1
|
Miranda-Alban J, Sanchez-Luege N, Valbuena FM, Rangel C, Rebay I. The Abelson kinase and the Nedd4 family E3 ligases co-regulate Notch trafficking to limit signaling. J Cell Biol 2025; 224:e202407066. [PMID: 40183942 PMCID: PMC11970431 DOI: 10.1083/jcb.202407066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/25/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Precise output from the conserved Notch signaling pathway governs a plethora of cellular processes and developmental transitions. Unlike other pathways that use a cytoplasmic relay, the Notch cell surface receptor transduces signaling directly to the nucleus, with endocytic trafficking providing critical regulatory nodes. Here we report that the cytoplasmic tyrosine kinase Abelson (Abl) facilitates Notch internalization into late endosomes/multivesicular bodies (LEs), thereby limiting signaling output in both ligand-dependent and -independent contexts. Abl phosphorylates the PPxY motif within Notch, a molecular target for its degradation via Nedd4 family ubiquitin ligases. We show that Su(dx), a family member, mediates the Abl-directed LE regulation of Notch via the PPxY, while another family member, Nedd4Lo, contributes to Notch internalization into LEs through both PPxY-dependent and -independent mechanisms. Our findings demonstrate how a network of posttranslational modifiers converging at LEs cooperatively modulates Notch signaling to ensure the precision and robustness of its cellular and developmental functions.
Collapse
Affiliation(s)
- Julio Miranda-Alban
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Nicelio Sanchez-Luege
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Fernando M. Valbuena
- Cell and Molecular Biology Graduate Program, University of Chicago, Chicago, IL, USA
| | - Chyan Rangel
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
- Cell and Molecular Biology Graduate Program, University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Heidari P, Taghizadeh M, Vakili O. Signaling pathways and molecular mechanisms involved in the onset and progression of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL); a focus on Notch3 signaling. J Headache Pain 2025; 26:96. [PMID: 40301727 PMCID: PMC12042419 DOI: 10.1186/s10194-025-02025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/02/2025] [Indexed: 05/01/2025] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal-dominantly inherited cerebral small-vessel disease (SVD). CADASIL has diverse clinical features such as migraine with aura, dementia, and recurrent strokes, and is caused by a pathogenic mutation in the NOTCH3 gene which encodes a transmembrane receptor found in smooth muscle cells of small arteries and pericytes of brain capillaries. Pathogenic mutations alter the number of cysteine residues in the extracellular domain of NOTCH3, leading to the abnormal accumulation of granular osmiophilic material in the vessels of affected individuals. In addition, potential signaling pathways, such as transforming growth factor beta (TGF-β), may be involved in pathogenesis of the disease. This review aims to elucidate these mechanisms, particularly NOTCH3, in the context of CADASIL pathogenesis, providing insight into the role of NOTCH3 signaling and discussing the significance of these pathways for potential future therapeutic interventions in CADASIL patients.
Collapse
Affiliation(s)
- Parasta Heidari
- Center for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Duven M, Friedrichs A, Tomlinson MG, Steffen I, Gerold G. Tetraspanins 10 and 15 support Venezuelan equine encephalitis virus replication in astrocytoma cells. Mol Biol Cell 2025; 36:ar35. [PMID: 39878649 PMCID: PMC11974957 DOI: 10.1091/mbc.e24-12-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Tetraspanins (Tspans) are transmembrane proteins that coordinate life cycle steps of viruses from distinct families. Here, we identify the human Tspan10 and Tspan15, both members of the TspanC8 subfamily, as replication factors for alphavirus Venezuelan equine encephalitis virus (VEEV) in astrocytoma cells. Pharmacological inhibition and small interfering RNA (siRNA)-mediated silencing of TspanC8 interactor a disintegrin and metalloproteinase 10 (ADAM10) reduced VEEV infection. Silencing of Tspan10, Tspan15, and ADAM10 did not affect VEEV entry but diminished viral genome replication. We report that Tspan10 is important for VEEV infection of several cell lines, while silencing of Tspan15 diminishes infection with several alphaviruses, but not flaviviruses, in astrocytoma cells. Conversely, we demonstrate that siRNA-mediated silencing of Tspan14, another member of the TspanC8 family, enhances infection with lentiviral pseudoparticles harbouring the envelope proteins of VEEV, identifying it as a restriction factor for VEEV entry. Silencing of ADAM10/Tspan15 substrate neuronal (N)-cadherin reduced VEEV infectivity, suggesting potential roles of ADAM10 substrates in VEEV infection. In sum, our study identifies three TspanC8s and ADAM10 as important modulators of VEEV infectivity.
Collapse
Affiliation(s)
- Mara Duven
- Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Alina Friedrichs
- Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Michael G. Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Imke Steffen
- Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Gisa Gerold
- Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90187 Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, 90187 Umeå, Sweden
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Özen I, Hamdeh SA, Ruscher K, Marklund N. Traumatic brain injury causes early aggregation of beta-amyloid peptides and NOTCH3 reduction in vascular smooth muscle cells of leptomeningeal arteries. Acta Neuropathol 2025; 149:10. [PMID: 39841284 PMCID: PMC11754316 DOI: 10.1007/s00401-025-02848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/28/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated. Here, we show that acute human TBI resulted in early pathological changes in leptomeningeal arteries, closely associated with a decrease in VSMC markers such as NOTCH3 and alpha smooth muscle actin (α-SMA).These changes coincided with increased aggregation of variable-length amyloid peptides including Aβ1-40/42, Aβ1-16, and β-secretase-derived fragment (βCTF) (C99) caused by altered processing of amyloid precursor protein (APP) in VSMCs. The aggregation of Aβ1-40/42 peptides were also observed in the leptomeningeal arteries of young TBI patients. These pathological changes also included higher β-secretase (BACE1) when compared to α-secretase A Disintegrin And Metalloprotease 10 (ADAM10) expression in the leptomeningeal arteries, plausibly caused by hypoxia and oxidative stress as shown using human VSMCs in vitro. Importantly, BACE1 inhibition not only restored NOTCH3 signalling but also normalized ADAM10 levels in vitro. Furthermore, we found reduced ADAM10 activity and decreased NOTCH3, along with increased βCTF (C99) levels in mice subjected to an experimental model of TBI. This study provides evidence of early post-injury changes in VSMCs of leptomeningeal arteries that can contribute to vascular dysfunction and exacerbate secondary injury mechanisms following TBI.
Collapse
MESH Headings
- Receptor, Notch3/metabolism
- Amyloid beta-Peptides/metabolism
- Animals
- Humans
- Brain Injuries, Traumatic/pathology
- Brain Injuries, Traumatic/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Male
- Mice
- Meningeal Arteries/pathology
- Meningeal Arteries/metabolism
- Female
- Mice, Inbred C57BL
- Adult
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Middle Aged
- Amyloid Precursor Protein Secretases/metabolism
- Young Adult
- Peptide Fragments/metabolism
Collapse
Affiliation(s)
- Ilknur Özen
- Department of Clinical Sciences, Lund Brain Injury Laboratory for Neurosurgical Research, Lund University, 222 20, Lund, Sweden
| | - Sami Abu Hamdeh
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Karsten Ruscher
- Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences, Lund Brain Injury Laboratory for Neurosurgical Research, Lund University, 222 20, Lund, Sweden.
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
5
|
Kuintzle R, Santat LA, Elowitz MB. Diversity in Notch ligand-receptor signaling interactions. eLife 2025; 12:RP91422. [PMID: 39751380 PMCID: PMC11698495 DOI: 10.7554/elife.91422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in Chinese hamster and mouse cell lines. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.
Collapse
Affiliation(s)
- Rachael Kuintzle
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Leah A Santat
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical Institute, California Institute of TechnologyPasadenaUnited States
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical Institute, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
6
|
Menegakis A, Vennin C, Ient J, Groot AJ, Krenning L, Klompmaker R, Friskes A, Ilic M, Yaromina A, Harkes R, van den Broek B, Jakob Sonke J, De Jong M, Piepers J, van Rheenen J, Vooijs MA, Medema RH. A novel lineage-tracing tool reveals that hypoxic tumor cells drive tumor relapse after radiotherapy. Radiother Oncol 2025; 202:110592. [PMID: 39427933 PMCID: PMC11718160 DOI: 10.1016/j.radonc.2024.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Tumor hypoxia imposes a main obstacle to the efficacy of anti-cancer therapy. Understanding the cellular dynamics of individual hypoxic cells before, during and post-treatment has been hampered by the technical inability to identify and trace these cells over time. METHODS AND MATERIALS Here, we present a novel lineage-tracing reporter for hypoxic cells based on the conditional expression of a HIF1a-CreERT2-UnaG biosensor that can visualize hypoxic cells in a time-dependent manner and trace the fate of hypoxic cells over time. We combine this system with multiphoton microscopy, flow cytometry, and immunofluorescence to characterize the role of hypoxic cells in tumor relapse after irradiation in H1299 tumor spheroids and in vivo xenografts. RESULTS We validate the reporter in monolayer cultures and we show that tagged cells colocalize in spheroids and human tumor xenografts with the hypoxic marker pimonidazole. We found that irradiation of H1299-HIFcreUnaG spheroids leads to preferential outgrowth of cells from the hypoxic core. Similarly, in xenografts tumors, although initially UnaG-positive-cells coincide with pimonidazole-positive tumor areas and they are merely quiescent, upon irradiation UnaG-positive cells enrich in regrowing tumors and are mainly proliferative. CONCLUSIONS Collectively, our data provide clear evidence that the hypoxic cells drive tumor relapse after irradiation.
Collapse
Affiliation(s)
- Apostolos Menegakis
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland; Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands; Oncode Institute, Division of Tumor Biology and Tumor Immunology, the Netherlands.
| | - Claire Vennin
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Jonathan Ient
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands
| | - Arjan J Groot
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands
| | - Lenno Krenning
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland
| | - Rob Klompmaker
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland
| | - Anoek Friskes
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland
| | - Mila Ilic
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Rolf Harkes
- Bioimaging Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Bram van den Broek
- Bioimaging Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Jan Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Monique De Jong
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Jolanda Piepers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands.
| | - René H Medema
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland; Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands(2).
| |
Collapse
|
7
|
Kuintzle R, Santat LA, Elowitz MB. Diversity in Notch ligand-receptor signaling interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.24.554677. [PMID: 37662208 PMCID: PMC10473737 DOI: 10.1101/2023.08.24.554677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in two mammalian cell types. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe-dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.
Collapse
|
8
|
Raza Q, Nadeem T, Youn SW, Swaminathan B, Gupta A, Sargis T, Du J, Cuervo H, Eichmann A, Ackerman SL, Naiche LA, Kitajewski J. Notch signaling regulates UNC5B to suppress endothelial proliferation, migration, junction activity, and retinal plexus branching. Sci Rep 2024; 14:13603. [PMID: 38866944 PMCID: PMC11169293 DOI: 10.1038/s41598-024-64375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Notch signaling guides vascular development and function by regulating diverse endothelial cell behaviors, including migration, proliferation, vascular density, endothelial junctions, and polarization in response to flow. Notch proteins form transcriptional activation complexes that regulate endothelial gene expression, but few of the downstream effectors that enable these phenotypic changes have been characterized in endothelial cells, limiting our understanding of vascular Notch activities. Using an unbiased screen of translated mRNA rapidly regulated by Notch signaling, we identified novel in vivo targets of Notch signaling in neonatal mouse brain endothelium, including UNC5B, a member of the netrin family of angiogenic-regulatory receptors. Endothelial Notch signaling rapidly upregulates UNC5B in multiple endothelial cell types. Loss or gain of UNC5B recapitulated specific Notch-regulated phenotypes. UNC5B expression inhibited endothelial migration and proliferation and was required for stabilization of endothelial junctions in response to shear stress. Loss of UNC5B partially or wholly blocked the ability of Notch activation to regulate these endothelial cell behaviors. In the developing mouse retina, endothelial-specific loss of UNC5B led to excessive vascularization, including increased vascular outgrowth, density, and branchpoint count. These data indicate that Notch signaling upregulates UNC5B as an effector protein to control specific endothelial cell behaviors and inhibit angiogenic growth.
