1
|
Tonoyan L, Mounier C, Fassy J, Leymarie S, Mouraret S, Monneyron P, Vincent-Bugnas S, Mari B, Doglio A. Unveiling the Etiopathogenic Role of Epstein-Barr Virus in Periodontitis. J Dent Res 2025; 104:449-458. [PMID: 39876607 PMCID: PMC11909788 DOI: 10.1177/00220345241303138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Periodontitis, a prevalent and costly oral disease, remains incompletely understood in its etiopathogenesis. The conventional model attributes it to pathogenic bacteria, but emerging evidence suggests dysbiosis involving bacteria, herpesviruses, and an exaggerated host immune response. Among herpesviruses, Epstein-Barr virus (EBV) closely links to severe periodontitis, yet the mechanisms underlying EBV-related pathogenesis remain elusive. This study examined the presence, methylation patterns, and infection states of EBV in gingival tissues from healthy patients and those with periodontitis. It also assessed gene expression differences associated with EBV through whole-genome transcriptomic profiling in healthy and periodontitis-affected tissues. EBV DNA was found at similar frequencies in healthy and periodontitis tissues, suggesting common EBV infection even before disease manifestation. In healthy tissues, mostly unmethylated EBV genomes indicated lytic infection in gums, consistent with the literature on lytic EBV spread in epithelia and continual significant virus release in the saliva of healthy carriers. Conversely, EBV DNA in periodontitis tissues showed both methylated and unmethylated patterns, suggesting a mix of latent and lytic genomes. This indicates the coexistence of latent EBV in B-cells and lytic EBV in plasma cells (PCs), linking EBV presence with both cell types in periodontitis. Whole-genome transcriptomic analysis revealed distinct expression profiles in EBV-positive periodontitis tissues, with upregulated genes associated with inflammatory/immune responses and B-cell and PC markers, while downregulated genes were related to epithelial structure and organization. The EBV-positive periodontitis signature differed distinctly from that of EBV-positive healthy gums, eliciting only a typical viral-induced immune response. These findings provide new insights into EBV physiopathology in the gum, notably assigning a direct etiopathogenetic contribution to EBV in periodontitis. The results suggest a model where EBV can commonly, and apparently asymptomatically, spread in healthy gingiva but may also aggravate inflammation in the context of gum dysbiosis, involving infiltration of B-cells and PCs and loss of epithelial integrity.
Collapse
Affiliation(s)
- L. Tonoyan
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte d’Azur, Nice, France
| | - C. Mounier
- IPMC, CNRS, Université Côte d’Azur, Sophia Antipolis, France
- ERRMECe (EA1391), CYU Université, Neuville sur Oise, France
| | - J. Fassy
- IPMC, CNRS, Université Côte d’Azur, Sophia Antipolis, France
| | - S. Leymarie
- 47vhperio, Private Practice Periodontics and Dental Implants, Nice, France
| | - S. Mouraret
- 47vhperio, Private Practice Periodontics and Dental Implants, Nice, France
| | - P. Monneyron
- 47vhperio, Private Practice Periodontics and Dental Implants, Nice, France
- Service of Odontology, Rothschild Hospital (AP-HP), Faculty of Odontology, University Paris Cité, Paris, France
| | - S. Vincent-Bugnas
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte d’Azur, Nice, France
- Pôle Odontologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - B. Mari
- IPMC, CNRS, Université Côte d’Azur, Sophia Antipolis, France
| | - A. Doglio
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte d’Azur, Nice, France
- Unité de Thérapie Cellulaire et Génique, Centre Hospitalier Universitaire de Nice, Nice, France
| |
Collapse
|
2
|
Das S, Thakur S, Cahais V, Virard F, Claeys L, Renard C, Cuenin C, Cros MP, Keïta S, Venuti A, Sirand C, Ghantous A, Herceg Z, Korenjak M, Zavadil J. Molecular and cell phenotype programs in oral epithelial cells directed by co-exposure to arsenic and smokeless tobacco. Biofactors 2025; 51:e70011. [PMID: 40056068 PMCID: PMC11962598 DOI: 10.1002/biof.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Chronic exposure to arsenic can lead to various health issues, including cancer. Concerns have been mounting about the enhancement of arsenic toxicity through co-exposure to various prevalent lifestyle habits. Smokeless tobacco (SLT) products are commonly consumed in South Asian countries, where their use frequently co-occurs with exposure to arsenic from contaminated groundwater. To decipher the in vitro molecular and cellular responses to arsenic and/or smokeless tobacco, we performed temporal multi-omics analysis of the transcriptome and DNA methylome remodeling in exposed hTERT-immortalized human normal oral keratinocytes (NOK), as well as arsenic and/or smokeless tobacco genotoxicity and mutagenicity investigations in NOK cells and in human p53 knock-in murine embryonic fibroblasts (Hupki MEF). RNAseq results from acute exposures of NOK cell to arsenic alone and in combination with smokeless tobacco extract revealed upregulation of genes with roles in cell cycle changes, apoptosis and inflammatory responses. This was in keeping with global DNA hypomethylation affecting genes involved in the same processes after chronic treatment. At the phenotypic level, we observed a dose-dependent decrease in NOK cell viability, induction of DNA damage, cell cycle changes and increased apoptosis, with the most pronounced effects observed under arsenic and SLT co-exposure conditions. Live-cell imaging experiments indicated that the DNA damage likely resulted from induction of apoptosis, an observation validated by a lack of exome-wide mutagenesis in response to chronic exposure to arsenic and/or smokeless tobacco. In sum, our integrative omics study provides novel insights into the acute and chronic responses to arsenic and smokeless tobacco (co-)exposure, with both types of responses converging on several key mechanisms associated with cancer hallmark processes. The resulting rich catalogue of molecular programs in oral cells regulated by arsenic and smokeless tobacco (co-)exposure may provide bases for future development of biomarkers for use in molecular cancer epidemiology studies of exposed populations at risk.
