1
|
Cadeddu R, Branca C, Braccagni G, Musci T, Piras IS, Anderson CJ, Capecchi MR, Huentelman MJ, Moos PJ, Bortolato M. Tic-related behaviors in Celsr3 mutant mice are contributed by alterations of striatal D 3 dopamine receptors. Mol Psychiatry 2025:10.1038/s41380-025-02970-w. [PMID: 40155412 DOI: 10.1038/s41380-025-02970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
The gene CELSR3 (Cadherin EGF LAG Seven-pass-G-type Receptor 3) has been recently recognized as a high-confidence risk factor for Tourette syndrome (TS). Additionally, Celsr3 mutant mice have been reported to exhibit TS-related behaviors and increased dopamine release in the striatum. Building on these findings, we further characterized the neurobehavioral and molecular profile of Celsr3 mutant mice to understand better the biological mechanisms connecting the deficiency of this gene and TS-related phenotypes. Our analyses confirmed that Celsr3 mutant mice displayed grooming stereotypies and tic-like jerks, as well as sensorimotor gating deficits, which were opposed by TS therapies. Spatial transcriptomic analyses revealed widespread extracellular matrix abnormalities in the striatum of Celsr3 mutants. Single-nucleus transcriptomics also showed significant upregulation of the Drd3 gene, encoding the dopamine D3 receptor, in striosomal D1-positive neurons. In situ hybridization and immunofluorescence confirmed dysregulated D3 receptor expression, with lower levels in presynaptic striatal fibers and higher levels in striatal D1-positive neurons. Activating and blocking D3 receptors amplified or decreased tic-like jerks and stereotypies in Celsr3-deficient mice, respectively. These findings suggest that modifications of D3 receptor distribution contribute to the tic-like responses associated with Celsr3 deficiency.
Collapse
Affiliation(s)
- Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Caterina Branca
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Teresa Musci
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Collin J Anderson
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, University of Sydney, Camperdown, NSW, Australia
| | - Mario R Capecchi
- Department of Human Genetics, College of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Philip J Moos
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Nasello C, Poppi LA, Wu J, Kowalski TF, Thackray JK, Wang R, Persaud A, Mahboob M, Lin S, Spaseska R, Johnson CK, Gordon D, Tissir F, Heiman GA, Tischfield JA, Bocarsly M, Tischfield MA. Human mutations in high-confidence Tourette disorder genes affect sensorimotor behavior, reward learning, and striatal dopamine in mice. Proc Natl Acad Sci U S A 2024; 121:e2307156121. [PMID: 38683996 PMCID: PMC11087812 DOI: 10.1073/pnas.2307156121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Tourette disorder (TD) is poorly understood, despite affecting 1/160 children. A lack of animal models possessing construct, face, and predictive validity hinders progress in the field. We used CRISPR/Cas9 genome editing to generate mice with mutations orthologous to human de novo variants in two high-confidence Tourette genes, CELSR3 and WWC1. Mice with human mutations in Celsr3 and Wwc1 exhibit cognitive and/or sensorimotor behavioral phenotypes consistent with TD. Sensorimotor gating deficits, as measured by acoustic prepulse inhibition, occur in both male and female Celsr3 TD models. Wwc1 mice show reduced prepulse inhibition only in females. Repetitive motor behaviors, common to Celsr3 mice and more pronounced in females, include vertical rearing and grooming. Sensorimotor gating deficits and rearing are attenuated by aripiprazole, a partial agonist at dopamine type II receptors. Unsupervised machine learning reveals numerous changes to spontaneous motor behavior and less predictable patterns of movement. Continuous fixed-ratio reinforcement shows that Celsr3 TD mice have enhanced motor responding and reward learning. Electrically evoked striatal dopamine release, tested in one model, is greater. Brain development is otherwise grossly normal without signs of striatal interneuron loss. Altogether, mice expressing human mutations in high-confidence TD genes exhibit face and predictive validity. Reduced prepulse inhibition and repetitive motor behaviors are core behavioral phenotypes and are responsive to aripiprazole. Enhanced reward learning and motor responding occur alongside greater evoked dopamine release. Phenotypes can also vary by sex and show stronger affection in females, an unexpected finding considering males are more frequently affected in TD.
Collapse
Affiliation(s)
- Cara Nasello
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
| | - Lauren A. Poppi
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Junbing Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Tess F. Kowalski
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Joshua K. Thackray
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
| | - Riley Wang
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
| | - Angelina Persaud
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Mariam Mahboob
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School and Rutgers Biomedical and Health Sciences, Newark, NJ07103
| | - Sherry Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Rodna Spaseska
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - C. K. Johnson
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Derek Gordon
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha34110, Qatar
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels1200, Belgium
| | - Gary A. Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Jay A. Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Miriam Bocarsly
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School and Rutgers Biomedical and Health Sciences, Newark, NJ07103
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| |
Collapse
|
3
|
Nasello C, Poppi LA, Wu J, Kowalski TF, Thackray JK, Wang R, Persaud A, Mahboob M, Lin S, Spaseska R, Johnson CK, Gordon D, Tissir F, Heiman GA, Tischfield JA, Bocarsly M, Tischfield MA. Human mutations in high-confidence Tourette disorder genes affect sensorimotor behavior, reward learning, and striatal dopamine in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569034. [PMID: 38077033 PMCID: PMC10705456 DOI: 10.1101/2023.11.28.569034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Tourette disorder (TD) is poorly understood, despite affecting 1/160 children. A lack of animal models possessing construct, face, and predictive validity hinders progress in the field. We used CRISPR/Cas9 genome editing to generate mice with mutations orthologous to human de novo variants in two high-confidence Tourette genes, CELSR3 and WWC1 . Mice with human mutations in Celsr3 and Wwc1 exhibit cognitive and/or sensorimotor behavioral phenotypes consistent with TD. Sensorimotor gating deficits, as measured by acoustic prepulse inhibition, occur in both male and female Celsr3 TD models. Wwc1 mice show reduced prepulse inhibition only in females. Repetitive motor behaviors, common to Celsr3 mice and more pronounced in females, include vertical rearing and grooming. Sensorimotor gating deficits and rearing are attenuated by aripiprazole, a partial agonist at dopamine type II receptors. Unsupervised machine learning reveals numerous changes to spontaneous motor behavior and less predictable patterns of movement. Continuous fixed-ratio reinforcement shows Celsr3 TD mice have enhanced motor responding and reward learning. Electrically evoked striatal dopamine release, tested in one model, is greater. Brain development is otherwise grossly normal without signs of striatal interneuron loss. Altogether, mice expressing human mutations in high-confidence TD genes exhibit face and predictive validity. Reduced prepulse inhibition and repetitive motor behaviors are core behavioral phenotypes and are responsive to aripiprazole. Enhanced reward learning and motor responding occurs alongside greater evoked dopamine release. Phenotypes can also vary by sex and show stronger affection in females, an unexpected finding considering males are more frequently affected in TD. Significance Statement We generated mouse models that express mutations in high-confidence genes linked to Tourette disorder (TD). These models show sensorimotor and cognitive behavioral phenotypes resembling TD-like behaviors. Sensorimotor gating deficits and repetitive motor behaviors are attenuated by drugs that act on dopamine. Reward learning and striatal dopamine is enhanced. Brain development is grossly normal, including cortical layering and patterning of major axon tracts. Further, no signs of striatal interneuron loss are detected. Interestingly, behavioral phenotypes in affected females can be more pronounced than in males, despite male sex bias in the diagnosis of TD. These novel mouse models with construct, face, and predictive validity provide a new resource to study neural substrates that cause tics and related behavioral phenotypes in TD.
