway to prevent 25HC production and subsequent induction of antiviral ISGs. Together, these results answer some important questions about a widely acting antiviral (25HC), with implications for multiple viral and bacterial infections. IMPORTANCE A cholesterol derivative, 25-hydroxycholesterol (25HC), has been demonstrated to inhibit infections from widely different bacteria and viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, its mechanism of activity is still not fully understood. In this work, we look at gene expression changes in the host and virus after 25HC treatment to find clues about its antiviral activity. We likewise demonstrate that 25HC is also antiviral against EBV, a common cancer-causing virus. We compared our results with previous data from antiviral screening assays and found the same pathways resulting in antiviral activity. Together, these results bring us closer to understanding how a modified form of cholesterol works against several viruses.
Collapse
Affiliation(s)
- Anna K. P. Serquiña
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Oh
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guruswamy Mahesh
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph M. Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Ke W, Zhou Y, Lai Y, Long S, Fang L, Xiao S. Porcine reproductive and respiratory syndrome virus nsp4 positively regulates cellular cholesterol to inhibit type I interferon production. Redox Biol 2021; 49:102207. [PMID: 34911669 PMCID: PMC8758914 DOI: 10.1016/j.redox.2021.102207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular cholesterol plays an important role in the life cycles of enveloped viruses. Previous studies by our group and other groups have demonstrated that the depletion of cellular cholesterol by methyl-β-cyclodextrin (MβCD) reduces the proliferation of porcine reproductive and respiratory syndrome virus (PRRSV), a porcine Arterivirus that has been devastating the swine industry worldwide for over two decades. However, how PRRSV infection regulates cholesterol synthesis is not fully understood. In this study, we showed that PRRSV infection upregulated the activity of protein phosphatase 2 (PP2A), which subsequently activated 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in the cholesterol synthesis pathway, to increase the levels of cellular cholesterol. By screening the PRRSV-encoded proteins, we showed that nsp4 dominated the upregulation of cellular cholesterol, independently of the 3C-like protease activity of nsp4. A mutation analysis showed that domain I (amino acids 1–80) of PRRSV nsp4 interacted with PR65 alpha (PR65α), the structural subunit, and PP2Ac, the catalytic subunit, of PP2A. Importantly, domain I of nsp4 inhibited Sendai virus-induced interferon β production, and this inhibitory effect was eliminated by Lovastatin, an HMGCR inhibitor, indicating that the upregulation of cellular cholesterol by nsp4 is a strategy used by PRRSV to suppress the antiviral innate immunity of its host. Collectively, we here demonstrated the mechanism by which PRRSV regulates cellular cholesterol synthesis and reported a novel strategy by which PRRSV evades its host's antiviral innate immune response. PRRSV nsp4 up-regulates cellular cholesterol via the PP2A-HMGCR pathway. Nsp4 domain I (amino acids 1–80) interacts with A and C subunits of PP2A. Nsp4 domain I inhibits IFN-I production by upregulating cellular cholesterol. The HMGCR inhibitor Lovastatin inhibits PRRSV proliferation.
Collapse
Affiliation(s)
- Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yinan Lai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Siwen Long
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
15
|
Gao X, Niu C, Wang Z, Jia S, Han M, Ma Y, Guan X, Wang L, Qiao X, Xu Y. Comprehensive analysis of lncRNA expression profiles in cytopathic biotype BVDV-infected MDBK cells provides an insight into biological contexts of host-BVDV interactions. Virulence 2020; 12:20-34. [PMID: 33258421 PMCID: PMC7781660 DOI: 10.1080/21505594.2020.1857572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the causative agent of bovine viral diarrhea-mucosal disease, which significantly affects the production performance of cattle, causing serious economic losses to the cattle industries worldwide. Up to now, some mechanisms involved in host–BVDV interaction are still not fully understood. The discovery of long non-coding RNAs (lncRNAs) has provided a new perspective on gene regulation in diverse biological contexts, particularly in viral infection and host immune responses. However, little is known about the profiles and functions of lncRNAs in host cells in response to BVDV infection. Here, we utilized Illumina sequencing to explore lncRNAs profiles in cytopathic (CP) biotype BVDV-infected MDBK cells to further reveal the potential roles of lncRNAs in BVDV infection and host–BVDV interaction with integrated analysis of lncRNAs and mRNA expression profiles. A total of 1747 significantly differentially expressed genes, DEGs (156 lncRNAs and 1591 mRNAs) were obtained via RNA-seq in BVDV-infected MDBK cells compared to mock-infected cells. Next, these DE lncRNAs and mRNAs were subjected to construct lncRNAs-mRNAs co-expression network followed by the prediction of potential functions of the DE lncRNAs. Co-expression network analysis elucidated that DE lncRNAs were significant enrichment in NOD-like receptor, TNF, NF-ĸB, ErbB, Ras, apoptosis, and fatty acid biosynthesis pathways, indicating that DE lncRNAs play important roles in host–BVDV interactions. Our data give an overview of changes in transcriptome and potential roles of lncRNAs, providing molecular biology basis for further exploring the mechanisms of host–BVDV interaction.
