1
|
Pardo-Lorente N, Gkanogiannis A, Cozzuto L, Gañez Zapater A, Espinar L, Ghose R, Severino J, García-López L, Aydin RG, Martin L, Neguembor MV, Darai E, Cosma MP, Batlle-Morera L, Ponomarenko J, Sdelci S. Nuclear localization of MTHFD2 is required for correct mitosis progression. Nat Commun 2024; 15:9529. [PMID: 39532843 PMCID: PMC11557897 DOI: 10.1038/s41467-024-51847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/20/2024] [Indexed: 11/16/2024] Open
Abstract
Subcellular compartmentalization of metabolic enzymes establishes a unique metabolic environment that elicits specific cellular functions. Indeed, the nuclear translocation of certain metabolic enzymes is required for epigenetic regulation and gene expression control. Here, we show that the nuclear localization of the mitochondrial enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) ensures mitosis progression. Nuclear MTHFD2 interacts with proteins involved in mitosis regulation and centromere stability, including the methyltransferases KMT5A and DNMT3B. Loss of MTHFD2 induces severe methylation defects and impedes correct mitosis completion. MTHFD2 deficient cells display chromosome congression and segregation defects and accumulate chromosomal aberrations. Blocking the catalytic nuclear function of MTHFD2 recapitulates the phenotype observed in MTHFD2 deficient cells, whereas restricting MTHFD2 to the nucleus is sufficient to ensure correct mitotic progression. Our discovery uncovers a nuclear role for MTHFD2, supporting the notion that translocation of metabolic enzymes to the nucleus is required to meet precise chromatin needs.
Collapse
Affiliation(s)
- Natalia Pardo-Lorente
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Anestis Gkanogiannis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Antoni Gañez Zapater
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Lorena Espinar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Ritobrata Ghose
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Jacqueline Severino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Laura García-López
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Rabia Gül Aydin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Evangelia Darai
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Batlle-Morera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
2
|
Blazanin N, Liang X, Mahmud I, Kim E, Martinez S, Tan L, Chan W, Anvar NE, Ha MJ, Qudratullah M, Minelli R, Peoples M, Lorenzi P, Hart T, Lissanu Y. Therapeutic modulation of ROCK overcomes metabolic adaptation of cancer cells to OXPHOS inhibition and drives synergistic anti-tumor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613317. [PMID: 39345502 PMCID: PMC11429714 DOI: 10.1101/2024.09.16.613317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Genomic studies have identified frequent mutations in subunits of the SWI/SNF chromatin remodeling complex including SMARCA4 and ARID1A in non-small cell lung cancer. Previously, we and others have identified that SMARCA4-mutant lung cancers are highly dependent on oxidative phosphorylation (OXPHOS). Despite initial excitements, therapeutics targeting metabolic pathways such as OXPHOS have largely been disappointing due to rapid adaptation of cancer cells to inhibition of single metabolic enzymes or pathways, suggesting novel combination strategies to overcome adaptive responses are urgently needed. Here, we performed a functional genomics screen using CRISPR-Cas9 library targeting genes with available FDA approved therapeutics and identified ROCK1/2 as a top hit that sensitizes cancer cells to OXPHOS inhibition. We validate these results by orthogonal genetic and pharmacologic approaches by demonstrating that KD025 (Belumosudil), an FDA approved ROCK inhibitor, has highly synergistic anti-cancer activity in vitro and in vivo in combination with OXPHOS inhibition. Mechanistically, we showed that this combination induced a rapid, profound energetic stress and cell cycle arrest that was in part due to ROCK inhibition-mediated suppression of the adaptive increase in glycolysis normally seen by OXPHOS inhibition. Furthermore, we applied global phosphoproteomics and kinase-motif enrichment analysis to uncover a dynamic regulatory kinome upon combination of OXPHOS and ROCK inhibition. Importantly, we found converging phosphorylation-dependent regulatory cross-talk by AMPK and ROCK kinases on key RHO GTPase signaling/ROCK-dependent substrates such as PPP1R12A, NUMA1 and PKMYT1 that are known regulators of cell cycle progression. Taken together, our study identified ROCK kinases as critical mediators of metabolic adaptation of cancer cells to OXPHOS inhibition and provides a strong rationale for pursuing ROCK inhibitors as novel combination partners to OXPHOS inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Nicholas Blazanin
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
| | - Xiaobing Liang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Eiru Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Sara Martinez
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Waikin Chan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Nazanin Esmaeili Anvar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Md Qudratullah
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
| | - Rosalba Minelli
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Michael Peoples
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Philip Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Yonathan Lissanu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
3
|
Zhuang Y, Li C, Zhao F, Yan Y, Pan H, Zhan J, Behnisch T. E3 Ubiquitin Ligase Uhrf2 Knockout Reveals a Critical Role in Social Behavior and Synaptic Plasticity in the Hippocampus. Int J Mol Sci 2024; 25:1543. [PMID: 38338822 PMCID: PMC10855348 DOI: 10.3390/ijms25031543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The hippocampal formation, particularly the CA2 subregion, is critical for social memory formation and memory processing, relying on synaptic plasticity-a fundamental mechanism by which synapses strengthen. Given the role of the ubiquitin-proteasome system (UPS) in various nervous system processes, including learning and memory, we were particularly interested in exploring the involvement of RING-type ubiquitin E3 ligases, such as UHRF2 (NIRF), in social behavior and synaptic plasticity. Our results revealed altered social behavior in mice with systemic Uhrf2 knockout, including changes in nest building, tube dominance, and the three-chamber social novelty test. In Uhrf2 knockout mice, the entorhinal cortex-CA2 circuit showed significant reductions in synaptic plasticity during paired-pulse facilitation and long-term potentiation, while the inability to evoke synaptic plasticity in the Schaffer-collateral CA2 synapses remained unaffected. These changes in synaptic plasticity correlated with significant changes in gene expression including genes related to vesicle trafficking and transcriptional regulation. The effects of Uhrf2 knockout on synaptic plasticity and the observed gene expression changes highlight UHRF2 as a regulator of learning and memory processes at both the cellular and systemic levels. Targeting E3 ubiquitin ligases, such as UHRF2, may hold therapeutic potential for memory-related disorders, warranting further investigation.
Collapse
Affiliation(s)
- Yinghan Zhuang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Chuhan Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Fang Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yan Yan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hongjie Pan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Jianmin Zhan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Thomas Behnisch
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Liu S, Shao F, Wang Y, Zhang Y, Yu H, Zhang N, He L, Kong Q, Jiang H, Dong Z. COX6C expression driven by copy amplification of 8q22.2 regulates cell proliferation via mediation of mitosis by ROS-AMPK signaling in lung adenocarcinoma. Cell Death Dis 2024; 15:74. [PMID: 38242874 PMCID: PMC10799076 DOI: 10.1038/s41419-024-06443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Copy number variations (CNVs) play a vital role in regulating genes expression and tumorigenesis. We explored the copy number alterations in early-stage lung adenocarcinoma using high-throughput sequencing and nucleic acid flight mass spectrometry technology, and found that 8q22.1-22.2 is frequently amplified in lung adenocarcinoma tissues. COX6C localizes on the region and its expression is notably enhanced that driven by amplification in lung adenocarcinoma. Knockdown of COX6C significantly inhibits the cell proliferation, and induces S-G2/M cell cycle arrest, mitosis deficiency and apoptosis. Moreover, COX6C depletion causes a deficiency in mitochondrial fusion, and impairment of oxidative phosphorylation. Mechanistically, COX6C-induced mitochondrial deficiency stimulates ROS accumulation and activates AMPK pathway, then leading to abnormality in spindle formation and chromosome segregation, activating spindle assemble checkpoint, causing mitotic arrest, and ultimately inducing cell apoptosis. Collectively, we suggested that copy amplification-mediated COX6C upregulation might serves as a prospective biomarker for prognosis and targeting therapy in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Shuanghui Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, P. R. China
| | - Fanggui Shao
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Yourong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
- Department of clinical laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, P. R. China
| | - Yurui Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Hongjia Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Ningxin Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Lan He
- School of Biomedical Science, Hunan University, Changsha, Hunan, 410013, P. R. China
| | - Qingran Kong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, 410013, P. R. China.
| | - Zhixiong Dong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China.
| |
Collapse
|
5
|
Thaiparambil J, Amara CS, Sen S, Putluri N, El‐Zein R. Cigarette smoke condensate induces centrosome clustering in normal lung epithelial cells. Cancer Med 2023; 12:8499-8509. [PMID: 36621828 PMCID: PMC10134322 DOI: 10.1002/cam4.5599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Unlike normal cells, cancer cells frequently have multiple centrosomes that can cluster to form bipolar mitotic spindles and allow for successful cell division. Inhibiting centrosome clustering, therefore, holds therapeutic promise to promote cancer cell-specific cell death. METHODS We used confocal microscopy, real-time PCR, siRNA knockdown, and western blot to analyze centrosome clustering and declustering using normal lung bronchial epithelial and nonsmall-cell lung cancer (NSCLC) cell lines. Also, we used Ingenuity Pathway Analysis software to identify novel pathways associated with centrosome clustering. RESULTS In this study, we found that exposure to cigarette smoke condensate induces centrosome amplification and clustering in human lung epithelial cells. We observed a similar increase in centrosome amplification and clustering in unexposed NSCLC cell lines which may suggest a common underlying mechanism for lung carcinogenesis. We identified a cyclin D2-mediated centrosome clustering pathway that involves a sonic hedgehog-forkhead box protein M1 axis which is critical for mitosis. We also observed that cyclin D2 knockdown induced multipolar mitotic spindles that could eventually lead to cell death. CONCLUSIONS Here we report a novel role of cyclin D2 in the regulation of centrosome clustering, which could allow the identification of tumors sensitive to cyclin D2 inhibitors. Our data reveal a pathway that can be targeted to inhibit centrosome clustering by interfering with the expression of cyclin D2-associated genes.