Collapse
Affiliation(s)
- Samrat Das
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - François Virard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- University Claude Bernard Lyon 1, INSERM U1052–CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculty of Odontology, Hospices Civils de Lyon, Lyon, France
| | - Liesel Claeys
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Claire Renard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Marie-Pierre Cros
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Stéphane Keïta
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Assunta Venuti
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Cécilia Sirand
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
3
|
Singh DR, Zhang Y, White SJ, Nelson SE, Fogarty SA, Pawelski AS, Kansra AS, Kenney SC. Inhibition of the Integrated stress response by Epstein-Barr virus oncoprotein LMP1 attenuates epithelial cell differentiation and lytic viral reactivation. PLoS Pathog 2025; 21:e1012934. [PMID: 39951426 PMCID: PMC11828382 DOI: 10.1371/journal.ppat.1012934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
EBV infects normal oral keratinocytes (NOKs) and plays an essential role in undifferentiated nasopharyngeal carcinoma (NPC). We previously showed that the EBV oncogene, LMP1, promotes proliferation and inhibits spontaneous differentiation in telomerase-immortalized NOKs grown in growth factor-restricted conditions. Here we have further examined the phenotypes of NOKs infected with wild-type EBV (WT EBV) versus an LMP1-deleted EBV mutant (ΔLMP1 EBV) in growth factor-restricted conditions. RNA-seq results show that WT EBV-infected NOKs not only have reduced differentiation, but also decreased expression of genes activated by the integrated stress response (ISR) pathway, in comparison to the ΔLMP1 EBV-infected cells. The ISR pathway is mediated by increased phosphorylation of the eIF2α translation initiation factor, leading to decreased translation of most cellular proteins but increased expression of some proteins, including ATF4 and CHOP. Immunoblot analyses confirmed that WT EBV-infected NOKs have decreased phosphorylation of eIF2α in comparison to uninfected and ΔLMP1 EBV-infected cells and showed that expression of LMP1 alone is sufficient to inhibit eIF2α phosphorylation. We found that LMP1 decreases the activity of two different eIF2α kinases, PERK and GCN2, in WT EBV-infected NOKs, resulting in decreased expression of the ISR-induced transcription factors, ATF4 and CHOP, in WT EBV-infected versus uninfected and ΔLMP1 EBV-infected NOKs. Furthermore, we found that both GCN2 and PERK activity are required for efficient TPA-induced lytic EBV reactivation and TPA-mediated epithelial cell differentiation. In addition, we demonstrate that over-expression of CHOP is sufficient to induce both lytic EBV reactivation and epithelial cell differentiation in WT EBV-infected NOKs and NPC cells and show that this effect is mediated by CHOP activation of the differentiation-inducing transcription factors, KLF4 and BLIMP1. Our results suggest that inhibition of the ISR pathway by the EBV oncoprotein, LMP1, may promote early NPC development by preventing epithelial cell differentiation and lytic EBV reactivation.
Collapse
Affiliation(s)
- Deo R. Singh
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Yitao Zhang
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sophia J. White
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Stuart A. Fogarty
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Abigail S. Pawelski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Alisha S. Kansra
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Zhao GX, Fang XY, Bu GL, Chen SJB, Sun C, Li T, Xie C, Wang Y, Li SX, Meng N, Feng GK, Zhong Q, Kong XW, Liu Z, Zeng MS. Potent human monoclonal antibodies targeting Epstein-Barr virus gp42 reveal vulnerable sites for virus infection. Cell Rep Med 2024; 5:101573. [PMID: 38776874 PMCID: PMC11148859 DOI: 10.1016/j.xcrm.2024.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/10/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Epstein-Barr virus (EBV) is linked to various malignancies and autoimmune diseases, posing a significant global health challenge due to the lack of specific treatments or vaccines. Despite its crucial role in EBV infection in B cells, the mechanisms of the glycoprotein gp42 remain elusive. In this study, we construct an antibody phage library from 100 EBV-positive individuals, leading to the identification of two human monoclonal antibodies, 2B7 and 2C1. These antibodies effectively neutralize EBV infection in vitro and in vivo while preserving gp42's interaction with the human leukocyte antigen class II (HLA-II) receptor. Structural analysis unveils their distinct binding epitopes on gp42, different from the HLA-II binding site. Furthermore, both 2B7 and 2C1 demonstrate potent neutralization of EBV infection in HLA-II-positive epithelial cells, expanding our understanding of gp42's role. Overall, this study introduces two human anti-gp42 antibodies with potential implications for developing EBV vaccines targeting gp42 epitopes, addressing a critical gap in EBV research.
Collapse
Affiliation(s)
- Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xin-Yan Fang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuai-Jia-Bin Chen
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ting Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yu Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shu-Xin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ning Meng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiang-Wei Kong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China.
| | - Zheng Liu
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
5
|
Salnikov MY, Fonseca GJ, Mymryk JS. Differences in the Tumor Microenvironment of EBV-Associated Gastric Cancers Revealed Using Single-Cell Transcriptome Analysis. Cancers (Basel) 2023; 15:3178. [PMID: 37370788 DOI: 10.3390/cancers15123178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with nearly 10% of gastric cancers (GCs). These EBV-associated GCs (EBVaGCs) are molecularly, histopathologically, and clinically distinct from EBV-negative GCs (EBVnGCs). While viral genes in EBVaGCs contribute to the carcinogenesis process, viral proteins also represent foreign antigens that could trigger enhanced immune responses compared to EBVnGCs. Despite prior investigations of the EBVaGC tumor microenvironment (TME), the cellular composition has not been thoroughly explored. In this study, cellular subpopulations overrepresented in EBVaGCs were identified and molecularly characterized. Genes consistently expressed across both bulk tumor and single-cell RNA sequencing data were highlighted, with the expression across the identified cellular subpopulations analyzed. As expected, based on existing histopathological analysis, EBVaGC is characterized by abundant lymphocytic infiltration of the stroma. Our molecular analysis identified three unique immune cell subpopulations in EBVaGC: T and B cells expressing high levels of proliferation markers and B cells expressing T cell features. The proliferating T cell cluster also expressed markers of follicular T helper cells. Overall, EBVaGC also exhibited unique features indicative of a higher inflammatory response. These substantial differences within the TME suggest that further detailed exploration of the cellular composition of EBVaGCs is needed, which may identify cellular subpopulations and phenotypes associated with patient outcomes.
Collapse
Affiliation(s)
- Mikhail Y Salnikov
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Gregory J Fonseca
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Quantitative Life Sciences Program, McGill University, Montreal, QC H3A 0G4, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Department of Otolaryngology, Western University, London, ON N6A 5W9, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
| |
Collapse
|
6
|
Singh DR, Nelson SE, Pawelski AS, Kansra AS, Fogarty SA, Bristol JA, Ohashi M, Johannsen EC, Kenney SC. Epstein-Barr virus LMP1 protein promotes proliferation and inhibits differentiation of epithelial cells via activation of YAP and TAZ. Proc Natl Acad Sci U S A 2023; 120:e2219755120. [PMID: 37155846 PMCID: PMC10193989 DOI: 10.1073/pnas.2219755120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 05/10/2023] Open
Abstract
Latent Epstein-Barr virus (EBV) infection promotes undifferentiated nasopharyngeal carcinomas (NPCs) in humans, but the mechanism(s) for this effect has been difficult to study because EBV cannot transform normal epithelial cells in vitro and the EBV genome is often lost when NPC cells are grown in culture. Here we show that the latent EBV protein, LMP1 (Latent membrane protein 1), induces cellular proliferation and inhibits spontaneous differentiation of telomerase-immortalized normal oral keratinocytes (NOKs) in growth factor-deficient conditions by increasing the activity of the Hippo pathway effectors, YAP (Yes-associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif). We demonstrate that LMP1 enhances YAP and TAZ activity in NOKs both by decreasing Hippo pathway-mediated serine phosphorylation of YAP and TAZ and increasing Src kinase-mediated Y357 phosphorylation of YAP. Furthermore, knockdown of YAP and TAZ is sufficient to reduce proliferation and promote differentiation in EBV-infected NOKs. We find that YAP and TAZ are also required for LMP1-induced epithelial-to-mesenchymal transition. Importantly, we demonstrate that ibrutinib (an FDA-approved BTK inhibitor that blocks YAP and TAZ activity through an off-target effect) restores spontaneous differentiation and inhibits proliferation of EBV-infected NOKs at clinically relevant doses. These results suggest that LMP1-induced YAP and TAZ activity contributes to the development of NPC.