Collapse
Affiliation(s)
- Xuwen Gao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China.,College of Veterinary Medicine, China Agricultural University , Beijing, P.R. China
| | - Chao Niu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Zhuo Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Shuo Jia
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Meijing Han
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Yingying Ma
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Xueting Guan
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University , Hangzhou, P.R. China
| |
Collapse
|
16
|
Tiwari D, Jakhmola S, Pathak DK, Kumar R, Jha HC. Temporal In Vitro Raman Spectroscopy for Monitoring Replication Kinetics of Epstein-Barr Virus Infection in Glial Cells. ACS OMEGA 2020; 5:29547-29560. [PMID: 33225186 PMCID: PMC7676301 DOI: 10.1021/acsomega.0c04525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 05/17/2023]
Abstract
Raman spectroscopy can be used as a tool to study virus entry and pathogen-driven manipulation of the host efficiently. To date, Epstein-Barr virus (EBV) entry and altered biochemistry of the glial cell upon infection are elusive. In this study, we detected biomolecular changes in human glial cells, namely, HMC-3 (microglia) and U-87 MG (astrocytes), at two variable cellular locations (nucleus and periphery) by Raman spectroscopy post-EBV infection at different time points. Two possible phenomena, one attributed to the response of the cell to viral attachment and invasion and the other involved in duplication of the virus followed by egress from the host cell, are investigated. These changes corresponded to unique Raman spectra associated with specific biomolecules in the infected and the uninfected cells. The Raman signals from the nucleus and periphery of the cell also varied, indicating differential biochemistry and signaling processes involved in infection progression at these locations. Molecules such as cholesterol, glucose, hyaluronan, phenylalanine, phosphoinositide, etc. are associated with the alterations in the cellular biochemical homeostasis. These molecules are mainly responsible for cellular processes such as lipid transport, cell proliferation, differentiation, and apoptosis in the cells. Raman signatures of these molecules at distinct time points of infection indicated their periodic involvement, depending on the stage of virus infection. Therefore, it is possible to discern the details of variability in EBV infection progression in glial cells at the biomolecular level using time-dependent in vitro Raman scattering.
Collapse
Affiliation(s)
- Deeksha Tiwari
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552 Indore, India
| | - Shweta Jakhmola
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552 Indore, India
| | - Devesh K. Pathak
- Discipline
of Physics, Indian Institute of Technology
Indore, Simrol, 453552 Indore, India
| | - Rajesh Kumar
- Discipline
of Physics, Indian Institute of Technology
Indore, Simrol, 453552 Indore, India
- Centre
for Advanced Electronics, Indian Institute
of Technology Indore, Simrol, 453552 Indore, India
| | - Hem Chandra Jha
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552 Indore, India
| |
Collapse
|
17
|
20(S)-Rg3 upregulates FDFT1 via reducing miR-4425 to inhibit ovarian cancer progression. Arch Biochem Biophys 2020; 693:108569. [PMID: 32877662 DOI: 10.1016/j.abb.2020.108569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 01/15/2023]
Abstract
We previously found that ginsenoside 20(S)-Rg3 diminishes the proliferative and invasive capacities of ovarian cancer cells by decreasing miR-4425 level. Yet the mechanism of action of miR-4425 in ovarian cancer remains unclear. Here we report that miR-4425 is upregulated in ovarian cancer tissues relative to normal ovarian tissues, and transfection of miR-4425 inhibitor impairs the proliferation, migration and invasion of SKOV3 and 3AO ovarian cancer cells. Further, miR-4425 antagomiR reduces cell proliferation in a subcutaneous SKOV3 xenograft model using BALB/c nude mice. We identifies farnesyl-diphosphate farnesyltransferase 1 (FDFT1) as a direct target of miR-4425 by Western blotting and a luciferase reporter assay. Forced expression of FDFT1 via transfection of an FDFT1-expressing plasmid into ovarian cancer cells not only retards cell proliferation, motility and invasiveness, but also negates the tumorigenic properties of a miR-4425 mimic. By contrast, silencing of FDFT1 by siRNAs abrogates suppression of the proliferation, migration and invasion of ovarian cancer cells treated with a miR-4425 inhibitor. Finally, transfection of either a miR-4425 mimic or FDFT1 siRNAs into 20(S)-Rg3-treated ovarian cancer cells counteracts the tumor-inhibitory activity of the ginsenoside. In conclusion, 20(S)-Rg3 exerts anti-ovarian cancer activity by downregulating oncogenic miR-4425 that inhibits the expression of the tumor suppressor gene FDFT1. These results expand our current understanding of the molecular pathways leading to ovarian cancer progression, and unveil the mechanism of action of 20(S)-Rg3 in ovarian cancer inhibition.