Collapse
Affiliation(s)
| | - Chandra S. Amara
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| | - Subrata Sen
- Department of Translational Molecular PathologyUT MD Anderson Cancer CenterHoustonTexasUSA
| | - Nagireddy Putluri
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| | | |
Collapse
|
6
|
Ryu K, Yoshida A, Funato Y, Yamazaki D, Miki H. PRL stimulates mitotic errors by suppressing kinetochore-localized activation of AMPK during mitosis. Cell Struct Funct 2022; 47:75-87. [PMID: 36336348 PMCID: PMC10511051 DOI: 10.1247/csf.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/28/2022] [Indexed: 12/17/2023] Open
Abstract
Phosphatase of regenerating liver (PRL) is frequently overexpressed in various malignant cancers and is known to be a driver of malignancy. Here, we demonstrated that PRL overexpression causes mitotic errors that accompany spindle misorientation and aneuploidy, which are intimately associated with cancer progression. Mechanistic analyses of this phenomenon revealed dysregulation of the energy sensor kinase, AMP-activated protein kinase (AMPK), in PRL-induced mitotic errors. Specifically, immunofluorescence analysis showed that levels of phosphorylated AMPK (P-AMPK), an activated form of AMPK, at the kinetochore were reduced by PRL expression. Moreover, artificial activation of AMPK using chemical activators, such as A769662 and AICAR, in PRL-expressing cells restored P-AMPK signals at the kinetochore and normalized spindle orientation. Collectively, these results indicate the crucial importance of the activation of kinetochore-localized AMPK in the normal progression of mitosis, which is specifically perturbed by PRL overexpression.Key words: cancer, AMPK, PRL, kinetochore, mitotic errors.
Collapse
Affiliation(s)
- Kajung Ryu
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Yoshida
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Yamazaki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Zhong T, Gongye X, Wang M, Yu J. Understanding the underlying mechanisms governing spindle orientation: How far are we from there? J Cell Mol Med 2022; 26:4904-4910. [PMID: 36029193 PMCID: PMC9549511 DOI: 10.1111/jcmm.17526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Proper spindle orientation is essential for cell fate determination and tissue morphogenesis. Recently, accumulating studies have elucidated several factors that regulate spindle orientation, including geometric, internal and external cues. Abnormality in these factors generally leads to defects in the physiological functions of various organs and the development of severe diseases. Herein, we first review models that are commonly used for studying spindle orientation. We then review a conservative heterotrimeric complex critically involved in spindle orientation regulation in different models. Finally, we summarize some cues that affect spindle orientation and explore whether we can establish a model that precisely elucidates the effects of spindle orientation without interfusing other spindle functions. We aim to summarize current models used in spindle orientation studies and discuss whether we can build a model that disturbs spindle orientation alone. This can substantially improve our understanding of how spindle orientation is regulated and provide insights to investigate this complex event.
Collapse
Affiliation(s)
- Tao Zhong
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Xiaoxiao Gongye
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Minglei Wang
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
8
|
Lu J, Huang Y, Zhan L, Wang M, Xu L, Mullen M, Zang J, Fang G, Dou Z, Liu X, Liu W, Garcia-Barrio M, Yao X. AMPKα2 activation by an energy-independent signal ensures chromosomal stability during mitosis. iScience 2021; 24:102363. [PMID: 33898950 PMCID: PMC8059055 DOI: 10.1016/j.isci.2021.102363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/15/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
AMP-activated protein kinase (AMPK) senses energy status and impacts energy-consuming events by initiating metabolism regulatory signals in cells. Accumulating evidences suggest a role of AMPK in mitosis regulation, but the mechanism of mitotic AMPK activation and function remains elusive. Here we report that AMPKα2, but not AMPKα1, is sequentially phosphorylated and activated by CDK1 and PLK1, which enables AMPKα2 to accurately guide chromosome segregation in mitosis. Phosphorylation at Thr485 by activated CDK1-Cyclin B1 brings the ST-stretch of AMPKα2 to the Polo box domain of PLK1 for subsequent Thr172 phosphorylation by PLK1. Inserting of the AMPKα2 ST-stretch into AMPKα1, which lacks the ST-stretch, can correct mitotic chromosome segregation defects in AMPKα2-depleted cells. These findings uncovered a specific signaling cascade integrating sequential phosphorylation by CDK1 and PLK1 of AMPKα2 with mitosis to maintain genomic stability, thus defining an isoform-specific AMPKα2 function, which will facilitate future research on energy sensing in mitosis. AMPKα2 is selectively activated during mitosis by CDK1 and PLK1 A conserved motif in AMPKα2 determines its interaction with and activation by PLK1 Mitotic AMPK activation contributes to maintain genomic stability in normal mitosis
Collapse
Affiliation(s)
- Jianlin Lu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui 230026, China
| | - Yuanyuan Huang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui 230026, China
| | - Li Zhan
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230027 Anhui, China
| | - Ming Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui 230026, China
| | - Leilei Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China
| | - McKay Mullen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China
| | - Jianye Zang
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230027 Anhui, China
| | - Guowei Fang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui 230026, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui 230026, China
- Corresponding author
| | - Wei Liu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Corresponding author
| | | | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China
- Corresponding author
| |
Collapse
|
9
|
Thaiparambil J, Dong L, Jasso D, Huang JA, El-Zein RA. Mitotic Spindle Apparatus Abnormalities in Chronic Obstructive Pulmonary Disease Cells: A Potential Pathway to Lung Cancer. Cancer Prev Res (Phila) 2020; 13:923-934. [PMID: 32655004 PMCID: PMC7641916 DOI: 10.1158/1940-6207.capr-19-0557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/07/2020] [Accepted: 06/30/2020] [Indexed: 02/03/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a long-term lung disease characterized by irreversible lung damage resulting in airflow limitation, abnormal permanent air-space enlargement, and emphysema. Cigarette smoking is the major cause of COPD with 15% to 30% of smokers developing either disease. About 50% to 80% of patients with lung cancer have preexisting COPD and smokers who have COPD are at an increased risk for developing lung cancer. Therefore, COPD is considered an independent risk for lung cancer, even after adjusting for smoking. A crucial early event in carcinogenesis is the induction of the genomic instability through alterations in the mitotic spindle apparatus. To date, the underlying mechanism by which COPD contributes to lung cancer risk is unclear. We hypothesized that tobacco smoke carcinogens induce mitotic spindle apparatus abnormalities and alter expression of crucial genes leading to increased genomic instability and ultimately tumorigenesis. To test our hypothesis, we assessed the genotoxic effects of a potent tobacco-smoke carcinogen [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, (NNK)] on bronchial epithelial cells from patients with COPD and normal bronchial epithelial cells and identified genes associated with mitotic spindle defects and chromosome missegregation that also overlap with lung cancer. Our results indicate that exposure to NNK leads to a significantly altered spindle orientation, centrosome amplification, and chromosome misalignment in COPD cells as compared with normal epithelial cells. In addition, we identified several genes (such as AURKA, AURKB, and MAD2L2) that were upregulated and overlap with lung cancer suggesting a potential common pathway in the transition from COPD to lung cancer.
Collapse
Affiliation(s)
- Jose Thaiparambil
- Houston Methodist Cancer Center and Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Lingyun Dong
- Department of Respiratory Medicine, Affiliated Wujiang Hospital of Nantong University, Suzhou, China
| | - Diana Jasso
- Houston Methodist Cancer Center and Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Randa A El-Zein
- Houston Methodist Cancer Center and Department of Radiology, Houston Methodist Research Institute, Houston, Texas.
| |
Collapse
|
10
|
Ji X, Zhang X, Li Z. ULK1 inhibitor induces spindle microtubule disorganization and inhibits phosphorylation of Ser10 of histone H3. FEBS Open Bio 2020; 10:2452-2463. [PMID: 33040463 PMCID: PMC7609780 DOI: 10.1002/2211-5463.13000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 01/28/2023] Open
Abstract
Certain tumors are dependent on autophagy for survival; thus, the use of unc‐51‐like autophagy activating kinase (ULK) 1 inhibitors to block autophagy has the potential for tumor treatment. However, ULK1 inhibitors affect processes other than autophagy. Herein, we report that the ULK1 inhibitors SBI‐0206965/MRT68921 not only inhibit phosphorylation of histone H3 (Ser10) and delay chromatin condensation but also induce spindle microtubule disorganization to form short and fragmented microtubule polymers. Although the delay in chromatin condensation also delayed mitotic entry, the disorganized microtubule polymers resulted in unsegregated chromosomes and polyploidy. Although the effect on mitotic entry was moderate, polyploidy formation was decreased in ULK1 knockout cells with or without ULK2 knockdown. In conclusion, it will be helpful to consider the roles of ULK1 inhibitors in mitotic dysregulation, as well as autophagy, when evaluating their antitumor efficacy.