Collapse
Affiliation(s)
- Deo R. Singh
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Scott E. Nelson
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Abigail S. Pawelski
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Alisha S. Kansra
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Stuart A. Fogarty
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Jillian A. Bristol
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Makoto Ohashi
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Eric C. Johannsen
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Shannon C. Kenney
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| |
Collapse
|
7
|
Zheng H, Zhao H, Zhang W, Zhang Y, Zhang Y, Ye B, Guo Q. Epstein-Barr virus immediate-early protein Zta mediates the proliferation and migration of HER2-overexpressing cancer cells. Arch Virol 2023; 168:150. [PMID: 37133552 DOI: 10.1007/s00705-023-05774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/27/2023] [Indexed: 05/04/2023]
Abstract
Epstein-Barr virus immediate-early protein Zta plays an active role in altering cellular gene expression, which may be fundamentally linked to the viral life cycle, cell cycle, cell growth, and differentiation. HER2 is associated with a wide variety of human cancers, and its knockdown significantly reverses the malignant features of HER2-positive cancers. The aim of this study was to investigate the potential role of Zta in regulating HER2 expression and phenotype changes of MDA-MB-453 cells. Our results indicate that ectopic expression of Zta resulted in downregulation of the HER2 protein in cancer cells (MDA-MB-453, SKBR-3, BT474, and SKOV-3). The Zta protein significantly decreased HER2 mRNA and protein expression in MDA-MB-453 cells in a dose-dependent manner. Mechanistically, Zta recognized and targeted the promoter of HER2 gene, reducing the transcriptional activity of the HER2 gene. Zta induced G0/G1 arrest of MDA-MB-453 cells, inhibiting their proliferation and migration activity. These data suggest that Zta may act as a transforming suppressor of the HER2 gene.
Collapse
Affiliation(s)
- Hongling Zheng
- Department of Emergency, Jinan Children's Hospital, Jinan, 250022, People's Republic of China
| | - Haitao Zhao
- Department of Hematology, Binzhou People's Hospital, Binzhou, 256600, People's Republic of China
| | - Wei Zhang
- Department of Emergency, Jinan Children's Hospital, Jinan, 250022, People's Republic of China
| | - Yan Zhang
- Department of Emergency, Jinan Children's Hospital, Jinan, 250022, People's Republic of China
| | - Yun Zhang
- Department of Respiratory, Jinan Children's Hospital, Jinan, 250022, People's Republic of China
| | - Bing Ye
- Department of Emergency, Jinan Children's Hospital, Jinan, 250022, People's Republic of China.
| | - Qingwei Guo
- Department of Hematology and Oncology, Jinan Children's Hospital, Jinan, 250022, People's Republic of China.
| |
Collapse
|
8
|
Salnikov MY, Wang E, Christensen E, Prusinkiewicz MA, Shooshtari P, Mymryk JS. The EBV Gastric Cancer Resource (EBV-GCR): A Suite of Tools for Investigating EBV-Associated Human Gastric Carcinogenesis. Viruses 2023; 15:v15040853. [PMID: 37112833 PMCID: PMC10145221 DOI: 10.3390/v15040853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Epstein-Barr virus (EBV) causes lifelong infection in over 90% of the world’s population. EBV infection leads to several types of B cell and epithelial cancers due to the viral reprogramming of host-cell growth and gene expression. EBV is associated with 10% of stomach/gastric adenocarcinomas (EBVaGCs), which have distinct molecular, pathological, and immunological characteristics compared to EBV-negative gastric adenocarcinomas (EBVnGCs). Publicly available datasets, such as The Cancer Genome Atlas (TCGA), contain comprehensive transcriptomic, genomic, and epigenomic data for thousands of primary human cancer samples, including EBVaGCs. Additionally, single-cell RNA-sequencing data are becoming available for EBVaGCs. These resources provide a unique opportunity to explore the role of EBV in human carcinogenesis, as well as differences between EBVaGCs and their EBVnGC counterparts. We have constructed a suite of web-based tools called the EBV Gastric Cancer Resource (EBV-GCR), which utilizes TCGA and single-cell RNA-seq data and can be used for research related to EBVaGCs. These web-based tools allow investigators to gain in-depth biological and clinical insights by exploring the effects of EBV on cellular gene expression, associations with patient outcomes, immune landscape features, and differential gene methylation, featuring both whole-tissue and single-cell analyses.
Collapse
Affiliation(s)
- Mikhail Y. Salnikov
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Eric Wang
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Erik Christensen
- Department of Computer Science, Western University, London, ON N6A 5B7, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | | | - Parisa Shooshtari
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- Department of Computer Science, Western University, London, ON N6A 5B7, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- The Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Otolaryngology, Western University, London, ON N6A 5W9, Canada
- Correspondence:
| |
Collapse
|
9
|
The Epstein-Barr Virus Glycoprotein BDLF2 Is Essential for Efficient Viral Spread in Stratified Epithelium. J Virol 2023; 97:e0152822. [PMID: 36688650 PMCID: PMC9972961 DOI: 10.1128/jvi.01528-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen that infects the majority of the adult population regardless of socioeconomic status or geographical location. EBV primarily infects B and epithelial cells and is associated with different cancers of these cell types, such as Burkitt lymphoma and nasopharyngeal carcinoma. While the life cycle of EBV in B cells is well understood, EBV infection within epithelium is not, largely due to the inability to model productive replication in epithelium in vitro. Organotypic cultures generated from primary human keratinocytes can model many aspects of EBV infection, including productive replication in the suprabasal layers. The EBV glycoprotein BDLF2 is a positional homologue of the murine gammaherpesvirus-68 protein gp48, which plays a role in intercellular spread of viral infection, though sequence homology is limited. To determine the role that BDLF2 plays in EBV infection, we generated a recombinant EBV in which the BDLF2 gene has been replaced with a puromycin resistance gene. The ΔBDLF2 recombinant virus infected both B cell and HEK293 cell lines and was able to immortalize primary B cells. However, the loss of BDLF2 resulted in substantially fewer infected cells in organotypic cultures compared to wild-type virus. While numerous clusters of infected cells representing a focus of infection are observed in wild-type-infected organotypic cultures, the majority of cells observed in the absence of BDLF2 were isolated cells, suggesting that the EBV glycoprotein BDLF2 plays a major role in intercellular viral spread in stratified epithelium. IMPORTANCE The ubiquitous herpesvirus Epstein-Barr virus (EBV) is associated with cancers of B lymphocytes and epithelial cells and is primarily transmitted in saliva. While several models exist for analyzing the life cycle of EBV in B lymphocytes, models of EBV infection in the epithelium have more recently been established. Using an organotypic culture model of epithelium that we previously determined accurately reflects EBV infection in situ, we have ascertained that the loss of the viral envelope protein BDLF2 had little effect on the EBV life cycle in B cells but severely restricted the number of infected cells in organotypic cultures. Loss of BDLF2 has a substantial impact on the size of infected areas, suggesting that BDLF2 plays a specific role in the spread of infection in stratified epithelium.
