1
|
Rostgaard K, Kristjánsson R, Davidsson O, Biel-Nielsen Dietz J, Søegaard SH, Stensballe LG, Hjalgrim H. Risk of infectious mononucleosis is not associated with prior infection morbidity. FRONTIERS IN EPIDEMIOLOGY 2025; 5:1518559. [PMID: 40144892 PMCID: PMC11936927 DOI: 10.3389/fepid.2025.1518559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/28/2025] [Indexed: 03/28/2025]
Abstract
Background The probability of presenting with infectious mononucleosis (IM) upon primary Epstein-Barr virus infection increases dramatically at the start of puberty. Aiming to understand why that is, we assessed whether the number of infection-related health events during two specific time periods-ages 10-12 years (pre-teen window) and the three most recent years (recent window)-could predict the likelihood of individuals aged 13-19 years developing IM. Methods We used sibship-stratified Cox regression to mitigate socio-demographic confounding and bias. Consequently, we only followed members of IM-affected sibships aged 13-19 years between 1999 and 2021 for IM, based on information from complete nationwide Danish administrative and health registers. Estimates were further adjusted for sex, age, birth order (1, 2, 3+) and sibship constellation [number of siblings and their signed (older/younger) age difference to the index person]. Infection-related health events defining the exposures considered were either a category of antimicrobial prescription, or a hospital contact with an infectious disease diagnosis. We measured evidence/probability of the associations using asymptotic Bayes factors, rather than using p-value based testing. Results The adjusted hazard ratio (HR) for IM with 95% confidence limits for an additional antimicrobial prescription in the pre-teen exposure window was [1.01; 0.98-1.04], and the corresponding adjusted HR for an additional antimicrobial prescription in the recent exposure window was [1.02; 0.99-1.06]. Conclusions IM was not preceded by unusual numbers of infections. Small effect sizes, together with small variation in exposure, did not render the assessed exposures useful for predicting IM for public health or the clinic.
Collapse
Affiliation(s)
- Klaus Rostgaard
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Olafur Davidsson
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | | | - Signe Holst Søegaard
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Lone Graff Stensballe
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik Hjalgrim
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
2
|
Li Y, Tang J, Ma Y, Yan Y, Cheng F, Wang K. Clinical significance and pathogenesis of GBP5 in infectious mononucleosis associated liver injury. Ital J Pediatr 2025; 51:72. [PMID: 40075517 PMCID: PMC11905478 DOI: 10.1186/s13052-025-01907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/16/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Infectious mononucleosis (IM) is a common disease in children; however, liver injury is its most common complication. However, the pathogenesis of IM complicated with liver injury is ambiguous. Thus, this study aimed to explore the potential mechanism of IM-associated liver injury. METHODS This study was conducted at the Children's Hospital of Soochow University by collecting peripheral blood of 70 hospitalized children with IM. These patients were categorized into the liver injury (LIG, n = 35) and the non-liver injury groups (NLIG, n = 35), respectively. Subsequently, PBMCs and plasma were separated and obtained. PBMCs transcriptome sequencing was performed in two groups (5 cases in each group), and significantly differentially expressed genes (DEGs) were screened. Additionally, GO function enrichment, KEGG enrichment and GSEA analyses were performed. RT-PCR helped to detect the relative GBP5, NLRP3 and caspase-1 expressions in two groups (30 cases in each group) while the two groups' caspase-1, IL-1β and IL-18 in plasma levels were measured by ELISA. Thus, clinical and laboratory datas of 60 hospitalized children with IM were evaluated. RESULTS Transcriptome sequencing results showed that 171 DEGs were screened in the NLIG group, compared with the LIG. Among them, 154 DEGs were up-regulated, and 17 were down-regulated, respectively. KEGG and GSEA analyses showed that IM-associated liver injury is correlated with a NOD-like receptor signaling pathway. Statistically significant differences were observed in the white blood cell and lymphocyte counts, CD3+CD4+ T cells, CD3+CD8+T cells, alanine aminotransferase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) of the two groups (p < 0.05). Compared with NLIG, GBP5, NLRP3 and caspase-1 expressions in PBMCs, as well as the caspase-1, IL-1β and IL-18 in plasma levels, were significantly higher in LIG (p < 0.001). A correlation analysis revealed a positive correlation of GBP5 with LDH, ALT, AST, CD3+CD8+T cells and NLRP3 (p < 0.05). CONCLUSIONS Our findings demonstrate that GBP5 contributes to liver injury in IM children through the NLRP3-dependent pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310000, China
| | - Jiamei Tang
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Yulan Ma
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Yujuan Yan
- Department of Infectious Diseases, Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215000, China
| | - Fangfang Cheng
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, 215000, China.
| | - Kun Wang
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
3
|
Seamann A, Bennett-Boehm M, Ehrlich R, Gil A, Selin L, Ghersi D. TRain: T-cell receptor automated immunoinformatics. BMC Bioinformatics 2025; 26:76. [PMID: 40050726 PMCID: PMC11887255 DOI: 10.1186/s12859-025-06074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The scarcity of available structural data makes characterizing the binding of T-cell receptors (TCRs) to peptide-Major Histocompatibility Complexes (pMHCs) very challenging. The recent surge in sequencing data makes TCRs an ideal target for protein structure modeling. Through these 3D models, researchers can potentially identify key motifs on the TCR's binding regions. Furthermore, computational methods can be employed to pair a TCR structure with a pMHC, leading to predictions of docked TCRpMHC structures. However, going from sequence to predicted 3D TCRpMHC complexes requires a non-trivial amount of steps and specialized immunoinformatics expertise. RESULTS We developed a Python tool named TRain (T-cell Receptor Automated ImmunoiNformatics) to streamline this process by: (1) converting single-cell sequencing data into full TCR amino acid sequences; (2) efficiently submitting TCR amino acid sequences to existing TCR-specific modeling pipelines; (3) pairing modeled TCR structures with existing crystal structures of pMHC complexes in a non-biased manner before docking; (3) automating the preparation and submission process of TCRs and pMHCs for docking using the RosettaDock tool; and (4) providing scripts to analyze the predicted TCRpMHC interface. We illustrate the basic functionality of TRain with a case study, while further information can be found in a dedicated manual. CONCLUSIONS We introduced an open-source tool that streamlines going from full TCR sequence information to predicted 3D TCRpMHC complexes, using well-established tools. Analyzing these predicted complexes can provide deeper insights into the binding properties of TCRs, and can help shed light on one of the key steps in adaptive immune responses.
Collapse
Affiliation(s)
- Austin Seamann
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, 1110 S 67TH, Omaha, NE, 68182, USA
| | - Maia Bennett-Boehm
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, 1110 S 67TH, Omaha, NE, 68182, USA
| | - Ryan Ehrlich
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, 1110 S 67TH, Omaha, NE, 68182, USA
| | - Anna Gil
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Liisa Selin
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dario Ghersi
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, 1110 S 67TH, Omaha, NE, 68182, USA.
| |
Collapse
|
4
|
Yue M, Li J, Li J, Hu T, Feng S, Cao J, Tang R, Wang P, Zhu F, Han L, Wu J, Cui X, Liu R. Comparative analysis of the immune repertoire between peripheral blood and bone marrow fluids in those infected by EBV and immunodeficiency: A retrospective case study. Medicine (Baltimore) 2024; 103:e39501. [PMID: 39312313 PMCID: PMC11419465 DOI: 10.1097/md.0000000000039501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
High-throughput immune repertoire (IR) sequencing provides direct insight into the diversity of B cell receptor (BCR) and T cell receptor (TCR), with great potential to revolutionize the diagnosis, monitoring, and prevention of immune system-related disorders. In this study, multiplex PCR was applied to amplify the complementarity-determining regions of BCR and TCR, followed by comprehensive analysis by high-throughput sequencing. We compare the TCR (BCR) of bone marrow fluid (BMF) and peripheral blood (PB) samples from 17 patients in the Epstein-Barr and immunodeficiency groups, respectively. Our study shows that the diversity of the IR of blood samples is very similar to that of bone marrow samples statistically. However, the distributions of the monoclonal genes are significantly different in these 2 samples of most patients. This suggests that the BMFs can be replaced by the PB samples in diversity detection of IR to monitor the immune status of the body, while the detection of the BMFs is unreplaceable when the monoclonal change occurs. We used high-throughput sequencing to assess the TCR and BCR of the patients and provide a basis for the clinical analysis of PB and bone marrow samples and selection of disease diagnosis and monitoring methods.