Collapse
Affiliation(s)
- Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Zhiyuan Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
11
|
Sukumaran A, Choi K, Dasgupta B. Insight on Transcriptional Regulation of the Energy Sensing AMPK and Biosynthetic mTOR Pathway Genes. Front Cell Dev Biol 2020; 8:671. [PMID: 32903688 PMCID: PMC7438746 DOI: 10.3389/fcell.2020.00671] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
The Adenosine Monophosphate-activated Protein Kinase (AMPK) and the Mechanistic Target of Rapamycin (mTOR) are two evolutionarily conserved kinases that together regulate nearly every aspect of cellular and systemic metabolism. These two kinases sense cellular energy and nutrient levels that in turn are determined by environmental nutrient availability. Because AMPK and mTOR are kinases, the large majority of studies remained focused on downstream substrate phosphorylation by these two proteins, and how AMPK and mTOR regulate signaling and metabolism in normal and disease physiology through phosphorylation of their substrates. Compared to the wealth of information known about the signaling and metabolic pathways modulated by these two kinases, much less is known about how the transcription of AMPK and mTOR pathway genes themselves are regulated, and the extent to which AMPK and mTOR regulate gene expression to cause durable changes in phenotype. Acute modification of cellular systems can be achieved through phosphorylation, however, induction of chronic changes requires modulation of gene expression. In this review we will assemble evidence from published studies on transcriptional regulation by AMPK and mTOR and discuss about the putative transcription factors that regulate expression of AMPK and mTOR complex genes.
Collapse
Affiliation(s)
- Abitha Sukumaran
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Zhao Q, Coughlan KA, Zou MH, Song P. Loss of AMPKalpha1 Triggers Centrosome Amplification via PLK4 Upregulation in Mouse Embryonic Fibroblasts. Int J Mol Sci 2020; 21:ijms21082772. [PMID: 32316320 PMCID: PMC7216113 DOI: 10.3390/ijms21082772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022] Open
Abstract
Recent evidence indicates that activation of adenosine monophosphate-activated protein kinase (AMPK), a highly conserved sensor and modulator of cellular energy and redox, regulates cell mitosis. However, the underlying molecular mechanisms for AMPKα subunit regulation of chromosome segregation remain poorly understood. This study aimed to ascertain if AMPKα1 deletion contributes to chromosome missegregation by elevating Polo-like kinase 4 (PLK4) expression. Centrosome proteins and aneuploidy were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J) or AMPKα1 homozygous deficient (AMPKα1−/−) mice by Western blotting and metaphase chromosome spread. Deletion of AMPKα1, the predominant AMPKα isoform in immortalized MEFs, led to centrosome amplification and chromosome missegregation, as well as the consequent aneuploidy (34–66%) and micronucleus. Furthermore, AMPKα1 null cells exhibited a significant induction of PLK4. Knockdown of nuclear factor kappa B2/p52 ameliorated the PLK4 elevation in AMPKα1-deleted MEFs. Finally, PLK4 inhibition by Centrinone reversed centrosome amplification of AMPKα1-deleted MEFs. Taken together, our results suggest that AMPKα1 plays a fundamental role in the maintenance of chromosomal integrity through the control of p52-mediated transcription of PLK4, a trigger of centriole biogenesis.
Collapse
Affiliation(s)
- Qiang Zhao
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA; (Q.Z.); (M.-H.Z.)
| | | | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA; (Q.Z.); (M.-H.Z.)
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA; (Q.Z.); (M.-H.Z.)
- Correspondence: ; Tel.: +1-404-413-6636
| |
Collapse
|
13
|
Biehler C, Wang LT, Sévigny M, Jetté A, Gamblin CL, Catterall R, Houssin E, McCaffrey L, Laprise P. Girdin is a component of the lateral polarity protein network restricting cell dissemination. PLoS Genet 2020; 16:e1008674. [PMID: 32196494 PMCID: PMC7112241 DOI: 10.1371/journal.pgen.1008674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/01/2020] [Accepted: 02/14/2020] [Indexed: 01/07/2023] Open
Abstract
Epithelial cell polarity defects support cancer progression. It is thus crucial to decipher the functional interactions within the polarity protein network. Here we show that Drosophila Girdin and its human ortholog (GIRDIN) sustain the function of crucial lateral polarity proteins by inhibiting the apical kinase aPKC. Loss of GIRDIN expression is also associated with overgrowth of disorganized cell cysts. Moreover, we observed cell dissemination from GIRDIN knockdown cysts and tumorspheres, thereby showing that GIRDIN supports the cohesion of multicellular epithelial structures. Consistent with these observations, alteration of GIRDIN expression is associated with poor overall survival in subtypes of breast and lung cancers. Overall, we discovered a core mechanism contributing to epithelial cell polarization from flies to humans. Our data also indicate that GIRDIN has the potential to impair the progression of epithelial cancers by preserving cell polarity and restricting cell dissemination.
Collapse
Affiliation(s)
- Cornélia Biehler
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- axe oncologie du Centre de Recherche du Centre Hospitalier, Universitaire de Québec-UL, Québec, Canada
| | - Li-Ting Wang
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Myriam Sévigny
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- axe oncologie du Centre de Recherche du Centre Hospitalier, Universitaire de Québec-UL, Québec, Canada
| | - Alexandra Jetté
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- axe oncologie du Centre de Recherche du Centre Hospitalier, Universitaire de Québec-UL, Québec, Canada
| | - Clémence L. Gamblin
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- axe oncologie du Centre de Recherche du Centre Hospitalier, Universitaire de Québec-UL, Québec, Canada
| | - Rachel Catterall
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Elise Houssin
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- axe oncologie du Centre de Recherche du Centre Hospitalier, Universitaire de Québec-UL, Québec, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Patrick Laprise
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- axe oncologie du Centre de Recherche du Centre Hospitalier, Universitaire de Québec-UL, Québec, Canada
- * E-mail:
| |
Collapse
|
14
|
Jiang YH, Wang HL, Peng J, Zhu Y, Zhang HG, Tang FQ, Jian Z, Xiao YB. Multinucleated polyploid cardiomyocytes undergo an enhanced adaptability to hypoxia via mitophagy. J Mol Cell Cardiol 2019; 138:115-135. [PMID: 31783035 DOI: 10.1016/j.yjmcc.2019.11.155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023]
Abstract
AIMS There is a large subpopulation of multinucleated polyploid cardiomyocytes (M*Pc CMs) in the adult mammalian heart. However, the pathophysiological significance of increased M*Pc CMs in heart disease is poorly understood. We sought to determine the pathophysiological significance of increased M*Pc CMs during hypoxia adaptation. METHODS AND RESULTS A model of hypoxia-induced cardiomyocyte (CM) multinucleation and polyploidization was established and found to be associated with less apoptosis and less reactive oxygen species (ROS) production. Compared to mononucleated diploid CMs (1*2c CMs), tetraploid CMs (4c CMs) exhibited better mitochondria quality control via increased mitochondrial autophagy (mitophagy). RNA-seq revealed Prkaa2, the gene for AMPKα2, was the most obviously up-regulated autophagy-related gene. Knockdown of AMPKα2 increased apoptosis and ROS production and suppressed mitophagy in 4c CMs compared to 1*2c CMs. Rapamycin, an autophagy activator, alleviated the adverse effect of AMPKα2 knockdown. Furthermore, silencing PINK1 also increased apoptosis and ROS in 4c CMs and weakened the adaptive superiority of 4c CMs. Finally, AMPKα2-/- mutant mice exhibited exacerbation of apoptosis and ROS production via decreases in AMPKα2-mediated mitophagy in 4c CMs compared to 1*2c CMs during hypoxia. CONCLUSIONS Compared to 1*2c CMs, hypoxia-induced 4c CMs exhibited enhanced mitochondria quality control and less apoptosis via AMPKα2-mediated mitophagy. These results suggest that multinucleation and polyploidization allow CM to better adapt to stress via enhanced mitophagy. In addition, activation of AMPKα2 may be a promising target for myocardial hypoxia-related diseases.
Collapse
Affiliation(s)
- Yun-Han Jiang
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Hai-Long Wang
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Jin Peng
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Yu Zhu
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Hua-Gang Zhang
- Health Company, No. 75310 Corps of Chinese People's Liberation Army, Wuhan 400037, PR China
| | - Fu-Qin Tang
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Zhao Jian
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| | - Ying-Bin Xiao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| |
Collapse
|
15
|
Stauffer S, Zeng Y, Santos M, Zhou J, Chen Y, Dong J. Cyclin-dependent kinase 1-mediated AMPK phosphorylation regulates chromosome alignment and mitotic progression. J Cell Sci 2019; 132:jcs.236000. [PMID: 31519809 DOI: 10.1242/jcs.236000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
AMP-activated protein kinase (AMPK), a heterotrimeric serine/threonine kinase and cellular metabolic sensor, has been found to regulate cell cycle checkpoints in cancer cells in response to energetic stress, to harmonize proliferation with energy availability. Despite AMPK's emergent association with the cell cycle, it still has not been fully delineated how AMPK is regulated by upstream signaling pathways during mitosis. We report, for the first time, direct CDK1 phosphorylation of both the catalytic α1 and α2 subunits, as well as the β1 regulatory subunit, of AMPK in mitosis. We found that AMPK-knockout U2OS osteosarcoma cells have reduced mitotic indexes and that CDK1 phosphorylation-null AMPK is unable to rescue the phenotype, demonstrating a role for CDK1 regulation of mitotic entry through AMPK. Our results also denote a vital role for AMPK in promoting proper chromosomal alignment, as loss of AMPK activity leads to misaligned chromosomes and concomitant metaphase delay. Importantly, AMPK expression and activity was found to be critical for paclitaxel chemosensitivity in breast cancer cells and positively correlated with relapse-free survival in systemically treated breast cancer patients.