Collapse
|
10
|
Vojdani A, Vojdani E, Saidara E, Maes M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID. Viruses 2023; 15:v15020400. [PMID: 36851614 PMCID: PMC9967513 DOI: 10.3390/v15020400] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
A novel syndrome called long-haul COVID or long COVID is increasingly recognized in a significant percentage of individuals within a few months after infection with SARS-CoV-2. This disorder is characterized by a wide range of persisting, returning or even new but related symptoms that involve different tissues and organs, including respiratory, cardiac, vascular, gastrointestinal, musculo-skeletal, neurological, endocrine and systemic. Some overlapping symptomatologies exist between long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Very much like with long ME/CFS, infections with herpes family viruses, immune dysregulation, and the persistence of inflammation have been reported as the most common pattern for the development of long COVID. This review describes several factors and determinants of long COVID that have been proposed, elaborating mainly on viral persistence, reactivation of latent viruses such as Epstein-Barr virus and human herpesvirus 6 which are also associated with the pathology of ME/CFS, viral superantigen activation of the immune system, disturbance in the gut microbiome, and multiple tissue damage and autoimmunity. Based on these factors, we propose diagnostic strategies such as the measurement of IgG and IgM antibodies against SARS-CoV-2, EBV, HHV-6, viral superantigens, gut microbiota, and biomarkers of autoimmunity to better understand and manage this multi-factorial disorder that continues to affect millions of people in the world.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
- Correspondence: ; Tel.: +1-310-657-1077
| | | | - Evan Saidara
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Salnikov M, Prusinkiewicz MA, Lin S, Ghasemi F, Cecchini MJ, Mymryk JS. Tumor-Infiltrating T Cells in EBV-Associated Gastric Carcinomas Exhibit High Levels of Multiple Markers of Activation, Effector Gene Expression, and Exhaustion. Viruses 2023; 15:176. [PMID: 36680216 PMCID: PMC9860965 DOI: 10.3390/v15010176] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with 10% of all gastric cancers (GCs) and 1.5% of all human cancers. EBV-associated GCs (EBVaGCs) are pathologically and clinically distinct entities from EBV-negative GCs (EBVnGCs), with EBVaGCs exhibiting differential molecular pathology, treatment response, and patient prognosis. However, the tumor immune landscape of EBVaGC has not been well explored. In this study, a systemic and comprehensive analysis of gene expression and immune landscape features was performed for both EBVaGC and EBVnGC. EBVaGCs exhibited many aspects of a T cell-inflamed phenotype, with greater T and NK cell infiltration, increased expression of immune checkpoint markers (BTLA, CD96, CTLA4, LAG3, PD1, TIGIT, and TIM3), and multiple T cell effector molecules in comparison with EBVnGCs. EBVaGCs also displayed a higher expression of anti-tumor immunity factors (PDL1, CD155, CEACAM1, galectin-9, and IDO1). Six EBV-encoded miRNAs (miR-BARTs 8-3p, 9-5p, 10-3p, 22, 5-5p, and 14-3p) were strongly negatively correlated with the expression of immune checkpoint receptors and multiple markers of anti-tumor immunity. These profound differences in the tumor immune landscape between EBVaGCs and EBVnGCs may help explain some of the observed differences in pathological and clinical outcomes, with an EBV-positive status possibly being a potential biomarker for the application of immunotherapy in GC.
Collapse
Affiliation(s)
- Mikhail Salnikov
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Sherman Lin
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Farhad Ghasemi
- Department of General Surgery, Western University, London, ON N6A 3K7, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Otolaryngology, Western University, London, ON N6A 5W9, Canada
| |
Collapse
|
12
|
Hayman IR, Temple RM, Burgess CK, Ferguson M, Liao J, Meyers C, Sample CE. New insight into Epstein-Barr virus infection using models of stratified epithelium. PLoS Pathog 2023; 19:e1011040. [PMID: 36630458 PMCID: PMC9873185 DOI: 10.1371/journal.ppat.1011040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/24/2023] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen that is transmitted in saliva. EBV transits through the oral epithelium to infect B cells, where it establishes a life-long latent infection. Reinfection of the epithelium is believed to be mediated by virus shed from B cells, but whether a latent reservoir can exist in the epithelia is unknown. We previously developed an in vitro organotypic model of stratified epithelium where EBV can readily replicate within the suprabasal layers of the epithelium following apical infection mediated by virus-producing B cells. Given that infected epithelial cells and cell-free virus are observed in saliva, we examined the ability of both of these to mediate infection in organotypic cultures. Epithelial-derived cell-free virus was able to infect organotypic cultures from the apical surface, but showed enhanced infection of B cells. Conversely, B cell-derived virus exhibited enhanced infection of epithelial cells. While EBV has been detected in basal cells in oral hairy leukoplakia, it is unknown whether EBV can be seen in undifferentiated primary keratinocytes in the basal layer. Undifferentiated epithelial cells expressed proposed EBV receptors in monolayer and were susceptible to viral binding and entry. Integrins, and occasionally ephrin A2, were expressed in the basal layer of gingiva and tonsil derived organotypic cultures, but the known B-cell receptors HLAII and CD21 were not detected. Following infection with cell-free virus or virus-producing B cells at either the apical or basolateral surface of preformed organotypic cultures, abundant infection was detected in differentiated suprabasal cells while more limited but readily detectable infection was observed in the undifferentiated basal cells. Together, our data has provided new insight into EBV infection in stratified epithelium.