Collapse
|
4
|
Sreepada A, Tiwari M, Pal K. Adhesion G protein-coupled receptor gluing action guides tissue development and disease. J Mol Med (Berl) 2022; 100:1355-1372. [PMID: 35969283 DOI: 10.1007/s00109-022-02240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
Phylogenetic analysis of human G protein-coupled receptors (GPCRs) divides these transmembrane signaling proteins into five groups: glutamate, rhodopsin, adhesion, frizzled, and secretin families, commonly abbreviated as the GRAFS classification system. The adhesion GPCR (aGPCR) sub-family comprises 33 different receptors in humans. Majority of the aGPCRs are orphan receptors with unknown ligands, structures, and tissue expression profiles. They have a long N-terminal extracellular domain (ECD) with several adhesion sites similar to integrin receptors. Many aGPCRs undergo autoproteolysis at the GPCR proteolysis site (GPS), enclosed within the larger GPCR autoproteolysis inducing (GAIN) domain. Recent breakthroughs in aGPCR research have created new paradigms for understanding their roles in organogenesis. They play crucial roles in multiple aspects of organ development through cell signaling, intercellular adhesion, and cell-matrix associations. They are involved in essential physiological processes like regulation of cell polarity, mitotic spindle orientation, cell adhesion, and migration. Multiple aGPCRs have been associated with the development of the brain, musculoskeletal system, kidneys, cardiovascular system, hormone secretion, and regulation of immune functions. Since aGPCRs have crucial roles in tissue patterning and organogenesis, mutations in these receptors are often associated with diseases with loss of tissue integrity. Thus, aGPCRs include a group of enigmatic receptors with untapped potential for elucidating novel signaling pathways leading to drug discovery. We summarized the current knowledge on how aGPCRs play critical roles in organ development and discussed how aGPCR mutations/genetic variants cause diseases.
Collapse
Affiliation(s)
- Abhijit Sreepada
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India
| | - Mansi Tiwari
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India
| | - Kasturi Pal
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India.
| |
Collapse
|
5
|
Planar cell polarity and the pathogenesis of Tourette Disorder: New hypotheses and perspectives. Dev Biol 2022; 489:14-20. [DOI: 10.1016/j.ydbio.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022]
|
6
|
Li J, Lin SM, Qiao JD, Liu XR, Wang J, Jiang M, Zhang J, Zhong M, Chen XQ, Zhu J, He N, Su T, Shi YW, Yi YH, Liao WP. CELSR3 variants are associated with febrile seizures and epilepsy with antecedent febrile seizures. CNS Neurosci Ther 2021; 28:382-389. [PMID: 34951123 PMCID: PMC8841303 DOI: 10.1111/cns.13781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022] Open
Abstract
Aims To identify novel pathogenic gene of febrile seizures (FS)/epilepsy with antecedent FS (EFS+). Methods The trio‐based whole‐exome sequencing was performed in a cohort of 462 cases with FS/EFS+. Silico programs, sequence alignment, and protein modeling were used to predict the damaging of variants. Statistical testing was performed to analyze gene‐based burden of variants. Results Five heterozygous missense variants in CELSR3 were detected in five cases (families) with eight individuals (five females, three males) affected. Two variants were de novo, and three were identified in families with more than one individual affected. All the variants were predicted to be damaging in silico tools. Protein modeling showed that the variants resulted in disappearance of multiple hydrogen bonds and one disulfide bond, which potentially caused functional impairments of protein. The frequency of CELSR3 variants identified in this study was significantly higher than that in controls. All affected individuals were diagnosed with FS/EFS+, including six patients with FS and two patients with EFS+. All cases presented favorable outcomes without neurodevelopmental disorders. Conclusions CELSR3 variants are potentially associated with FS/EFS+.
Collapse
Affiliation(s)
- Jia Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Si-Mei Lin
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jing-Da Qiao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Mi Jiang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jing Zhang
- Department of Pediatrics, Xiangya Changde Hospital, Changde, China
| | - Min Zhong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xu-Qin Chen
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Zhu
- Department of Pediatrics, The First Hospital of Anhui Medical University, Hefei, China
| | - Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | | |
Collapse
|
7
|
Hakanen J, Parmentier N, Sommacal L, Garcia-Sanchez D, Aittaleb M, Vertommen D, Zhou L, Ruiz-Reig N, Tissir F. The Celsr3-Kif2a axis directs neuronal migration in the postnatal brain. Prog Neurobiol 2021; 208:102177. [PMID: 34582949 DOI: 10.1016/j.pneurobio.2021.102177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/12/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022]
Abstract
The tangential migration of immature neurons in the postnatal brain involves consecutive migration cycles and depends on constant remodeling of the cell cytoskeleton, particularly in the leading process (LP). Despite the identification of several proteins with permissive and empowering functions, the mechanisms that specify the direction of migration remain largely unknown. Here, we report that planar cell polarity protein Celsr3 orients neuroblasts migration from the subventricular zone (SVZ) to olfactory bulb (OB). In Celsr3-forebrain conditional knockout mice, neuroblasts loose directionality and few can reach the OB. Celsr3-deficient neuroblasts exhibit aberrant branching of LP, de novo LP formation, and decreased growth rate of microtubules (MT). Mechanistically, we show that Celsr3 interacts physically with Kif2a, a MT depolymerizing protein and that conditional inactivation of Kif2a in the forebrain recapitulates the Celsr3 knockout phenotype. Our findings provide evidence that Celsr3 and Kif2a cooperatively specify the directionality of neuroblasts tangential migration in the postnatal brain.