Collapse
Affiliation(s)
- Seth Stauffer
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yongji Zeng
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Montserrat Santos
- Department of Chemistry and Department of Biology, College of Saint Mary, Omaha, NE 68106, USA
| | - Jiuli Zhou
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
16
|
Wolf B, Busso C, Gönczy P. Live imaging screen reveals that TYRO3 and GAK ensure accurate spindle positioning in human cells. Nat Commun 2019; 10:2859. [PMID: 31253758 PMCID: PMC6599018 DOI: 10.1038/s41467-019-10446-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
Proper spindle positioning is crucial for spatial cell division control. Spindle positioning in human cells relies on a ternary complex comprising Gαi1-3, LGN and NuMA, which anchors dynein at the cell cortex, thus enabling pulling forces to be exerted on astral microtubules. We develop a live imaging siRNA-based screen using stereotyped fibronectin micropatterns to uncover components modulating spindle positioning in human cells, testing 1280 genes, including all kinases and phosphatases. We thus discover 16 components whose inactivation dramatically perturbs spindle positioning, including tyrosine receptor kinase 3 (TYRO3) and cyclin G associated kinase (GAK). TYRO3 depletion results in excess NuMA and dynein at the cortex during metaphase, similar to the effect of blocking the TYRO3 downstream target phosphatidylinositol 3-kinase (PI3K). Furthermore, depletion of GAK leads to impaired astral microtubules, similar to the effect of downregulating the GAK-interactor Clathrin. Overall, our work uncovers components and mechanisms governing spindle positioning in human cells.
Collapse
Affiliation(s)
- Benita Wolf
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Kakihana A, Oto Y, Saito Y, Nakayama Y. Heat shock-induced mitotic arrest requires heat shock protein 105 for the activation of spindle assembly checkpoint. FASEB J 2018; 33:3936-3953. [PMID: 30496702 DOI: 10.1096/fj.201801369r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heat shock causes proteotoxic stress that induces various cellular responses, including delayed mitotic progression and the generation of an aberrant number of chromosomes. In this study, heat shock delayed the onset of anaphase by increasing the number of misoriented cells, accompanied by the kinetochore localization of budding uninhibited by benzimidazole-related (BubR)1 in a monopolar spindle (Mps)1-dependent manner. The mitotic delay was canceled by knockdown of mitotic arrest defect (Mad)2. Knockdown of heat shock protein (Hsp)105 partially abrogated the mitotic delay with the loss of the kinetochore localization of BubR1 under heat shock conditions and accelerated mitotic progression under nonstressed conditions. Consistent with this result, Hsp105 knockdown increased the number of anaphase cells with lagging chromosomes, through mitotic slippage, and decreased taxol sensitivity more than Mad2 knockdown. Hsp105 was coprecipitated with cell division cycle (Cdc)20 in an Mps1-dependent manner; however, its knockdown did not affect coprecipitation of Mad2 and BubR1 with Cdc20. We propose that heat shock delays the onset of anaphase via the activation of the spindle assembly checkpoint (SAC). Hsp105 prevents abnormal cell division by contributing to SAC activation under heat shock and nonstressed conditions by interacting with Cdc20 but not affecting formation of the mitotic checkpoint complex.-Kakihana, A., Oto, Y., Saito, Y., Nakayama, Y. Heat shock-induced mitotic arrest requires heat shock protein 105 for the activation of spindle assembly checkpoint.
Collapse
Affiliation(s)
- Ayana Kakihana
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yui Oto
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
18
|
Tojkander S, Ciuba K, Lappalainen P. CaMKK2 Regulates Mechanosensitive Assembly of Contractile Actin Stress Fibers. Cell Rep 2018; 24:11-19. [DOI: 10.1016/j.celrep.2018.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/07/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
|
19
|
Transient activation of AMP-activated protein kinase at G1/S phase transition is required for control of S phase in NIH3T3 cells. Biochem Biophys Res Commun 2018; 504:367-373. [PMID: 29902457 DOI: 10.1016/j.bbrc.2018.06.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 11/20/2022]
Abstract
AMP-activated protein kinase (AMPK) functions as a cellular energy sensor by monitoring the cellular AMP:ATP ratio and plays a central role in cellular and whole-body energy homeostasis. Recent studies have suggested that AMPK also contribute to cell cycle regulation, but its role in this field remains almost elusive. In the present study, we report that AMPKα1 was transiently activated during G1/S transition phase in NIH3T3 cells in the absence of any metabolic stress. Inhibition of AMPK activity at G1/S transition phase completely blocked cells from entering S phase; in contrast, persistent activation of AMPK at G1/S transition phase allowed cells to normally enter S phase, but these cells failed to proceed to G2/M phase, stacking at S phase. We further demonstrated that activation of AMPK at G1/S transition phase depends on Ca2+ transients and CaMKKβ activity, but not on energy status. Collectively, these data indicate that temporal regulation of AMPK is required for proper control of S phase in NIH3T3 cells.
Collapse
|
20
|
Salvi AM, DeMali KA. Mechanisms linking mechanotransduction and cell metabolism. Curr Opin Cell Biol 2018; 54:114-120. [PMID: 29902730 DOI: 10.1016/j.ceb.2018.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022]
Abstract
Throughout their lifetimes, all cells experience force. These forces are sensed by cell surface adhesion receptors, such as the cadherins and integrins. Much attention has focused on identifying how these adhesion receptors transmit force. In contrast, less is known regarding how these force-activated pathways are integrated with other cellular processes. In this review, we describe how cadherins and integrins transmit force, and discuss how these adhesion receptors are linked to cell metabolism. We focus on understanding this connection by highlighting how the cadherins and integrins interact with a master regulator of energy homeostasis, AMP-activated protein kinase (AMPK) and its upstream activator, Liver Kinase B1 (LKB1). We consider why there is a need for force transmission to be coupled to metabolism and highlight the major unanswered questions in the field.
Collapse
Affiliation(s)
- Alicia M Salvi
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Kris A DeMali
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
21
|
Hamann JC, Surcel A, Chen R, Teragawa C, Albeck JG, Robinson DN, Overholtzer M. Entosis Is Induced by Glucose Starvation. Cell Rep 2018; 20:201-210. [PMID: 28683313 PMCID: PMC5559205 DOI: 10.1016/j.celrep.2017.06.037] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022] Open
Abstract
Entosis is a mechanism of cell death that involves neighbor cell ingestion. This process occurs in cancers and promotes a form of cell competition, where winner cells engulf and kill losers. Entosis is driven by a mechanical differential that allows softer cells to eliminate stiffer cells. While this process can be induced by matrix detachment, whether other stressors can activate entosis is unknown. Here, we find that entosis is induced in adherent cells by glucose withdrawal. Glucose withdrawal leads to a bimodal distribution of cells based on their deformability, where stiffer cells appear in a manner requiring the energy-sensing AMP-activated protein kinase (AMPK). We show that loser cells with high levels of AMPK activity are eliminated by winners through entosis, which supports winner cell proliferation under nutrient-deprived conditions. Our findings demonstrate that entosis serves as a cellular response to metabolic stress that enables nutrient recovery through neighbor cell ingestion.
Collapse
Affiliation(s)
- Jens C Hamann
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruoyao Chen
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Carolyn Teragawa
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
22
|
Thaiparambil J, Mansour O, El-Zein R. Effect of Benzo[a]Pyrene on Spindle Misorientation and Fidelity of Chromosome Segregation in Lung Epithelial BEAS-2B Cells. Toxicol Sci 2017; 162:167-176. [DOI: 10.1093/toxsci/kfx229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jose Thaiparambil
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Oula Mansour
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Randa El-Zein
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
23
|
Kinases Involved in Both Autophagy and Mitosis. Int J Mol Sci 2017; 18:ijms18091884. [PMID: 28858266 PMCID: PMC5618533 DOI: 10.3390/ijms18091884] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/23/2022] Open
Abstract
Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.