Collapse
Affiliation(s)
- Ian R. Hayman
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Rachel M. Temple
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Cole K. Burgess
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Mary Ferguson
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jason Liao
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- The Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- The Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Clare E. Sample
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- The Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| |
Collapse
|
13
|
Ma N, Lu J, Pei Y, Robertson ES. Transcriptome reprogramming of Epstein-Barr virus infected epithelial and B cells reveals distinct host-virus interaction profiles. Cell Death Dis 2022; 13:894. [PMID: 36272970 PMCID: PMC9588026 DOI: 10.1038/s41419-022-05327-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Epstein-Barr virus (EBV) is an opportunistic pathogen that can manifest itself as a potential contributor to human diseases years after primary infection, specifically in lymphoid and epithelial cell malignancies in immune-competent and immune-compromised hosts. The virus shuttles between B cells and epithelial cells during its infection cycle, facilitating its persistence and transmission in humans. While EBV efficiently infects and transforms B-lymphocytes, epithelial cells are not as susceptible to transformation in vitro. We utilized a 3D platform for culturing normal oral keratinocyte cells (NOKs) using Matrigel for greater insights into the molecular interactions between EBV and infected cells. We determined the transcriptome of EBV infected NOKs and peripheral blood mononuclear cells (PBMCs) for 7 and 15 days. LMPs (-1, -2A, and -2B) and EBNAs (-1, -2, -3A, -3B and -3C) were detected in all samples, and lytic gene expression was significantly higher in NOKs than PBMCs. We identified over 2000 cellular genes that were differentially expressed (P-value<0.05). Gene ontology (GO) and pathway analyses significantly identified pathways related to collagen-activation, chemokine signaling, immune response, metabolism, and antiviral responses. We also identified significant changes in metalloproteases and genes encoding chemotactic ligands and cell surface molecules. C-X-C chemokine receptor type 4 (CXCR4) was dramatically downregulated in PBMCs and upregulated in NOKs. However, MMP1 was significantly downregulated in NOKs and upregulated in PBMCs. Therefore, multiple pathways contribute to distinct pathologies associated with EBV infection in epithelial and B cells, and MMP1 and CXCR4 are critical molecules involved in regulation of latent and lytic states linked to viral associated diseases.
Collapse
Affiliation(s)
- Nian Ma
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Juan Lu
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Singh DR, Nelson SE, Pawelski AS, Cantres-Velez JA, Kansra AS, Pauly NP, Bristol JA, Hayes M, Ohashi M, Casco A, Lee D, Fogarty SA, Lambert PF, Johannsen EC, Kenney SC. Type 1 and Type 2 Epstein-Barr viruses induce proliferation, and inhibit differentiation, in infected telomerase-immortalized normal oral keratinocytes. PLoS Pathog 2022; 18:e1010868. [PMID: 36190982 PMCID: PMC9529132 DOI: 10.1371/journal.ppat.1010868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
Differentiated epithelial cells are an important source of infectious EBV virions in human saliva, and latent Epstein-Barr virus (EBV) infection is strongly associated with the epithelial cell tumor, nasopharyngeal carcinoma (NPC). However, it has been difficult to model how EBV contributes to NPC, since EBV has not been shown to enhance proliferation of epithelial cells in monolayer culture in vitro and is not stably maintained in epithelial cells without antibiotic selection. In addition, although there are two major types of EBV (type 1 (T1) and type 2 (T2)), it is currently unknown whether T1 and T2 EBV behave differently in epithelial cells. Here we inserted a G418 resistance gene into the T2 EBV strain, AG876, allowing us to compare the phenotypes of T1 Akata virus versus T2 AG876 virus in a telomerase-immortalized normal oral keratinocyte cell line (NOKs) using a variety of different methods, including RNA-seq analysis, proliferation assays, immunoblot analyses, and air-liquid interface culture. We show that both T1 Akata virus infection and T2 AG876 virus infection of NOKs induce cellular proliferation, and inhibit spontaneous differentiation, in comparison to the uninfected cells when cells are grown without supplemental growth factors in monolayer culture. T1 EBV and T2 EBV also have a similar ability to induce epithelial-to-mesenchymal (EMT) transition and activate canonical and non-canonical NF-κB signaling in infected NOKs. In contrast to our recent results in EBV-infected lymphoblastoid cells (in which T2 EBV infection is much more lytic than T1 EBV infection), we find that NOKs infected with T1 and T2 EBV respond similarly to lytic inducing agents such as TPA treatment or differentiation. These results suggest that T1 and T2 EBV have similar phenotypes in infected epithelial cells, with both EBV types enhancing cellular proliferation and inhibiting differentiation when growth factors are limiting.
Collapse
Affiliation(s)
- Deo R. Singh
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Abigail S. Pawelski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Juan A. Cantres-Velez
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Alisha S. Kansra
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Stuart A. Fogarty
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
15
|
Ali A, Ohashi M, Casco A, Djavadian R, Eichelberg M, Kenney SC, Johannsen E. Rta is the principal activator of Epstein-Barr virus epithelial lytic transcription. PLoS Pathog 2022; 18:e1010886. [PMID: 36174106 PMCID: PMC9553042 DOI: 10.1371/journal.ppat.1010886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/11/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
The transition from latent Epstein-Barr virus (EBV) infection to lytic viral replication is mediated by the viral transcription factors Rta and Zta. Although both are required for virion production, dissecting the specific roles played by Rta and Zta is challenging because they induce each other's expression. To circumvent this, we constructed an EBV mutant deleted for the genes encoding Rta and Zta (BRLF1 and BZLF1, respectively) in the Akata strain BACmid. This mutant, termed EBVΔRZ, was used to infect several epithelial cell lines, including telomerase-immortalized normal oral keratinocytes, a highly physiologic model of EBV epithelial cell infection. Using RNA-seq, we determined the gene expression induced by each viral transactivator. Surprisingly, Zta alone only induced expression of the lytic origin transcripts BHLF1 and LF3. In contrast, Rta activated the majority of EBV early gene transcripts. As expected, Zta and Rta were both required for expression of late gene transcripts. Zta also cooperated with Rta to enhance a subset of early gene transcripts (Rtasynergy transcripts) that Zta was unable to activate when expressed alone. Interestingly, Rta and Zta each cooperatively enhanced the other's binding to EBV early gene promoters, but this effect was not restricted to promoters where synergy was observed. We demonstrate that Zta did not affect Rtasynergy transcript stability, but increased Rtasynergy gene transcription despite having no effect on their transcription when expressed alone. Our results suggest that, at least in epithelial cells, Rta is the dominant transactivator and that Zta functions primarily to support DNA replication and co-activate a subset of early promoters with Rta. This closely parallels the arrangement in KSHV where ORF50 (Rta homolog) is the principal activator of lytic transcription and K8 (Zta homolog) is required for DNA replication at oriLyt.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- National Center for Research, Khartoum, Sudan
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Reza Djavadian
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Mark Eichelberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
16
|
Epigenetic control of the Epstein-Barr lifecycle. Curr Opin Virol 2022; 52:78-88. [PMID: 34891084 PMCID: PMC9112224 DOI: 10.1016/j.coviro.2021.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Epstein-Barr virus (EBV) infects 95% of adults worldwide, causes infectious mononucleosis, is etiologically linked to multiple sclerosis and is associated with 200 000 cases of cancer each year. EBV manipulates host epigenetic pathways to switch between a series of latency programs and to reactivate from latency in order to colonize the memory B-cell compartment for lifelong infection and to ultimately spread to new hosts. Here, we review recent advances in the understanding of epigenetic mechanisms that control EBV latency and lytic gene expression in EBV-transformed B and epithelial cells. We highlight newly appreciated roles of DNA methylation epigenetic machinery, host histone chaperones, the Hippo pathway, m6A RNA modification and nonsense mediated decay in control of the EBV lifecycle.