Collapse
Affiliation(s)
- Mei Yue
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Juanjuan Li
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Junhui Li
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Tao Hu
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Shunqiao Feng
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Jing Cao
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Ruihong Tang
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | | | | | - Lu Han
- MyGenostics Inc, Beijing, China
| | - Jian Wu
- MyGenostics Inc, Beijing, China
| | - Xiaodai Cui
- Department of Key Laboratory, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Rong Liu
- Department of Hematology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
5
|
Tsiakalos A, Schinas G, Karatzaferis A, Rigopoulos EA, Pappas C, Polyzou E, Dimopoulou E, Dimopoulos G, Akinosoglou K. Acalculous Cholecystitis as a Complication of Primary Epstein-Barr Virus Infection: A Case-Based Scoping Review of the Literature. Viruses 2024; 16:463. [PMID: 38543828 PMCID: PMC10974004 DOI: 10.3390/v16030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Primary Epstein-Barr virus (EBV) infection manifests with diverse clinical symptoms, occasionally resulting in severe complications. This scoping review investigates the rare occurrence of acute acalculous cholecystitis (AAC) in the context of primary EBV infection, with a focus on understanding its prevalence, clinical features, and underlying mechanisms. The study also explores EBV infection association with Gilbert syndrome, a condition that potentially exacerbates the clinical picture. Additionally, a case report of an 18-year-old female presenting with AAC and ascites secondary to EBV infection enhances the review. A comprehensive literature review was conducted, analyzing reported cases of AAC secondary to EBV infection. This involved examining patient demographics, clinical presentations, laboratory findings, and outcomes. The search yielded 44 cases, predominantly affecting young females. Common clinical features included fever, cervical lymphadenopathy, tonsillitis/pharyngitis, and splenomegaly. Laboratory findings highlighted significant hepatic involvement. The review also noted a potential link between AAC in EBV infection and Gilbert syndrome, particularly in cases with abnormal bilirubin levels. AAC is a rare but significant complication of primary EBV infection, primarily observed in young females, and may be associated with Gilbert syndrome. This comprehensive review underscores the need for heightened clinical awareness and timely diagnosis to manage this complication effectively.
Collapse
Affiliation(s)
| | - Georgios Schinas
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (E.A.R.); (E.P.)
| | | | | | | | - Eleni Polyzou
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (E.A.R.); (E.P.)
| | | | - George Dimopoulos
- 3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (E.A.R.); (E.P.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
6
|
Gil A, Hoag GE, Salerno JP, Hornig M, Klimas N, Selin LK. Identification of CD8 T-cell dysfunction associated with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID and treatment with a nebulized antioxidant/anti-pathogen agent in a retrospective case series. Brain Behav Immun Health 2024; 36:100720. [PMID: 38327880 PMCID: PMC10847863 DOI: 10.1016/j.bbih.2023.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Background Patients with post-acute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection (PASC, i.e., Long COVID) have a symptom complex highly analogous to many features of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggesting they may share some aspects of pathogenesis in these similar disorders. ME/CFS is a complex disease affecting numerous organ systems and biological processes and is often preceded by an infection-like episode. It is postulated that the chronic manifestations of illness may result from an altered host response to infection or inability to resolve inflammation, as is being reported in Long COVID. The immunopathogenesis of both disorders is still poorly understood. Here, we show data that suggest Long COVID and ME/CFS may be due to an aberrant response to an immunological trigger-like infection, resulting in a dysregulated immune system with CD8 T-cell dysfunction reminiscent of some aspects of T-cell clonal exhaustion, a phenomenon associated with oxidative stress. As there is an urgent need for diagnostic tools and treatment strategies for these two related disabling disorders, here, in a retrospective case series, we have also identified a potential nebulized antioxidant/anti-pathogen treatment that has evidence of a good safety profile. This nebulized agent is comprised of five ingredients previously reported individually to relieve oxidative stress, attenuate NF-κB signaling, and/or to act directly to inhibit pathogens, including viruses. Administration of this treatment by nebulizer results in rapid access of small doses of well-studied antioxidants and agents with anti-pathogen potential to the lungs; components of this nebulized agent are also likely to be distributed systemically, with potential to enter the central nervous system. Methods and Findings: We conducted an analysis of CD8 T-cell function and severity of symptoms by self-report questionnaires in ME/CFS, Long COVID and healthy controls. We developed a CD8 T-cell functional assay, assessing CD8 T-cell dysfunction by intracellular cytokine staining (ICS) in a group of ME/CFS (n = 12) and Long COVID patients (n = 8), comparing to healthy controls (HC) with similar age and sex (n = 10). Magnet-enriched fresh CD8 T-cells in both patient groups had a significantly diminished capacity to produce both cytokines, IFNγ or TNFα, after PMA stimulation when compared to HC. The symptom severity questionnaire showed similar symptom profiles for the two disorders. Fortuitously, through a retrospective case series, we were able to examine the ICS and questionnaire data of 4 ME/CFS and 4 Long COVID patients in conjunction with their treatment (3-15 months). In parallel with the treatment pursued electively by participants in this retrospective case series, there was an increase in CD8 T-cell IFNγ and TNFα production and a decrease in overall self-reported symptom severity score by 54%. No serious treatment-associated side effects or laboratory anomalies were noted in these patients. Conclusions Here, in this small study, we present two observations that appear potentially fundamental to the pathogenesis and treatment of Long COVID and ME/CFS. The first is that both disorders appear to be characterized by dysfunctional CD8 T-cells with severe deficiencies in their abilities to produce IFNγ and TNFα. The second is that in a small retrospective Long COVID and ME/CFS case series, this immune dysfunction and patient health improved in parallel with treatment with an immunomodulatory, antioxidant pharmacological treatment with anticipated anti-pathogen activity. This work provides evidence of the potential utility of a biomarker, CD8 T-cell dysfunction, and suggests the potential for benefit from a new nebulized antioxidant/anti-pathogen treatment. These immune biomarker data may help build capacity for improved diagnosis and tracking of treatment outcomes during clinical trials for both Long COVID and ME/CFS while providing clues to new treatment avenues that suggest potential efficacy for both conditions.
Collapse
Affiliation(s)
- Anna Gil
- University of Massachusetts Chan Medical School, Department of Pathology, Worcester, MA, USA
| | | | - John P. Salerno
- Inspiritol, Inc., Fairfield, CT, USA
- The Salerno Center for Complementary Medicine, New York, USA
| | - Mady Hornig
- Columbia University Mailman School of Public Health, New York, USA
| | - Nancy Klimas
- Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Liisa K. Selin
- University of Massachusetts Chan Medical School, Department of Pathology, Worcester, MA, USA
| |
Collapse
|
7
|
Prinz I, Koenecke C. Antigen-specific γδ T cells contribute to cytomegalovirus control after stem cell transplantation. Curr Opin Immunol 2023; 82:102303. [PMID: 36947903 DOI: 10.1016/j.coi.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/24/2023]
Abstract
γδ T cells support the immunological control of viral infections, in particular during cytomegalovirus (CMV) reactivation in immunocompromised patients after allogeneic hematopoietic stem cell transplantation. It is unclear how γδ T cells sense CMV-infection and whether this involves specific T cell receptor (TCR)-ligand interaction. Here we summarize recent findings that revealed an adaptive-like anti-CMV immune response of γδ T cells, characterized by acquisition of effector functions and long-lasting clonal expansion. We propose that rather CMV-induced self-antigen than viral antigens trigger γδ TCRs during CMV reactivation. Given that the TCRs of CMV-activated γδ T cells are often cross-reactive to tumor cells, these findings pinpoint γδ T cells and their γδ TCRs as attractive multipurpose tools for antiviral and antitumor therapy.
Collapse
Affiliation(s)
- Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Germany; Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Germany.