Collapse
|
18
|
Sears JD, Waldron KJ, Wei J, Chang CH. Targeting metabolism to reverse T-cell exhaustion in chronic viral infections. Immunology 2020; 162:135-144. [PMID: 32681647 DOI: 10.1111/imm.13238] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022] Open
Abstract
CD8 T-cells are an essential component of the adaptive immune response accountable for the clearance of virus-infected cells via cytotoxic effector functions. Maintaining a specific metabolic profile is necessary for these T-cells to sustain their effector functions and clear pathogens. When CD8 T-cells are activated via T-cell receptor recognition of viral antigen, they transition from a naïve to an effector state and eventually to a memory phenotype, and their metabolic profiles shift as the cells differentiate to accomidate different metabolic demands. However, in the context of particular chronic viral infections (CVIs), CD8 T-cells can become metabolically dysfunctional in a state known as T-cell exhaustion. In this state, CD8 T-cells exhibit reduced effector functions and are unable to properly control pathogens. Clearing these chronic infections becomes progressively difficult as increasing numbers of the effector T-cells become exhausted. Hence, reversal of this dysfunctional metabolic phenotype is vital when considering potential treatments of these infections and offers the opportunity for novel strategies for the development of therapies against CVIs. In this review we explore research implicating alteration of the metabolic state as a means to reverse CD8 T-cell exhaustion in CVIs. These findings indicate that strategies targeting dysfunctional CD8 T-cell metabolism could prove to be a promising option for successfully treating CVIs.
Collapse
Affiliation(s)
| | | | - Jian Wei
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.,Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
19
|
Multifaceted Functions of CH25H and 25HC to Modulate the Lipid Metabolism, Immune Responses, and Broadly Antiviral Activities. Viruses 2020; 12:v12070727. [PMID: 32640529 PMCID: PMC7411728 DOI: 10.3390/v12070727] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
With the frequent outbreaks of emerging infectious diseases in recent years, an effective broad-spectrum antiviral drug is becoming an urgent need for global public health. Cholesterol-25-hydroxylase (CH25H) and its enzymatic products 25-hydroxycholesterol (25HC), a well-known oxysterol that regulates lipid metabolism, have been reported to play multiple functions in modulating cholesterol homeostasis, inflammation, and immune responses. CH25H and 25HC were recently identified as exerting broadly antiviral activities, including upon a variety of highly pathogenic viruses such as human immunodeficiency virus (HIV), Ebola virus (EBOV), Nipah virus (NiV), Rift Valley fever virus (RVFV), and Zika virus (ZIKV). The underlying mechanisms for its antiviral activities are being extensively investigated but have not yet been fully clarified. In this study, we summarized the current findings on how CH25H and 25HC play multiple roles to modulate cholesterol metabolism, inflammation, immunity, and antiviral infections. Overall, 25HC should be further studied as a potential therapeutic agent to control emerging infectious diseases in the future.