Collapse
|
24
|
Novozhylov DO, Karpov PA, Blume YB. Bioinformatic search for Ca2+- and calmodulin-dependent protein kinases potentially associated with the regulation of plant cytoskeleton. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717040053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Blackmore K, Zhou W, Dailey MJ. LKB1-AMPK modulates nutrient-induced changes in the mode of division of intestinal epithelial crypt cells in mice. Exp Biol Med (Maywood) 2017; 242:1490-1498. [PMID: 28766983 DOI: 10.1177/1535370217724427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nutrient availability influences intestinal epithelial stem cell proliferation and tissue growth. Increases in food result in a greater number of epithelial cells, villi height and crypt depth. We investigated whether this nutrient-driven expansion of the tissue is the result of a change in the mode of intestinal epithelial stem cell division and if LKB1-AMPK signaling plays a role. We utilized in vivo and in vitro experiments to test this hypothesis. C57BL/6J mice were separated into four groups and fed varying amounts of chow for 18 h: (1) ad libitum, (2) 50% of their average daily intake (3) fasted or (4) fasted for 12 h and refed. Mice were sacrificed, intestinal sections excised and immunohistochemically processed to determine the mitotic spindle orientation. Epithelial organoids in vitro were treated with no (0 mM), low (5 mM) or high (20 mM) amounts of glucose with or without an activator (Metformin) or inhibitor (Compound C) of LKB1-AMPK signaling. Cells were then processed to determine the mode of stem cell division. Fasted mice show a greater % of asymmetrically dividing cells compared with the other feeding groups. Organoids incubated with 0 mM glucose resulted in a greater % of asymmetrically dividing cells compared with the low or high-glucose conditions. In addition, LKB1-AMPK activation attenuated the % of symmetric division normally seen in high-glucose conditions. In contrast, LKB1-AMPK inhibition attenuated the % of asymmetric division normally seen in no glucose conditions. These data suggest that nutrient availability dictates the mode of division and that LKB1-AMPK mediates this nutrient-driven effect on intestinal epithelial stem cell proliferation. Impact statement The underlying cell biology of changes in the polarity of mitotic spindles and its relevance to tissue growth is a new concept and, thus, these data provide novel findings to begin to explain how this process contributes to the regeneration and growth of tissues. We find that short-term changes in food intake in vivo or glucose availability in vitro dictate the mode of division of crypt cells. In addition, we find that LKB1-AMPK signaling modulates the glucose-induced changes in the mode of division in vitro. Identifying mechanisms involved in the mode of division may provide new targets to control tissue growth.
Collapse
Affiliation(s)
- Katherine Blackmore
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weinan Zhou
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Megan J Dailey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
26
|
Peppicelli S, Andreucci E, Ruzzolini J, Laurenzana A, Margheri F, Fibbi G, Del Rosso M, Bianchini F, Calorini L. The acidic microenvironment as a possible niche of dormant tumor cells. Cell Mol Life Sci 2017; 74:2761-2771. [PMID: 28331999 PMCID: PMC11107711 DOI: 10.1007/s00018-017-2496-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Although surgical excision, chemo-, and radio-therapy are clearly advanced, tumors may relapse due to cells of the so-called "minimal residual disease". Indeed, small clusters of tumor cells persist in host tissues after treatment of the primary tumor elaborating strategies to survive and escape from immunological attacks before their relapse: this variable period of remission is known as "cancer dormancy". Therefore, it is crucial to understand and consider the major concepts addressing dormancy, to identify new targets and disclose potential clinical strategies. Here, we have particularly focused the relationships between tumor microenvironment and cancer dormancy, looking at a re-appreciated aspect of this compartment that is the low extracellular pH. Accumulating evidences indicate that acidity of tumor microenvironment is associated with a poor prognosis of tumor-bearing patients, stimulates a chemo- and radio-therapy resistant phenotype, and suppresses the tumoricidal activity of cytotoxic lymphocytes and natural killer cells, and all these aspects are useful for dormancy. Therefore, this review discusses the possibility that acidity of tumor microenvironment may provide a new, not previously suggested, adequate milieu for "dormancy" of tumor cells.
Collapse
MESH Headings
- Acidosis/complications
- Acidosis/immunology
- Acidosis/pathology
- Animals
- Apoptosis
- Cell Proliferation
- Humans
- Hydrogen-Ion Concentration
- Immunologic Surveillance
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasm Recurrence, Local/etiology
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm, Residual/complications
- Neoplasm, Residual/immunology
- Neoplasm, Residual/pathology
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Prognosis
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Tumor Microenvironment
Collapse
Affiliation(s)
- Silvia Peppicelli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Elena Andreucci
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Jessica Ruzzolini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Anna Laurenzana
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Francesca Margheri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Gabriella Fibbi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Mario Del Rosso
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Francesca Bianchini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy.
- Istituto Toscano Tumori, Firenze, Italy.
| | - Lido Calorini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy.
- Istituto Toscano Tumori, Firenze, Italy.
| |
Collapse
|
27
|
Mathiassen SG, De Zio D, Cecconi F. Autophagy and the Cell Cycle: A Complex Landscape. Front Oncol 2017; 7:51. [PMID: 28409123 PMCID: PMC5374984 DOI: 10.3389/fonc.2017.00051] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a self-degradation pathway, in which cytoplasmic material is sequestered in double-membrane vesicles and delivered to the lysosome for degradation. Under basal conditions, autophagy plays a homeostatic function. However, in response to various stresses, the pathway can be further induced to mediate cytoprotection. Defective autophagy has been linked to a number of human pathologies, including neoplastic transformation, even though autophagy can also sustain the growth of tumor cells in certain contexts. In recent years, a considerable correlation has emerged between autophagy induction and stress-related cell-cycle responses, as well as unexpected roles for autophagy factors and selective autophagic degradation in the process of cell division. These advances have obvious implications for our understanding of the intricate relationship between autophagy and cancer. In this review, we will discuss our current knowledge of the reciprocal regulation connecting the autophagy pathway and cell-cycle progression. Furthermore, key findings involving nonautophagic functions for autophagy-related factors in cell-cycle regulation will be addressed.
Collapse
Affiliation(s)
- Søs Grønbæk Mathiassen
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniela De Zio
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
28
|
Khan AS, Frigo DE. A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Nat Rev Urol 2017; 14:164-180. [PMID: 28169991 PMCID: PMC5672799 DOI: 10.1038/nrurol.2016.272] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 5'-AMP-activated protein kinase (AMPK) is a master regulator of cellular homeostasis. Despite AMPK's known function in physiology, its role in pathological processes such as prostate cancer is enigmatic. However, emerging evidence is now beginning to decode the paradoxical role of AMPK in cancer and, therefore, inform clinicians if - and how - AMPK could be therapeutically targeted. Spatiotemporal regulation of AMPK complexes could be one of the mechanisms that governs this kinase's role in cancer. We hypothesize that different upstream stimuli will activate select subcellular AMPK complexes. This hypothesis is supported by the distinct subcellular locations of the various AMPK subunits. Each of these unique AMPK complexes regulates discrete downstream processes that can be tumour suppressive or oncogenic. AMPK's final biological output is then determined by the weighted net function of these downstream signalling events, influenced by additional prostate-specific signalling.
Collapse
Affiliation(s)
- Ayesha S. Khan
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX USA
| | - Daniel E. Frigo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX USA
- Genomic Medicine Program, The Houston Methodist Research Institute, Houston, TX USA
| |
Collapse
|
29
|
Zhang L, Hou Y, Li Z, Ji X, Wang Z, Wang H, Tian X, Yu F, Yang Z, Pi L, Mitchison TJ, Lu Q, Zhang X. 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells. eLife 2017; 6. [PMID: 28244368 PMCID: PMC5370190 DOI: 10.7554/elife.22911] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/26/2017] [Indexed: 12/12/2022] Open
Abstract
Purified microtubules have been shown to align along the static magnetic field (SMF) in vitro because of their diamagnetic anisotropy. However, whether mitotic spindle in mammalian cells can be aligned by magnetic field has not been experimentally proved. In particular, the biological effects of SMF of above 20 T (Tesla) on mammalian cells have never been reported. Here we found that in both CNE-2Z and RPE1 human cells spindle orients in 27 T SMF. The direction of spindle alignment depended on the extent to which chromosomes were aligned to form a planar metaphase plate. Our results show that the magnetic torque acts on both microtubules and chromosomes, and the preferred direction of spindle alignment relative to the field depends more on chromosome alignment than microtubules. In addition, spindle morphology was also perturbed by 27 T SMF. This is the first reported study that investigated the mammalian cellular responses to ultra-high magnetic field of above 20 T. Our study not only found that ultra-high magnetic field can change the orientation and morphology of mitotic spindles, but also provided a tool to probe the role of spindle orientation and perturbation in developmental and cancer biology. DOI:http://dx.doi.org/10.7554/eLife.22911.001 Nowadays, a number of methods can be used to ‘look’ inside the body to investigate potential health problems. One of these is a technique called magnetic resonance imaging (MRI) that uses magnetic fields that are several hundred times stronger than a fridge magnet (or over 10,000 times stronger than the Earth’s natural magnetic field) to generate images of the inside of the body. In general, stronger magnetic fields enable higher quality images to be obtained. However, the effects of exposing the body’s cells to these magnetic fields have not been fully determined. Like most other biological materials, protein polymers called microtubules can respond to high magnetic fields – for example, by aligning with the field. Microtubules play a number of roles inside cells. This includes forming the mitotic spindle that separates copies of chromosomes – the structures in which the majority of a cell’s genetic material is stored – equally between dividing cells. The orientation of the mitotic spindle determines the direction in which a cell will divide. This direction is important for generating different types of cells and tissues. Furthermore, many cancerous cells have incorrectly oriented spindles. Zhang, Hou et al. have now exposed cancerous and normal human cells to magnetic fields of varying strengths. The maximum magnetic field strength tested (27 Tesla – or around 10 times the highest field strengths produced by standard hospital MRI scanners) did not kill the cells after four hours of exposure, but the orientation of the spindles inside the cells did change. In addition, the 27 Tesla magnetic field caused spindles that were perpendicular to the direction of the field to widen. At an intermediate field strength (9 Tesla – a magnetic field strength that has been used in some experimental MRI scanners), the orientation of the spindle only changed after three days of continuous exposure to the magnetic field. Lower field strengths (such as those currently used in hospital MRI scanners) did not alter the orientation of the spindle even after seven days of exposure. Zhang, Hou et al. also observed that the magnetic field acts on both the microtubules and chromosomes. However, the alignment of the chromosomes in the cell was the greatest determinant of the direction in which the spindle would align itself in response to the magnetic field. The next step is to analyze the consequences of magnetic field-induced spindle orientation changes – can these lead to cancer or reduce cancer growth, or change how animal tissues develop? Understanding how to control the position of the spindle could also ultimately make it possible to use ultra-high magnetic fields to engineer tissues or stimulate their regeneration. DOI:http://dx.doi.org/10.7554/eLife.22911.002
Collapse
Affiliation(s)
- Lei Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Yubin Hou
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Zhiyuan Li
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Ze Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Huizhen Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Xiaofei Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Fazhi Yu
- University of Science and Technology of China, Hefei, China
| | - Zhenye Yang
- University of Science and Technology of China, Hefei, China
| | - Li Pi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Qingyou Lu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
30
|
Luo Y, Ran J, Xie S, Yang Y, Chen J, Li S, Shui W, Li D, Liu M, Zhou J. ASK1 controls spindle orientation and positioning by phosphorylating EB1 and stabilizing astral microtubules. Cell Discov 2016; 2:16033. [PMID: 27721984 PMCID: PMC5048754 DOI: 10.1038/celldisc.2016.33] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
Orientation and positioning of the mitotic spindle are involved in dictating cell division axis and cleavage site, and play important roles in cell fate determination and tissue morphogenesis. However, how spindle movement is controlled to achieve a defined alignment within the dividing cell is not fully understood. Here, we describe an unexpected role for apoptosis signal-regulating kinase 1 (ASK1) in regulating spindle behavior. We find that ASK1 is required for proper mitotic progression and daughter cell adhesion to the substratum. ASK1 interacts with end-binding protein 1 (EB1) and phosphorylates EB1 at serine 40, threonine 154 and threonine 206, enhancing its binding to the plus ends of astral microtubules. Consequently, astral microtubules are stabilized and therefore capable of mediating spindle interaction with the cell cortex, a requirement for spindle movement. These findings reveal a previously undiscovered function of ASK1 in cell division by regulating spindle orientation and positioning, and point to the importance of protein phosphorylation in the regulation of spindle behavior.