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School (MHH), Germany; Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, MHH, Germany
| |
Collapse
|
8
|
Clark F, Gil A, Thapa I, Aslan N, Ghersi D, Selin LK. Cross-reactivity influences changes in human influenza A virus and Epstein Barr virus specific CD8 memory T cell receptor alpha and beta repertoires between young and old. Front Immunol 2023; 13:1011935. [PMID: 36923729 PMCID: PMC10009332 DOI: 10.3389/fimmu.2022.1011935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/30/2022] [Indexed: 03/03/2023] Open
Abstract
Older people have difficulty controlling infection with common viruses such as influenza A virus (IAV), RNA virus which causes recurrent infections due to a high rate of genetic mutation, and Epstein Barr virus (EBV), DNA virus which persists in B cells for life in the 95% of people that become acutely infected. We questioned whether changes in epitope-specific memory CD8 T cell receptor (TCR) repertoires to these two common viruses could occur with increasing age and contribute to waning immunity. We compared CD8 memory TCR alpha and beta repertoires in two HLA-A2+ EBV- and IAV-immune donors, young (Y) and older (O) donors to three immunodominant epitopes known to be cross-reactive, IAV-M158-66 (IAV-M1), EBV-BMLF1280-288 (EBV-BM), and EBV-BRLF1109-117 (EBV-BR). We, therefore, also designed these studies to examine if TCR cross-reactivity could contribute to changes in repertoire with increasing age. TCR high throughput sequencing showed a significant difference in the pattern of TRBV usage between Y and O. However, there were many more differences in AV and AJ usage, between the age groups suggesting that changes in TCRα usage may play a greater role in evolution of the TCR repertoire emphasizing the importance of studying TRAV repertoires. With increasing age there was a preferential retention of TCR for all three epitopes with features in their complementarity-determining region (CDR3) that increased their ease of generation, and their cross-reactive potential. Young and older donors differed in the patterns of AV/AJ and BV/BJ pairings and usage of dominant CDR3 motifs specific to all three epitopes. Both young and older donors had cross-reactive responses between these 3 epitopes, which were unique and differed from the cognate responses having features that suggested they could interact with either ligand. There was an increased tendency for the classic IAV-M1 specific clone BV19-IRSS-JB2.7/AV27-CAGGGSQGNLIF-AJ42 to appear among the cross-reactive clones, suggesting that the dominance of this clone may relate to its cross-reactivity with EBV. These results suggest that although young and older donors retain classic TCR features for each epitope their repertoires are gradually changing with age, maintaining TCRs that are cross-reactive between these two common human viruses, one with recurrent infections and the other a persistent virus which frequently reactivates.
Collapse
Affiliation(s)
- Fransenio Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Liisa K. Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
9
|
Sehrawat S, Osterrieder N, Schmid DS, Rouse BT. Can the triumph of mRNA vaccines against COVID-19 be extended to other viral infections of humans and domesticated animals? Microbes Infect 2023; 25:105078. [PMID: 36435367 PMCID: PMC9682868 DOI: 10.1016/j.micinf.2022.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
The unprecedented success of mRNA vaccines in managing the COVID-19 pandemic raises the prospect of applying the mRNA platform to other viral diseases of humans and domesticated animals, which may lead to more efficacious vaccines for some agents. We briefly discuss reasons why mRNA vaccines achieved such success against COVID-19 and indicate what other virus infections and disease conditions might also be ripe for control using mRNA vaccines. We also evaluate situations where mRNA could prove valuable to rebalance the status of immune responsiveness and achieve success as a therapeutic vaccine approach against infections that induce immunoinflammatory lesions.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City, PO Manauli, Mohali 140306, Punjab, India.
| | - Nikolaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 5F, Block 1B, To Yuen Building, 31 To Yuen Street, Kowloon Tong, Hong Kong.
| | - D Scott Schmid
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
| | - Barry T Rouse
- College of Veterinary Medicine, University of Tennessee Knoxville, TN 37996-0845, USA.
| |
Collapse
|
10
|
Zhang Y, Huang C, Zhang H, Duan Z, Liu Q, Li J, Zong Q, Wei Y, Liu F, Duan W, Chen L, Zhou Q, Wang Q. Characteristics of immunological events in Epstein-Barr virus infection in children with infectious mononucleosis. Front Pediatr 2023; 11:1060053. [PMID: 36846163 PMCID: PMC9949895 DOI: 10.3389/fped.2023.1060053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUNDS & AIMS Epstein-Barr virus (EBV) infection occurs commonly in children and may cause acute infectious mononucleosis (AIM) and various malignant diseases. Host immune responses are key players in the resistance to EBV infection. We here assessed the immunological events and laboratory indicators of EBV infection, as well as determined the clinical usefulness of evaluating the severity and efficacy of antiviral therapy in AIM patients. METHODS We enrolled 88 children with EBV infection. The immune environment was defined by immunological events such as frequencies of lymphocyte subsets, phenotypes of T cells, and their ability to secrete cytokines, and so on. This environment was analyzed in EBV-infected children with different viral loads and in children in different phases of infectious mononucleosis (IM) from disease onset to convalescence. RESULTS Children with AIM had higher frequencies of CD3+ T and CD8+ T cells, but lower frequencies of CD4+ T cells and CD19+ B cells. In these children, the expression of CD62L was lower and that of CTLA-4 and PD-1 was higher on T cells. EBV exposure induced granzyme B expression, but reduced IFN-γ secretion, by CD8+ T cells, whereas NK cells exhibited reduced granzyme B expression and increased IFN-γ secretion. The frequency of CD8+ T cells was positively correlated with the EBV DNA load, whereas the frequencies of CD4+ T cells and B cells were negatively correlated. During the convalescent phase of IM, CD8+ T cell frequency and CD62L expression on T cells were restored. Moreover, patient serum levels of IL-4, IL-6, IL-10, and IFN-γ were considerably lower throughout the convalescent phase than throughout the acute phase. CONCLUSION Robust expansion of CD8+ T cells, accompanied by CD62L downregulation, PD-1 and CTLA-4 upregulation on T cells, enhanced granzyme B production, and impaired IFN-γ secretion, is a typical characteristic of immunological events in children with AIM. Noncytolytic and cytolytic effector functions of CD8+ T cells are regulated in an oscillatory manner. Furthermore, the AST level, number of CD8+ T cells, and CD62L expression on T cells may act as markers related to IM severity and the effectiveness of antiviral treatment.
Collapse
Affiliation(s)
- Yunyun Zhang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chengrong Huang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China.,Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, China
| | - Hao Zhang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhi Duan
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qian Liu
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jianfei Li
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qiyin Zong
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yu Wei
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Futing Liu
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wanlu Duan
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Liwen Chen
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qin Wang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Clarkson BDS, Johnson RK, Bingel C, Lothaller C, Howe CL. Preservation of antigen-specific responses in cryopreserved CD4 + and CD8 + T cells expanded with IL-2 and IL-7. J Transl Autoimmun 2022; 5:100173. [PMID: 36467614 PMCID: PMC9713293 DOI: 10.1016/j.jtauto.2022.100173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives We sought to develop medium throughput standard operating procedures for screening cryopreserved human peripheral blood mononuclear cells (PBMCs) for CD4+ and CD8+ T cell responses to potential autoantigens. Methods Dendritic cells were loaded with a peptide cocktail from ubiquitous viruses or full-length viral protein antigens and cocultured with autologous T cells. We measured expression of surface activation markers on T cells by flow cytometry and cytometry by time of flight 24-72 h later. We tested responses among T cells freshly isolated from healthy control PBMCs, cryopreserved T cells, and T cells derived from a variety of T cell expansion protocols. We also compared the transcriptional profile of CD8+ T cells rested with interleukin (IL)7 for 48 h after 1) initial thawing, 2) expansion, and 3) secondary cryopreservation/thawing of expanded cells. To generate competent antigen presenting cells from PBMCs, we promoted differentiation of PBMCs into dendritic cells with granulocyte macrophage colony stimulating factor and IL-4. Results We observed robust dendritic cell differentiation from human PBMCs treated with 50 ng/mL GM-CSF and 20 ng/mL IL-4 in as little as 3 days. Dendritic cell purity was substantially increased by magnetically enriching for CD14+ monocytes prior to differentiation. We also measured antigen-dependent T cell activation in DC-T cell cocultures. However, polyclonal expansion of T cells with anti-CD3/antiCD28 abolished antigen-dependent upregulation of CD69 in our assay despite minimal transcriptional differences between rested CD8+ T cells before and after expansion. Furthermore, resting these expanded T cells in IL-2, IL-7 or IL-15 did not restore the antigen dependent responses. In contrast, T cells that were initially expanded with IL-2 + IL-7 rather than plate bound anti-CD3 + anti-CD28 retained responsiveness to antigen stimulation and these responses strongly correlated with responses measured at initial thawing. Significance While screening techniques for potential pathological autoantibodies have come a long way, comparable full-length protein target assays for screening patient T cells at medium throughput are noticeably lacking due to technical hurdles. Here we advance techniques that should have broad applicability to translational studies investigating cell mediated immunity in infectious or autoimmune diseases. Future studies are aimed at investigating possible CD8+ T cell autoantigens in MS and other CNS autoimmune diseases.