Collapse
Affiliation(s)
- Janne Hakanen
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Nicolas Parmentier
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Leonie Sommacal
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Dario Garcia-Sanchez
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Mohamed Aittaleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Didier Vertommen
- Université catholique de Louvain, de Duve Institute, Massprot Platform, Brussels, Belgium
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, PR China
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
8
|
Zhou Q, Qin J, Liang Y, Zhang W, He S, Tissir F, Qu Y, Zhou L. Celsr3 is required for Purkinje cell maturation and regulates cerebellar postsynaptic plasticity. iScience 2021; 24:102812. [PMID: 34308297 PMCID: PMC8283331 DOI: 10.1016/j.isci.2021.102812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Atypical cadherin Celsr3 is critical for brain embryonic development, and its role in the postnatal cerebellum remains unknown. Using Celsr3-GFP mice, Celsr3 shows high expression in postnatal Purkinje cells (PCs). Mice with conditional knockout (cKO) of Celsr3 in postnatal PCs exhibit deficit in motor coordination and learning, atrophic PC dendrites, and decreased synapses. Whole-PC recording in cerebellar slices discloses a reduction frequency of mEPSC and defective postsynaptic plasticity (LTP and LTD) in Celsr3 cKO mutants. Wnt5a perfusion enhances LTP formation, which could be occluded by cAMP agonist and diminished by cAMP antagonist in control, but not in Celsr3 cKO or Fzd3 cKO cerebellar slices. Celsr3 cKO resulted in the failure of mGluR1 agonist-induced LTD and paired stimulation-induced PKCα overexpression in PC dendrites, and downregulation of mGluR1 expression compvared to controls. In conclusion, Celsr3 is required for PCs maturation and regulates postsynaptic LTP and LTD through Wnt5a/cAMP and mGluR1/PKCα signaling respectively. Celsr3 cKO in postnatal PCs impairs mouse motor coordination and learning Celsr3 inactivation affects the maturation of PC dendrites and synapses Celsr3 is required for the cerebellar LTP induction via the Wnt5a/cAMP signaling Celsr3 regulates the cerebellar LTD induction through the mGluR1/PKCα pathway
Collapse
Affiliation(s)
- Qinji Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Jingwen Qin
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Yaying Liang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Wei Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Siyuan He
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium.,College of Life and Health Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, P.R. China.,The First Affiliated Hospital of Jian University, Guangzhou 510632, P. R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, P. R. China
| |
Collapse
|
9
|
Wu Q, Jia Z. Wiring the Brain by Clustered Protocadherin Neural Codes. Neurosci Bull 2020; 37:117-131. [PMID: 32939695 PMCID: PMC7811963 DOI: 10.1007/s12264-020-00578-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022] Open
Abstract
There are more than a thousand trillion specific synaptic connections in the human brain and over a million new specific connections are formed every second during the early years of life. The assembly of these staggeringly complex neuronal circuits requires specific cell-surface molecular tags to endow each neuron with a unique identity code to discriminate self from non-self. The clustered protocadherin (Pcdh) genes, which encode a tremendous diversity of cell-surface assemblies, are candidates for neuronal identity tags. We describe the adaptive evolution, genomic structure, and regulation of expression of the clustered Pcdhs. We specifically focus on the emerging 3-D architectural and biophysical mechanisms that generate an enormous number of diverse cell-surface Pcdhs as neural codes in the brain.
Collapse
Affiliation(s)
- Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, Xinhua Hospital, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhilian Jia
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, Xinhua Hospital, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Martinez-Garay I. Molecular Mechanisms of Cadherin Function During Cortical Migration. Front Cell Dev Biol 2020; 8:588152. [PMID: 33043020 PMCID: PMC7523180 DOI: 10.3389/fcell.2020.588152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
During development of the cerebral cortex, different types of neurons migrate from distinct origins to create the different cortical layers and settle within them. Along their way, migrating neurons use cell adhesion molecules on their surface to interact with other cells that will play critical roles to ensure that migration is successful. Radially migrating projection neurons interact primarily with radial glia and Cajal-Retzius cells, whereas interneurons originating in the subpallium follow a longer, tangential route and encounter additional cellular substrates before reaching the cortex. Cell-cell adhesion is therefore essential for the correct migration of cortical neurons. Several members of the cadherin superfamily of cell adhesion proteins, which mediate cellular interactions through calcium-dependent, mostly homophilic binding, have been shown to play important roles during neuronal migration of both projection neurons and interneurons. Although several classical cadherins and protocadherins are involved in this process, the most prominent is CDH2. This mini review will explore the cellular and molecular mechanisms underpinning cadherin function during cortical migration, including recent advances in our understanding of the control of adhesive strength through regulation of cadherin surface levels.
Collapse
Affiliation(s)
- Isabel Martinez-Garay
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Memi F, Killen AC, Barber M, Parnavelas JG, Andrews WD. Cadherin 8 regulates proliferation of cortical interneuron progenitors. Brain Struct Funct 2018; 224:277-292. [PMID: 30315415 PMCID: PMC6373371 DOI: 10.1007/s00429-018-1772-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/05/2018] [Indexed: 01/18/2023]
Abstract
Cortical interneurons are born in the ventral forebrain and migrate tangentially in two streams at the levels of the intermediate zone (IZ) and the pre-plate/marginal zone to the developing cortex where they switch to radial migration before settling in their final positions in the cortical plate. In a previous attempt to identify the molecules that regulate stream specification, we performed transcriptomic analysis of GFP-labelled interneurons taken from the two migratory streams during corticogenesis. A number of cadherins were found to be expressed differentially, with Cadherin-8 (Cdh8) selectively present in the IZ stream. We verified this expression pattern at the mRNA and protein levels on tissue sections and found approximately half of the interneurons of the IZ expressed Cdh8. Furthermore, this cadherin was also detected in the germinal zones of the subpallium, suggesting that it might be involved not only in the migration of interneurons but also in their generation. Quantitative analysis of cortical interneurons in animals lacking the cadherin at E18.5 revealed a significant increase in their numbers. Subsequent functional in vitro experiments showed that blocking Cdh8 function led to increased cell proliferation, with the opposite results observed with over-expression, supporting its role in interneuron generation.
Collapse
Affiliation(s)
- Fani Memi
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Abigail C Killen
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Melissa Barber
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - John G Parnavelas
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - William D Andrews
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
12
|
Fan L, Lu Y, Shen X, Shao H, Suo L, Wu Q. Alpha protocadherins and Pyk2 kinase regulate cortical neuron migration and cytoskeletal dynamics via Rac1 GTPase and WAVE complex in mice. eLife 2018; 7:e35242. [PMID: 29911975 PMCID: PMC6047886 DOI: 10.7554/elife.35242] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Diverse clustered protocadherins are thought to function in neurite morphogenesis and neuronal connectivity in the brain. Here, we report that the protocadherin alpha (Pcdha) gene cluster regulates neuronal migration during cortical development and cytoskeletal dynamics in primary cortical culture through the WAVE (Wiskott-Aldrich syndrome family verprolin homologous protein, also known as Wasf) complex. In addition, overexpression of proline-rich tyrosine kinase 2 (Pyk2, also known as Ptk2b, Cakβ, Raftk, Fak2, and Cadtk), a non-receptor cell-adhesion kinase and scaffold protein downstream of Pcdhα, impairs cortical neuron migration via inactivation of the small GTPase Rac1. Thus, we define a molecular Pcdhα/WAVE/Pyk2/Rac1 axis from protocadherin cell-surface receptors to actin cytoskeletal dynamics in cortical neuron migration and dendrite morphogenesis in mouse brain.