Collapse
|
20
|
Tagawa T, Serquiña A, Kook I, Ziegelbauer J. Viral non-coding RNAs: Stealth strategies in the tug-of-war between humans and herpesviruses. Semin Cell Dev Biol 2020; 111:135-147. [PMID: 32631785 DOI: 10.1016/j.semcdb.2020.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
Oncogenic DNA viruses establish lifelong infections in humans, and they cause cancers, often in immunocompromised patients, despite anti-viral immune surveillance targeted against viral antigens. High-throughput sequencing techniques allowed the field to identify novel viral non-coding RNAs (ncRNAs). ncRNAs are ideal factors for DNA viruses to exploit; they are non-immunogenic to T cells, thus viral ncRNAs can manipulate host cells without evoking adaptive immune responses. Viral ncRNAs may still trigger the host innate immune response, but many viruses encode decoys/inhibitors to counter-act and evade recognition. In addition, ncRNAs can be secreted to the extracellular space and influence adjacent cells to create a pro-viral microenvironment. In this review, we present recent progress in understanding interactions between oncoviruses and ncRNAs including small and long ncRNAs, microRNAs, and recently identified viral circular RNAs. In addition, potential clinical applications for ncRNA will be discussed. Extracellular ncRNAs are suggested to be diagnostic and prognostic biomarkers and, with the realization of the importance of viral ncRNAs in tumorigenesis, approaches to target critical viral ncRNAs are emerging. Further understanding of viral utilization of ncRNAs will advance anti-viral therapeutics beyond conventional medication and vaccination.
Collapse
Affiliation(s)
- Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Anna Serquiña
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Insun Kook
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States.
| |
Collapse
|
21
|
Abstract
This review discusses the current state of the viral metabolism field and gaps in knowledge that will be important for future studies to investigate. We discuss metabolic rewiring caused by viruses, the influence of oncogenic viruses on host cell metabolism, and the use of viruses as guides to identify critical metabolic nodes for cancer anabolism. We also discuss the need for more mechanistic studies identifying viral proteins responsible for metabolic hijacking and for in vivo studies of viral-induced metabolic rewiring. Improved technologies for detailed metabolic measurements and genetic manipulation will lead to important discoveries over the next decade.
Collapse
Affiliation(s)
- Shivani K Thaker
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - James Ch'ng
- Department of Pediatrics, Division of Hematology/Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
22
|
Ouyang T, Niu G, Zhang Y, Liu X, Zhang X, Zhang S, Geng Y, Pang D, Ouyang H, Ren L. Porcine HMGCR Inhibits Porcine Circovirus Type 2 Infection by Directly Interacting with the Viral Proteins. Viruses 2019; 11:v11060544. [PMID: 31212640 PMCID: PMC6630565 DOI: 10.3390/v11060544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/29/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the etiological agent of porcine circovirus diseases and porcine circovirus-associated diseases (PCVDs/PCVADs). However, the pathogenesis of PCV2 is not fully understood. We previously found that 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is negatively associated with PCV2 infection in vitro and in vivo. HMGCR inhibits the early stages of PCV2 infection, while PCV2 infection induces the phosphorylation of HMGCR to inactivate the protein. In this study, we investigated the possibility that adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK), and protein phosphatase 2 (PP2A) participate in HMGCR-mediated inhibition of PCV2 infection and the interaction of porcine HMGCR with PCV2 proteins. The results showed that AMPK activity fluctuated in cells during the early stage of PCV2 infection, while PP2A had little effect on PCV2 infection and HMGCR activity. Furthermore, PCV2 infection may enhance or maintain the level of phosphorylated HMGCR by directly interacting with the protein in PK-15 cells. These findings may provide a better understanding of PCV2 pathogenesis, and HMGCR may be a novel PCV2 antiviral target.
Collapse
Affiliation(s)
- Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Guyu Niu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Yifang Zhang
- College of Animal Medicine, Yunnan Agricultural University, Black Dragon Pool, Kunming 650201, China.