Collapse
Affiliation(s)
- Benjamin DS. Clarkson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA,Corresponding author. Mayo Clinic, Guggenheim 1521C, 200 First Street SW, Rochester, MN, 55905.
| | | | - Corinna Bingel
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center, Heidelberg, Germany
| | | | - Charles L. Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Division of Experimental Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
12
|
Seo SU, Seong BL. Prospects on Repurposing a Live Attenuated Vaccine for the Control of Unrelated Infections. Front Immunol 2022; 13:877845. [PMID: 35651619 PMCID: PMC9149153 DOI: 10.3389/fimmu.2022.877845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Live vaccines use attenuated microbes to acquire immunity against pathogens in a safe way. As live attenuated vaccines (LAVs) still maintain infectivity, the vaccination stimulates diverse immune responses by mimicking natural infection. Induction of pathogen-specific antibodies or cell-mediated cytotoxicity provides means of specific protection, but LAV can also elicit unintended off-target effects, termed non-specific effects. Such mechanisms as short-lived genetic interference and non-specific innate immune response or long-lasting trained immunity and heterologous immunity allow LAVs to develop resistance to subsequent microbial infections. Based on their safety and potential for interference, LAVs may be considered as an alternative for immediate mitigation and control of unexpected pandemic outbreaks before pathogen-specific therapeutic and prophylactic measures are deployed.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Baik-Lin Seong
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, South Korea
| |
Collapse
|
13
|
Chowdhury RR, D’Addabbo J, Huang X, Veizades S, Sasagawa K, Louis DM, Cheng P, Sokol J, Jensen A, Tso A, Shankar V, Wendel BS, Bakerman I, Liang G, Koyano T, Fong R, Nau A, Ahmad H, Gopakumar JK, Wirka R, Lee A, Boyd J, Joseph Woo Y, Quertermous T, Gulati G, Jaiswal S, Chien YH, Chan C, Davis MM, Nguyen PK. Human Coronary Plaque T Cells Are Clonal and Cross-React to Virus and Self. Circ Res 2022; 130:1510-1530. [PMID: 35430876 PMCID: PMC9286288 DOI: 10.1161/circresaha.121.320090] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Coronary artery disease is an incurable, life-threatening disease that was once considered primarily a disorder of lipid deposition. Coronary artery disease is now also characterized by chronic inflammation' notable for the buildup of atherosclerotic plaques containing immune cells in various states of activation and differentiation. Understanding how these immune cells contribute to disease progression may lead to the development of novel therapeutic strategies. METHODS We used single-cell technology and in vitro assays to interrogate the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity. RESULTS In addition to macrophages, we found a high proportion of αβ T cells in the coronary plaques. Most of these T cells lack high expression of CCR7 and L-selectin, indicating that they are primarily antigen-experienced memory cells. Notably, nearly one-third of these cells express the HLA-DRA surface marker, signifying activation through their TCRs (T-cell receptors). Consistent with this, TCR repertoire analysis confirmed the presence of activated αβ T cells (CD4<CD8), exhibiting clonal expansion of specific TCRs. Interestingly, we found that these plaque T cells had TCRs specific for influenza, coronavirus, and other viral epitopes, which share sequence homologies to proteins found on smooth muscle cells and endothelial cells, suggesting potential autoimmune-mediated T-cell activation in the absence of active infection. To better understand the potential function of these activated plaque T cells, we then interrogated their transcriptome at the single-cell level. Of the 3 T-cell phenotypic clusters with the highest expression of the activation marker HLA-DRA, 2 clusters expressed a proinflammatory and cytolytic signature characteristic of CD8 cells, while the other expressed AREG (amphiregulin), which promotes smooth muscle cell proliferation and fibrosis, and, thus, contributes to plaque progression. CONCLUSIONS Taken together, these findings demonstrate that plaque T cells are clonally expanded potentially by antigen engagement, are potentially reactive to self-epitopes, and may interact with smooth muscle cells and macrophages in the plaque microenvironment.
Collapse
Affiliation(s)
- Roshni Roy Chowdhury
- Department of Microbiology and Immunology, Stanford University
- Department of Medicine (Section of Genetic Medicine), University of Chicago
| | - Jessica D’Addabbo
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | - Xianxi Huang
- The First Affiliated Hospital of Shantou University Medical College
- Stanford Cardiovascular Institute, Stanford University
| | - Stefan Veizades
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Edinburgh Medical School, United Kingdom
| | - Koki Sasagawa
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | | | - Paul Cheng
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Jan Sokol
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Annie Jensen
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Alexandria Tso
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Vishnu Shankar
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Ben Shogo Wendel
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Isaac Bakerman
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Grace Liang
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Tiffany Koyano
- Department of Cardiothoracic Surgery, Stanford University
| | - Robyn Fong
- Department of Cardiothoracic Surgery, Stanford University
| | - Allison Nau
- Department of Microbiology and Immunology, Stanford University
| | - Herra Ahmad
- Department of Pathology, Stanford University
| | | | - Robert Wirka
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | - Andrew Lee
- Stanford Cardiovascular Institute, Stanford University
- Department of Pathology, Stanford University
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Jack Boyd
- Department of Surgery, Stanford University
| | | | - Thomas Quertermous
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Gunsagar Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
| | | | - Yueh-Hsiu Chien
- Department of Microbiology and Immunology, Stanford University
| | - Charles Chan
- Stanford Cardiovascular Institute, Stanford University
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University
- Edinburgh Medical School, United Kingdom
- Howard Hughes Medical Institute, Stanford University
| | - Patricia K. Nguyen
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| |
Collapse
|
14
|
Murphy DM, Mills KHG, Basdeo SA. The Effects of Trained Innate Immunity on T Cell Responses; Clinical Implications and Knowledge Gaps for Future Research. Front Immunol 2021; 12:706583. [PMID: 34489958 PMCID: PMC8417102 DOI: 10.3389/fimmu.2021.706583] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
The burgeoning field of innate immune training, also called trained immunity, has given immunologists new insights into the role of innate responses in protection against infection and in modulating inflammation. Moreover, it has led to a paradigm shift in the way we think about immune memory and the interplay between innate and adaptive immune systems in conferring immunity against pathogens. Trained immunity is the term used to describe the medium-term epigenetic and metabolic reprogramming of innate immune cells in peripheral tissues or in the bone marrow stem cell niche. It is elicited by an initial challenge, followed by a significant period of rest that results in an altered response to a subsequent, unrelated challenge. Trained immunity can be associated with increased production of proinflammatory mediators, such as IL-1β, TNF and IL-6, and increased expression of markers on innate immune cells associated with antigen presentation to T cells. The microenvironment created by trained innate immune cells during the secondary challenge may have profound effects on T cell responses, such as altering the differentiation, polarisation and function of T cell subtypes, including Th17 cells. In addition, the Th1 cytokine IFN-γ plays a critical role in establishing trained immunity. In this review, we discuss the evidence that trained immunity impacts on or can be impacted by T cells. Understanding the interplay between innate immune training and how it effects adaptive immunity will give insights into how this phenomenon may affect the development or progression of disease and how it could be exploited for therapeutic interventions or to enhance vaccine efficacy.
Collapse
Affiliation(s)
- Dearbhla M Murphy
- Human and Translational Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Sharee A Basdeo
- Human and Translational Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Molecular Genetics in Epstein-Barr Virus-Associated Malignancies. Life (Basel) 2021; 11:life11070593. [PMID: 34206255 PMCID: PMC8306230 DOI: 10.3390/life11070593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/21/2022] Open
Abstract
Global genomic studies have detected the role of genomic alterations in the pathogenesis of Epstein–Barr virus (EBV)-associated tumors. EBV oncoproteins cause a vital shift of EBV from an infectious virus to an oncogenic form during the latent and lytic phase within the lymphoid B cells and epithelial cells. This epigenetic alteration modulates the virus and host genomes and inactivates and disrupts numerous tumor suppressors and signaling pathways. Genomic profiling has played the main role in identifying EBV cancer pathogenesis and its related targeted therapies. This article reviews the role of genetic changes in EBV-associated lymphomas and carcinomas. This includes the prolific molecular genesis, key diagnostic tools, and target-specific drugs that have been in recent clinical use.
Collapse
|
16
|
Solomay TV, Semenenko TA, Filatov NN, Vedunova SL, Lavrov VF, Smirnova DI, Gracheva AV, Faizuloev EB. [Reactivation of Epstein-Barr virus ( Herpesviridae: Lymphocryptovirus, HHV-4) infection during COVID-19: epidemiological features]. Vopr Virusol 2021; 66:152-161. [PMID: 33993685 DOI: 10.36233/0507-4088-40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Immunodeficiency underlying the development of severe forms of new coronavirus infection may be the result of mixed infection with SARS-CoV-2 and other pathogens, including Epstein-Barr virus (EBV).The aim is to study the prevalence and epidemiological features of co-infection with SARS-CoV-2 and EBV. MATERIAL AND METHODS A cross-sectional randomized study was conducted in Moscow region from March to May 2020. Two groups were examined for EBV-markers: hospital patients (n = 95) treated for SARS-CoV-2 infection and blood donors (n = 92). RESULTS With equal EBV prevalence the detection of active infection markers in donors (10.9%) was noticeably lower than in SARS-CoV-2 patients (80%). Significant differences in this indicator were also found when patients from subgroups with interstitial pneumonia with the presence (96.6%) and absence (97.2%) of SARS-CoV-2 in the nasopharyngeal smear were compared with the subgroup of patients with mild COVID-19 (43.3%). The average IgG VCA and IgG EBNA positivity coefficients in donor group were higher than in patient group (p < 0.05). Patients with active EBV infection markers were significantly more likely to have pneumonia, exceeding the reference values of ALT and the relative number of monocytes (odds ratio - 23.6; 3.5; 9.7, respectively). DISCUSSION The present study examined the incidence and analyzed epidemiological features of active EBV infection in patients with COVID-19. CONCLUSION A significantly higher rate of detection of active EBV infection markers in hospital patients indicates a combined participation SARS-CoV-2 and EBV in the development of interstitial pneumonia. Low levels of specific IgG EBV serve as predictors of EBV reactivation. Exceeding the reference values of ALT and the relative number of monocytes in patients should serve as a reason for examination for active EBV infection markers.