Collapse
Affiliation(s)
- Li Fan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yichao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiulian Shen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hong Shao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lun Suo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Assisted ReproductionShanghai Jiao Tong University Medical SchoolShanghaiChina
| | - Qiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
13
|
Wang F, Wang Q, Li C, Yu P, Qu Y, Zhou L. The role of Celsr3 in the development of central somatosensory projections from dorsal root ganglia. Neuroscience 2017; 359:267-276. [PMID: 28754314 DOI: 10.1016/j.neuroscience.2017.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/29/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023]
Abstract
Dorsal root ganglion (DRG) neurons receive peripheral somatosensory information and send orderly projections to second-order relay nuclei in the spinal cord and in the brainstem. Atypical cadherin Celsr3 is known to play a critical role in wiring of several central and peripheral axons. Although Celsr3 mRNA is heavily expressed in DRG neurons, its role in the development of somatosensory projections remains unexplored. Here we assessed the role of Celsr3 in DRG using conditional gene inactivation in crosses with Wnt1-Cre mice. Using Celsr3-GFP transgenic mice, we found that Celsr3 was highly expressed in different DRG cells, such as Pavalbumin-, TrkB-, and calcitonin gene-related peptide (CGRP)-positive neurons. Wnt1-Cre;Celsr3f/- animals survived for a few weeks and looked smaller than littermate controls. DiI tracing showed that early DRG axons entered the spinal cord and reached spinal cord targets similarly in mutant and control mice. CGRP-positive fiber density was significantly decreased in lamina I in the mutant versus control spinal cord at postnatal day (P) 7 and P14. Furthermore, more Pavalbumin-positive fibers invaded the gray matter and made more contacts with spinal motor neurons in mutant than in control samples. Behavioral analysis showed that mutant animals were less sensitive to pain and more sensitive to mechanical stimulation than controls. In conclusion, Celsr3 is dispensable for the patterning of central DRG projections, but it regulates for the fine mapping of sensory fibers in the gray matter, which is important for somatosensory processing.
Collapse
Affiliation(s)
- Feifei Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Qianghua Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Chen Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China; Co-innovation Center of Neuroregeneration, Jiangsu, PR China; Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
14
|
Auditory cortex interneuron development requires cadherins operating hair-cell mechanoelectrical transduction. Proc Natl Acad Sci U S A 2017; 114:7765-7774. [PMID: 28705869 DOI: 10.1073/pnas.1703408114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many genetic forms of congenital deafness affect the sound reception antenna of cochlear sensory cells, the hair bundle. The resulting sensory deprivation jeopardizes auditory cortex (AC) maturation. Early prosthetic intervention should revive this process. Nevertheless, this view assumes that no intrinsic AC deficits coexist with the cochlear ones, a possibility as yet unexplored. We show here that many GABAergic interneurons, from their generation in the medial ganglionic eminence up to their settlement in the AC, express two cadherin-related (cdhr) proteins, cdhr23 and cdhr15, that form the hair bundle tip links gating the mechanoelectrical transduction channels. Mutant mice lacking either protein showed a major decrease in the number of parvalbumin interneurons specifically in the AC, and displayed audiogenic reflex seizures. Cdhr15- and Cdhr23-expressing interneuron precursors in Cdhr23-/- and Cdhr15-/- mouse embryos, respectively, failed to enter the embryonic cortex and were scattered throughout the subpallium, consistent with the cell polarity abnormalities we observed in vitro. In the absence of adhesion G protein-coupled receptor V1 (adgrv1), another hair bundle link protein, the entry of Cdhr23- and Cdhr15-expressing interneuron precursors into the embryonic cortex was also impaired. Our results demonstrate that a population of newborn interneurons is endowed with specific cdhr proteins necessary for these cells to reach the developing AC. We suggest that an "early adhesion code" targets populations of interneuron precursors to restricted neocortical regions belonging to the same functional area. These findings open up new perspectives for auditory rehabilitation and cortical therapies in patients.
Collapse
|
15
|
Abstract
All animals with large brains must have molecular mechanisms to regulate neuronal process outgrowth and prevent neurite self-entanglement. In vertebrates, two major gene families implicated in these mechanisms are the clustered protocadherins and the atypical cadherins. However, the molecular mechanisms utilized in complex invertebrate brains, such as those of the cephalopods, remain largely unknown. Recently, we identified protocadherins and atypical cadherins in the octopus. The octopus protocadherin expansion shares features with the mammalian clustered protocadherins, including enrichment in neural tissues, clustered head-to-tail orientations in the genome, and a large first exon encoding all cadherin domains. Other octopus cadherins, including a newly-identified cadherin with 77 extracellular cadherin domains, are elevated in the suckers, a striking cephalopod novelty. Future study of these octopus genes may yield insights into the general functions of protocadherins in neural wiring and cadherin-related proteins in complex morphogenesis.
Collapse
Affiliation(s)
- Z Yan Wang
- 947 E 58th St., Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | - Clifton W Ragsdale
- 947 E 58th St., Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
REST corepressors RCOR1 and RCOR2 and the repressor INSM1 regulate the proliferation-differentiation balance in the developing brain. Proc Natl Acad Sci U S A 2017; 114:E406-E415. [PMID: 28049845 DOI: 10.1073/pnas.1620230114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcriptional events that lead to the cessation of neural proliferation, and therefore enable the production of proper numbers of differentiated neurons and glia, are still largely uncharacterized. Here, we report that the transcription factor Insulinoma-associated 1 (INSM1) forms complexes with RE1 Silencing Transcription factor (REST) corepressors RCOR1 and RCOR2 in progenitors in embryonic mouse brain. Mice lacking both RCOR1 and RCOR2 in developing brain die perinatally and generate an abnormally high number of neural progenitors at the expense of differentiated neurons and oligodendrocyte precursor cells. In addition, Rcor1/2 deletion detrimentally affects complex morphological processes such as closure of the interganglionic sulcus. We find that INSM1, a transcription factor that induces cell-cycle arrest, is coexpressed with RCOR1/2 in a subset of neural progenitors and forms complexes with RCOR1/2 in embryonic brain. Further, the Insm1-/- mouse phenocopies predominant brain phenotypes of the Rcor1/2 knockout. A large number of genes are concordantly misregulated in both knockout genotypes, and a majority of the down-regulated genes are targets of REST. Rest transcripts are up-regulated in both knockouts, and reducing transcripts to control levels in the Rcor1/2 knockout partially rescues the defect in interganglionic sulcus closure. Our findings indicate that an INSM1/RCOR1/2 complex controls the balance of proliferation and differentiation during brain development.