Collapse
Affiliation(s)
- Qanber Raza
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Taliha Nadeem
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Seock-Won Youn
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Bhairavi Swaminathan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Ahana Gupta
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Timothy Sargis
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Jing Du
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Henar Cuervo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III- CNIC- (F.S.P), Madrid, Spain
| | | | | | - L A Naiche
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA.
| | - Jan Kitajewski
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
- University of Illinois Cancer Center, Chicago, USA
| |
Collapse
|
9
|
Granados AA, Kanrar N, Elowitz MB. Combinatorial expression motifs in signaling pathways. CELL GENOMICS 2024; 4:100463. [PMID: 38216284 PMCID: PMC10794782 DOI: 10.1016/j.xgen.2023.100463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/02/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
In animal cells, molecular pathways often comprise families of variant components, such as ligands or receptors. These pathway components are differentially expressed by different cell types, potentially tailoring pathway function to cell context. However, it has remained unclear how pathway expression profiles are distributed across cell types and whether similar profiles can occur in dissimilar cell types. Here, using single-cell gene expression datasets, we identified pathway expression motifs, defined as recurrent expression profiles that are broadly distributed across diverse cell types. Motifs appeared in core pathways, including TGF-β, Notch, Wnt, and the SRSF splice factors, and involved combinatorial co-expression of multiple components. Motif usage was weakly correlated between pathways in adult cell types and during dynamic developmental transitions. Together, these results suggest a mosaic view of cell type organization, in which different cell types operate many of the same pathways in distinct modes.
Collapse
Affiliation(s)
- Alejandro A Granados
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nivedita Kanrar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Hounjet J, Groot AJ, Piepers JP, Kranenburg O, Zwijnenburg DA, Rapino FA, Koster JB, Kampen KR, Vooijs MA. Iron-responsive element of Divalent metal transporter 1 (Dmt1) controls Notch-mediated cell fates. FEBS J 2023; 290:5811-5834. [PMID: 37646174 DOI: 10.1111/febs.16946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Notch receptor activation is regulated by the intramembrane protease γ-secretase, which cleaves and liberates the Notch intracellular domain (Nicd) that regulates gene transcription. While γ-secretase cleavage is necessary, we demonstrate it is insufficient for Notch activation and requires vesicular trafficking. Here, we report Divalent metal transporter 1 (Dmt1, Slc11A2) as a novel and essential regulator of Notch signalling. Dmt1-deficient cells are defective in Notch signalling and have perturbed endolysosomal trafficking and function. Dmt1 encodes for two isoforms, with and without an iron response element (ire). We show that isoform-specific silencing of Dmt1-ire and Dmt1+ire has opposite consequences on Notch-dependent cell fates in cell lines and intestinal organoids. Loss of Dmt1-ire suppresses Notch activation and promotes differentiation, whereas loss of Dmt1+ire causes Notch activation and maintains stem-progenitor cell fates. Dmt1 isoform expression correlates with Notch and Wnt signalling in Apc-deficient intestinal organoids and human colorectal cancers. Consistently, Dmt1-ire silencing induces Notch-dependent differentiation in colorectal cancer cells. These data identify Dmt1 isoforms as binary switches controlling Notch cell fate decisions in normal and tumour cells.
Collapse
Affiliation(s)
- Judith Hounjet
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Arjan J Groot
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jolanda P Piepers
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Onno Kranenburg
- Lab Translational Oncology, Division Imaging and Cancer, University Medical Center Utrecht, The Netherlands
| | - Danny A Zwijnenburg
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Francesca A Rapino
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Pharmacy, Giga Stem Cells, University of Liege, Belgium
| | - Jan B Koster
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
11
|
Zhou N, Choi J, Grothusen G, Kim BJ, Ren D, Cao Z, Liu Y, Li Q, Inamdar A, Beer T, Tang HY, Perkey E, Maillard I, Bonasio R, Shi J, Ruella M, Wan L, Busino L. DLBCL-associated NOTCH2 mutations escape ubiquitin-dependent degradation and promote chemoresistance. Blood 2023; 142:973-988. [PMID: 37235754 PMCID: PMC10656726 DOI: 10.1182/blood.2022018752] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma. Up to 40% of patients with DLBCL display refractory disease or relapse after standard chemotherapy treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone [R-CHOP]), leading to significant morbidity and mortality. The molecular mechanisms of chemoresistance in DLBCL remain incompletely understood. Using a cullin-really interesting new gene (RING) ligase-based CRISPR-Cas9 library, we identify that inactivation of the E3 ubiquitin ligase KLHL6 promotes DLBCL chemoresistance. Furthermore, proteomic approaches helped identify KLHL6 as a novel master regulator of plasma membrane-associated NOTCH2 via proteasome-dependent degradation. In CHOP-resistant DLBCL tumors, mutations of NOTCH2 result in a protein that escapes the mechanism of ubiquitin-dependent proteolysis, leading to protein stabilization and activation of the oncogenic RAS signaling pathway. Targeting CHOP-resistant DLBCL tumors with the phase 3 clinical trial molecules nirogacestat, a selective γ-secretase inhibitor, and ipatasertib, a pan-AKT inhibitor, synergistically promotes DLBCL destruction. These findings establish the rationale for therapeutic strategies aimed at targeting the oncogenic pathway activated in KLHL6- or NOTCH2-mutated DLBCL.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jaewoo Choi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Grant Grothusen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY
| | - Diqiu Ren
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Zhendong Cao
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yiman Liu
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Qinglan Li
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Arati Inamdar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas Beer
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA
| | - Eric Perkey
- Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivan Maillard
- Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Marco Ruella
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Liling Wan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
12
|
Yamamoto Y, Liao YC, Lee YC, Ihara M, Choi JC. Update on the Epidemiology, Pathogenesis, and Biomarkers of Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. J Clin Neurol 2023; 19:12-27. [PMID: 36606642 PMCID: PMC9833879 DOI: 10.3988/jcn.2023.19.1.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic disorder of the cerebral small blood vessels. It is caused by mutations in the NOTCH3 gene on chromosome 19, and more than 280 distinct pathogenic mutations have been reported to date. CADASIL was once considered a very rare disease with an estimated prevalence of 1.3-4.1 per 100,000 adults. However, recent large-scale genomic studies have revealed a high prevalence of pathogenic NOTCH3 variants among the general population, with the highest risk being among Asians. The disease severity and age at onset vary significantly even among individuals who carry the same NOTCH3 mutations. It is still unclear whether a significant genotype-phenotype correlation is present in CADASIL. The accumulation of granular osmiophilic material in the vasculature is a characteristic feature of CADASIL. However, the exact pathogenesis of CADASIL remains largely unclear despite various laboratory and clinical observations being made. Major hypotheses proposed so far have included aberrant NOTCH3 signaling, toxic aggregation, and abnormal matrisomes. Several characteristic features have been observed in the brain magnetic resonance images of patients with CADASIL, including subcortical lacunar lesions and white matter hyperintensities in the anterior temporal lobe or external capsule, which were useful in differentiating CADASIL from sporadic stroke in patients. The number of lacunes and the degree of brain atrophy were useful in predicting the clinical outcomes of patients with CADASIL. Several promising blood biomarkers have also recently been discovered for CADASIL, which require further research for validation.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jay Chol Choi
- Department of Neurology, Jeju National University, Jeju, Korea.,Institute for Medical Science, Jeju National University, Jeju, Korea
| |
Collapse
|
13
|
Becic A, Leifeld J, Shaukat J, Hollmann M. Tetraspanins as Potential Modulators of Glutamatergic Synaptic Function. Front Mol Neurosci 2022; 14:801882. [PMID: 35046772 PMCID: PMC8761850 DOI: 10.3389/fnmol.2021.801882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Tetraspanins (Tspans) comprise a membrane protein family structurally defined by four transmembrane domains and intracellular N and C termini that is found in almost all cell types and tissues of eukaryotes. Moreover, they are involved in a bewildering multitude of diverse biological processes such as cell adhesion, motility, protein trafficking, signaling, proliferation, and regulation of the immune system. Beside their physiological roles, they are linked to many pathophysiological phenomena, including tumor progression regulation, HIV-1 replication, diabetes, and hepatitis. Tetraspanins are involved in the formation of extensive protein networks, through interactions not only with themselves but also with numerous other specific proteins, including regulatory proteins in the central nervous system (CNS). Interestingly, recent studies showed that Tspan7 impacts dendritic spine formation, glutamatergic synaptic transmission and plasticity, and that Tspan6 is correlated with epilepsy and intellectual disability (formerly known as mental retardation), highlighting the importance of particular tetraspanins and their involvement in critical processes in the CNS. In this review, we summarize the current knowledge of tetraspanin functions in the brain, with a particular focus on their impact on glutamatergic neurotransmission. In addition, we compare available resolved structures of tetraspanin family members to those of auxiliary proteins of glutamate receptors that are known for their modulatory effects.
Collapse
|
14
|
Osathanon T, Egusa H. Notch signaling in induced pluripotent stem cells. MOLECULAR PLAYERS IN IPSC TECHNOLOGY 2022:249-284. [DOI: 10.1016/b978-0-323-90059-1.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Secretases Related to Amyloid Precursor Protein Processing. MEMBRANES 2021; 11:membranes11120983. [PMID: 34940484 PMCID: PMC8706128 DOI: 10.3390/membranes11120983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer’s disease (AD) is a common neurodegenerative disease whose prevalence increases with age. An increasing number of findings suggest that abnormalities in the metabolism of amyloid precursor protein (APP), a single transmembrane aspartic protein that is cleaved by β- and γ-secretases to produce β-amyloid protein (Aβ), are a major pathological feature of AD. In recent years, a large number of studies have been conducted on the APP processing pathways and the role of secretion. This paper provides a summary of the involvement of secretases in the processing of APP and the potential drug targets that could provide new directions for AD therapy.