Collapse
Affiliation(s)
- T V Solomay
- Interregional Department No. 1 of the Federal Medical and Biological Agency; FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - T A Semenenko
- FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - N N Filatov
- FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»; I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - S L Vedunova
- FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - V F Lavrov
- FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»; FSBEI FPE «Russian Medical Academy of Continuous Professional Education» of the Ministry of Health of Russia
| | - D I Smirnova
- FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - A V Gracheva
- FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - E B Faizuloev
- FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| |
Collapse
|
17
|
Nelde A, Bilich T, Heitmann JS, Maringer Y, Salih HR, Roerden M, Lübke M, Bauer J, Rieth J, Wacker M, Peter A, Hörber S, Traenkle B, Kaiser PD, Rothbauer U, Becker M, Junker D, Krause G, Strengert M, Schneiderhan-Marra N, Templin MF, Joos TO, Kowalewski DJ, Stos-Zweifel V, Fehr M, Rabsteyn A, Mirakaj V, Karbach J, Jäger E, Graf M, Gruber LC, Rachfalski D, Preuß B, Hagelstein I, Märklin M, Bakchoul T, Gouttefangeas C, Kohlbacher O, Klein R, Stevanović S, Rammensee HG, Walz JS. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol 2020; 22:74-85. [PMID: 32999467 DOI: 10.1038/s41590-020-00808-x] [Citation(s) in RCA: 429] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
T cell immunity is central for the control of viral infections. To characterize T cell immunity, but also for the development of vaccines, identification of exact viral T cell epitopes is fundamental. Here we identify and characterize multiple dominant and subdominant SARS-CoV-2 HLA class I and HLA-DR peptides as potential T cell epitopes in COVID-19 convalescent and unexposed individuals. SARS-CoV-2-specific peptides enabled detection of post-infectious T cell immunity, even in seronegative convalescent individuals. Cross-reactive SARS-CoV-2 peptides revealed pre-existing T cell responses in 81% of unexposed individuals and validated similarity with common cold coronaviruses, providing a functional basis for heterologous immunity in SARS-CoV-2 infection. Diversity of SARS-CoV-2 T cell responses was associated with mild symptoms of COVID-19, providing evidence that immunity requires recognition of multiple epitopes. Together, the proposed SARS-CoV-2 T cell epitopes enable identification of heterologous and post-infectious T cell immunity and facilitate development of diagnostic, preventive and therapeutic measures for COVID-19.
Collapse
Affiliation(s)
- Annika Nelde
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Tatjana Bilich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Malte Roerden
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.,Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Maren Lübke
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Jens Bauer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Jonas Rieth
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Marcel Wacker
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Bjoern Traenkle
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Philipp D Kaiser
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Pharmaceutical Biotechnology, University of Tübingen, Tübingen, Germany
| | - Matthias Becker
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Daniel Junker
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,German Center for Infection Research, Braunschweig, Germany
| | - Monika Strengert
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Markus F Templin
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Thomas O Joos
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | | | - Michael Fehr
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Armin Rabsteyn
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.,Department of General Pediatrics, Oncology/Hematology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Valbona Mirakaj
- Department of Anesthesia and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Julia Karbach
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Elke Jäger
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Michael Graf
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Lena-Christin Gruber
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - David Rachfalski
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Beate Preuß
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Cécile Gouttefangeas
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,Biomolecular Interactions, Max-Planck-Institute for Developmental Biology, Tübingen, Germany.,Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany. .,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.
| |
Collapse
|
18
|
Mendoza JL, Fischer S, Gee MH, Lam LH, Brackenridge S, Powrie FM, Birnbaum M, McMichael AJ, Garcia KC, Gillespie GM. Interrogating the recognition landscape of a conserved HIV-specific TCR reveals distinct bacterial peptide cross-reactivity. eLife 2020; 9:58128. [PMID: 32716298 PMCID: PMC7384859 DOI: 10.7554/elife.58128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 11/20/2022] Open
Abstract
T cell cross-reactivity ensures that diverse pathogen-derived epitopes encountered during a lifetime are recognized by the available TCR repertoire. A feature of cross-reactivity where previous exposure to one microbe can alter immunity to subsequent, non-related pathogens has been mainly explored for viruses. Yet cross-reactivity to additional microbes is important to consider, especially in HIV infection where gut-intestinal barrier dysfunction could facilitate T cell exposure to commensal/pathogenic microbes. Here we evaluated the cross-reactivity of a ‘public’, HIV-specific, CD8 T cell-derived TCR (AGA1 TCR) using MHC class I yeast display technology. Via screening of MHC-restricted libraries comprising ~2×108 sequence-diverse peptides, AGA1 TCR specificity was mapped to a central peptide di-motif. Using the top TCR-enriched library peptides to probe the non-redundant protein database, bacterial peptides that elicited functional responses by AGA1-expressing T cells were identified. The possibility that in context-specific settings, MHC class I proteins presenting microbial peptides influence virus-specific T cell populations in vivo is discussed.
Collapse
Affiliation(s)
- Juan L Mendoza
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Suzanne Fischer
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Marvin H Gee
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Lilian H Lam
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Simon Brackenridge
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford, United Kingdom
| | - Fiona M Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michael Birnbaum
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Koch Institute at MIT, Cambridge, United States
| | - Andrew J McMichael
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford, United Kingdom
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Geraldine M Gillespie
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford, United Kingdom
| |
Collapse
|
19
|
Körber N, Behrends U, Protzer U, Bauer T. Evaluation of T-activated proteins as recall antigens to monitor Epstein-Barr virus and human cytomegalovirus-specific T cells in a clinical trial setting. J Transl Med 2020; 18:242. [PMID: 32552697 PMCID: PMC7298696 DOI: 10.1186/s12967-020-02385-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pools of overlapping synthetic peptides are routinely used for ex vivo monitoring of antigen-specific T-cell responses. However, it is rather unlikely that these peptides match those resulting from naturally processed antigens. T-activated proteins have been described as immunogenic and more natural stimulants, since they have to pass through antigen processing and comprise activation of all clinically relevant effector cell populations. METHODS We performed comparative analysis of numbers and cytokine expression pattern of CD4 and CD8 T cells after stimulation with recombinant, urea-formulated T-activated EBV-BZLF1, -EBNA3A, and HCMV-IE1, and -pp65 proteins or corresponding overlapping peptide pools. Freshly isolated and cryopreserved PBMC of 30 EBV- and 19 HCMV-seropositive and seven EBV- and HCMV-seronegative subjects were stimulated ex vivo and analysed for IFN-γ, TNF and IL-2 production by flow cytometry-based intracellular cytokine staining. RESULTS T-activated proteins showed a high specificity of 100% (EBV-BZLF1, HCMV-IE1, and -pp65) and 86% (EBV-EBNA3A), and a high T-cell stimulatory capacity of 73-95% and 67-95% using freshly isolated and cryopreserved PBMC, respectively. The overall CD4 T-cell response rates in both cohorts were comparable after stimulation with either T-activated protein or peptide pools with the exception of lower numbers of CD8 T cells detected after stimulation with T-activated EBV-EBNA3A- (p = 0.038) and HCMV-pp65- (p = 0.0006). Overall, the number of detectable antigen-specific T cells varied strongly between individuals. Cytokine expression patterns in response to T-activated protein and peptide pool-based stimulation were similar for CD4, but significantly different for CD8 T-cell responses. CONCLUSION EBV and HCMV-derived T-activated proteins represent innovative, highly specific recall antigens suitable for use in immunological endpoint assays to evaluate success or failure in immunotherapy clinical trials (e.g. to assess the risk of EBV and/or HCMV reactivation after allogenic hematopoietic stem cell transplantation). T-activated proteins could be of particular importance, if an impaired antigen processing (e.g. in a post-transplant setting) must be taken into account.