Collapse
|
17
|
Zechel S, Nakagawa Y, Ibáñez CF. Thalamo-cortical axons regulate the radial dispersion of neocortical GABAergic interneurons. eLife 2016; 5:20770. [PMID: 27935475 PMCID: PMC5167520 DOI: 10.7554/elife.20770] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022] Open
Abstract
Neocortical GABAergic interneuron migration and thalamo-cortical axon (TCA) pathfinding follow similar trajectories and timing, suggesting they may be interdependent. The mechanisms that regulate the radial dispersion of neocortical interneurons are incompletely understood. Here we report that disruption of TCA innervation, or TCA-derived glutamate, affected the laminar distribution of GABAergic interneurons in mouse neocortex, resulting in abnormal accumulation in deep layers of interneurons that failed to switch from tangential to radial orientation. Expression of the KCC2 cotransporter was elevated in interneurons of denervated cortex, and KCC2 deletion restored normal interneuron lamination in the absence of TCAs. Disruption of interneuron NMDA receptors or pharmacological inhibition of calpain also led to increased KCC2 expression and defective radial dispersion of interneurons. Thus, although TCAs are not required to guide the tangential migration of GABAergic interneurons, they provide crucial signals that restrict interneuron KCC2 levels, allowing coordinated neocortical invasion of TCAs and interneurons. DOI:http://dx.doi.org/10.7554/eLife.20770.001
Collapse
Affiliation(s)
- Sabrina Zechel
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Yasushi Nakagawa
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, United States
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Physiology, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Guillabert-Gourgues A, Jaspard-Vinassa B, Bats ML, Sewduth RN, Franzl N, Peghaire C, Jeanningros S, Moreau C, Roux E, Larrieu-Lahargue F, Dufourcq P, Couffinhal T, Duplàa C. Kif26b controls endothelial cell polarity through the Dishevelled/Daam1-dependent planar cell polarity-signaling pathway. Mol Biol Cell 2016; 27:941-53. [PMID: 26792835 PMCID: PMC4791138 DOI: 10.1091/mbc.e14-08-1332] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/13/2016] [Indexed: 11/11/2022] Open
Abstract
Angiogenesis involves the coordinated growth and migration of endothelial cells (ECs) toward a proangiogenic signal. The Wnt planar cell polarity (PCP) pathway, through the recruitment of Dishevelled (Dvl) and Dvl-associated activator of morphogenesis (Daam1), has been proposed to regulate cell actin cytoskeleton and microtubule (MT) reorganization for oriented cell migration. Here we report that Kif26b--a kinesin--and Daam1 cooperatively regulate initiation of EC sprouting and directional migration via MT reorganization. First, we find that Kif26b is recruited within the Dvl3/Daam1 complex. Using a three-dimensional in vitro angiogenesis assay, we show that Kif26b and Daam1 depletion impairs tip cell polarization and destabilizes extended vascular processes. Kif26b depletion specifically alters EC directional migration and mislocalized MT organizing center (MTOC)/Golgi and myosin IIB cell rear enrichment. Therefore the cell fails to establish a proper front-rear polarity. Of interest, Kif26b ectopic expression rescues the siDaam1 polarization defect phenotype. Finally, we show that Kif26b functions in MT stabilization, which is indispensable for asymmetrical cell structure reorganization. These data demonstrate that Kif26b, together with Dvl3/Daam1, initiates cell polarity through the control of PCP signaling pathway-dependent activation.
Collapse
Affiliation(s)
| | - Beatrice Jaspard-Vinassa
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France Adaptation Cardiovasculaire à l'Ischémie, U1034, Université de Bordeaux, F-33600 Pessac, France
| | - Marie-Lise Bats
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France Adaptation Cardiovasculaire à l'Ischémie, U1034, Université de Bordeaux, F-33600 Pessac, France
| | - Raj N Sewduth
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France
| | - Nathalie Franzl
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France
| | - Claire Peghaire
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France
| | - Sylvie Jeanningros
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France
| | - Catherine Moreau
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France
| | - Etienne Roux
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France Adaptation Cardiovasculaire à l'Ischémie, U1034, Université de Bordeaux, F-33600 Pessac, France
| | | | - Pascale Dufourcq
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France Adaptation Cardiovasculaire à l'Ischémie, U1034, Université de Bordeaux, F-33600 Pessac, France
| | - Thierry Couffinhal
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France Adaptation Cardiovasculaire à l'Ischémie, U1034, Université de Bordeaux, F-33600 Pessac, France Service des Maladies Cardiaques et Vasculaires, Centre Hospitalier Universitaire de Bordeaux, F-33000 Bordeaux, France
| | - Cecile Duplàa
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France Adaptation Cardiovasculaire à l'Ischémie, U1034, Université de Bordeaux, F-33600 Pessac, France
| |
Collapse
|
19
|
Identification of amacrine subtypes that express the atypical cadherin celsr3. Exp Eye Res 2014; 130:51-7. [PMID: 25479044 DOI: 10.1016/j.exer.2014.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/04/2014] [Accepted: 12/02/2014] [Indexed: 12/11/2022]
Abstract
We previously identified Celsr3, an atypical cadherin, as essential for normal inhibitory circuit formation in the inner retina. Its absence during retinal development leads to increases in GABA receptor numbers on ON-bipolar cell terminals and consequent changes in retinal physiology, but does not cause obvious cell spacing or synaptic lamination defects. This study focuses on defining the subset of amacrine cells that express celsr3 during development of the wild type zebrafish retina. We have developed a BAC transgene expressing EGFP under the control of celsr3 promoter, Tg(celsr3:EGFP). Similar to the retinal expression of the endogenous gene, the transgene is expressed in amacrine, ganglion and bipolar, but not horizontal or photoreceptor cells. We transiently expressed the BAC in zebrafish larvae and categorized 104 celsr3 expressing amacrine cells based on their shape, arborization and lamination. Ten different amacrine cell types express Tg(celsr3:EGFP). These include narrow, medium and wide-field types of varicose cells. There are many multistratified cells, including one not previously identified and a few specific types of monostratified amacrine cells. Non-varicose amacrine cells do not express the transgene. We propose that celsr3 expression in varicose amacrine cells is key to this molecule's function in circuitry formation during retinal development. The BAC transgene we have developed provides a useful tool to study Celsr3 function.
Collapse
|
20
|
Regulation of the protocadherin Celsr3 gene and its role in globus pallidus development and connectivity. Mol Cell Biol 2014; 34:3895-910. [PMID: 25113559 DOI: 10.1128/mcb.00760-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The globus pallidus (GP) is a central component of basal ganglia whose malfunctions cause a variety of neuropsychiatric disorders as well as cognitive impairments in neurodegenerative diseases such as Parkinson's disease. Here we report that the protocadherin gene Celsr3 is regulated by the insulator CCCTC-binding factor (CTCF) and the repressor neuron-restrictive silencer factor (NRSF, also known as REST) and is required for the development and connectivity of GP. Specifically, CTCF/cohesin and NRSF inhibit the expression of Celsr3 through specific binding to its promoter. In addition, we found that the Celsr3 promoter interacts with CTCF/cohesin-occupied neighboring promoters. In Celsr3 knockout mice, we found that the ventral GP is occupied by aberrant calbindin-positive cholinergic neurons ectopic from the nucleus basalis of Meynert. Furthermore, the guidepost cells for thalamocortical axonal development are missing in the caudal GP. Finally, axonal connections of GP with striatum, subthalamic nucleus, substantia nigra, and raphe are compromised. These data reveal the essential role of Celsr3 in GP development in the basal forebrain and shed light on the mechanisms of the axonal defects caused by the Celsr3 deletion.