Collapse
|
16
|
Li D, Lai W, Fan D, Fang Q. Protein biomarkers in breast cancer-derived extracellular vesicles for use in liquid biopsies. Am J Physiol Cell Physiol 2021; 321:C779-C797. [PMID: 34495763 DOI: 10.1152/ajpcell.00048.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most common malignant disease in women worldwide. Early diagnosis and treatment can greatly improve the management of breast cancer. Liquid biopsies are becoming convenient detection methods for diagnosing and monitoring breast cancer due to their noninvasiveness and ability to provide real-time feedback. A range of liquid biopsy markers, including circulating tumor proteins, circulating tumor cells, and circulating tumor nucleic acids, have been implemented for breast cancer diagnosis and prognosis, with each having its own advantages and limitations. Circulating extracellular vesicles are messengers of intercellular communication that are packed with information from mother cells and are found in a wide variety of bodily fluids; thus, they are emerging as ideal candidates for liquid biopsy biomarkers. In this review, we summarize extracellular vesicle protein markers that can be potentially used for the early diagnosis and prognosis of breast cancer or determining its specific subtypes.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenjia Lai
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Di Fan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Sino-Danish Center for Education and Research, Beijing, People's Republic of China
| |
Collapse
|
17
|
Abstract
The fibrocartilage chondrocyte phenotype has been recognized to attribute to osteoarthritis (OA) development. These chondrocytes express genes related to unfavorable OA outcomes, emphasizing its importance in OA pathology. BMP7 is being explored as a potential disease-modifying molecule and attenuates the chondrocyte hypertrophic phenotype. On the other hand, BMP7 has been demonstrated to relieve organ fibrosis by counteracting the pro-fibrotic TGFβ-Smad3-PAI1 axis and increasing MMP2-mediated Collagen type I turnover. Whether BMP7 has anti-fibrotic properties in chondrocytes is unknown. Human OA articular chondrocytes (HACs) were isolated from end-stage OA femoral cartilage (total knee arthroplasty; n = 18 individual donors). SW1353 cells and OA HACs were exposed to 1 nM BMP7 for 24 h, after which gene expression of fibrosis-related genes and fibrosis-mediating factors was determined by RT-qPCR. In SW1353, Collagen type I protein levels were determined by immunocytochemistry and western blotting. PAI1 and MMP2 protein levels and activity were measured with an ELISA and activity assays, respectively. MMP2 activity was inhibited with the selective MMP-2 inhibitor OA-Hy. SMAD3 activity was determined by a (CAGA)12-reporter assay, and pSMAD2 levels by western blotting. Following BMP7 exposure, the expression of fibrosis-related genes was reduced in SW1353 cells and OA HACs. BMP7 reduced Collagen type I protein levels in SW1353 cells. Gene expression of MMP2 was increased in SW1353 cells following BMP7 treatment. BMP7 reduced PAI1 protein levels and -activity, while MMP2 protein levels and -activity were increased by BMP7. BMP7-dependent inhibition of Collagen type I protein levels in SW1353 cells was abrogated when MMP2 activity was inhibited. Finally, BMP7 reduced pSMAD2 levels determined by western blotting and reduced SMAD3 transcriptional activity as demonstrated by decreased (CAGA)12 luciferase reporter activity. Our data demonstrate that short-term exposure to BMP7 decreases the fibrocartilage chondrocyte phenotype. The BMP7-dependent reduction of Collagen type I protein expression seems MMP2-dependent and inhibition of Smad2/3-PAI1 activity was identified as a potential pathway via which BMP7 exerts its anti-fibrotic action. This indicates that in chondrocytes BMP7 may have a double mode-of-action by targeting both the hypertrophic as well as the fibrotic chondrocyte phenotype, potentially adding to the clinical relevance of using BMP7 as an OA disease-modifying molecule.
Collapse
|
18
|
Hounjet J, Vooijs M. The Role of Intracellular Trafficking of Notch Receptors in Ligand-Independent Notch Activation. Biomolecules 2021; 11:biom11091369. [PMID: 34572582 PMCID: PMC8466058 DOI: 10.3390/biom11091369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant Notch signaling has been found in a broad range of human malignancies. Consequently, small molecule inhibitors and antibodies targeting Notch signaling in human cancers have been developed and tested; however, these have failed due to limited anti-tumor efficacy because of dose-limiting toxicities in normal tissues. Therefore, there is an unmet need to discover novel regulators of malignant Notch signaling, which do not affect Notch signaling in healthy tissues. This review provides a comprehensive overview of the current knowledge on the role of intracellular trafficking in ligand-independent Notch receptor activation, the possible mechanisms involved, and possible therapeutic opportunities for inhibitors of intracellular trafficking in Notch targeting.
Collapse
|
19
|
Harrison N, Koo CZ, Tomlinson MG. Regulation of ADAM10 by the TspanC8 Family of Tetraspanins and Their Therapeutic Potential. Int J Mol Sci 2021; 22:ijms22136707. [PMID: 34201472 PMCID: PMC8268256 DOI: 10.3390/ijms22136707] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitously expressed transmembrane protein a disintegrin and metalloproteinase 10 (ADAM10) functions as a “molecular scissor”, by cleaving the extracellular regions from its membrane protein substrates in a process termed ectodomain shedding. ADAM10 is known to have over 100 substrates including Notch, amyloid precursor protein, cadherins, and growth factors, and is important in health and implicated in diseases such as cancer and Alzheimer’s. The tetraspanins are a superfamily of membrane proteins that interact with specific partner proteins to regulate their intracellular trafficking, lateral mobility, and clustering at the cell surface. We and others have shown that ADAM10 interacts with a subgroup of six tetraspanins, termed the TspanC8 subgroup, which are closely related by protein sequence and comprise Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33. Recent evidence suggests that different TspanC8/ADAM10 complexes have distinct substrates and that ADAM10 should not be regarded as a single scissor, but as six different TspanC8/ADAM10 scissor complexes. This review discusses the published evidence for this “six scissor” hypothesis and the therapeutic potential this offers.
Collapse
Affiliation(s)
- Neale Harrison
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (N.H.); (C.Z.K.)
| | - Chek Ziu Koo
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (N.H.); (C.Z.K.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Michael G. Tomlinson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (N.H.); (C.Z.K.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
- Correspondence: ; Tel.: +44-(0)121-414-2507
| |
Collapse
|
20
|
Shen W, Huang J, Wang Y. Biological Significance of NOTCH Signaling Strength. Front Cell Dev Biol 2021; 9:652273. [PMID: 33842479 PMCID: PMC8033010 DOI: 10.3389/fcell.2021.652273] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved NOTCH signaling displays pleotropic functions in almost every organ system with a simple signaling axis. Different from many other signaling pathways that can be amplified via kinase cascades, NOTCH signaling does not contain any intermediate to amplify signal. Thus, NOTCH signaling can be activated at distinct signaling strength levels, disruption of which leads to various developmental disorders. Here, we reviewed mechanisms establishing different NOTCH signaling strengths, developmental processes sensitive to NOTCH signaling strength perturbation, and transcriptional regulations influenced by NOTCH signaling strength changes. We hope this could add a new layer of diversity to explain the pleotropic functions of NOTCH signaling pathway.
Collapse
Affiliation(s)
- Wei Shen
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Jiaxin Huang
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Caron MMJ, Ripmeester EGJ, van den Akker G, Wijnands NKAP, Steijns J, Surtel DAM, Cremers A, Emans PJ, van Rhijn LW, Welting TJM. Discovery of bone morphogenetic protein 7-derived peptide sequences that attenuate the human osteoarthritic chondrocyte phenotype. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:247-261. [PMID: 33850953 PMCID: PMC8022858 DOI: 10.1016/j.omtm.2021.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/09/2021] [Indexed: 01/18/2023]
Abstract
Treatment of osteoarthritis (OA) is mainly symptomatic by alleviating pain to postpone total joint replacement. Bone morphogenetic protein 7 (BMP7) is a candidate morphogen for experimental OA treatment that favorably alters the chondrocyte and cartilage phenotype. Intra-articular delivery and sustained release of a recombinant growth factor for treating OA are challenging, whereas the use of peptide technology potentially circumvents many of these challenges. In this study, we screened a high-resolution BMP7 peptide library and discovered several overlapping peptide sequences from two regions in BMP7 with nanomolar bioactivity that attenuated the pathological OA chondrocyte phenotype. A single exposure of OA chondrocytes to peptides p[63-82] and p[113-132] ameliorated the OA chondrocyte phenotype for up to 8 days, and peptides were bioactive on chondrocytes in OA synovial fluid. Peptides p[63-82] and p[113-132] required NKX3-2 for their bioactivity on chondrocytes and provoke changes in SMAD signaling activity. The bioactivity of p[63-82] depended on specific evolutionary conserved sequence elements common to BMP family members. Intra-articular injection of a rat medial meniscal tear (MMT) model with peptide p[63-82] attenuated cartilage degeneration. Together, this study identified two regions in BMP7 from which bioactive peptides are able to attenuate the OA chondrocyte phenotype. These BMP7-derived peptides provide potential novel disease-modifying treatment options for OA.
Collapse
Affiliation(s)
- Marjolein M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Ellen G J Ripmeester
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Guus van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Nina K A P Wijnands
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Jessica Steijns
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Don A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.,Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Lodewijk W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.,Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.,Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| |
Collapse
|
22
|
Lodewijk GA, Fernandes DP, Vretzakis I, Savage JE, Jacobs FMJ. Evolution of Human Brain Size-Associated NOTCH2NL Genes Proceeds toward Reduced Protein Levels. Mol Biol Evol 2020; 37:2531-2548. [PMID: 32330268 PMCID: PMC7475042 DOI: 10.1093/molbev/msaa104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ever since the availability of genomes from Neanderthals, Denisovans, and ancient humans, the field of evolutionary genomics has been searching for protein-coding variants that may hold clues to how our species evolved over the last ∼600,000 years. In this study, we identify such variants in the human-specific NOTCH2NL gene family, which were recently identified as possible contributors to the evolutionary expansion of the human brain. We find evidence for the existence of unique protein-coding NOTCH2NL variants in Neanderthals and Denisovans which could affect their ability to activate Notch signaling. Furthermore, in the Neanderthal and Denisovan genomes, we find unusual NOTCH2NL configurations, not found in any of the modern human genomes analyzed. Finally, genetic analysis of archaic and modern humans reveals ongoing adaptive evolution of modern human NOTCH2NL genes, identifying three structural variants acting complementary to drive our genome to produce a lower dosage of NOTCH2NL protein. Because copy-number variations of the 1q21.1 locus, encompassing NOTCH2NL genes, are associated with severe neurological disorders, this seemingly contradicting drive toward low levels of NOTCH2NL protein indicates that the optimal dosage of NOTCH2NL may have not yet been settled in the human population.
Collapse
Affiliation(s)
- Gerrald A Lodewijk
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana P Fernandes
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Iraklis Vretzakis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics
| | - Frank M J Jacobs
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics
| |
Collapse
|
23
|
Zhou X, Chen Y, Ip FCF, Lai NCH, Li YYT, Jiang Y, Zhong H, Chen Y, Zhang Y, Ma S, Lo RMN, Cheung K, Tong EPS, Ko H, Shoai M, Mok KY, Hardy J, Mok VCT, Kwok TCY, Fu AKY, Ip NY. Genetic and polygenic risk score analysis for Alzheimer's disease in the Chinese population. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12074. [PMID: 32775599 PMCID: PMC7403835 DOI: 10.1002/dad2.12074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Dozens of Alzheimer's disease (AD)-associated loci have been identified in European-descent populations, but their effects have not been thoroughly investigated in the Hong Kong Chinese population. METHODS TaqMan array genotyping was performed for known AD-associated variants in a Hong Kong Chinese cohort. Regression analysis was conducted to study the associations of variants with AD-associated traits and biomarkers. Lasso regression was applied to establish a polygenic risk score (PRS) model for AD risk prediction. RESULTS SORL1 is associated with AD in the Hong Kong Chinese population. Meta-analysis corroborates the AD-protective effect of the SORL1 rs11218343 C allele. The PRS is developed and associated with AD risk, cognitive status, and AD-related endophenotypes. TREM2 H157Y might influence the amyloid beta 42/40 ratio and levels of immune-associated proteins in plasma. DISCUSSION SORL1 is associated with AD in the Hong Kong Chinese population. The PRS model can predict AD risk and cognitive status in this population.