Collapse
Affiliation(s)
- Nina Körber
- Institute of Virology, Helmholtz Zentrum München/Technical University of Munich, School of Medicine, Schneckenburgerstr. 8, 81675, Munich, Germany.
| | - Uta Behrends
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany.,Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Helmholtz Zentrum München/Technical University of Munich, School of Medicine, Schneckenburgerstr. 8, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Tanja Bauer
- Institute of Virology, Helmholtz Zentrum München/Technical University of Munich, School of Medicine, Schneckenburgerstr. 8, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| |
Collapse
|
20
|
Gil A, Kamga L, Chirravuri-Venkata R, Aslan N, Clark F, Ghersi D, Luzuriaga K, Selin LK. Epstein-Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor α and β Repertoires. mBio 2020; 11:e00250-20. [PMID: 32184241 PMCID: PMC7078470 DOI: 10.1128/mbio.00250-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 01/07/2023] Open
Abstract
Recognition modes of individual T cell receptors (TCRs) are well studied, but factors driving the selection of TCR repertoires from primary through persistent human virus infections are less well understood. Using deep sequencing, we demonstrate a high degree of diversity of Epstein-Barr virus (EBV)-specific clonotypes in acute infectious mononucleosis (AIM). Only 9% of unique clonotypes detected in AIM persisted into convalescence; the majority (91%) of unique clonotypes detected in AIM were not detected in convalescence and were seeming replaced by equally diverse "de novo" clonotypes. The persistent clonotypes had a greater probability of being generated than nonpersistent clonotypes due to convergence recombination of multiple nucleotide sequences to encode the same amino acid sequence, as well as the use of shorter complementarity-determining regions 3 (CDR3s) with fewer nucleotide additions (i.e., sequences closer to germ line). Moreover, the two most immunodominant HLA-A2-restricted EBV epitopes, BRLF1109 and BMLF1280, show highly distinct antigen-specific public (i.e., shared between individuals) features. In fact, TCRα CDR3 motifs played a dominant role, while TCRβ played a minimal role, in the selection of TCR repertoire to an immunodominant EBV epitope, BRLF1. This contrasts with the majority of previously reported repertoires, which appear to be selected either on TCRβ CDR3 interactions with peptide/major histocompatibility complex (MHC) or in combination with TCRα CDR3. Understanding of how TCR-peptide-MHC complex interactions drive repertoire selection can be used to develop optimal strategies for vaccine design or generation of appropriate adoptive immunotherapies for viral infections in transplant settings or for cancer.IMPORTANCE Several lines of evidence suggest that TCRα and TCRβ repertoires play a role in disease outcomes and treatment strategies during viral infections in transplant patients and in cancer and autoimmune disease therapy. Our data suggest that it is essential that we understand the basic principles of how to drive optimum repertoires for both TCR chains, α and β. We address this important issue by characterizing the CD8 TCR repertoire to a common persistent human viral infection (EBV), which is controlled by appropriate CD8 T cell responses. The ultimate goal would be to determine if the individuals who are infected asymptomatically develop a different TCR repertoire than those that develop the immunopathology of AIM. Here, we begin by doing an in-depth characterization of both CD8 T cell TCRα and TCRβ repertoires to two immunodominant EBV epitopes over the course of AIM, identifying potential factors that may be driving their selection.
Collapse
Affiliation(s)
- Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Larisa Kamga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Fransenio Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
21
|
Rakebrandt N, Joller N. Infection History Determines Susceptibility to Unrelated Diseases. Bioessays 2020; 41:e1800191. [PMID: 31132173 DOI: 10.1002/bies.201800191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/04/2019] [Indexed: 12/11/2022]
Abstract
Epidemiological data suggest that previous infections can alter an individual's susceptibility to unrelated diseases. Nevertheless, the underlying mechanisms are not completely understood. Substantial research efforts have expanded the classical concept of immune memory to also include long-lasting changes in innate immunity and antigen-independent reactivation of adaptive immunity. Collectively, these processes provide possible explanations on how acute infections might induce long-term changes that also affect immunity to unrelated diseases. Here, we review lasting changes the immune compartment undergoes upon infection and how infection experience alters the responsiveness of immune cells towards universal signals. This heightened state of alert enhances the ability of the immune system to combat even unrelated infections but may also increase susceptibility to autoimmunity. At the same time, infection-induced changes in the regulatory compartment may dampen subsequent immune responses and promote pathogen persistence. The concepts presented here outline how infection-induced changes in the immune system may affect human health.
Collapse
Affiliation(s)
- Nikolas Rakebrandt
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
22
|
Hedström AK, Huang J, Michel A, Butt J, Brenner N, Hillert J, Waterboer T, Kockum I, Olsson T, Alfredsson L. High Levels of Epstein-Barr Virus Nuclear Antigen-1-Specific Antibodies and Infectious Mononucleosis Act Both Independently and Synergistically to Increase Multiple Sclerosis Risk. Front Neurol 2020; 10:1368. [PMID: 32038456 PMCID: PMC6992610 DOI: 10.3389/fneur.2019.01368] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/11/2019] [Indexed: 01/13/2023] Open
Abstract
Objective: Elevated levels of anti-EBNA-1 antibodies and infectious mononucleosis (IM) history have consistently been associated with multiple sclerosis (MS) risk. We aimed to study whether these aspects of Epstein–Barr virus (EBV) infection represent separate risk factors for MS and whether they both interact with MS-associated HLA genes in disease development. Methods: Two Swedish-population-based case–control studies were used, comprising 5,316 cases and 5,431 matched controls. Subjects with different HLA alleles, EBNA-1, and IM status were compared regarding MS risk by calculating odds ratios (OR) with 95% confidence intervals (CI) employing logistic regression. Causal mediation analysis was used to assess to what extent the relationship between IM history and MS risk was mediated by high anti-EBNA-1 antibody levels and vice versa. Results: The causal mediation analysis revealed that both aspects of EBV infection mainly act directly on MS risk. The direct effect of elevated anti-EBNA-1 antibody levels on MS risk, expressed on the OR scale, was 2.8 (95% CI 2.5–3.1), and the direct effect of IM history on MS risk was 1.7 (95% CI 1.5–2.0). A significant interaction between the two aspects of EBV infection was observed (RERI 1.2, 95% CI 0.3–2.0), accounting for about 50% of the total effect. Further, both aspects of EBV infection interacted with DRB1*15:01 and absence of A*02:01. Interpretation: Elevated anti-EBNA-1 antibody levels and IM history are different risk factors for MS. The two aspects of EBV infection act synergistically to increase MS risk, indicating that they partly are involved in the same biological pathways.
Collapse
Affiliation(s)
- Anna Karin Hedström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Huang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Michel
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Julia Butt
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Nicole Brenner
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Kamga L, Gil A, Song I, Brody R, Ghersi D, Aslan N, Stern LJ, Selin LK, Luzuriaga K. CDR3α drives selection of the immunodominant Epstein Barr virus (EBV) BRLF1-specific CD8 T cell receptor repertoire in primary infection. PLoS Pathog 2019; 15:e1008122. [PMID: 31765434 PMCID: PMC6901265 DOI: 10.1371/journal.ppat.1008122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/09/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
The T cell receptor (TCR) repertoire is an essential component of the CD8 T-cell immune response. Here, we seek to investigate factors that drive selection of TCR repertoires specific to the HLA-A2-restricted immunodominant epitope BRLF1109-117 (YVLDHLIVV) over the course of primary Epstein Barr virus (EBV) infection. Using single-cell paired TCRαβ sequencing of tetramer sorted CD8 T cells ex vivo, we show at the clonal level that recognition of the HLA-A2-restricted BRLF1 (YVL-BR, BRLF-1109) epitope is mainly driven by the TCRα chain. For the first time, we identify a CDR3α (complementarity determining region 3 α) motif, KDTDKL, resulting from an obligate AV8.1-AJ34 pairing that was shared by all four individuals studied. This observation coupled with the fact that this public AV8.1-KDTDKL-AJ34 TCR pairs with multiple different TCRβ chains within the same donor (median 4; range: 1–9), suggests that there are some unique structural features of the interaction between the YVL-BR/MHC and the AV8.1-KDTDKL-AJ34 TCR that leads to this high level of selection. Newly developed TCR motif algorithms identified a lysine at position 1 of the CDR3α motif that is highly conserved and likely important for antigen recognition. Crystal structure analysis of the YVL-BR/HLA-A2 complex revealed that the MHC-bound peptide bulges at position 4, exposing a negatively charged aspartic acid that may interact with the positively charged lysine of CDR3α. TCR cloning and site-directed mutagenesis of the CDR3α lysine ablated YVL-BR-tetramer staining and substantially reduced CD69 upregulation on TCR mutant-transduced cells following antigen-specific stimulation. Reduced activation of T cells expressing this CDR3 motif was also observed following exposure to mutated (D4A) peptide. In summary, we show that a highly public TCR repertoire to an immunodominant epitope of a common human virus is almost completely selected on the basis of CDR3α and provide a likely structural basis for the selection. These studies emphasize the importance of examining TCRα, as well as TCRβ, in understanding the CD8 T cell receptor repertoire. EBV is a ubiquitous human virus that has been linked to several diseases, including cancers and post-transplant lymphoproliferative disorders. CD8 T cells are important for controlling EBV replication. Generation and maintenance of virus-specific CD8 T cells is dependent on specific interaction between MHC-peptide complexes on the infected cell and the TCR. In this study, we performed single cell sequencing of paired TCR α and β chains from EBV-specific CD8 T cells isolated at two time points (primary infection and convalescence) from four individuals undergoing acute EBV infection. We describe a TCRα sequence that was shared by all four individuals and identify conserved residues within this sequence that likely contribute to viral recognition. Examination of the crystal structure of the peptide-MHC complex and subsequent experimental data suggest that a specific interaction between a negatively charged aspartic acid at position 4 of the peptide and a positively charged lysine in the TCR may be particularly important. These findings are highly relevant to current efforts to understand how the TCR repertoire may contribute to or protect against disease, the development of TCR diagnostics for diseases, and at improving the efficacy of T cell based therapies.