Collapse
Affiliation(s)
- Youguang Luo
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University, Jinan, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Protein Science of Tianjin, Key Laboratory of Bioactive Materials of the Ministry of Education, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Ran
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University , Jinan, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University , Jinan, China
| | - Yunfan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Protein Science of Tianjin, Key Laboratory of Bioactive Materials of the Ministry of Education, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University , Tianjin, China
| | - Jie Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Protein Science of Tianjin, Key Laboratory of Bioactive Materials of the Ministry of Education, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University , Tianjin, China
| | - Shanshan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Protein Science of Tianjin, Key Laboratory of Bioactive Materials of the Ministry of Education, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University , Tianjin, China
| | - Wenqing Shui
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Protein Science of Tianjin, Key Laboratory of Bioactive Materials of the Ministry of Education, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University , Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Protein Science of Tianjin, Key Laboratory of Bioactive Materials of the Ministry of Education, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University , Tianjin, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University , Jinan, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University, Jinan, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Protein Science of Tianjin, Key Laboratory of Bioactive Materials of the Ministry of Education, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Le LTT, Couvet M, Favier B, Coll JL, Nguyen CH, Molla A. Discovery of benzo[e]pyridoindolones as kinase inhibitors that disrupt mitosis exit while erasing AMPK-Thr172 phosphorylation on the spindle. Oncotarget 2016; 6:22152-66. [PMID: 26247630 PMCID: PMC4673153 DOI: 10.18632/oncotarget.4158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/30/2015] [Indexed: 01/09/2023] Open
Abstract
Aurora kinases play an essential role in mitotic progression and are attractive targets in cancer therapy. The first generation of benzo[e]pyridoindole exhibited powerful aurora kinase inhibition but their low solubility limited further development. Grafting a pyperidine-ethoxy group gives rise to a hydrosoluble inhibitor: compound C5M.C5M could efficiently inhibit the proliferation of cells from different origins. C5M prevented cell cycling, induced a strong mitotic arrest then, cells became polyploid and finally died. C5M did not impair the spindle checkpoint, the separation of the sister chromatids and the transfer of aurora B on the mid-zone. C5M prevented histone H3 phosphorylation at mitotic entry and erased AMPK-Thr172 phosphorylation in late mitosis. With this unique profile of inhibition, C5M could be useful for understanding the role of phospho-Thr172-AMPK in abscission and the relationship between the chromosomal complex and the energy sensing machinery.C5M is a multikinase inhibitor with interesting preclinical characteristics: high hydro-solubility and a good stability in plasma. A single dose prevents the expansion of multicellular spheroids. C5M can safely be injected to mice and reduces significantly the development of xenograft. The next step will be to define the protocol of treatment and the cancer therapeutic field of this new anti-proliferative drug.
Collapse
Affiliation(s)
- Ly-Thuy-Tram Le
- INSERM UJF U823 Institut Albert Bonniot, Team 5, BP 170, Grenoble Cedex 9, France.,Department of Biotechnology, University of Sciences and Technology, DaNang, Vietnam
| | - Morgane Couvet
- INSERM UJF U823 Institut Albert Bonniot, Team 5, BP 170, Grenoble Cedex 9, France
| | - Bertrand Favier
- Université Joseph Fourier - Grenoble, Team GREPI, Etablissement Français du Sang, BP35, La Tronche France
| | - Jean-Luc Coll
- INSERM UJF U823 Institut Albert Bonniot, Team 5, BP 170, Grenoble Cedex 9, France
| | - Chi-Hung Nguyen
- Institut Curie, PSL Research University, UMR 9187 - U 1196 CNRS-Institut Curie, INSERM, Bat 110 Centre Universitaire, Orsay, France
| | - Annie Molla
- INSERM UJF U823 Institut Albert Bonniot, Team 5, BP 170, Grenoble Cedex 9, France
| |
Collapse
|
32
|
Peppicelli S, Toti A, Giannoni E, Bianchini F, Margheri F, Del Rosso M, Calorini L. Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation. Cell Cycle 2016; 15:1908-18. [PMID: 27266957 DOI: 10.1080/15384101.2016.1191706] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low extracellular pH promotes in melanoma cells a malignant phenotype characterized by an epithelial-to-mesenchymal transition (EMT) program, endowed with mesenchymal markers, high invasiveness and pro-metastatic property. Here, we demonstrate that melanoma cells exposed to an acidic extracellular microenvironment, 6.7±0.1, shift to an oxidative phosphorylation (Oxphos) metabolism. Metformin, a biguanide commonly used for type 2 diabetes, inhibited the most relevant features of acid-induced phenotype, including EMT and Oxphos. When we tested effects of lactic acidosis, to verify whether sodium lactate might have additional effects on acidic melanoma cells, we found that EMT and Oxphos also characterized lactic acid-treated cells. An increased level of motility was the only gained property of lactic acidic-exposed melanoma cells. Metformin treatment inhibited both EMT markers and Oxphos and, when its concentration raised to 10 mM, it induced a striking inhibition of proliferation and colony formation of acidic melanoma cells, both grown in protons enriched medium or lactic acidosis. Thus, our study provides the first evidence that metformin may target either proton or lactic acidosis-exposed melanoma cells inhibiting EMT and Oxphox metabolism. These findings disclose a new potential rationale of metformin addition to advanced melanoma therapy, e.g. targeting acidic cell subpopulation.