Collapse
Affiliation(s)
- Xiaopu Zhou
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong KongChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdongChina
| | - Yu Chen
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdongChina
- The Brain Cognition and Brain Disease InstituteShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| | - Fanny C. F. Ip
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong KongChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdongChina
| | - Nicole C. H. Lai
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Yolanda Y. T. Li
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Yuanbing Jiang
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Huan Zhong
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Yuewen Chen
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdongChina
| | - Yulin Zhang
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdongChina
| | - Shuangshuang Ma
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdongChina
| | - Ronnie M. N. Lo
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Kit Cheung
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Estella P. S. Tong
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Ho Ko
- Division of NeurologyDepartment of Medicine and TherapeuticsLi Ka Shing Institute of Health SciencesSchool of Biomedical SciencesGerald Choa Neuroscience CenterFaculty of MedicineThe Chinese University of Hong KongShatinHong KongChina
| | - Maryam Shoai
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Kin Y. Mok
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong KongChina
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - John Hardy
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong KongChina
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Institute for Advanced StudyThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Vincent C. T. Mok
- Gerald Choa Neuroscience CentreLui Che Woo Institute of Innovative MedicineTherese Pei Fong Chow Research Centre for Prevention of DementiaDivision of NeurologyDepartment of Medicine and TherapeuticsThe Chinese University of Hong KongShatinHong KongChina
| | - Timothy C. Y. Kwok
- Therese Pei Fong Chow Research Centre for Prevention of DementiaDivision of GeriatricsDepartment of Medicine and TherapeuticsThe Chinese University of Hong KongShatinHong KongChina
| | - Amy K. Y. Fu
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong KongChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdongChina
| | - Nancy Y. Ip
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong KongChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdongChina
| |
Collapse
|
24
|
Vermeer JAF, Ient J, Markelc B, Kaeppler J, Barbeau LMO, Groot AJ, Muschel RJ, Vooijs MA. A lineage-tracing tool to map the fate of hypoxic tumour cells. Dis Model Mech 2020; 13:dmm044768. [PMID: 32571767 PMCID: PMC7406318 DOI: 10.1242/dmm.044768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Intratumoural hypoxia is a common characteristic of malignant treatment-resistant cancers. However, hypoxia-modification strategies for the clinic remain elusive. To date, little is known on the behaviour of individual hypoxic tumour cells in their microenvironment. To explore this issue in a spatial and temporally controlled manner, we developed a genetically encoded sensor by fusing the O2-labile hypoxia-inducible factor 1α (HIF-1α) protein to eGFP and a tamoxifen-regulated Cre recombinase. Under normoxic conditions, HIF-1α is degraded but, under hypoxia, the HIF-1α-GFP-Cre-ERT2 fusion protein is stabilised and in the presence of tamoxifen activates a tdTomato reporter gene that is constitutively expressed in hypoxic progeny. We visualise the random distribution of hypoxic tumour cells from hypoxic or necrotic regions and vascularised areas using immunofluorescence and intravital microscopy. Once tdTomato expression is induced, it is stable for at least 4 weeks. Using this system, we could show in vivo that the post-hypoxic cells were more proliferative than non-labelled cells. Our results demonstrate that single-cell lineage tracing of hypoxic tumour cells can allow visualisation of their behaviour in living tumours using intravital microscopy. This tool should prove valuable for the study of dissemination and treatment response of post-hypoxic tumour cells in vivo at single-cell resolution.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
MESH Headings
- Animals
- Biosensing Techniques
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Lineage
- Cell Proliferation
- Cell Tracking
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Heterografts
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Intravital Microscopy
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Fluorescence
- Necrosis
- Oxygen/metabolism
- Recombinant Proteins/metabolism
- Single-Cell Analysis
- Time Factors
- Tumor Hypoxia
- Tumor Microenvironment
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Jenny A F Vermeer
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Jonathan Ient
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Bostjan Markelc
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Jakob Kaeppler
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Lydie M O Barbeau
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Arjan J Groot
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Ruth J Muschel
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Marc A Vooijs
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
25
|
Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling. Cell Death Dis 2020; 11:98. [PMID: 32029735 PMCID: PMC7005019 DOI: 10.1038/s41419-020-2288-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/18/2023]
Abstract
Amyloid beta peptides (Aβ) proteins play a key role in vascular pathology in Alzheimer’s Disease (AD) including impairment of the blood–brain barrier and aberrant angiogenesis. Although previous work has demonstrated a pro-angiogenic role of Aβ, the exact mechanisms by which amyloid precursor protein (APP) processing and endothelial angiogenic signalling cascades interact in AD remain a largely unsolved problem. Here, we report that increased endothelial sprouting in human-APP transgenic mouse (TgCRND8) tissue is dependent on β-secretase (BACE1) processing of APP. Higher levels of Aβ processing in TgCRND8 tissue coincides with decreased NOTCH3/JAG1 signalling, overproduction of endothelial filopodia and increased numbers of vascular pericytes. Using a novel in vitro approach to study sprouting angiogenesis in TgCRND8 organotypic brain slice cultures (OBSCs), we find that BACE1 inhibition normalises excessive endothelial filopodia formation and restores NOTCH3 signalling. These data present the first evidence for the potential of BACE1 inhibition as an effective therapeutic target for aberrant angiogenesis in AD.
Collapse
|
26
|
Young KZ, Lee SJ, Zhang X, Cartee NMP, Torres M, Keep SG, Gabbireddy SR, Fontana JL, Qi L, Wang MM. NOTCH3 is non-enzymatically fragmented in inherited cerebral small-vessel disease. J Biol Chem 2020; 295:1960-1972. [PMID: 31901894 DOI: 10.1074/jbc.ra119.007724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
The small-vessel disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) arises from mutations in the human gene encoding NOTCH3 and results in vascular smooth muscle cell degeneration, stroke, and dementia. However, the structural changes in NOTCH3 involved in CADASIL etiology are unclear. Here, we discovered site-specific fragmentation of NOTCH3 protein in pathologically affected vessels of human CADASIL-affected brains. EM-based experiments to pinpoint NOTCH3 localization in these brains indicated accumulation of NOTCH3 fragmentation products in the basement membrane, collagen fibers, and granular osmiophilic material within the cerebrovasculature. Using antibodies generated against a disease-linked neo-epitope found in degenerating vascular medium of CADASIL brains, we mapped the site of fragmentation to the NOTCH3 N terminus at the peptide bond joining Asp80 and Pro81 Cleavage at this site was predicted to separate the first epidermal growth factor (EGF)-like domain from the remainder of the protein. We found that the cleavage product from this fragmentation event is released into the conditioned medium of cells expressing recombinant NOTCH3 fragments. Mutagenesis of Pro81 abolished the fragmentation, and low pH and reducing conditions enhanced NOTCH3 proteolysis. Furthermore, substitution of multiple cysteine residues of the NOTCH3 N terminus activated proteolytic release of the first EGF-like repeat, suggesting that the elimination of multiple disulfide bonds in NOTCH3 accelerates its fragmentation. These characteristics link the signature molecular genetic alterations present in individuals with CADASIL to a post-translational protein alteration in degenerating brain arteries. The cellular consequences of these pathological NOTCH3 fragments are an important area for future investigation.
Collapse
Affiliation(s)
- Kelly Z Young
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | | | - Mauricio Torres
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Simon G Keep
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | | | - Julia L Fontana
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622; Neurology Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan 48105.
| |
Collapse
|
27
|
Eschenbrenner E, Jouannet S, Clay D, Chaker J, Boucheix C, Brou C, Tomlinson MG, Charrin S, Rubinstein E. TspanC8 tetraspanins differentially regulate ADAM10 endocytosis and half-life. Life Sci Alliance 2020; 3:e201900444. [PMID: 31792032 PMCID: PMC6892437 DOI: 10.26508/lsa.201900444] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022] Open
Abstract
ADAM10 is a transmembrane metalloprotease that is essential for development and tissue homeostasis. It cleaves the ectodomain of many proteins, including amyloid precursor protein, and plays an essential role in Notch signaling. ADAM10 associates with six members of the tetraspanin superfamily referred to as TspanC8 (Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33), which regulate its exit from the endoplasmic reticulum and its substrate selectivity. We now show that ADAM10, Tspan5, and Tspan15 influence each other's expression level. Notably, ADAM10 undergoes faster endocytosis in the presence of Tspan5 than in the presence of Tspan15, and Tspan15 stabilizes ADAM10 at the cell surface yielding high expression levels. Reciprocally, ADAM10 stabilizes Tspan15 at the cell surface, indicating that it is the Tspan15/ADAM10 complex that is retained at the plasma membrane. Chimeric molecules indicate that the cytoplasmic domains of these tetraspanins contribute to their opposite action on ADAM10 trafficking and Notch signaling. In contrast, an unusual palmitoylation site at the end of Tspan15 C-terminus is dispensable. Together, these findings uncover a new level of ADAM10 regulation by TspanC8 tetraspanins.
Collapse
Affiliation(s)
- Etienne Eschenbrenner
- Inserm, U935, Villejuif, France
- Université Paris-Sud, Institut André Lwoff, Villejuif, France
| | - Stéphanie Jouannet
- Inserm, U935, Villejuif, France
- Université Paris-Sud, Institut André Lwoff, Villejuif, France
| | - Denis Clay
- Université Paris-Sud, Institut André Lwoff, Villejuif, France
- Inserm, Unité Mixte de Service UMS33, Villejuif, France
| | - Joëlle Chaker
- Inserm, U935, Villejuif, France
- Université Paris-Sud, Institut André Lwoff, Villejuif, France
| | - Claude Boucheix
- Inserm, U935, Villejuif, France
- Université Paris-Sud, Institut André Lwoff, Villejuif, France
| | - Christel Brou
- Institut Pasteur, Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Paris, France
| | - Michael G Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stéphanie Charrin
- Inserm, U935, Villejuif, France
- Université Paris-Sud, Institut André Lwoff, Villejuif, France
| | - Eric Rubinstein
- Inserm, U935, Villejuif, France
- Université Paris-Sud, Institut André Lwoff, Villejuif, France
| |
Collapse
|
28
|
Giuranno L, Wansleeben C, Iannone R, Arathoon L, Hounjet J, Groot AJ, Vooijs M. NOTCH signaling promotes the survival of irradiated basal airway stem cells. Am J Physiol Lung Cell Mol Physiol 2019; 317:L414-L423. [DOI: 10.1152/ajplung.00197.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Radiation-induced lung injury to normal airway epithelium is a frequent side-effect and dose-limiting factor in radiotherapy of tumors in the thoracic cavity. NOTCH signaling plays key roles in self-renewal and differentiation of upper airway basal lung stem cells during development, and the NOTCH pathway is frequently deregulated in lung cancer. In preclinical lung cancer models, NOTCH inhibition was shown to improve the radiotherapy response by targeting tumor stem cells, but the effects in combination with irradiation on normal lung stem cells are unknown. NOTCH/γ-secretase inhibitors are potent clinical candidates to block NOTCH function in tumors, but their clinical implementation has been hampered by normal tissue side-effects. Here we show that NOTCH signaling is active in primary human- and murine-derived airway epithelial stem cell models and when combined with radiation NOTCH inhibition provokes a decrease in S-phase and increase in G1-phase arrest. We show that NOTCH inhibition in irradiated lung basal stem cells leads to a more potent activation of the DNA damage checkpoint kinases pATM and pCHK2 and results in an increased level of residual 53BP1 foci in irradiated lung basal stem cells reducing their capacity for self-renewal. The effects are recapitulated in ex vivo cultured lung basal stem cells after in vivo whole thorax irradiation and NOTCH inhibition. These results highlight the importance of studying normal tissue effects that may counteract the therapeutic benefit in the use of NOTCH/γ-secretase inhibitors in combination with radiation for antitumor treatment.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Carolien Wansleeben
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Raffaella Iannone
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Louise Arathoon
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Judith Hounjet
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Arjan J. Groot
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
29
|
Shiraishi T, Sakaitani M, Otsuguro S, Maenaka K, Suzuki T, Nakaya T. Novel Notch signaling inhibitor NSI‑1 suppresses nuclear translocation of the Notch intracellular domain. Int J Mol Med 2019; 44:1574-1584. [PMID: 31364722 DOI: 10.3892/ijmm.2019.4280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/02/2019] [Indexed: 11/06/2022] Open
Abstract
The Notch receptor serves a fundamental role in the regulation of cell fate determination through intracellular signal transmission. Mutation of the Notch receptor results in abnormal active signaling, leading to the development of diseases involving abnormal cell growth, including malignant tumors. Therefore, the Notch signaling pathway is a useful pharmacological target for the treatment of cancer. In the present study, a compound screening system was designed to identify inhibitors of the Notch signaling targeting Notch intracellular domain (NICD). A total of 9,600 compounds were analyzed using the Michigan Cancer Foundation‑7 (MCF7) human breast adenocarcinoma cell line and the SH‑SY5Y human neuroblastoma cell line with the reporter assay system using an artificial protein encoding a partial Notch carboxyl‑terminal fragment fused to the Gal4 DNA‑binding domain. The molecular mechanism underlying the inhibition of Notch signaling by a hit compound was further validated using biochemical and cell biological approaches. Using the screening system, a potential candidate, Notch signaling inhibitor‑1 (NSI‑1), was isolated which showed 50% inhibition at 6.1 µM in an exogenous Notch signaling system. In addition, NSI‑1 suppressed the nuclear translocation of NICD and endogenous gene expression of hairy and enhancer of split‑1, indicating that NSI‑1 specifically targets Notch. Notably, NSI‑1 suppressed the cell viability of MCF7 cells and another human breast adenocarcinoma cell line, MDA‑MB‑231 exhibiting constitutive and high Notch signaling activity, whereas no significant effect was observed in the SH‑SY5Y cells bearing a lower Notch signaling activity. NSI‑1 significantly suppressed the viability of SH‑SY5Y cells expressing exogenous human Notch1. These results indicate that NSI‑1 is a novel Notch signaling inhibitor and suggest its potential as a useful drug for the treatment of diseases induced by constitutively active Notch signaling.