Collapse
MESH Headings
- Amino Acid Sequence
- CD8-Positive T-Lymphocytes/immunology
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Complementarity Determining Regions/metabolism
- Epitopes, T-Lymphocyte/immunology
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/virology
- HLA-A2 Antigen/immunology
- Herpesvirus 4, Human/immunology
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/immunology
- Immediate-Early Proteins/metabolism
- Immunodominant Epitopes/immunology
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Trans-Activators/genetics
- Trans-Activators/immunology
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Larisa Kamga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Inyoung Song
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robin Brody
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Nebraska, United States of America
| | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Liisa K. Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (LKS); (KL)
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (LKS); (KL)
| |
Collapse
|
24
|
Agrawal B. Heterologous Immunity: Role in Natural and Vaccine-Induced Resistance to Infections. Front Immunol 2019; 10:2631. [PMID: 31781118 PMCID: PMC6856678 DOI: 10.3389/fimmu.2019.02631] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
The central paradigm of vaccination is to generate resistance to infection by a specific pathogen when the vacinee is re-exposed to that pathogen. This paradigm is based on two fundamental characteristics of the adaptive immune system, specificity and memory. These characteristics come from the clonal specificity of T and B cells and the long-term survival of previously-encountered memory cells which can rapidly and specifically expand upon re-exposure to the same specific antigen. However, there is an increasing awareness of the concept, as well as experimental documentation of, heterologous immunity and cross-reactivity of adaptive immune lymphocytes in protection from infection. This awareness is supported by a number of human epidemiological studies in vaccine recipients and/or individuals naturally-resistant to certain infections, as well as studies in mouse models of infections, and indeed theoretical considerations regarding the disproportional repertoire of available T and B cell clonotypes compared to antigenic epitopes found on pathogens. Heterologous immunity can broaden the protective outcomes of vaccinations, and natural resistance to infections. Besides exogenous microbes/pathogens and/or vaccines, endogenous microbiota can also impact the outcomes of an infection and/or vaccination through heterologous immunity. Moreover, utilization of viral and/or bacterial vaccine vectors, capable of inducing heterologous immunity may also influence the natural course of many infections/diseases. This review article will briefly discuss these implications and redress the central dogma of specificity in the immune system.
Collapse
Affiliation(s)
- Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Sumbria D, Berber E, Rouse BT. Factors Affecting the Tissue Damaging Consequences of Viral Infections. Front Microbiol 2019; 10:2314. [PMID: 31636623 PMCID: PMC6787772 DOI: 10.3389/fmicb.2019.02314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Humans and animals are infected by multiple endogenous and exogenous viruses but few agents cause overt tissue damage. We review the circumstances which favor overt disease expression. These can include intrinsic virulence of the agent, new agents acquired from heterologous species, the circumstances of infection such as dose and route, current infection with other agents which includes the composition of the microbiome at mucosal and other sites, past history of exposure to other infections as well as the immune status of the host. We also briefly discuss promising therapeutic strategies that can expand immune response patterns that minimize tissue damaging responses to viral infections.
Collapse
Affiliation(s)
| | | | - Barry T. Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
26
|
Hassert M, Brien JD, Pinto AK. Mouse Models of Heterologous Flavivirus Immunity: A Role for Cross-Reactive T Cells. Front Immunol 2019; 10:1045. [PMID: 31143185 PMCID: PMC6520664 DOI: 10.3389/fimmu.2019.01045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Most of the world is at risk of being infected with a flavivirus such as dengue virus, West Nile virus, yellow fever virus, Japanese encephalitis virus, tick-borne encephalitis virus, and Zika virus, significantly impacting millions of lives. Importantly, many of these genetically similar viruses co-circulate within the same geographic regions, making it likely for individuals living in areas of high flavivirus endemicity to be infected with multiple flaviviruses during their lifetime. Following a flavivirus infection, a robust virus-specific T cell response is generated and the memory recall of this response has been demonstrated to provide long-lasting immunity, protecting against reinfection with the same pathogen. However, multiple studies have shown that this flavivirus specific T cell response can be cross-reactive and active during heterologous flavivirus infection, leading to the question: How does immunity to one flavivirus shape immunity to the next, and how does this impact disease? It has been proposed that in some cases unfavorable disease outcomes may be caused by lower avidity cross-reactive memory T cells generated during a primary flavivirus infection that preferentially expand during a secondary heterologous infection and function sub optimally against the new pathogen. While in other cases, these cross-reactive cells still have the potential to facilitate cross-protection. In this review, we focus on cross-reactive T cell responses to flaviviruses and the concepts and consequences of T cell cross-reactivity, with particular emphasis linking data generated using murine models to our new understanding of disease outcomes following heterologous flavivirus infection.
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
27
|
Rowell J, Lo CY, Price GE, Misplon JA, Crim RL, Jayanti P, Beeler J, Epstein SL. The effect of respiratory viruses on immunogenicity and protection induced by a candidate universal influenza vaccine in mice. PLoS One 2019; 14:e0215321. [PMID: 30986224 PMCID: PMC6464343 DOI: 10.1371/journal.pone.0215321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Current approaches to influenza control rely on vaccines matched to viruses in circulation. Universal influenza vaccines would offer the advantage of providing broad protection against diverse strains of influenza virus. Candidate universal vaccines are developed using model systems, often testing in naïve animals. Yet the human population is not naïve, having varied immune histories that include exposure to viruses. We studied a candidate universal influenza vaccine (replication deficient adenoviruses expressing the conserved influenza A antigens NP and M2 [A/NP+M2-rAd]) given intranasally, the route previously shown to be most effective. To model recipients exposed to viruses, we used mice given rhinovirus (RV1B), respiratory syncytial virus (RSV-A2), influenza B virus, or influenza A virus before or after universal influenza vaccine. Vaccine performance was assessed by measuring immune responses to NP and M2, and monitoring weight loss and survival following influenza A challenge. Prior influenza A virus infection enhanced the response to the vaccine by priming to conserved influenza A antigens. RSV-A2 or RV1B had no effect on antibody responses to NP and M2 in serum. None of the viruses inhibited the ability of the vaccine to protect against influenza A virus challenge. The study demonstrates that the usefulness of this universal vaccine is not confined to the immunologically naïve and supports possible use in a human population with a varied history of respiratory infections.
Collapse
Affiliation(s)
- Janelle Rowell
- Office of Tissues and Advanced Therapies, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Chia-Yun Lo
- Office of Tissues and Advanced Therapies, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Graeme E. Price
- Office of Tissues and Advanced Therapies, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Julia A. Misplon
- Office of Tissues and Advanced Therapies, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Roberta L. Crim
- Office of Vaccines Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Priyanka Jayanti
- Office of Vaccines Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Judy Beeler
- Office of Vaccines Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Suzanne L. Epstein
- Office of Tissues and Advanced Therapies, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Simonetti S, Natalini A, Folgori A, Capone S, Nicosia A, Santoni A, Di Rosa F. Antigen-specific CD8 T cells in cell cycle circulate in the blood after vaccination. Scand J Immunol 2019; 89:e12735. [PMID: 30488973 PMCID: PMC6850756 DOI: 10.1111/sji.12735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Abstract
Although clonal expansion is a hallmark of adaptive immunity, the location(s) where antigen‐responding T cells enter cell cycle and complete it have been poorly explored. This lack of knowledge stems partially from the limited experimental approaches available. By using Ki67 plus DNA staining and a novel strategy for flow cytometry analysis, we distinguished antigen‐specific CD8 T cells in G0, in G1 and in S‐G2/M phases of cell cycle after intramuscular vaccination of BALB/c mice with antigen‐expressing viral vectors. Antigen‐specific cells in S‐G2/M were present at early times after vaccination in lymph nodes (LNs), spleen and, surprisingly, also in the blood, which is an unexpected site for cycling of normal non‐leukaemic cells. Most proliferating cells had high scatter profile and were undetected by current criteria of analysis, which under‐estimated up to 6 times antigen‐specific cell frequency in LNs. Our discovery of cycling antigen‐specific CD8 T cells in the blood opens promising translational perspectives.