Collapse
|
21
|
van den Berghe V, Stappers E, Seuntjens E. How cell-autonomous is neuronal migration in the forebrain? Molecular cross-talk at the cell membrane. Neuroscientist 2014; 20:571-5. [PMID: 24972605 DOI: 10.1177/1073858414539396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the adult brain, different cell types communicate with each other through cell-cell contacts and brain activity is regulated at the cell membrane. But long before the brain is fully functional, different excitatory and inhibitory cell types generated at distinct places migrate through the developing brain to their final position. The elements guiding these migrating neurons, either structural axonal scaffolds or chemical guidance factors, are relatively well described. However, the molecules involved in the individual short-timed membrane contacts migrating cells make with other cells during their migration process are less well understood. This update focuses on recent novel insights into the molecular nature of these cell-cell contacts and the cross-talk taking place at the cell membrane.
Collapse
Affiliation(s)
- Veronique van den Berghe
- KU Leuven, Leuven, Belgium Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | | | | |
Collapse
|
22
|
N-cadherin sustains motility and polarity of future cortical interneurons during tangential migration. J Neurosci 2014; 33:18149-60. [PMID: 24227724 DOI: 10.1523/jneurosci.0593-13.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the developing brain, cortical GABAergic interneurons migrate long distances from the medial ganglionic eminence (MGE) in which they are generated, to the cortex in which they settle. MGE cells express the cell adhesion molecule N-cadherin, a homophilic cell-cell adhesion molecule that regulates numerous steps of brain development, from neuroepithelium morphogenesis to synapse formation. N-cadherin is also expressed in embryonic territories crossed by MGE cells during their migration. In this study, we demonstrate that N-cadherin is a key player in the long-distance migration of future cortical interneurons. Using N-cadherin-coated substrate, we show that N-cadherin-dependent adhesion promotes the migration of mouse MGE cells in vitro. Conversely, mouse MGE cells electroporated with a construct interfering with cadherin function show reduced cell motility, leading process instability, and impaired polarization associated with abnormal myosin IIB dynamics. In vivo, the capability of electroporated MGE cells to invade the developing cortical plate is altered. Using genetic ablation of N-cadherin in mouse embryos, we show that N-cadherin-depleted MGEs are severely disorganized. MGE cells hardly exit the disorganized proliferative area. N-cadherin ablation at the postmitotic stage, which does not affect MGE morphogenesis, alters MGE cell motility and directionality. The tangential migration to the cortex of N-cadherin ablated MGE cells is delayed, and their radial migration within the cortical plate is perturbed. Altogether, these results identify N-cadherin as a pivotal adhesion substrate that activates cell motility in future cortical interneurons and maintains cell polarity over their long-distance migration to the developing cortex.
Collapse
|
23
|
Simundza J, Cowin P. Adhesion G-protein-coupled receptors: elusive hybrids come of age. ACTA ACUST UNITED AC 2013; 20:213-26. [PMID: 24229322 DOI: 10.3109/15419061.2013.855727] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adhesion G-protein-coupled receptors (GPCRs) are the most recently identified and least understood subfamily of GPCRs. Adhesion GPCRs are characterized by unusually long ectodomains with adhesion-related repeats that facilitate cell- cell and cell-cell matrix contact, as well as a proteolytic cleavage site-containing domain that is a structural hallmark of the family. Their unusual chimeric structure of adhesion-related ectodomain with a seven-pass transmembrane domain and cytoplasmic signaling makes these proteins highly versatile in mediating cellular signaling in response to extracellular adhesion or cell motility events. The ligand binding and cytoplasmic signaling modes for members of this family are beginning to be elucidated, and recent studies have demonstrated critical roles for Adhesion GPCRs in planar polarity and other important cell-cell and cell-matrix interactions during development and morphogenesis, as well as heritable diseases and cancer.
Collapse
Affiliation(s)
- Julia Simundza
- Department of Cell Biology and the Ronald O Perelman Department of Dermatology, New York University School of Medicine , New York, NY , USA
| | | |
Collapse
|
24
|
Tissir F, Goffinet AM. Shaping the nervous system: role of the core planar cell polarity genes. Nat Rev Neurosci 2013; 14:525-35. [PMID: 23839596 DOI: 10.1038/nrn3525] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Planar cell polarity (PCP) is complementary to the intrinsic polarization of single cells and refers to the global coordination of cell behaviour in the plane of a tissue and, by extension, to the signalling pathways that control it. PCP is most evident in cell sheets, and research into PCP was for years confined to studies in Drosophila melanogaster. However, PCP has more recently emerged as an important phenomenon in vertebrates, in which it regulates various developmental processes and is associated with multiple disorders. In particular, core PCP genes are crucial for the development and function of the nervous system. They are involved in neural tube closure, ependymal polarity, neuronal migration, dendritic growth and axon guidance.
Collapse
Affiliation(s)
- Fadel Tissir
- University of Louvain, Institute of Neuroscience, Developmental Neurobiology Group, Avenue Mounier 73, Box B1.73.16, 1200 Brussels, Belgium
| | | |
Collapse
|
25
|
Chen Y, Londraville R, Brickner S, El-Shaar L, Fankhauser K, Dearth C, Fulton L, Sochacka A, Bhattarai S, Marrs JA, Liu Q. Protocadherin-17 function in Zebrafish retinal development. Dev Neurobiol 2013; 73:259-73. [PMID: 22927092 DOI: 10.1002/dneu.22053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/16/2012] [Accepted: 08/22/2012] [Indexed: 11/11/2022]
Abstract
Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the retina. Most studies have focused on examining functions of classic cadherins (e.g. N-cadherin) in retinal development. There is little information on the function of protocadherins in the development of the vertebrate visual system. We previously showed that protocadherin-17 mRNA was expressed in developing zebrafish retina during critical stages of the retinal development. To gain insight into protocadherin-17 function in the formation of the retina, we analyzed eye development and differentiation of retinal cells in zebrafish embryos injected with protocadherin-17 specific antisense morpholino oligonucleotides (MOs). Protocadherin-17 knockdown embryos (pcdh17 morphants) had significantly reduced eyes due mainly to decreased cell proliferation. Differentiation of several retinal cell types (e.g. retinal ganglion cells) was also disrupted in the pcdh17 morphants. Phenotypic rescue was achieved by injection of protocadherin-17 mRNA. Injection of a vivo-protocadherin-17 MO into one eye of embryonic zebrafish resulted in similar eye defects. Our results suggest that protocadherin-17 plays an important role in the normal formation of the zebrafish retina.