| | - Xiaohua Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Xinwei Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Shiqi Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Yulu Geng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| |
Collapse
|
23
|
Curbing Lipids: Impacts ON Cancer and Viral Infection. Int J Mol Sci 2019; 20:ijms20030644. [PMID: 30717356 PMCID: PMC6387424 DOI: 10.3390/ijms20030644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids play a fundamental role in maintaining normal function in healthy cells. Their functions include signaling, storing energy, and acting as the central structural component of cell membranes. Alteration of lipid metabolism is a prominent feature of cancer, as cancer cells must modify their metabolism to fulfill the demands of their accelerated proliferation rate. This aberrant lipid metabolism can affect cellular processes such as cell growth, survival, and migration. Besides the gene mutations, environmental factors, and inheritance, several infectious pathogens are also linked with human cancers worldwide. Tumor viruses are top on the list of infectious pathogens to cause human cancers. These viruses insert their own DNA (or RNA) into that of the host cell and affect host cellular processes such as cell growth, survival, and migration. Several of these cancer-causing viruses are reported to be reprogramming host cell lipid metabolism. The reliance of cancer cells and viruses on lipid metabolism suggests enzymes that can be used as therapeutic targets to exploit the addiction of infected diseased cells on lipids and abrogate tumor growth. This review focuses on normal lipid metabolism, lipid metabolic pathways and their reprogramming in human cancers and viral infection linked cancers and the potential anticancer drugs that target specific lipid metabolic enzymes. Here, we discuss statins and fibrates as drugs to intervene in disordered lipid pathways in cancer cells. Further insight into the dysregulated pathways in lipid metabolism can help create more effective anticancer therapies.
Collapse
|
24
|
Lange PT, Lagunoff M, Tarakanova VL. Chewing the Fat: The Conserved Ability of DNA Viruses to Hijack Cellular Lipid Metabolism. Viruses 2019; 11:E119. [PMID: 30699959 PMCID: PMC6409581 DOI: 10.3390/v11020119] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/19/2022] Open
Abstract
Viruses manipulate numerous host factors and cellular pathways to facilitate the replication of viral genomes and the production of infectious progeny. One way in which viruses interact with cells is through the utilization and exploitation of the host lipid metabolism. While it is likely that most-if not all-viruses require lipids or intermediates of lipid synthesis to replicate, many viruses also actively induce lipid metabolic pathways to sustain a favorable replication environment. From the formation of membranous replication compartments, to the generation of ATP or protein modifications, viruses exhibit differing requirements for host lipids. Thus, while the exploitation of lipid metabolism is a common replication strategy, diverse viruses employ a plethora of mechanisms to co-opt these critical cellular pathways. Here, we review recent literature regarding the exploitation of host lipids and lipid metabolism specifically by DNA viruses. Importantly, furthering the understanding of the viral requirements for host lipids may offer new targets for antiviral therapeutics and provide opportunities to repurpose the numerous FDA-approved compounds targeting lipid metabolic pathways as antiviral agents.
Collapse
Affiliation(s)
- Philip T Lange
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Michael Lagunoff
- Department of Microbiology, University of Washington, Seattle, WA 98101, USA.
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98101, USA.
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
25
|
The Oxysterol 25-Hydroxycholesterol Inhibits Replication of Murine Norovirus. Viruses 2019; 11:v11020097. [PMID: 30682775 PMCID: PMC6409565 DOI: 10.3390/v11020097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/08/2023] Open
Abstract
Cholesterol, an essential component of mammalian cells, is also an important factor in the replicative-cycles of several human and animal viruses. The oxysterol, 25-hydroxycholesterol, is produced from cholesterol by the enzyme, cholesterol 25-hydroxylase. 25-hydroxycholesterol (25-HC) has been shown to have anti-viral activities against a wide range of viruses, including a range of positive-sense RNA viruses. In this study, we have investigated the role of 25-HC in norovirus replication using murine norovirus (MNV) as a model system. As a control, we employed herpes simplex virus-1 (HSV-1), a pathogen previously shown to be inhibited by 25-HC. Consistent with previous studies, 25-HC inhibited HSV-1 replication in the MNV-susceptible cell line, RAW264.7. Treating RAW264.7 cells with sub-cytotoxic concentrations of 25-HC reduced the MNV titers. However, other sterols such as cholesterol or the oxysterol, 22-S-hydroxycholesterol (22-S-HC), did not inhibit MNV replication. Moreover, treating MNV-infected RAW264.7 cells with 25-HC-stimulated caspase 3/7 activity, which leads to enhanced apoptosis and increased cell death. Our study adds noroviruses to the list of viruses inhibited by 25-HC and begins to offer insights into the mechanism behind this inhibition.