Collapse
Affiliation(s)
- Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | | | | | - Alfredo Nicosia
- Keires AG, Basel, Switzerland.,CEINGE - Biotecnologie Avanzate, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Angela Santoni
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| |
Collapse
|
29
|
Pohar J, Simon Q, Fillatreau S. Antigen-Specificity in the Thymic Development and Peripheral Activity of CD4 +FOXP3 + T Regulatory Cells. Front Immunol 2018; 9:1701. [PMID: 30083162 PMCID: PMC6064734 DOI: 10.3389/fimmu.2018.01701] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023] Open
Abstract
CD4+Foxp3+ T regulatory cells (Treg) are essential for the life of the organism, in particular because they protect the host against its own autoaggressive CD4+Foxp3- T lymphocytes (Tconv). Treg distinctively suppress autoaggressive immunity while permitting efficient defense against infectious diseases. This split effect indicates that Treg activity is controlled in an antigen-specific manner. This specificity is achieved first by the formation of the Treg repertoire during their development, and second by their activation in the periphery. This review presents novel information on the antigen-specificity of Treg development in the thymus, and Treg function in the periphery. These aspects have so far remained imprecisely understood due to the lack of knowledge of the actual antigens recognized by Treg during the different steps of their life, so that most previous studies have been performed using artificial antigens. However, recent studies identified some antigens mediating the positive selection of autoreactive Treg in the thymus, and the function of Treg in the periphery in autoimmune and allergic disorders. These investigations emphasized the remarkable specificity of Treg development and function. Indeed, the development of autoreactive Treg in the thymus was found to be mediated by single autoantigens, so that the absence of one antigen led to a dramatic loss of Treg reacting toward that antigen. The specificity of Treg development is important because the constitution of the Treg repertoire, and especially the presence of holes in this repertoire, was found to crucially influence human immunopathology. Indeed, it was found that the development of human immunopathology was permitted by the lack of Treg against the antigens driving the autoimmune or allergic T cell responses rather than by the impairment of Treg activation or function. The specificity of Treg suppression in the periphery is therefore intimately associated with the mechanisms shaping the formation of the Treg repertoire during their development. This novel information refines significantly our understanding of the antigen-specificity of Treg protective function, which is required to envision how these cells distinctively regulate unwanted immune responses as well as for the development of appropriate approaches to optimally harness them therapeutically in autoimmune, malignant, and infectious diseases.
Collapse
Affiliation(s)
- Jelka Pohar
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Quentin Simon
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Simon Fillatreau
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,AP-HP, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
30
|
Souquette A, Thomas PG. Past Life and Future Effects-How Heterologous Infections Alter Immunity to Influenza Viruses. Front Immunol 2018; 9:1071. [PMID: 29872429 PMCID: PMC5972221 DOI: 10.3389/fimmu.2018.01071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza virus frequently mutates due to its error-prone polymerase. This feature contributes to influenza virus’s ability to evade pre-existing immunity, leading to annual epidemics and periodic pandemics. T cell memory plays a key protective role in the face of an antigenically distinct influenza virus strain because T cell targets are often derived from conserved internal proteins, whereas humoral immunity targets are often sites of increased mutation rates that are tolerated by the virus. Most studies of influenza T cell memory are conducted in naive, specific pathogen free mice and do not account for repetitive influenza infection throughout a lifetime, sequential acute heterologous infections between influenza infections, or heterologous chronic co-infections. By contrast to these mouse models, humans often experience numerous influenza infections, encounter heterologous acute infections between influenza infections, and are infected with at least one chronic virus. In this review, we discuss recent advances in understanding the effects of heterologous infections on the establishment and maintenance of CD8+ T cell immunological memory. Understanding the various factors that affect immune memory can provide insights into the development of more effective vaccines and increase reproducibility of translational studies between animal models and clinical results.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
31
|
Pusch E, Renz H, Skevaki C. Respiratory virus-induced heterologous immunity: Part of the problem or part of the solution? ALLERGO JOURNAL 2018; 27:28-45. [PMID: 32300267 PMCID: PMC7149200 DOI: 10.1007/s15007-018-1580-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/15/2018] [Indexed: 12/31/2022]
Abstract
Purpose To provide current knowledge on respiratory virus-induced heterologous immunity (HI) with a focus on humoral and cellular cross-reactivity. Adaptive heterologous immune responses have broad implications on infection, autoimmunity, allergy and transplant immunology. A better understanding of the mechanisms involved might ultimately open up possibilities for disease prevention, for example by vaccination. Methods A structured literature search was performed using Medline and PubMed to provide an overview of the current knowledge on respiratory-virus induced adaptive HI. Results In HI the immune response towards one antigen results in an alteration of the immune response towards a second antigen. We provide an overview of respiratory virus-induced HI, including viruses such as respiratory syncytial virus (RSV), rhinovirus (RV), coronavirus (CoV) and influenza virus (IV). We discuss T cell receptor (TCR) and humoral cross-reactivity as mechanisms of HI involving those respiratory viruses. Topics covered include HI between respiratory viruses as well as between respiratory viruses and other pathogens. Newly developed vaccines, which have the potential to provide protection against multiple virus strains are also discussed. Furthermore, respiratory viruses have been implicated in the development of autoimmune diseases, such as narcolepsy, Guillain-Barré syndrome, type 1 diabetes or myocarditis. Finally, we discuss the role of respiratory viruses in asthma and the hygiene hypothesis, and review our recent findings on HI between IV and allergens, which leads to protection from experimental asthma. Conclusion Respiratory-virus induced HI may have protective but also detrimental effects on the host. Respiratory viral infections contribute to asthma or autoimmune disease development, but on the other hand, a lack of microbial encounter is associated with an increasing number of allergic as well as autoimmune diseases. Future research might help identify the elements which determine a protective or detrimental outcome in HI-based mechanisms.
Collapse
Affiliation(s)
- Emanuel Pusch
- Institute of Laboratory Medicine, Philipps University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Philipps University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Philipps University Marburg, Baldingerstraße, 35043 Marburg, Germany
| |
Collapse
|
32
|
Pusch E, Renz H, Skevaki C. Respiratory virus-induced heterologous immunity: Part of the problem or part of the solution? ACTA ACUST UNITED AC 2018; 27:79-96. [PMID: 32226720 PMCID: PMC7100437 DOI: 10.1007/s40629-018-0056-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
Purpose To provide current knowledge on respiratory virus-induced heterologous immunity (HI) with a focus on humoral and cellular cross-reactivity. Adaptive heterologous immune responses have broad implications on infection, autoimmunity, allergy and transplant immunology. A better understanding of the mechanisms involved might ultimately open up possibilities for disease prevention, for example by vaccination. Methods A structured literature search was performed using Medline and PubMed to provide an overview of the current knowledge on respiratory-virus induced adaptive HI. Results In HI the immune response towards one antigen results in an alteration of the immune response towards a second antigen. We provide an overview of respiratory virus-induced HI, including viruses such as respiratory syncytial virus (RSV), rhinovirus (RV), coronavirus (CoV) and influenza virus (IV). We discuss T cell receptor (TCR) and humoral cross-reactivity as mechanisms of HI involving those respiratory viruses. Topics covered include HI between respiratory viruses as well as between respiratory viruses and other pathogens. Newly developed vaccines which have the potential to provide protection against multiple virus strains are also discussed. Furthermore, respiratory viruses have been implicated in the development of autoimmune diseases, such as narcolepsy, Guillain–Barré syndrome, type 1 diabetes or myocarditis. Finally, we discuss the role of respiratory viruses in asthma and the hygiene hypothesis, and review our recent findings on HI between IV and allergens, which leads to protection from experimental asthma. Conclusion Respiratory-virus induced HI may have protective but also detrimental effects on the host. Respiratory viral infections contribute to asthma or autoimmune disease development, but on the other hand, a lack of microbial encounter is associated with an increasing number of allergic as well as autoimmune diseases. Future research might help identify the elements which determine a protective or detrimental outcome in HI-based mechanisms.
Collapse
Affiliation(s)
- Emanuel Pusch
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Baldingerstraße, 35043 Marburg, Germany
| |
Collapse
|