Collapse
Affiliation(s)
- Yun Chen
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, Ohio 44325, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Atypical cadherin Celsr3, a regulator of planar cell polarity, is critical for the development of the axonal blueprint. We previously showed that expression of Celsr3 is necessary to establish forebrain connections such as the anterior commissure and thalamocortical and corticospinal tracts. The requirement for Celsr3 during hippocampal wiring and its action in the hippocampus remain largely unexplored. Here, we compared the connectivity and maturation of the hippocampal formation in Celsr3|Foxg1 and Celsr3|Dlx mice. Celsr3 is inactivated in the whole telencephalon, including the hippocampal primordium, in Celsr3|Foxg1 mice, and in the early basal telencephalon, including ganglionic eminences and ventral diencephalon, in Celsr3|Dlx mice. Behavioral tests showed that both mutants were hyperactive and had impaired learning and memory. Abnormal cytoarchitecture of CA1, CA3, and dentate gyrus was found in the Celsr3|Foxg1 mutant, in which afferent and efferent hippocampal pathways, as well as intrinsic connections, were dramatically disrupted. In Celsr3|Dlx mutant mice, hippocampal cytoarchitecture was mildly affected and extrinsic and intrinsic connectivity moderately disturbed. In both mutants, pyramidal neurons in CA1 harbored atrophic dendritic trees, with decreased synapse density and increased proportion of symmetric versus asymmetric synapses, and long-term potentiation was altered. In contrast, mutant hippocampal neurons extended neurites that were normal, even longer than those of control neurons, indicating that anomalies in vivo are secondary to defective connections. Postnatal neurogenesis was preserved and mutant interneurons were able to migrate to the hippocampus. Thus, like in neocortex, Celsr3 is required for hippocampal development, connectivity and function, and for pyramidal cell maturation.
Collapse
|
27
|
Tissir F, Goffinet AM. Atypical Cadherins Celsr1–3 and Planar Cell Polarity in Vertebrates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:193-214. [DOI: 10.1016/b978-0-12-394311-8.00009-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
29
|
Faux C, Rakic S, Andrews W, Britto JM. Neurons on the move: migration and lamination of cortical interneurons. Neurosignals 2012; 20:168-89. [PMID: 22572780 DOI: 10.1159/000334489] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The modulation of cortical activity by GABAergic interneurons is required for normal brain function and is achieved through the immense level of heterogeneity within this neuronal population. Cortical interneurons share a common origin in the ventral telencephalon, yet during the maturation process diverse subtypes are generated that form the characteristic laminar arrangement observed in the adult brain. The long distance tangential and short-range radial migration into the cortical plate is regulated by a combination of intrinsic and extrinsic signalling mechanisms, and a great deal of progress has been made to understand these developmental events. In this review, we will summarize current findings regarding the molecular control of subtype specification and provide a detailed account of the migratory cues influencing interneuron migration and lamination. Furthermore, a dysfunctional GABAergic system is associated with a number of neurological and psychiatric conditions, and some of these may have a developmental aetiology with alterations in interneuron generation and migration. We will discuss the notion of additional sources of interneuron progenitors found in human and non-human primates and illustrate how the disruption of early developmental events can instigate a loss in GABAergic function.
Collapse
Affiliation(s)
- Clare Faux
- Centre for Neuroscience, University of Melbourne, Parkville, Vic, Australia
| | | | | | | |
Collapse
|
30
|
Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun 2012; 26:623-34. [PMID: 22310921 PMCID: PMC3285385 DOI: 10.1016/j.bbi.2012.01.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 01/07/2023] Open
Abstract
Maternal immune activation (MIA) is a risk factor for the development of schizophrenia and autism. Infections during pregnancy activate the mother's immune system and alter the fetal environment, with consequential effects on CNS function and behavior in the offspring, but the cellular and molecular links between infection-induced altered fetal development and risk for neuropsychiatric disorders are unknown. We investigated the immunological, molecular, and behavioral effects of MIA in the offspring of pregnant Sprague-Dawley rats given an intraperitoneal (0.25 mg/kg) injection of lipopolysaccharide (LPS) on gestational day 15. LPS significantly elevated pro-inflammatory cytokine levels in maternal serum, amniotic fluid, and fetal brain at 4 h, and levels decreased but remained elevated at 24 h. Offspring born to LPS-treated dams exhibited reduced social preference and exploration behaviors as juveniles and young adults. Whole genome microarray analysis of the fetal brain at 4 h post maternal LPS was performed to elucidate the possible molecular mechanisms by which MIA affects the fetal brain. We observed dysregulation of 3285 genes in restricted functional categories, with increased mRNA expression of cellular stress and cell death genes and reduced expression of developmentally-regulated and brain-specific genes, specifically those that regulate neuronal migration of GABAergic interneurons, including the Distal-less (Dlx) family of transcription factors required for tangential migration from progenitor pools within the ganglionic eminences into the cerebral cortex. Our results provide a novel mechanism by which MIA induces the widespread down-regulation of critical neurodevelopmental genes, including those previously associated with autism.
Collapse
Affiliation(s)
- Devon B. Oskvig
- Section on Functional Neuroanatomy, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Abdel G. Elkahloun
- Division of Intramural Research Programs Microarray Core Facility, NIH, Bethesda, MD, 20892 USA
| | - Kory R. Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Terry M. Phillips
- Ultramicro Immunodiagnostics Section, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, 20892, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA,Corresponding Author: Address: Bldg. 35, Rm. 1C913, Bethesda, MD 20892-3724, USA. (M. Herkenham)
| |
Collapse
|
31
|
Abstract
Cadherin EGF LAG seven-pass G-type receptors 1, 2, and 3 (Celsr1-3) form a family of three atypical cadherins with multiple functions in epithelia and in the nervous system. During the past decade, evidence has accumulated for important and distinct roles of Celsr1-3 in planar cell polarity (PCP) and brain development and maintenance. Although the role of Celsr in PCP is conserved from flies to mammals, other functions may be more distantly related, with Celsr working only with one or a subset of the classical PCP partners. Here, we review the literature on Celsr in PCP and neural development, point to several remaining questions, and consider future challenges and possible research trends.