Collapse
|
17
|
Kinases and therapeutics in pathogen mediated gastric cancer. Mol Biol Rep 2022; 49:2519-2530. [PMID: 35031925 DOI: 10.1007/s11033-021-07063-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Many pathogens have coexisted with humans for millennia and can cause chronic inflammation which is the cause of gastritis. Gastric cancer (GC) is associated with 8.8% of cancer related deaths, making it one of the leading causes of cancer related deaths worldwide. This review is intended to give brief information about Helicobacter pylori (H. pylori), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV) role in GC and associated kinases. These organisms can trigger multiple cellular pathways aiming for unnatural cellular proliferation, apoptosis, migration and inflammatory response. Kinases also can activate and deactivate the signalling leading to aforementioned pathways. Therefore, studying kinases is inevitable. MATERIAL AND METHODS This review is the comprehensive collection of information from different data sources such as journals, book, book chapters and verified online information. CONCLUSION Kinase amplifications could be used as diagnostic, prognostic, and predictive biomarkers in various cancer types. Hence targeting kinase and related signalling molecules could be considered as a potential approach to prevent cancer through these organisms. Here we summarize the brief information about the role of kinases, signalling and their therapeutics in GC concerning H. pylori, EBV and HCMV.
Collapse
|
18
|
Van Sciver N, Ohashi M, Nawandar DM, Pauly NP, Lee D, Makielski KR, Bristol JA, Tsao SW, Lambert PF, Johannsen EC, Kenney SC. ΔNp63α promotes Epstein-Barr virus latency in undifferentiated epithelial cells. PLoS Pathog 2021; 17:e1010045. [PMID: 34748616 PMCID: PMC8601603 DOI: 10.1371/journal.ppat.1010045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/18/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other's promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Z promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Dhananjay M. Nawandar
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Currently at Ring Therapeutics, Cambridge, Massachusetts, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Kathleen R. Makielski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
19
|
Van Sciver N, Ohashi M, Pauly NP, Bristol JA, Nelson SE, Johannsen EC, Kenney SC. Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells. PLoS Pathog 2021; 17:e1009783. [PMID: 34339458 PMCID: PMC8360610 DOI: 10.1371/journal.ppat.1009783] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/12/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) human herpesvirus is associated with B-cell and epithelial-cell malignancies, and both the latent and lytic forms of viral infection contribute to the development of EBV-associated tumors. Here we show that the Hippo signaling effectors, YAP and TAZ, promote lytic EBV reactivation in epithelial cells. The transcriptional co-activators YAP/TAZ (which are inhibited by Hippo signaling) interact with DNA-binding proteins, particularly TEADs, to induce transcription. We demonstrate that depletion of either YAP or TAZ inhibits the ability of phorbol ester (TPA) treatment, cellular differentiation or the EBV BRLF1 immediate-early (IE) protein to induce lytic EBV reactivation in oral keratinocytes, and show that over-expression of constitutively active forms of YAP and TAZ reactivate lytic EBV infection in conjunction with TEAD family members. Mechanistically, we find that YAP and TAZ interact with, and activate, the EBV BZLF1 immediate-early promoter. Furthermore, we demonstrate that YAP, TAZ, and TEAD family members are expressed at much higher levels in epithelial cell lines in comparison to B-cell lines, and find that EBV infection of oral keratinocytes increases the level of activated (dephosphorylated) YAP and TAZ. Finally, we have discovered that lysophosphatidic acid (LPA), a known YAP/TAZ activator that plays an important role in inflammation, induces EBV lytic reactivation in epithelial cells through a YAP/TAZ dependent mechanism. Together these results establish that YAP/TAZ are powerful inducers of the lytic form of EBV infection and suggest that the ability of EBV to enter latency in B cells at least partially reflects the extremely low levels of YAP/TAZ and TEADs in this cell type.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
20
|
Epstein-Barr Virus Lytic Replication Induces ACE2 Expression and Enhances SARS-CoV-2 Pseudotyped Virus Entry in Epithelial Cells. J Virol 2021; 95:e0019221. [PMID: 33853968 DOI: 10.1128/jvi.00192-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding factors that affect the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is central to combatting coronavirus disease 2019 (COVID-19). The virus surface spike protein of SARS-CoV-2 mediates viral entry into cells by binding to the ACE2 receptor on epithelial cells and promoting fusion. We found that Epstein-Barr virus (EBV) induces ACE2 expression when it enters the lytic replicative cycle in epithelial cells. By using vesicular stomatitis virus (VSV) particles pseudotyped with the SARS-CoV-2 spike protein, we showed that lytic EBV replication enhances ACE2-dependent SARS-CoV-2 pseudovirus entry. We found that the ACE2 promoter contains response elements for Zta, an EBV transcriptional activator that is essential for EBV entry into the lytic cycle of replication. Zta preferentially acts on methylated promoters, allowing it to reactivate epigenetically silenced EBV promoters from latency. By using promoter assays, we showed that Zta directly activates methylated ACE2 promoters. Infection of normal oral keratinocytes with EBV leads to lytic replication in some of the infected cells, induces ACE2 expression, and enhances SARS-CoV-2 pseudovirus entry. These data suggest that subclinical EBV replication and lytic gene expression in epithelial cells, which is ubiquitous in the human population, may enhance the efficiency and extent of SARS-CoV-2 infection of epithelial cells by transcriptionally activating ACE2 and increasing its cell surface expression. IMPORTANCE SARS-CoV-2, the coronavirus responsible for COVID-19, has caused a pandemic leading to millions of infections and deaths worldwide. Identifying the factors governing susceptibility to SARS-CoV-2 is important in order to develop strategies to prevent SARS-CoV-2 infection. We show that Epstein-Barr virus, which infects and persists in >90% of adult humans, increases susceptibility of epithelial cells to infection by SARS-CoV-2. EBV, when it reactivates from latency or infects epithelial cells, increases expression of ACE2, the cellular receptor for SARS-CoV-2, enhancing infection by SARS-CoV-2. Inhibiting EBV replication with antivirals may therefore decrease susceptibility to SARS-CoV-2 infection.