Collapse
Affiliation(s)
- Takaya Shiraishi
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060‑0812, Japan
| | - Masahiro Sakaitani
- Lilac Pharma Inc., Hokkaido Collaboration Center, Sapporo 001‑0021, Japan
| | - Satoko Otsuguro
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo 060‑0812, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo 060‑0812, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060‑0812, Japan
| | - Tadashi Nakaya
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060‑0812, Japan
| |
Collapse
|
30
|
Disruption of NOTCH signaling by a small molecule inhibitor of the transcription factor RBPJ. Sci Rep 2019; 9:10811. [PMID: 31346210 PMCID: PMC6658660 DOI: 10.1038/s41598-019-46948-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
NOTCH plays a pivotal role during normal development and in congenital disorders and cancer. γ-secretase inhibitors are commonly used to probe NOTCH function, but also block processing of numerous other proteins. We discovered a new class of small molecule inhibitor that disrupts the interaction between NOTCH and RBPJ, which is the main transcriptional effector of NOTCH signaling. RBPJ Inhibitor-1 (RIN1) also blocked the functional interaction of RBPJ with SHARP, a scaffold protein that forms a transcriptional repressor complex with RBPJ in the absence of NOTCH signaling. RIN1 induced changes in gene expression that resembled siRNA silencing of RBPJ rather than inhibition at the level of NOTCH itself. Consistent with disruption of NOTCH signaling, RIN1 inhibited the proliferation of hematologic cancer cell lines and promoted skeletal muscle differentiation from C2C12 myoblasts. Thus, RIN1 inhibits RBPJ in its repressing and activating contexts, and can be exploited for chemical biology and therapeutic applications.
Collapse
|
31
|
Negri VA, Logtenberg MEW, Renz LM, Oules B, Walko G, Watt FM. Delta-like 1-mediated cis-inhibition of Jagged1/2 signalling inhibits differentiation of human epidermal cells in culture. Sci Rep 2019; 9:10825. [PMID: 31346203 PMCID: PMC6658703 DOI: 10.1038/s41598-019-47232-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022] Open
Abstract
Epidermal homeostasis depends on a balance between self-renewal of stem cells and terminal differentiation of their progeny. Notch signalling is known to play a role in epidermal stem cell patterning and differentiation. However, the molecular mechanisms are incompletely understood. Here we demonstrate dynamic patterns of Notch ligand and receptor expression in cultured human epidermis. Notch2 and 3 act together to promote differentiation, while Notch1 decreases stem cell proliferation. The Notch ligand Jagged1 triggers differentiation when presented on an adhesive substrate or on polystyrene beads and over-rides the differentiation inhibitory effect of cell spreading. In contrast, Delta-like 1 (Dll1) overexpression abrogates the pro-differentiation effect of Jagged1 in a cell autonomous fashion. We conclude that Dll1 expression by stem cells not only stimulates differentiation of neighbouring cells in trans, but also inhibits differentiation cell autonomously. These results highlight the distinct roles of different Notch receptors and ligands in controlling epidermal homeostasis.
Collapse
Affiliation(s)
- Victor A Negri
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK
| | - Meike E W Logtenberg
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK.,Division of Immunology, The Netherlands Cancer Institute, Postbus 90203, 1006 BE, Amsterdam, The Netherlands
| | - Lisa M Renz
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK.,Research Institute for Applied Bioanalytics and Drug Development, IMC University of Applied Sciences, A-3500, Krems an der Donau, Austria
| | - Bénédicte Oules
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK
| | - Gernot Walko
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK. .,Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK.
| |
Collapse
|
32
|
Šimić G, Španić E, Langer Horvat L, Hof PR. Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:99-145. [PMID: 31699331 DOI: 10.1016/bs.pmbts.2019.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is only partly understood. This is the probable reason why significant efforts to treat or prevent AD have been unsuccessful. In fact, as of April 2019, there have been 2094 studies registered for AD on the clinicaltrials.gov U.S. National Library of Science web page, of which only a few are still ongoing. In AD, abnormal accumulation of amyloid and tau proteins in the brain are thought to begin 10-20 years before the onset of overt symptoms, suggesting that interventions designed to prevent pathological amyloid and tau accumulation may be more effective than attempting to reverse a pathology once it is established. However, to be successful, such early interventions need to be selectively administered to individuals who will likely develop the disease long before the symptoms occur. Therefore, it is critical to identify early biomarkers that are strongly predictive of AD. Currently, patients are diagnosed on the basis of a variety of clinical scales, neuropsychological tests, imaging and laboratory modalities, but definitive diagnosis can be made only by postmortem assessment of underlying neuropathology. People suffering from AD thus may be misdiagnosed clinically with other primary causes of dementia, and vice versa, thereby also reducing the power of clinical trials. The amyloid cascade hypothesis fits well for the familial cases of AD with known mutations, but is not sufficient to explain sporadic, late-onset AD (LOAD) that accounts for over 95% of all cases. Since the earliest descriptions of AD there have been neuropathological features described other than amyloid plaques (AP) and neurofibrillary tangles (NFT), most notably gliosis and neuroinflammation. However, it is only recently that genetic and experimental studies have implicated microglial dysfunction as a causal factor for AD, as opposed to a merely biological response of its accumulation around AP. Additionally, many studies have suggested the importance of changes in blood-brain barrier (BBB) permeability in the pathogenesis of AD. Here we suggest how these less investigated aspects of the disease that have gained increased attention in recent years may contribute mechanistically to the development of lesions and symptoms of AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
33
|
Genz B, Coleman MA, Irvine KM, Kutasovic JR, Miranda M, Gratte FD, Tirnitz-Parker JEE, Olynyk JK, Calvopina DA, Weis A, Cloonan N, Robinson H, Hill MM, Al-Ejeh F, Ramm GA. Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-β-induced collagen expression in hepatic stellate cells. Sci Rep 2019; 9:8541. [PMID: 31189969 PMCID: PMC6561916 DOI: 10.1038/s41598-019-44865-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
During chronic liver injury hepatic stellate cells (HSCs), the principal source of extracellular matrix in the fibrotic liver, transdifferentiate into pro-fibrotic myofibroblast-like cells - a process potentially regulated by microRNAs (miRNAs). Recently, we found serum miRNA-25-3p (miR-25) levels were upregulated in children with Cystic Fibrosis (CF) without liver disease, compared to children with CF-associated liver disease and healthy individuals. Here we examine the role of miR-25 in HSC biology. MiR-25 was detected in the human HSC cell line LX-2 and in primary murine HSCs, and increased with culture-induced activation. Transient overexpression of miR-25 inhibited TGF-β and its type 1 receptor (TGFBR1) mRNA expression, TGF-β-induced Smad2 phosphorylation and subsequent collagen1α1 induction in LX-2 cells. Pull-down experiments with biotinylated miR-25 revealed Notch signaling (co-)activators ADAM-17 and FKBP14 as miR-25 targets in HSCs. NanoString analysis confirmed miR-25 regulation of Notch- and Wnt-signaling pathways. Expression of Notch signaling pathway components and endogenous Notch1 signaling was downregulated in miR-25 overexpressing LX-2 cells, as were components of Wnt signaling such as Wnt5a. We propose that miR-25 acts as a negative feedback anti-fibrotic control during HSC activation by reducing the reactivity of HSCs to TGF-β-induced collagen expression and modulating the cross-talk between Notch, Wnt and TGF-β signaling.