Collapse
Affiliation(s)
- Camille Boutin
- Institute of Neuroscience, Developmental Neurobiology, Université Catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
32
|
Bennett M. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol 2011; 95:275-300. [DOI: 10.1016/j.pneurobio.2011.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/01/2023]
|
33
|
Berger-Müller S, Suzuki T. Seven-pass transmembrane cadherins: roles and emerging mechanisms in axonal and dendritic patterning. Mol Neurobiol 2011; 44:313-20. [PMID: 21909747 PMCID: PMC3229701 DOI: 10.1007/s12035-011-8201-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/29/2011] [Indexed: 11/28/2022]
Abstract
The Flamingo/Celsr seven-transmembrane cadherins represent a conserved subgroup of the cadherin superfamily involved in multiple aspects of development. In the developing nervous system, Fmi/Celsr control axonal blueprint and dendritic morphogenesis from invertebrates to mammals. As expected from their molecular structure, seven-transmembrane cadherins can induce cell–cell homophilic interactions but also intracellular signaling. Fmi/Celsr is known to regulate planar cell polarity (PCP) through interactions with PCP proteins. In the nervous system, Fmi/Celsr can function in collaboration with or independently of other PCP genes. Here, we focus on recent studies which show that seven-transmembrane cadherins use distinct molecular mechanisms to achieve diverse functions in the development of the nervous system.
Collapse
Affiliation(s)
- Sandra Berger-Müller
- Research Group Axon Guidance and Neuronal Connectivity, Max Planck Institute of Neurobiology, Am Kolpferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
34
|
Lewis A, Wilson N, Stearns G, Johnson N, Nelson R, Brockerhoff SE. Celsr3 is required for normal development of GABA circuits in the inner retina. PLoS Genet 2011; 7:e1002239. [PMID: 21852962 PMCID: PMC3154962 DOI: 10.1371/journal.pgen.1002239] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/28/2011] [Indexed: 12/30/2022] Open
Abstract
The identity of the specific molecules required for the process of retinal circuitry formation is largely unknown. Here we report a newly identified zebrafish mutant in which the absence of the atypical cadherin, Celsr3, leads to a specific defect in the development of GABAergic signaling in the inner retina. This mutant lacks an optokinetic response (OKR), the ability to visually track rotating illuminated stripes, and develops a super-normal b-wave in the electroretinogram (ERG). We find that celsr3 mRNA is abundant in the amacrine and ganglion cells of the retina, however its loss does not affect synaptic lamination within the inner plexiform layer (IPL) or amacrine cell number. We localize the ERG defect pharmacologically to a late-stage disruption in GABAergic modulation of ON-bipolar cell pathway and find that the DNQX-sensitive fast b1 component of the ERG is specifically affected in this mutant. Consistently, we find an increase in GABA receptors on mutant ON-bipolar terminals, providing a direct link between the observed physiological changes and alterations in GABA signaling components. Finally, using blastula transplantation, we show that the lack of an OKR is due, at least partially, to Celsr3-mediated defects within the brain. These findings support the previously postulated inner retina origin for the b1 component and reveal a new role for Celsr3 in the normal development of ON visual pathway circuitry in the inner retina. Visual information is transmitted through the retina from photoreceptors to bipolars to ganglion cells, the output neurons connecting to the brain. This vertical transmission of information is modulated by inhibitory lateral interneurons. Normal vision requires the proper transmission and processing of these neuronal signals. In the inner retina, amacrine cells are the main class of inhibitory interneurons. They modulate the information from bipolar to ganglion cells and are functionally responsible for adjusting image brightness and for detecting motion. Physiological studies have revealed important aspects of the mechanisms of inhibitory modulation, and anatomical studies have identified the many amacrine subclasses and their non-random arrangement within the retina. Although cell–cell interactions are thought to be critical for establishing the important physiological and morphological features of this cell class, the precise molecules and their functions are mostly unknown. In this paper we report the discovery of a mutant that identifies the atypical cell adhesion molecule, Celsr3, as critical for proper development of GABA-signaling pathways in the inner retina.
Collapse
Affiliation(s)
- Alaron Lewis
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Neil Wilson
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - George Stearns
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Nicolas Johnson
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Ralph Nelson
- Basic Neurosciences Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, Maryland, United States of America
| | - Susan E. Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
Neuronal migration is, along with axon guidance, one of the fundamental mechanisms underlying the wiring of the brain. As other organs, the nervous system has acquired the ability to grow both in size and complexity by using migration as a strategy to position cell types from different origins into specific coordinates, allowing for the generation of brain circuitries. Guidance of migrating neurons shares many features with axon guidance, from the use of substrates to the specific cues regulating chemotaxis. There are, however, important differences in the cell biology of these two processes. The most evident case is nucleokinesis, which is an essential component of migration that needs to be integrated within the guidance of the cell. Perhaps more surprisingly, the cellular mechanisms underlying the response of the leading process of migrating cells to guidance cues might be different to those involved in growth cone steering, at least for some neuronal populations.
Collapse
Affiliation(s)
- Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain.
| | | | | | | |
Collapse
|
36
|
Abstract
How much neocortical development depends on connections remains elusive. Here, we show that Celsr3|Dlx mutant mice have no extrinsic neocortical connections yet survive to postnatal day 20, acquire a basic behavioral repertoire, and display spontaneous hyperactivity, with abnormal light/dark activity cycling. Except for hallmarks related to thalamic input, such as barrels in somatosensory cortex, cortical arealization and laminar maturation proceeded normally. However, the tangential extension of the mature cortex was diminished, with radial thickness less severely affected. Deep layer neurons were reduced in number, and their apical and basal dendritic arbors were blunted, with reduced synapse density. Interneurons reached the cortex, and their density was comparable with wild type. The excitability of mutant pyramidal neurons, measured in vitro in patch-clamp experiments in acute slices, was decreased. However, their firing activity in vivo was quite similar to the wild type, except for the presence of rapid firing exhaustion in some mutant neurons. Local field potential and electrocorticogram showed similar range of oscillations, albeit with higher frequency peaks and reduced left-right synchrony in the mutant. Thus, "protomap" formation, namely cortical lamination and arealization, proceed normally in absence of extrinsic connections, but survival of projection neurons and acquisition of mature morphological and some electrophysiological features depend on the establishment of normal cortical-subcortical relationships.
Collapse
|
37
|
Formstone CJ. 7TM-Cadherins: developmental roles and future challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 706:14-36. [PMID: 21618823 DOI: 10.1007/978-1-4419-7913-1_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The 7TM-Cadherins, Celsr/Flamingo/Starry night, represent a unique subgroup of adhesion-GPCRs containing atypical cadherin repeats, capable of homophilic interaction, linked to the archetypal adhesion-GPCR seven-transmembrane domain. Studies in Drosophila provided a first glimpse of their functional properties, most notably in the regulation of planar cell polarity (PCP) and in the formation of neural architecture. Many of the developmental functions identified in flies are conserved in vertebrates with PCP predicted to influence the development of multiple organ systems. Details of the molecular and cellular functions of 7TM-Cadherins are slowly emerging but many questions remain unanswered. Here the developmental roles of 7TM-Cadherins are discussed and future challenges in understanding their molecular and cellular roles are explored.
Collapse
Affiliation(s)
- Caroline J Formstone
- MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK.
| |
Collapse
|