Collapse
|
21
|
Frappier L. Epstein-Barr virus: Current questions and challenges. Tumour Virus Res 2021; 12:200218. [PMID: 34052467 PMCID: PMC8173096 DOI: 10.1016/j.tvr.2021.200218] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) infects most people worldwide and persists for life due to complicated interplay between lytic infection and multiple types of latent infections. While usually asymptomatic, EBV is a causative agent in several types of cancer and has a strong association with multiple sclerosis. Exactly how EBV promotes these diseases and why they are rare consequences of infection are incompletely understood. Here I will discuss current ideas on disease induction by EBV, including the importance of lytic protein expression in the context of latent infection as well as the possible importance of specific EBV variants in disease induction.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
22
|
Transcriptome Analyses Implicate Endogenous Retroviruses Involved in the Host Antiviral Immune System through the Interferon Pathway. Virol Sin 2021; 36:1315-1326. [PMID: 34009516 PMCID: PMC8131884 DOI: 10.1007/s12250-021-00370-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are the remains of ancient retroviruses that invaded our ancestors' germline cell and were integrated into the genome. The expression of HERVs has always been a cause for concern because of its association with various cancers and diseases. However, few previous studies have focused on specific activation of HERVs by viral infections. Our previous study has shown that dengue virus type 2 (DENV-2) infection induces the transcription of a large number of abnormal HERVs loci; therefore, the purpose of this study was to explore the relationship between exogenous viral infection and HERV activation further. In this study, we retrieved and reanalyzed published data on 21 transcriptomes of human cells infected with various viruses. We found that infection with different viruses could induce transcriptional activation of HERV loci. Through the comparative analysis of all viral datasets, we identified 43 key HERV loci that were up-regulated by DENV-2, influenza A virus, influenza B virus, Zika virus, measles virus, and West Nile virus infections. Furthermore, the neighboring genes of these HERVs were simultaneously up-regulated, and almost all such neighboring genes were interferon-stimulated genes (ISGs), which are enriched in the host's antiviral immune response pathways. Our data supported the hypothesis that activation of HERVs, probably via an interferon-mediated mechanism, plays an important role in innate immunity against viral infections.
Collapse
|
23
|
Clinical Manifestations and Epigenetic Regulation of Oral Herpesvirus Infections. Viruses 2021; 13:v13040681. [PMID: 33920978 PMCID: PMC8071331 DOI: 10.3390/v13040681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
The oral cavity is often the first site where viruses interact with the human body. The oral epithelium is a major site of viral entry, replication and spread to other cell types, where chronic infection can be established. In addition, saliva has been shown as a primary route of person-to-person transmission for many viruses. From a clinical perspective, viral infection can lead to several oral manifestations, ranging from common intraoral lesions to tumors. Despite the clinical and biological relevance of initial oral infection, little is known about the mechanism of regulation of the viral life cycle in the oral cavity. Several viruses utilize host epigenetic machinery to promote their own life cycle. Importantly, viral hijacking of host chromatin-modifying enzymes can also lead to the dysregulation of host factors and in the case of oncogenic viruses may ultimately play a role in promoting tumorigenesis. Given the known roles of epigenetic regulation of viral infection, epigenetic-targeted antiviral therapy has been recently explored as a therapeutic option for chronic viral infection. In this review, we highlight three herpesviruses with known roles in oral infection, including herpes simplex virus type 1, Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus. We focus on the respective oral clinical manifestations of these viruses and their epigenetic regulation, with a specific emphasis on the viral life cycle in the oral epithelium.
Collapse
|
24
|
Ghidini M, Petrillo A, Botticelli A, Trapani D, Parisi A, La Salvia A, Sajjadi E, Piciotti R, Fusco N, Khakoo S. How to Best Exploit Immunotherapeutics in Advanced Gastric Cancer: Between Biomarkers and Novel Cell-Based Approaches. J Clin Med 2021; 10:1412. [PMID: 33915839 PMCID: PMC8037391 DOI: 10.3390/jcm10071412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Despite extensive research efforts, advanced gastric cancer still has a dismal prognosis with conventional treatment options. Immune checkpoint inhibitors have revolutionized the treatment landscape for many solid tumors. Amongst gastric cancer subtypes, tumors with microsatellite instability and Epstein Barr Virus positive tumors provide the strongest rationale for responding to immunotherapy. Various predictive biomarkers such as mismatch repair status, programmed death ligand 1 expression, tumor mutational burden, assessment of tumor infiltrating lymphocytes and circulating biomarkers have been evaluated. However, results have been inconsistent due to different methodologies and thresholds used. Clinical implementation therefore remains a challenge. The role of immune checkpoint inhibitors in gastric cancer is emerging with data from monotherapy in the heavily pre-treated population already available and studies in earlier disease settings with different combinatorial approaches in progress. Immune checkpoint inhibitor combinations with chemotherapy (CT), anti-angiogenics, tyrosine kinase inhibitors, anti-Her2 directed therapy, poly (ADP-ribose) polymerase inhibitors or dual checkpoint inhibitor strategies are being explored. Moreover, novel strategies including vaccines and CAR T cell therapy are also being trialed. Here we provide an update on predictive biomarkers for response to immunotherapy with an overview of their strengths and limitations. We discuss clinical trials that have been reported and trials in progress whilst providing an account of future steps needed to improve outcome in this lethal disease.
Collapse
Affiliation(s)
- Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sapienza University, 00189 Rome, Italy;
- Medical Oncology (B), Policlinico Umberto I, 00161 Rome, Italy
| | - Dario Trapani
- Division of Early Drug Development for innovative therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy;
| | - Alessandro Parisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Medical Oncology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy
| | - Anna La Salvia
- Department of Oncology, University Hospital 12 De Octubre, 28041 Madrid, Spain;
| | - Elham Sajjadi
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (E.S.); (R.P.); (N.F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Roberto Piciotti
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (E.S.); (R.P.); (N.F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (E.S.); (R.P.); (N.F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Shelize Khakoo
- Department of Medicine, Royal Marsden Hospital, London and Surrey, Sutton SM25PT, UK;
| |
Collapse
|
25
|
Núñez-Acurio D, Bravo D, Aguayo F. Epstein-Barr Virus-Oral Bacterial Link in the Development of Oral Squamous Cell Carcinoma. Pathogens 2020; 9:E1059. [PMID: 33352891 PMCID: PMC7765927 DOI: 10.3390/pathogens9121059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Its development has been associated with diverse factors such as tobacco smoking and alcohol consumption. In addition, it has been suggested that microorganisms are risk factors for oral carcinogenesis. Epstein-Barr virus (EBV), which establishes lifelong persistent infections and is intermittently shed in the saliva, has been associated with several lymphomas and carcinomas that arise in the oral cavity. In particular, it has been detected in a subset of OSCCs. Moreover, its presence in patients with periodontitis has also been described. Porphyromonas gingivalis (P. gingivalis) is an oral bacterium in the development of periodontal diseases. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues but also to evade the host immune system and eventually affect systemic health. Persistent exposure to P. gingivalis promotes tumorigenic properties of oral epithelial cells, suggesting that chronic P. gingivalis infection is a potential risk factor for OSCC. Given that the oral cavity serves as the main site where EBV and P. gingivalis are harbored, and because of their oncogenic potential, we review here the current information about the participation of these microorganisms in oral carcinogenesis, describe the mechanisms by which EBV and P. gingivalis independently or synergistically can collaborate, and propose a model of interaction between both microorganisms.