Collapse
Affiliation(s)
- Berit Genz
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Mater Research, Translational Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Miranda A Coleman
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jamie R Kutasovic
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Personalised Medicine Team, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mariska Miranda
- Personalised Medicine Team, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Francis D Gratte
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Janina E E Tirnitz-Parker
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - John K Olynyk
- Department of Gastroenterology & Hepatology, Fiona Stanley Fremantle Hospital Group, Murdoch, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Diego A Calvopina
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anna Weis
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicole Cloonan
- Genomic Biology Lab, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Harley Robinson
- Precision & Systems Biomedicine, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle M Hill
- Precision & Systems Biomedicine, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fares Al-Ejeh
- Personalised Medicine Team, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. .,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
34
|
Xiu MX, Liu YM. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res 2019; 9:837-854. [PMID: 31218097 PMCID: PMC6556604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023] Open
Abstract
Deregulated Notch signaling is a key factor thought to facilitate the stem-like proliferation of cancer cells, thereby facilitating disease progression. Four subtypes of Notch receptor have been described to date, with each playing a distinct role in cancer development and progression, therefore warranting a careful and comprehensive examination of the targeting of each receptor subtype in the context of oncogenesis. Clinical efforts to translate the DAPT, which blocks Notch signaling, have been unsuccessful due to a combination of serious gastrointestinal side effects and a lack of complete blocking efficacy. There is therefore a clear need to identify better therapeutic strategies for targeting and manipulating Notch signaling. Notch2 is a Notch receptor that is commonly overexpressed in a range of cancers, and which is linked to a unique oncogenic mechanism. Successful efforts to block Notch2 signaling will depend upon doing so both efficiently and specifically in patients. As such, in the present review we will explore the role of Notch2 signaling in the development and progression of cancer, and we will assess agents and strategies with the potential to effectively disrupt Notch2 signaling and thereby yield novel cancer treatment regimens.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University Nanchang, Jiangxi, China
| | - Yuan-Meng Liu
- Medical School of Nanchang University Nanchang, Jiangxi, China
| |
Collapse
|
35
|
Othman Z, Fernandes H, Groot AJ, Luider TM, Alcinesio A, Pereira DDM, Guttenplan APM, Yuan H, Habibovic P. The role of ENPP1/PC-1 in osteoinduction by calcium phosphate ceramics. Biomaterials 2019; 210:12-24. [PMID: 31048198 DOI: 10.1016/j.biomaterials.2019.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
In the past decade, calcium phosphate (CaP) ceramics have emerged as alternatives to autologous bone grafts for the treatment of large, critical-sized bone defects. In order to be effective in the regeneration of such defects, ceramics must show osteoinductive behaviour, defined as the ability to induce de novo heterotopic bone formation. While a set of osteoinductive CaP ceramics has been developed, the exact processes underlying osteoinduction, and the role of the physical and chemical properties of the ceramics, remain largely unknown. Previous studies have focused on the role of the transcriptome to shed light on the mechanism of osteoinduction at the mRNA level. To complement these studies, a proteomic analysis was performed to study the behaviour of hMSCs on osteoinductive and non-osteoinductive CaPs. The results of this analysis suggest that plasma cell glycoprotein 1 (PC-1), encoded by the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene, plays a key role in the process of osteoinduction by CaP ceramics. Validation experiments have confirmed that indeed, the mRNA expression of ENPP1 and the production of PC-1 are higher on osteoinductive than on non-osteoinductive CaP ceramics, a trend that was also observed for other osteogenic markers such as bone morphogenetic protein 2 (BMP2) and osteopontin (OPN), but not for alkaline phosphatase (ALP). Our results also showed that the expression of PC-1 is restricted to those cells which are in direct contact with the CaP ceramic surface, plausibly due to the localised depletion of calcium and inorganic phosphate ions from the supersaturated cell culture medium as CaP crystallises on the ceramic surface. Replicating the surface of the osteoinductive ceramic in polystyrene resulted in a significant decrease in ENPP1 expression, suggesting that surface structural properties alone are not sufficient to induce ENPP1 expression. Finally, knocking down ENPP1 expression in hMSCs resulted in increased BMP2 expression, both at the mRNA and protein level, suggesting that ENPP1 is a negative regulator of BMP-2 signalling. Taken together, this study shows, for the first time, that ENPP1/PC-1 plays an important role in CaP-induced osteogenic differentiation of hMSCs and thus possibly osteoinduction by CaP ceramics. Furthermore, we have identified a crucial role for the interfacial (chemical) events occurring on the CaP ceramic surface in the process of osteoinduction. This knowledge can contribute to the development of new bone graft substitutes, with improved osteoinductive potential.
Collapse
Affiliation(s)
- Ziryan Othman
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Hugo Fernandes
- Faculty of Medicine, University of Coimbra, Health Science Campus, Central Unit, Azinhaga de Santa Comba, 3000-354, Coimbra, Portugal
| | - Arjan J Groot
- Department of Radiation Oncology (MaastRO), GROW - School for Oncology & Developmental Biology, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Theo M Luider
- Laboratory of Neuro-Oncology and Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, the Netherlands
| | - Alessandro Alcinesio
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, OX1 3TA, Oxford, UK
| | - Daniel de Melo Pereira
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Alexander P M Guttenplan
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Huipin Yuan
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
36
|
Sokol DK, Maloney B, Westmark CJ, Lahiri DK. Novel Contribution of Secreted Amyloid-β Precursor Protein to White Matter Brain Enlargement in Autism Spectrum Disorder. Front Psychiatry 2019; 10:165. [PMID: 31024350 PMCID: PMC6469489 DOI: 10.3389/fpsyt.2019.00165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
Abstract
The most replicated neuroanatomical finding in autism is the tendency toward brain overgrowth, especially in younger children. Research shows that both gray and white matter are enlarged. Proposed mechanisms underlying brain enlargement include abnormal inflammatory and neurotrophic signals that lead to excessive, aberrant dendritic connectivity via disrupted pruning and cell adhesion, and enlargement of white matter due to excessive gliogenesis and increased myelination. Amyloid-β protein precursor (βAPP) and its metabolites, more commonly associated with Alzheimer's disease (AD), are also dysregulated in autism plasma and brain tissue samples. This review highlights findings that demonstrate how one βAPP metabolite, secreted APPα, and the ADAM family α-secretases, may lead to increased brain matter, with emphasis on increased white matter as seen in autism. sAPPα and the ADAM family α-secretases contribute to the anabolic, non-amyloidogenic pathway, which is in contrast to the amyloid (catabolic) pathway known to contribute to Alzheimer disease. The non-amyloidogenic pathway could produce brain enlargement via genetic mechanisms affecting mRNA translation and polygenic factors that converge on molecular pathways (mitogen-activated protein kinase/MAPK and mechanistic target of rapamycin/mTOR), promoting neuroinflammation. A novel mechanism linking the non-amyloidogenic pathway to white matter enlargement is proposed: α-secretase and/or sAPPα, activated by ERK receptor signaling activates P13K/AKt/mTOR and then Rho GTPases favoring myelination via oligodendrocyte progenitor cell (OPC) activation of cofilin. Applying known pathways in AD to autism should allow further understanding and provide options for new drug targets.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Pediatrics Section, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan Maloney
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
| | - Debomoy K. Lahiri
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
37
|
Steinbusch MMF, Caron MMJ, Surtel DAM, van den Akker GGH, van Dijk PJ, Friedrich F, Zabel B, van Rhijn LW, Peffers MJ, Welting TJM. The antiviral protein viperin regulates chondrogenic differentiation via CXCL10 protein secretion. J Biol Chem 2019; 294:5121-5136. [PMID: 30718282 PMCID: PMC6442052 DOI: 10.1074/jbc.ra119.007356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/29/2019] [Indexed: 01/10/2023] Open
Abstract
Viperin (also known as radical SAM domain–containing 2 (RSAD2)) is an interferon-inducible and evolutionary conserved protein that participates in the cell's innate immune response against a number of viruses. Viperin mRNA is a substrate for endoribonucleolytic cleavage by RNase mitochondrial RNA processing (MRP) and mutations in the RNase MRP small nucleolar RNA (snoRNA) subunit of the RNase MRP complex cause cartilage-hair hypoplasia (CHH), a human developmental condition characterized by metaphyseal chondrodysplasia and severe dwarfism. It is unknown how CHH-pathogenic mutations in RNase MRP snoRNA interfere with skeletal development, and aberrant processing of RNase MRP substrate RNAs is thought to be involved. We hypothesized that viperin plays a role in chondrogenic differentiation. Using immunohistochemistry, real-time quantitative PCR, immunoblotting, ELISA, siRNA-mediated gene silencing, plasmid-mediated gene overexpression, label-free MS proteomics, and promoter reporter bioluminescence assays, we discovered here that viperin is expressed in differentiating chondrocytic cells and regulates their protein secretion and the outcome of chondrogenic differentiation by influencing transforming growth factor β (TGF-β)/SMAD family 2/3 (SMAD2/3) activity via C-X-C motif chemokine ligand 10 (CXCL10). Of note, we observed disturbances in this viperin–CXCL10–TGF-β/SMAD2/3 axis in CHH chondrocytic cells. Our results indicate that the antiviral protein viperin controls chondrogenic differentiation by influencing secretion of soluble proteins and identify a molecular route that may explain impaired chondrogenic differentiation of cells from individuals with CHH.
Collapse
Affiliation(s)
- Mandy M F Steinbusch
- From the Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery and
| | - Marjolein M J Caron
- From the Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery and
| | - Don A M Surtel
- From the Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery and
| | | | - Paul J van Dijk
- the Department of Anatomy and Embryology, Maastricht University, NL-6202 AZ Maastricht, The Netherlands
| | - Franziska Friedrich
- the University Heart Centre Freiburg, Faculty of Medicine, University of Freiburg, Institute for Experimental Cardiovascular Medicine, 79110 Freiburg, Germany
| | - Bernhard Zabel
- the Medical Faculty, Otto van Guericke University of Magdeburg, 39106 Magdeburg, Germany, and
| | - Lodewijk W van Rhijn
- From the Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery and
| | - Mandy J Peffers
- the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Tim J M Welting
- From the Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery and
| |
Collapse
|
38
|
Alabi RO, Farber G, Blobel CP. Intriguing Roles for Endothelial ADAM10/Notch Signaling in the Development of Organ-Specific Vascular Beds. Physiol Rev 2019; 98:2025-2061. [PMID: 30067156 DOI: 10.1152/physrev.00029.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vasculature is a remarkably interesting, complex, and interconnected organ. It provides a conduit for oxygen and nutrients, filtration of waste products, and rapid communication between organs. Much remains to be learned about the specialized vascular beds that fulfill these diverse, yet vital functions. This review was prompted by the discovery that Notch signaling in mouse endothelial cells is crucial for the development of specialized vascular beds found in the heart, kidneys, liver, intestines, and bone. We will address the intriguing questions raised by the role of Notch signaling and that of its regulator, the metalloprotease ADAM10, in the development of specialized vascular beds. We will cover fundamentals of ADAM10/Notch signaling, the concept of Notch-dependent cell fate decisions, and how these might govern the development of organ-specific vascular beds through angiogenesis or vasculogenesis. We will also consider common features of the affected vessels, including the presence of fenestra or sinusoids and their occurrence in portal systems with two consecutive capillary beds. We hope to stimulate further discussion and study of the role of ADAM10/Notch signaling in the development of specialized vascular structures, which might help uncover new targets for the repair of vascular beds damaged in conditions like coronary artery disease and glomerulonephritis.
Collapse
Affiliation(s)
- Rolake O Alabi
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Gregory Farber
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Carl P Blobel
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| |
Collapse
|
39
|
Mollen EWJ, Ient J, Tjan-Heijnen VCG, Boersma LJ, Miele L, Smidt ML, Vooijs MAGG. Moving Breast Cancer Therapy up a Notch. Front Oncol 2018; 8:518. [PMID: 30515368 PMCID: PMC6256059 DOI: 10.3389/fonc.2018.00518] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the second most common malignancy, worldwide. Treatment decisions are based on tumor stage, histological subtype, and receptor expression and include combinations of surgery, radiotherapy, and systemic treatment. These, together with earlier diagnosis, have resulted in increased survival. However, initial treatment efficacy cannot be guaranteed upfront, and these treatments may come with (long-term) serious adverse effects, negatively affecting a patient's quality of life. Gene expression-based tests can accurately estimate the risk of recurrence in early stage breast cancers. Disease recurrence correlates with treatment resistance, creating a major need to resensitize tumors to treatment. Notch signaling is frequently deregulated in cancer and is involved in treatment resistance. Preclinical research has already identified many combinatory therapeutic options where Notch involvement enhances the effectiveness of radiotherapy, chemotherapy or targeted therapies for breast cancer. However, the benefit of targeting Notch has remained clinically inconclusive. In this review, we summarize the current knowledge on targeting the Notch pathway to enhance current treatments for breast cancer and to combat treatment resistance. Furthermore, we propose mechanisms to further exploit Notch-based therapeutics in the treatment of breast cancer.