Collapse
Affiliation(s)
- Silvia Peppicelli
- a Department of Experimental and Clinical Biomedical Sciences , University of Florence, Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education DenoTHE , Florence , Italy
| | - Alessandra Toti
- a Department of Experimental and Clinical Biomedical Sciences , University of Florence, Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education DenoTHE , Florence , Italy
| | - Elisa Giannoni
- a Department of Experimental and Clinical Biomedical Sciences , University of Florence, Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education DenoTHE , Florence , Italy
| | - Francesca Bianchini
- a Department of Experimental and Clinical Biomedical Sciences , University of Florence, Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education DenoTHE , Florence , Italy
| | - Francesca Margheri
- a Department of Experimental and Clinical Biomedical Sciences , University of Florence, Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education DenoTHE , Florence , Italy
| | - Mario Del Rosso
- a Department of Experimental and Clinical Biomedical Sciences , University of Florence, Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education DenoTHE , Florence , Italy
| | - Lido Calorini
- a Department of Experimental and Clinical Biomedical Sciences , University of Florence, Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education DenoTHE , Florence , Italy
| |
Collapse
|
33
|
Salminen A, Kaarniranta K, Kauppinen A. AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology 2016; 17:655-80. [PMID: 27259535 DOI: 10.1007/s10522-016-9655-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023]
Abstract
The AMP-activated protein kinase (AMPK) and hypoxia-inducible factor (HIF) signaling pathways are evolutionarily-conserved survival mechanisms responding to two fundamental stresses, energy deficiency and/or oxygen deprivation. The AMPK and HIF pathways regulate the function of a survival network with several transcription factors, e.g. FOXO, NF-κB, NRF2, and p53, as well as with protein kinases and other factors, such as mTOR, ULK1, HDAC5, and SIRT1. Given that AMPK and HIF activation can enhance not only healthspan and lifespan but also cancer growth in a context-dependent manner; it seems that cancer cells can hijack certain survival factors to maintain their growth in harsh conditions. AMPK activation improves energy metabolism, stimulates autophagy, and inhibits inflammation, whereas HIF-1α increases angiogenesis and helps cells to adapt to severe conditions. First we will review how AMPK and HIF signaling mechanisms control the function of an integrated survival network which is able not only to improve the regulation of longevity but also support the progression of tumorigenesis. We will also describe distinct crossroads between the regulation of longevity and cancer, e.g. specific regulation through the AMPKα and HIF-α isoforms, the Warburg effect, mitochondrial dynamics, and cellular senescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, KYS, Finland
| | - Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
34
|
Cho ER, Jee YH, Kim SW, Sull JW. Effect of obesity on the association between MYL2 (rs3782889) and high-density lipoprotein cholesterol among Korean men. J Hum Genet 2016; 61:405-9. [PMID: 26763873 DOI: 10.1038/jhg.2015.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023]
Abstract
High-density lipoprotein (HDL) cholesterol levels are associated with a decreased risk of coronary artery disease. Several genome-wide association studies that have examined HDL cholesterol levels have implicated myosin light chain 2 regulatory cardiac slow (MYL2) as a possible causal factor. Herein, the association between the rs3782889 single-nucleotide polymorphism (SNP) in the MYL2 gene and HDL cholesterol levels was tested in the Korean population. A total of 4294 individuals were included in a replication study with MYL2 SNP rs3782889. SNP rs3782889 in the MYL2 gene was associated with mean HDL cholesterol level (effect per allele, -1.055 mg dl(-1), P=0.0005). Subjects with the CT/CC genotype had a 1.43-fold (range 1.19-1.73-fold) higher risk of an abnormal HDL cholesterol level (<40 mg dl(-1)) than subjects with the TT genotype. When analyzed by sex, the MYL2 association was stronger in men than that in women. When analyzed by body mass index (BMI), the MYL2 association was much stronger in male subjects with BMI ⩾26.44 kg m(-2) (odds ratio (OR)=2.68; 95% confidence interval (CI)=1.87-3.84; P<0.0001) than that in male subjects with BMI <26.44 kg m(-2). When compared with subjects having the TT genotype and BMI <26.44 kg m(-2), ORs (95% CI) were 3.30 (2.41-4.50) in subjects having the CT/CC genotype and BMI ⩾26.44 kg m(-2) (P for interaction <0.0001). Our results clearly demonstrate that genetic variants in MYL2 influence HDL cholesterol levels in Korean obese male subjects.
Collapse
Affiliation(s)
- Eo Rin Cho
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Yon Ho Jee
- Department of Statistics, Sookmyung Women's University, Seoul, Korea
| | - Sang Won Kim
- Department of Natural Healing, Dongbang Culture Graduate University, Seoul, Korea
| | - Jae Woong Sull
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, Korea
| |
Collapse
|
35
|
Lee IJ, Lee CW, Lee JH. CaMKKβ-AMPKα2 signaling contributes to mitotic Golgi fragmentation and the G2/M transition in mammalian cells. Cell Cycle 2015; 14:598-611. [PMID: 25590814 DOI: 10.4161/15384101.2014.991557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Before a cell enters mitosis, the Golgi apparatus undergoes extensive fragmentation. This is required for the correct partitioning of the Golgi apparatus into daughter cells, and inhibition of this process leads to cell cycle arrest in G2 phase. AMP-activated protein kinase (AMPK) plays critical roles in regulating growth and reprogramming metabolism. Recent studies have suggested that AMPK promotes mitotic progression and Golgi disassembly, and that this seems independent of the cellular energy status. However, the molecular mechanism underlying these events is not well understood. Here, we show that both treatment with compound C and depletion of AMPKα2 (but not AMPKα1) delays the G2/M transition in synchronized HeLa cells, as evidenced by flow cytometry and mitotic index analysis. Furthermore, knockdown of AMPKα2 specifically delays further fragmentation of isolated Golgi stacks. Interestingly, pAMPKα(Thr172) signals transiently appear in the perinuclear region of late G2/early prophase cells, partially co-localizing with the Golgi matrix protein, GM-130. These Golgi pAMPKα(Thr172) signals were also specifically abolished by AMPKα2 knockdown, indicating specific spatio-temporal activation of AMPKα2 at Golgi complex during late G2/early prophases. We also found that the specific CaMKKβ inhibitor, STO-609, reduces the pAMPKα (Thr172) signals in the perinuclear region of G2 phase cells and delays mitotic Golgi fragmentation. Taken together, these data suggest that AMPKα2 is the major catalytic subunit of AMPKα which regulates Golgi fragmentation and G2/M transition, and that the CaMKKβ activates AMPKα2 during late G2 phase.
Collapse
Affiliation(s)
- In Jeong Lee
- a Department of Biochemistry and Molecular Biology ; Ajou University School of Medicine ; Suwon , Korea
| | | | | |
Collapse
|
36
|
Shahbazi MN, Perez-Moreno M. Connections between cadherin-catenin proteins, spindle misorientation, and cancer. Tissue Barriers 2015; 3:e1045684. [PMID: 26451345 DOI: 10.1080/21688370.2015.1045684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 10/25/2022] Open
Abstract
Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development, and Neuroscience; University of Cambridge ; Cambridge, UK
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group; Cancer Cell Biology Program; Spanish National Cancer Research Centre ; Madrid, Spain
| |
Collapse
|
37
|
Valsangkar DS, Downs SM. Acetyl CoA carboxylase inactivation and meiotic maturation in mouse oocytes. Mol Reprod Dev 2015; 82:679-93. [PMID: 26043180 DOI: 10.1002/mrd.22505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/09/2015] [Indexed: 12/24/2022]
Abstract
In mouse oocytes, meiotic induction by pharmacological activation of PRKA (adenosine monophosphate-activated protein kinase; formerly known as AMPK) or by hormones depends on stimulation of fatty acid oxidation (FAO). PRKA stimulates FAO by phosphorylating and inactivating acetyl CoA carboxylase (ACAC; formerly ACC), leading to decreased malonyl CoA levels and augmenting fatty-acid transport into mitochondria. We investigated a role for ACAC inactivation in meiotic resumption by testing the effect of two ACAC inhibitors, CP-640186 and Soraphen A, on mouse oocytes maintained in meiotic arrest in vitro. These inhibitors significantly stimulated the resumption of meiosis in arrested cumulus cell-enclosed oocytes, denuded oocytes, and follicle-enclosed oocytes. This stimulation was accompanied by an increase in FAO. Etomoxir, a malonyl CoA analogue, prevented meiotic resumption as well as the increase in FAO induced by ACAC inhibition. Citrate, an ACAC activator, and CBM-301106, an inhibitor of malonyl CoA decarboxylase, which converts malonyl CoA to acetyl CoA, suppressed both meiotic induction and FAO induced by follicle-stimulating hormone, presumably by maintaining elevated malonyl CoA levels. Mouse oocyte-cumulus cell complexes contain both isoforms of ACAC (ACACA and ACACB); when wild-type and Acacb(-/-) oocytes characteristics were compared, we found that these single-knockout oocytes showed a significantly higher FAO level and a reduced ability to maintain meiotic arrest, resulting in higher rates of germinal vesicle breakdown. Collectively, these data support the model that ACAC inactivation contributes to the maturation-promoting activity of PRKA through stimulation of FAO.
Collapse
Affiliation(s)
- Deepa S Valsangkar
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Stephen M Downs
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
38
|
Zadra G, Batista JL, Loda M. Dissecting the Dual Role of AMPK in Cancer: From Experimental to Human Studies. Mol Cancer Res 2015; 13:1059-72. [PMID: 25956158 DOI: 10.1158/1541-7786.mcr-15-0068] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/30/2015] [Indexed: 12/17/2022]
Abstract
The precise role of 5'AMP-activated kinase (AMPK) in cancer and its potential as a therapeutic target is controversial. Although it is well established that activation of this energy sensor inhibits the main anabolic processes that sustain cancer cell proliferation and growth, AMPK activation can confer on cancer cells the plasticity to survive under metabolic stress such as hypoxia and glucose deprivation, which are commonly observed in fast growing tumors. Thus, AMPK is referred to as both a "conditional" tumor suppressor and "contextual" oncogene. To add a further layer of complexity, AMPK activation in human cancer tissues and its correlation with tumor aggressiveness and progression appears to vary in different contexts. The current review discusses the different faces of this metabolic regulator, the therapeutic implications of its modulation, and provides an overview of the most relevant data available on AMPK activation and AMPK-activating drugs in human studies.