Collapse
Affiliation(s)
- Daniela Núñez-Acurio
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
| | - Denisse Bravo
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Francisco Aguayo
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
26
|
Stanland LJ, Luftig MA. The Role of EBV-Induced Hypermethylation in Gastric Cancer Tumorigenesis. Viruses 2020; 12:v12111222. [PMID: 33126718 PMCID: PMC7693998 DOI: 10.3390/v12111222] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Epstein–Barr-virus-associated Gastric Cancer (EBVaGC) comprises approximately 10% of global gastric cancers and is known to be the most hypermethylated of all tumor types. EBV infection has been shown to directly induce the hypermethylation of both the host and viral genome following initial infection of gastric epithelial cells. Many studies have been completed in an attempt to identify genes that frequently become hypermethylated and therefore significant pathways that become silenced to promote tumorigenesis. It is clear that EBV-induced hypermethylation silences key tumor suppressor genes, cell cycle genes and cellular differentiation factors to promote a highly proliferative and poorly differentiated cell population. EBV infection has been shown to induce methylation in additional malignancies including Nasopharyngeal Carcinoma and Burkitt’s Lymphoma though not to the same level as in EBVaGC. Lastly, some genes silenced in EBVaGC are common to other heavily methylated tumors such as colorectal and breast tumors; however, some genes are unique to EBVaGC and can provide insights into the major pathways involved in tumorigenesis.
Collapse
|
27
|
Shair KHY. mSphere of Influence: 3-D Culture Models Influence Studies on Epstein-Barr Virus Molecular Pathogenesis in the Epithelium. mSphere 2020; 5:e00954-20. [PMID: 32968011 PMCID: PMC7520808 DOI: 10.1128/msphere.00954-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Kathy Shair works in the field of Epstein-Barr virus (EBV)-associated cancers, with emphasis on nasopharyngeal carcinoma (NPC). In this mSphere of Influence article, she reflects on how the paper "Efficient replication of Epstein-Barr virus in stratified epithelium in vitro" by Temple et al. (R. M. Temple, J. Zhu, L. Budgeon, N. D. Christensen, et al., Proc Natl Acad Sci U S A 111:16544-16549, 2014, https://doi.org/10.1073/pnas.1400818111) has influenced her work on EBV molecular pathogenesis in the nasopharynx by highlighting the importance of using three-dimensional (3-D) culture models to study epithelial infection.
Collapse
Affiliation(s)
- K H Y Shair
- Cancer Virology Program, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Richardo T, Prattapong P, Ngernsombat C, Wisetyaningsih N, Iizasa H, Yoshiyama H, Janvilisri T. Epstein-Barr Virus Mediated Signaling in Nasopharyngeal Carcinoma Carcinogenesis. Cancers (Basel) 2020; 12:2441. [PMID: 32872147 PMCID: PMC7565514 DOI: 10.3390/cancers12092441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common tumors occurring in China and Southeast Asia. Etiology of NPC seems to be complex and involves many determinants, one of which is Epstein-Barr virus (EBV) infection. Although evidence demonstrates that EBV infection plays a key role in NPC carcinogenesis, the exact relationship between EBV and dysregulation of signaling pathways in NPC needs to be clarified. This review focuses on the interplay between EBV and NPC cells and the corresponding signaling pathways, which are modulated by EBV oncoproteins and non-coding RNAs. These altered signaling pathways could be critical for the initiation and progression of NPC.
Collapse
Affiliation(s)
- Timmy Richardo
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
- Department of Biomedicine, Indonesia International Institute for Life Science (i3L), Jakarta 13210, Indonesia;
- Department of Microbiology, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Pongphol Prattapong
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.P.); (C.N.)
| | - Chawalit Ngernsombat
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.P.); (C.N.)
| | - Nurulfitri Wisetyaningsih
- Department of Biomedicine, Indonesia International Institute for Life Science (i3L), Jakarta 13210, Indonesia;
| | - Hisashi Iizasa
- Department of Microbiology, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
29
|
Heawchaiyaphum C, Iizasa H, Ekalaksananan T, Burassakarn A, Kiyono T, Kanehiro Y, Yoshiyama H, Pientong C. Epstein-Barr Virus Infection of Oral Squamous Cells. Microorganisms 2020; 8:microorganisms8030419. [PMID: 32188127 PMCID: PMC7144007 DOI: 10.3390/microorganisms8030419] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a human herpesvirus associated with various cancers. The number of reports that describe infection of EBV in oral squamous carcinoma cells is increasing. However, there is no available in vitro model to study the possible role of EBV in the development of oral squamous cell carcinoma. Herein, we report establishment of a latent EBV infection of well-differentiated HSC1 cells and poorly differentiated SCC25 cells. Viral copy numbers per cell in EBV-infected HSC1 and SCC25 cells are 2 and 5, respectively. Although the EBV copy number was small, spontaneous viral replication was observed in EBV-infected HSC1 cells. Contrarily, infectious viral production was not observed in EBV-infected SCC25 cells, despite containing larger number of EBV genomes. Chemical activation of cells induced expression of viral lytic BZLF1 gene in EBV-infected HSC1 cells, but not in EBV-infected SCC25 cells. EBV infection activated proliferation and migration of HSC1 cells. However, EBV-infection activated migration but not proliferation in SCC25 cells. In conclusion, EBV can infect squamous cells and establish latent infection, but promotion of cell proliferation and of lytic EBV replication may vary depending on stages of cell differentiation. Our model can be used to study the role of EBV in the development of EBV-associated oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.); (A.B.)
- Department of Microbiology, Shimane University Faculty of Medicine, Shimane 693-8501, Japan; (H.I.); (Y.K.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hisashi Iizasa
- Department of Microbiology, Shimane University Faculty of Medicine, Shimane 693-8501, Japan; (H.I.); (Y.K.)
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.); (A.B.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ati Burassakarn
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.); (A.B.)
- Department of Microbiology, Shimane University Faculty of Medicine, Shimane 693-8501, Japan; (H.I.); (Y.K.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tohru Kiyono
- Division of Virology, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Yuichi Kanehiro
- Department of Microbiology, Shimane University Faculty of Medicine, Shimane 693-8501, Japan; (H.I.); (Y.K.)
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University Faculty of Medicine, Shimane 693-8501, Japan; (H.I.); (Y.K.)
- Correspondence: (H.Y.); (C.P.)
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.); (A.B.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (H.Y.); (C.P.)
| |
Collapse
|