Collapse
Affiliation(s)
- Erik W J Mollen
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre+, Maastricht, Netherlands.,Division of Medical Oncology, Department of Surgery, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Jonathan Ient
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Vivianne C G Tjan-Heijnen
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Liesbeth J Boersma
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Marjolein L Smidt
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Division of Medical Oncology, Department of Surgery, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Marc A G G Vooijs
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
40
|
Sosa Iglesias V, Theys J, Groot AJ, Barbeau LMO, Lemmens A, Yaromina A, Losen M, Houben R, Dubois L, Vooijs M. Synergistic Effects of NOTCH/γ-Secretase Inhibition and Standard of Care Treatment Modalities in Non-small Cell Lung Cancer Cells. Front Oncol 2018; 8:460. [PMID: 30464927 PMCID: PMC6234899 DOI: 10.3389/fonc.2018.00460] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Lung cancer is the leading cause of cancer death worldwide. More effective treatments are needed to increase durable responses and prolong patient survival. Standard of care treatment for patients with non-operable stage III-IV NSCLC is concurrent chemotherapy and radiation. An activated NOTCH signaling pathway is associated with poor outcome and treatment resistance in non-small cell lung cancer (NSCLC). NOTCH/γ-secretase inhibitors have been effective in controlling tumor growth in preclinical models but the therapeutic benefit of these inhibitors as monotherapy in patients has been limited so far. Because NOTCH signaling has been implicated in treatment resistance, we hypothesized that by combining NOTCH inhibitors with chemotherapy and radiotherapy this could result in an increased therapeutic effect. A direct comparison of the effects of NOTCH inhibition when combined with current treatment combinations for NSCLC is lacking. Methods: Using monolayer growth assays, we screened 101 FDA-approved drugs from the Cancer Therapy Evaluation Program alone, or combined with radiation, in the H1299 and H460 NSCLC cell lines to identify potent treatment interactions. Subsequently, using multicellular three-dimensional tumor spheroid assays, we tested a selection of drugs used in clinical practice for NSCLC patients, and combined these with a small molecule inhibitor, currently being tested in clinical trials, of the NOTCH pathway (BMS-906024) alone, or in combination with radiation, and measured specific spheroid growth delay (SSGD). Statistical significance was determined by one-way ANOVA with post-hoc Bonferroni correction, and synergism was assessed using two-way ANOVA. Results: Monolayer assays in H1299 and H460 suggest that 21 vs. 5% were synergistic, and 17 vs. 11% were additive chemoradiation interactions, respectively. In H1299 tumor spheroids, significant SSGD was obtained for cisplatin, etoposide, and crizotinib, which increased significantly after the addition of the NOTCH inhibitor BMS-906024 (but not for paclitaxel and pemetrexed), and especially in triple combination with radiation. Synergistic interactions were observed when BMS-906024 was combined with chemoradiation (cisplatin, paclitaxel, docetaxel, and crizotinib). Similar results were observed for H460 spheroids using paclitaxel or crizotinib in dual combination treatment with NOTCH inhibition and triple with radiation. Conclusions: Our findings point to novel synergistic combinations of NOTCH inhibition and chemoradiation that should be tested in NSCLC in vivo models for their ability to achieve an improved therapeutic ratio.
Collapse
Affiliation(s)
- Venus Sosa Iglesias
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jan Theys
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Arjan J Groot
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lydie M O Barbeau
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Alyssa Lemmens
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ala Yaromina
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mario Losen
- Department of Psychology and Neuropsychology, MHeNS, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ruud Houben
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands.,MAASTRO Clinic, Maastricht, Netherlands
| | - Ludwig Dubois
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands.,MAASTRO Clinic, Maastricht, Netherlands
| |
Collapse
|
41
|
Kim J, Han D, Byun SH, Kwon M, Cho JY, Pleasure SJ, Yoon K. Ttyh1 regulates embryonic neural stem cell properties by enhancing the Notch signaling pathway. EMBO Rep 2018; 19:embr.201745472. [PMID: 30177553 DOI: 10.15252/embr.201745472] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Despite growing evidence linking Drosophila melanogaster tweety-homologue 1 (Ttyh1) to normal mammalian brain development and cell proliferation, its exact role has not yet been determined. Here, we show that Ttyh1 is required for the maintenance of neural stem cell (NSC) properties as assessed by neurosphere formation and in vivo analyses of cell localization after in utero electroporation. We find that enhanced Ttyh1-dependent stemness of NSCs is caused by enhanced γ-secretase activity resulting in increased levels of Notch intracellular domain (NICD) production and activation of Notch targets. This is a unique function of Ttyh1 among all other Ttyh family members. Molecular analyses revealed that Ttyh1 binds to the regulator of γ-secretase activity Rer1 in the endoplasmic reticulum and thereby destabilizes Rer1 protein levels. This is the key step for Ttyh1-dependent enhancement of γ-secretase activity, as Rer1 overexpression completely abolishes the effects of Ttyh1 on NSC maintenance. Taken together, these findings indicate that Ttyh1 plays an important role during mammalian brain development by positively regulating the Notch signaling pathway through the downregulation of Rer1.
Collapse
Affiliation(s)
- Juwan Kim
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Dasol Han
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Sung-Hyun Byun
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Mookwang Kwon
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jae Youl Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Samuel J Pleasure
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Keejung Yoon
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
42
|
Arasada RR, Shilo K, Yamada T, Zhang J, Yano S, Ghanem R, Wang W, Takeuchi S, Fukuda K, Katakami N, Tomii K, Ogushi F, Nishioka Y, Talabere T, Misra S, Duan W, Fadda P, Rahman MA, Nana-Sinkam P, Evans J, Amann J, Tchekneva EE, Dikov MM, Carbone DP. Notch3-dependent β-catenin signaling mediates EGFR TKI drug persistence in EGFR mutant NSCLC. Nat Commun 2018; 9:3198. [PMID: 30097569 PMCID: PMC6090531 DOI: 10.1038/s41467-018-05626-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/02/2018] [Indexed: 12/29/2022] Open
Abstract
EGFR tyrosine kinase inhibitors cause dramatic responses in EGFR-mutant lung cancer, but resistance universally develops. The involvement of β-catenin in EGFR TKI resistance has been previously reported, however, the precise mechanism by which β-catenin activation contributes to EGFR TKI resistance is not clear. Here, we show that EGFR inhibition results in the activation of β-catenin signaling in a Notch3-dependent manner, which facilitates the survival of a subset of cells that we call "adaptive persisters". We previously reported that EGFR-TKI treatment rapidly activates Notch3, and here we describe the physical association of Notch3 with β-catenin, leading to increased stability and activation of β-catenin. We demonstrate that the combination of EGFR-TKI and a β-catenin inhibitor inhibits the development of these adaptive persisters, decreases tumor burden, improves recurrence free survival, and overall survival in xenograft models. These results supports combined EGFR-TKI and β-catenin inhibition in patients with EGFR mutant lung cancer.
Collapse
Affiliation(s)
- Rajeswara Rao Arasada
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Tadaaki Yamada
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, 920-0934, Japan
| | - Jianying Zhang
- Center for Biostatistics, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Seiji Yano
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, 920-0934, Japan
| | - Rashelle Ghanem
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Walter Wang
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Shinji Takeuchi
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, 920-0934, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, 920-0934, Japan
| | - Nobuyuki Katakami
- Division of Integrated Oncology, Institute of Biomedical Research and Innovation, Kobe, 650-0047, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, 650-0047, Japan
| | - Fumitaka Ogushi
- Division of Pulmonary Medicine, National Hospital Organization National Kochi Hospital, Kochi, 780-8077, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Tiffany Talabere
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Shrilekha Misra
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Wenrui Duan
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Paolo Fadda
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Mohammad A Rahman
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and the Center for Critical Care Medicine, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and the Center for Critical Care Medicine, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Jason Evans
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Joseph Amann
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Elena E Tchekneva
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Mikhail M Dikov
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - David P Carbone
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
43
|
Bigas A, Espinosa L. The multiple usages of Notch signaling in development, cell differentiation and cancer. Curr Opin Cell Biol 2018; 55:1-7. [PMID: 30006050 DOI: 10.1016/j.ceb.2018.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Notch is a well-conserved signaling pathway all through evolution that is crucial to specify different cell fates. Although there is a strong context dependent component in each decision, the basic mechanisms that originate from the interplay among ligands and receptors is greatly preserved. In this review we will cover the latest findings on the different mechanisms for Notch activation and signaling. The regulation of this pathway is essential to understand development, cell differentiation and disease.
Collapse
Affiliation(s)
- Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain.
| | - Lluis Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain.
| |
Collapse
|
44
|
Fiddes IT, Lodewijk GA, Mooring M, Bosworth CM, Ewing AD, Mantalas GL, Novak AM, van den Bout A, Bishara A, Rosenkrantz JL, Lorig-Roach R, Field AR, Haeussler M, Russo L, Bhaduri A, Nowakowski TJ, Pollen AA, Dougherty ML, Nuttle X, Addor MC, Zwolinski S, Katzman S, Kriegstein A, Eichler EE, Salama SR, Jacobs FMJ, Haussler D. Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis. Cell 2018; 173:1356-1369.e22. [PMID: 29856954 DOI: 10.1016/j.cell.2018.03.051] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/16/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ian T Fiddes
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Gerrald A Lodewijk
- University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | | | | | - Adam D Ewing
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Gary L Mantalas
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA; Molecular, Cell and Developmental Biology Department, UC Santa Cruz, Santa Cruz, CA, USA
| | - Adam M Novak
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Anouk van den Bout
- University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | - Alex Bishara
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jimi L Rosenkrantz
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA; Howard Hughes Medical Institute, UC Santa Cruz, Santa Cruz, CA, USA
| | | | - Andrew R Field
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA; Molecular, Cell and Developmental Biology Department, UC Santa Cruz, Santa Cruz, CA, USA
| | | | - Lotte Russo
- University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | - Aparna Bhaduri
- Department of Neurology and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurology and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA, USA
| | - Alex A Pollen
- Department of Neurology and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA, USA
| | - Max L Dougherty
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Xander Nuttle
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | | | - Simon Zwolinski
- Department of Cytogenetics, Northern Genetics Service, Institute of Genetic Medicine, Newcastle upon Tyne, UK
| | - Sol Katzman
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Arnold Kriegstein
- Department of Neurology and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Sofie R Salama
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA; Howard Hughes Medical Institute, UC Santa Cruz, Santa Cruz, CA, USA
| | - Frank M J Jacobs
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA; University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands.
| | - David Haussler
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA; Howard Hughes Medical Institute, UC Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
45
|
Hwang IY, Boularan C, Harrison K, Kehrl JH. Gα i Signaling Promotes Marginal Zone B Cell Development by Enabling Transitional B Cell ADAM10 Expression. Front Immunol 2018; 9:687. [PMID: 29696016 PMCID: PMC5904254 DOI: 10.3389/fimmu.2018.00687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
The follicular (FO) versus marginal zone (MZ) B cell fate decision in the spleen depends upon BCR, BAFF, and Notch2 signaling. Whether or how Gi signaling affects this fate decision is unknown. Here, we show that direct contact with Notch ligand expressing stromal cells (OP9-Delta-like 1) cannot promote normal MZ B cell development when progenitor B cells lack Gαi proteins, or if Gi signaling is disabled. Consistent with faulty ADAM10-dependent Notch2 processing, Gαi-deficient transitional B cells had low ADAM10 membrane expression levels and reduced Notch2 target gene expression. Immunoblotting Gαi-deficient B cell lysates revealed a reduction in mature, processed ADAM10. Suggesting that Gαi signaling promotes ADAM10 membrane expression, stimulating normal transitional B cells with CXCL12 raised it, while inhibiting Gαi nucleotide exchange blocked its upregulation. Surprisingly, inhibiting Gαi nucleotide exchange in transitional B cells also impaired the upregulation of ADAM10 that occurs following antigen receptor crosslinking. These results indicate that Gαi signaling supports ADAM10 maturation and activity in transitional B cells, and ultimately Notch2 signaling to promote MZ B cell development.