Collapse
|
26
|
Katano H. Expression and Function of Kaposi’s Sarcoma-Associated Herpesvirus Non-coding RNAs. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Sabino M, Cappelli K, Capomaccio S, Pascucci L, Biasato I, Verini-Supplizi A, Valiani A, Trabalza-Marinucci M. Dietary supplementation with olive mill wastewaters induces modifications on chicken jejunum epithelial cell transcriptome and modulates jejunum morphology. BMC Genomics 2018; 19:576. [PMID: 30068314 PMCID: PMC6090849 DOI: 10.1186/s12864-018-4962-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/26/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The Mediterranean diet is considered one of the healthier food habits and olive oil is one of its key components. Olive oil polyphenols are known to induce beneficial effects in several pathological conditions, such as inflammatory bowel disease, and to contrast the proliferation of cancer cells or hypercholesterolemia. Polyphenols are also present in waste products derived from the olive industry: olive mill wastewaters (OMWW) are rich in polyphenols and there is an increasing interest in using OMWW in animal nutrition. OMWW are attributed with positive effects in promoting chicken performance and the quality of food-derived products. However, a tissue-specific transcriptome target analysis of chickens fed with OMWW has never been attempted. RESULTS We explored the effect of dietary OMWW on the intestinal function in broilers. A morphological analysis of the jejunum revealed that OMWW reduced crypt depth, whereas no significant modifications were observed for villus height and the villus height/crypt depth ratio. An RNA Sequencing analysis was performed on isolated, intestinal, epithelial cells and 280 differentially expressed genes were found using a count-based approach. An enrichment analysis revealed that the majority of up regulated genes in the OMWW group were over-represented by the regulation of viral genome replication-related GO-Terms, whereas down regulated genes were mainly involved in cholesterol and lipid metabolism. CONCLUSIONS Our study showed how an industrial waste product can be recycled as a feed additive with a positive relapse. OMWW dietary supplementation can be a nutritional strategy to improve chicken performance and health, prevent intestinal damage, enhance innate immunity and regulate cholesterol metabolism and fat deposition.
Collapse
Affiliation(s)
- Marcella Sabino
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Ilaria Biasato
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Andrea Verini-Supplizi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Via Gaetano Salvemini 1, 06126 Perugia, Italy
| | | |
Collapse
|
28
|
Modulation of Cellular CpG DNA Methylation by Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2018; 92:JVI.00008-18. [PMID: 29899086 DOI: 10.1128/jvi.00008-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) is a gammaherpesvirus associated with several human malignancies. DNA methylation at CpG dinucleotides is an epigenetic mark dysregulated in many cancer types and in KSHV-infected cells. Several previous studies have analyzed in detail the CpG methylation of the KSHV episomal genomes, but little is known about the impact of KSHV on the human genome. Our knowledge of cellular CpG methylation in the context of KSHV infection is currently limited to four hypermethylated human gene promoters. Therefore, we undertook a comprehensive CpG methylation analysis of the human methylome in KSHV-infected cells and KSHV-associated primary effusion lymphoma (PEL). We performed Infinium HumanMethylation450K and MethylationEpic BeadChip arrays and identified panels of hyper- and hypomethylated cellular promoters in KSHV-infected cells. We combined our genome-wide methylation analysis with high-throughput RNA sequencing (RNA-seq) to add functional outcomes to the virally induced methylation changes. We were able to correlate many downregulated genes with promoter hypermethylation and upregulated genes with hypomethylation. In addition, we show that treating the cells with a demethylating agent leads to reexpression of these downregulated genes, indicating that, indeed, DNA methylation plays a role in the repression of these human genes. Comparison between de novo infection and PEL suggests that the virus induces initial hypermethylation followed by a slow increase in genome-wide hypomethylation. This study extends our understanding of the relationship between epigenetic changes induced by KSHV infection and tumorigenesis.IMPORTANCE In cancer cells, certain promoters become aberrantly methylated, contributing to the phenotype of the tumor. KSHV infection seems to modify cellular CpG methylation, but only a few methylated promoters have been identified in KSHV-infected cells. Here, we investigated the CpG methylation of the human genome in KSHV-associated primary effusion lymphoma (PEL) and KSHV-infected cells. We have identified many hyper- and hypomethylated gene promoters and correlated their methylation with cellular gene expression. These differentially methylated cellular promoters can distinguish KSHV-positive cells from uninfected cells and may serve as the foundation for the use of these differentially methylated regions as potential biomarkers for KSHV-associated malignancies. Drugs that reverse these cancerous methylation patterns have the potential to inhibit tumor growth. Here, we show that treating PEL cells with a demethylating drug (5-aza-2'-deoxycytidine) led to inhibition of cell growth, raising the possibility of testing this drug for the treatment of PEL.
Collapse
|