Collapse
Affiliation(s)
- Il-Young Hwang
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cedric Boularan
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,InvivoGen, Toulouse, France
| | - Kathleen Harrison
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
46
|
Brummer T, Pigoni M, Rossello A, Wang H, Noy PJ, Tomlinson MG, Blobel CP, Lichtenthaler SF. The metalloprotease ADAM10 (a disintegrin and metalloprotease 10) undergoes rapid, postlysis autocatalytic degradation. FASEB J 2018; 32:3560-3573. [PMID: 29430990 DOI: 10.1096/fj.201700823rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The transmembrane protein, ADAM10 (a disintegrin and metalloprotease 10), has key physiologic functions-for example, during embryonic development and in the brain. During transit through the secretory pathway, immature ADAM10 (proADAM10) is converted into its proteolytically active, mature form (mADAM10). Increasing or decreasing the abundance and/or activity of mADAM10 is considered to be a therapeutic approach for the treatment of such diseases as Alzheimer's disease and cancer. Yet biochemical detection and characterization of mADAM10 has been difficult. In contrast, proADAM10 is readily detected-for example, in immunoblots-which suggests that mADAM10 is only a fraction of total cellular ADAM10. Here, we demonstrate that mADAM10, but not proADAM10, unexpectedly undergoes rapid, time-dependent degradation upon biochemical cell lysis in different cell lines and in primary neurons, which prevents the detection of the majority of mADAM10 in immunoblots. This degradation required the catalytic activity of ADAM10, was efficiently prevented by adding active site inhibitors to the lysis buffer, and did not affect proADAM10, which suggests that ADAM10 degradation occurred in an intramolecular and autoproteolytic manner. Inhibition of postlysis autoproteolysis demonstrated efficient cellular ADAM10 maturation with higher levels of mADAM10 than proADAM10. Moreover, a cycloheximide chase experiment revealed that mADAM10 is a long-lived protein with a half-life of approximately 12 h. In summary, our study demonstrates that mADAM10 autoproteolysis must be blocked to allow for the proper detection of mADAM10, which is essential for the correct interpretation of biochemical and cellular studies of ADAM10.-Brummer, T., Pigoni, M., Rossello, A., Wang, H., Noy, P. J., Tomlinson, M. G., Blobel, C. P., Lichtenthaler, S. F. The metalloprotease ADAM10 (a disintegrin and metalloprotease 10) undergoes rapid, postlysis autocatalytic degradation.
Collapse
Affiliation(s)
- Tobias Brummer
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Martina Pigoni
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Huanhuan Wang
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Peter J Noy
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Carl P Blobel
- Hospital for Special Surgery, Research Institute, New York, New York, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York, USA.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
47
|
Konings GF, Cornel KM, Xanthoulea S, Delvoux B, Skowron MA, Kooreman L, Koskimies P, Krakstad C, Salvesen HB, van Kuijk K, Schrooders YJ, Vooijs M, Groot AJ, Bongers MY, Kruitwagen RF, Romano A. Blocking 17β-hydroxysteroid dehydrogenase type 1 in endometrial cancer: a potential novel endocrine therapeutic approach. J Pathol 2018; 244:203-214. [PMID: 29144553 DOI: 10.1002/path.5004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/24/2017] [Accepted: 11/09/2017] [Indexed: 01/21/2023]
Abstract
The enzyme type 1 17β-hydroxysteroid dehydrogenase (17β-HSD-1), responsible for generating active 17β-estradiol (E2) from low-active estrone (E1), is overexpressed in endometrial cancer (EC), thus implicating an increased intra-tissue generation of E2 in this estrogen-dependent condition. In this study, we explored the possibility of inhibiting 17β-HSD-1 and impairing the generation of E2 from E1 in EC using in vitro, in vivo, and ex vivo models. We generated EC cell lines derived from the well-differentiated endometrial adenocarcinoma Ishikawa cell line and expressing levels of 17β-HSD-1 similar to human tissues. In these cells, HPLC analysis showed that 17β-HSD-1 activity could be blocked by a specific 17β-HSD-1 inhibitor. In vitro, E1 administration elicited colony formation similar to E2, and this was impaired by 17β-HSD-1 inhibition. In vivo, tumors grafted on the chicken chorioallantoic membrane (CAM) demonstrated that E1 upregulated the expression of the estrogen responsive cyclin A similar to E2, which was impaired by 17β-HSD-1 inhibition. Neither in vitro nor in vivo effects of E1 were observed using 17β-HSD-1-negative cells (negative control). Using a patient cohort of 52 primary ECs, we demonstrated the presence of 17β-HSD-1 enzyme activity (ex vivo in tumor tissues, as measured by HPLC), which was inhibited by over 90% in more than 45% of ECs using the 17β-HSD-1 inhibitor. Since drug treatment is generally indicated for metastatic/recurrent and not primary tumor, we next demonstrated the mRNA expression of the potential drug target, 17β-HSD-1, in metastatic lesions using a second cohort of 37 EC patients. In conclusion, 17β-HSD-1 inhibition efficiently blocks the generation of E2 from E1 using various EC models. Further preclinical investigations and 17β-HSD-1 inhibitor development to make candidate compounds suitable for the first human studies are awaited. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gonda Fj Konings
- GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands.,Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, The Netherlands
| | - Karlijn Mc Cornel
- GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands.,Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, The Netherlands
| | - Sofia Xanthoulea
- GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands.,Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, The Netherlands
| | - Bert Delvoux
- GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands.,Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, The Netherlands
| | - Margaretha A Skowron
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Loes Kooreman
- GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands.,Department of Pathology, Maastricht University Medical Centre, The Netherlands
| | | | - Camilla Krakstad
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Norway
| | - Helga B Salvesen
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Norway
| | - Kim van Kuijk
- GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands.,Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, The Netherlands
| | - Yannick Jm Schrooders
- GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands.,Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, The Netherlands
| | - Marc Vooijs
- GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands.,Department of Radiotherapy (MAASTRO), Maastricht University, The Netherlands
| | - Arjan J Groot
- GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands.,Department of Radiotherapy (MAASTRO), Maastricht University, The Netherlands
| | - Marlies Y Bongers
- GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands.,Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, The Netherlands
| | - Roy Fpm Kruitwagen
- GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands.,Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, The Netherlands
| | | | - Andrea Romano
- GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands.,Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, The Netherlands
| |
Collapse
|
48
|
Decitabine, a DNA-demethylating agent, promotes differentiation via NOTCH1 signaling and alters immune-related pathways in muscle-invasive bladder cancer. Cell Death Dis 2017; 8:3217. [PMID: 29242529 PMCID: PMC5870579 DOI: 10.1038/s41419-017-0024-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Aberrant DNA methylation observed in cancer can provide survival benefits to cells by silencing genes essential for anti-tumor activity. DNA-demethylating agents such as Decitabine (DAC)/Azacitidine (AZA) activate otherwise silenced tumor suppressor genes, alter immune response and epigenetically reprogram tumor cells. In this study, we show that non-cytotoxic nanomolar DAC concentrations modify the bladder cancer transcriptome to activate NOTCH1 at the mRNA and protein level, increase double-stranded RNA sensors and CK5-dependent differentiation. Importantly, DAC treatment increases ICN1 expression (the active intracellular domain of NOTCH1) significantly inhibiting cell proliferation and causing changes in cell size inducing morphological alterations reminiscent of senescence. These changes were not associated with β-galactosidase activity or increased p16 levels, but instead were associated with substantial IL-6 release. Increased IL-6 release was observed in both DAC-treated and ICN1 overexpressing cells as compared to control cells. Exogenous IL-6 expression was associated with a similar enlarged cell morphology that was rescued by the addition of a monoclonal antibody against IL-6. Treatment with DAC, overexpression with ICN1 or addition of exogenous IL-6 showed CK5 reduction, a surrogate marker of differentiation. Overall this study suggests that in MIBC cells, DNA hypomethylation increases NOTCH1 expression and IL-6 release to induce CK5-related differentiation.
Collapse
|
49
|
Dempsey PJ. Role of ADAM10 in intestinal crypt homeostasis and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:2228-2239. [PMID: 28739265 PMCID: PMC5632589 DOI: 10.1016/j.bbamcr.2017.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022]
Abstract
A disintegrin and metalloproteinases (ADAMs) are a family of mSultidomain, membrane-anchored proteases that regulate diverse cellular functions, including cell adhesion, migration, proteolysis and other cell signaling events. Catalytically-active ADAMs act as ectodomain sheddases that proteolytically cleave type I and type II transmembrane proteins and some GPI-anchored proteins from the cellular surface. ADAMs can also modulate other cellular signaling events through a process known as regulated intramembrane proteolysis (RIP). Through their proteolytic activity, ADAMs can rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g. inflammation) and play a central role in coordinating intercellular communication. Dysregulation of these processes through aberrant expression, or sustained ADAM activity, is linked to chronic inflammation, inflammation-associated cancer and tumorigenesis. ADAM10 was the first disintegrin-metalloproteinase demonstrated to have proteolytic activity and is the prototypic ADAM associated with RIP activity (e.g. sequential Notch receptor processing). ADAM10 is abundantly expressed throughout the gastrointestinal tract and during normal intestinal homeostasis ADAM10 regulates many cellular processes associated with intestinal development, cell fate specification and maintenance of intestinal stem cell/progenitor populations. In addition, several signaling pathways that undergo ectodomain shedding by ADAM10 (e.g. Notch, EGFR/ErbB, IL-6/sIL-6R) help control intestinal injury/regenerative responses and may drive intestinal inflammation and colon cancer initiation and progression. Here, I review some of the proposed functions of ADAM10 associated with intestinal crypt homeostasis and tumorigenesis within the gastrointestinal tract in vivo. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Peter J Dempsey
- Graduate Program in Cell Biology, Stem Cells, and Development Program, University of Colorado Medical School, Aurora, CO 80045, United States; Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado Medical School, Aurora, CO 80045, United States.
| |
Collapse
|
50
|
Scissor sisters: regulation of ADAM10 by the TspanC8 tetraspanins. Biochem Soc Trans 2017; 45:719-730. [PMID: 28620033 PMCID: PMC5473022 DOI: 10.1042/bst20160290] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022]
Abstract
A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitously expressed transmembrane protein which is essential for embryonic development through activation of Notch proteins. ADAM10 regulates over 40 other transmembrane proteins and acts as a ‘molecular scissor’ by removing their extracellular regions. ADAM10 is also a receptor for α-toxin, a major virulence factor of Staphylococcus aureus. Owing to the importance of its substrates, ADAM10 is a potential therapeutic target for cancer, neurodegenerative diseases such as Alzheimer's and prion diseases, bacterial infection and inflammatory diseases such as heart attack, stroke and asthma. However, targetting ADAM10 is likely to result in toxic side effects. The tetraspanins are a superfamily of 33 four-transmembrane proteins in mammals which interact with and regulate specific partner proteins within membrane nanodomains. Tetraspanins appear to have a cone-shaped structure with a cholesterol-binding cavity, which may enable tetraspanins to undergo cholesterol-regulated conformational change. An emerging paradigm for tetraspanin function is the regulation of ADAM10 by the TspanC8 subgroup of tetraspanins, namely Tspan5, 10, 14, 15, 17 and 33. This review will describe how TspanC8s are required for ADAM10 trafficking from the endoplasmic reticulum and its enzymatic maturation. Moreover, different TspanC8s localise ADAM10 to different subcellular localisations and may cause ADAM10 to adopt distinct conformations and cleavage of distinct substrates. We propose that ADAM10 should now be regarded as six different scissor proteins depending on the interacting TspanC8. Therapeutic targetting of specific TspanC8/ADAM10 complexes could allow ADAM10 targetting in a cell type- or substrate-specific manner, to treat certain diseases while minimising toxicity.
Collapse
|