Collapse
Affiliation(s)
- Giorgia Zadra
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts
| | - Julie L Batista
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School Boston, Massachusetts
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts. The Broad Institute, Cambridge, Massachusetts. Division of Cancer Studies, King's College London, United Kingdom.
| |
Collapse
|
39
|
Mao K, Liu F, Liu X, Khuri FR, Marcus AI, Li M, Zhou W. Re-expression of LKB1 in LKB1-mutant EKVX cells leads to resistance to paclitaxel through the up-regulation of MDR1 expression. Lung Cancer 2015; 88:131-8. [PMID: 25769882 DOI: 10.1016/j.lungcan.2015.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The tumor suppressor LKB1 has recently been shown to be involved in the regulation of microtubule dynamics, thus cancer cells with inactivated LKB1 may have developed a means to overcome dysregulated microtubule functions, making them intrinsically resistant to microtubule targeting agents. Here, we generated isogenic LKB1-wild type and mutant non-small cell lung cancer (NSCLC) cell lines to evaluate the role of LKB1 in paclitaxel resistance. MATERIALS AND METHODS SRB, flow cytometry and immunoblotting were used to assess cell proliferation and apoptosis in NSCLC cell lines after paclitaxel treatment. Expression of LKB1 was restored in LKB1-null cells by retrovirus infection and was reduced in LKB1-wild type cells by shRNA knock down. RESULTS AND CONCLUSION The restoration of LKB1 in LKB1-null cells failed to promote paclitaxel-induced apoptosis in both p53-wild type and p53-mutant backgrounds, indicating that LKB1 was not required for paclitaxel-induced apoptosis. Interestingly, the re-establishment of LKB1 expression led to the up-regulation of class III beta-tubulin and MDR1 in EKVX cells. The up-regulation of MDR1 protein and transcripts in EKVX cells was specifically associated with the expression of wild-type LKB1 and mainly responsible for the increased cellular resistance to paclitaxel. However, the presence of LKB1 protein was not required to maintain this increased MDR1 expression even though there was no genetic amplification or promoter de-methylation of the ABCB1 locus in EKVX-LKB1-WT cells. These data suggest that LKB1 does not promote paclitaxel-induced apoptosis in most NSCLC cell lines. In contrast, in some NSCLC, the presence of LKB1 may facilitate increases in either MDR1 or class III beta-tubulin expression which can lead to paclitaxel resistance.
Collapse
Affiliation(s)
- Kaisheng Mao
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States; Department of Hepatobiliary Surgery, NanFang Hospital, Guangzhou, People's Republic of China; Department of Gastroenterology, NanFang Hospital, Guangzhou, People's Republic of China
| | - Fakeng Liu
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiuju Liu
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States
| | - Fadlo R Khuri
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States
| | - Adam I Marcus
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States
| | - Mingsong Li
- Department of Gastroenterology, NanFang Hospital, Guangzhou, People's Republic of China.
| | - Wei Zhou
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States.
| |
Collapse
|
40
|
Popovics P, Frigo DE, Schally AV, Rick FG. Targeting the 5'-AMP-activated protein kinase and related metabolic pathways for the treatment of prostate cancer. Expert Opin Ther Targets 2015; 19:617-32. [PMID: 25600663 DOI: 10.1517/14728222.2015.1005603] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Increasing evidence suggests that prostate cancer cells undergo unique metabolic reprogramming during transformation. A master regulator of cellular homeostasis, 5'-AMP-activated protein kinase (AMPK), directs metabolic adaptation that supports the growth demands of rapidly dividing cancer cells. The utilization of AMPK as a therapeutic target may therefore provide an effective strategy in the treatment of prostate cancer. AREAS COVERED Our review describes the regulation of AMPK by androgens and upstream kinases including the calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in prostate cancer. Oncogenic, AMPK-regulated pathways that direct various metabolic processes are also addressed. Furthermore, we discuss the role of AMPK in growth arrest and autophagy as a potential survival pathway for cancer cells. In addition, by regulating non-metabolic pathways, AMPK may stimulate migration and mitosis. Finally, this review summarizes efforts to treat prostate cancer with pharmacological agents capable of modulating AMPK signaling. EXPERT OPINION Current research is primarily focused on developing drugs that activate AMPK as a treatment for prostate cancer. However, oncogenic aspects of AMPK signaling calls for caution about employing such therapies. We think that inhibitors of CaMKK2 or AMPK, or perhaps the modulation of downstream targets of AMPK, will gain importance in the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Petra Popovics
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education , Research (151) 2A127, 1201 NW 16th St, Miami, FL 33125 , USA +1 305 5753477 ; +1 305 5753126 ;
| | | | | | | |
Collapse
|
41
|
Jiang Y, Wang Y, Wang T, Hawke DH, Zheng Y, Li X, Zhou Q, Majumder S, Bi E, Liu DX, Huang S, Lu Z. PKM2 phosphorylates MLC2 and regulates cytokinesis of tumour cells. Nat Commun 2014; 5:5566. [PMID: 25412762 PMCID: PMC4259466 DOI: 10.1038/ncomms6566] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) is expressed at high levels during embryonic development and tumour progression and is important for cell growth. However, it is not known whether it directly controls cell division. Here, we found that Aurora B phosphorylates PKM2, but not PKM1, at T45; this phosphorylation is required for PKM2's localization and interaction with myosin light chain 2 (MLC2) in the contractile ring region of mitotic cells during cytokinesis. PKM2 phosphorylates MLC2 at Y118, which primes the binding of ROCK2 to MLC2 and subsequent ROCK2-dependent MLC2 S15 phosphorylation. PKM2-regulated MLC2 phosphorylation, which is greatly enhanced by EGF stimulation or EGFRvIII, K-Ras G12V and B-Raf V600E mutant expression, plays a pivotal role in cytokinesis, cell proliferation and brain tumour development. These findings underscore the instrumental function of PKM2 in oncogenic EGFR-, K-Ras- and B-Raf-regulated cytokinesis and tumorigenesis.
Collapse
Affiliation(s)
- Yuhui Jiang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yugang Wang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ting Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David H. Hawke
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinjian Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qin Zhou
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Sadhan Majumder
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David X. Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Suyun Huang
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
42
|
Xu H, Zhou Y, Coughlan KA, Ding Y, Wang S, Wu Y, Song P, Zou MH. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:65-73. [PMID: 25307521 DOI: 10.1016/j.bbamcr.2014.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/22/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
Emerging evidence suggests that activation of adenosine monophosphate-activated protein kinase (AMPK), an energy gauge and redox sensor, controls the cell cycle and protects against DNA damage. However, the molecular mechanisms by which AMPKα isoform regulates DNA damage remain largely unknown. The aim of this study was to determine if AMPKα deletion contributes to cellular hyperproliferation by reducing p21(WAF1/Cip1) (p21) expression thereby leading to accumulated DNA damage. The markers for DNA damage, cell cycle proteins, and apoptosis were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J), AMPKα1, or AMPKα2 homozygous deficient (AMPKα1(-/-), AMPKα2(-/-)) mice by Western blot, flow cytometry, and cellular immunofluorescence staining. Deletion of AMPKα1, the predominant AMPKα isoform, but not AMPKα2 in immortalized MEFs led to spontaneous DNA double-strand breaks (DSB) which corresponded to repair protein p53-binding protein 1 (53BP1) foci formation and subsequent apoptosis. Furthermore, AMPKα1 localizes to chromatin and AMPKα1 deletion down-regulates cyclin-dependent kinase inhibitor, p21, an important protein that plays a role in decreasing the incidence of spontaneous DSB via inhibition of cell proliferation. In addition, AMPKα1 null cells exhibited enhanced cell proliferation. Finally, p21 overexpression partially blocked the cellular hyperproliferation of AMPKα1-deleted MEFs via the inhibition of cyclin-dependent kinase 2 (CDK2). Taken together, our results suggest that AMPKα1 plays a fundamental role in controlling the cell cycle thereby affecting DNA damage and cellular apoptosis.
Collapse
Affiliation(s)
- Hairong Xu
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanhong Zhou
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Key Laboratory of Hubei Province on Cardio-Cerebral Diseases, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Kathleen A Coughlan
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ye Ding
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shaobin Wang
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yue Wu
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ping Song
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Ming-Hui Zou
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
43
|
Lu H, Zhao Q, Jiang H, Zhu T, Xia P, Seffens W, Aikhionbare F, Wang D, Dou Z, Yao X. Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis. PLoS One 2014; 9:e102547. [PMID: 25299690 PMCID: PMC4191959 DOI: 10.1371/journal.pone.0102547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/19/2014] [Indexed: 01/03/2023] Open
Abstract
Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin.
Collapse
Affiliation(s)
- Huan Lu
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Qun Zhao
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Jiang
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Tongge Zhu
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Peng Xia
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - William Seffens
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Felix Aikhionbare
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Dongmei Wang
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhen Dou
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuebiao Yao
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
44
|
Chin HMS, Nandra K, Clark J, Draviam VM. Need for multi-scale systems to identify spindle orientation regulators relevant to tissue disorganization in solid cancers. Front Physiol 2014; 5:278. [PMID: 25120491 PMCID: PMC4110440 DOI: 10.3389/fphys.2014.00278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | - Viji M. Draviam
- Department of Genetics, Cancer Cell Biology, University of CambridgeCambridge, UK
| |
Collapse
|
45
|
Abstract
The final stage of cell division (mitosis), involves the compaction of the duplicated genome into chromatid pairs. Each pair is captured by microtubules emanating from opposite spindle poles, aligned at the metaphase plate, and then faithfully segregated to form two identical daughter cells. Chromatids that are not correctly attached to the spindle are detected by the constitutively active spindle assembly checkpoint (SAC). Any stress that prevents correct bipolar spindle attachment, blocks the satisfaction of the SAC, and induces a prolonged mitotic arrest, providing the cell time to obtain attachment and complete segregation correctly. Unfortunately, during mitosis repairing damage is not generally possible due to the compaction of DNA into chromosomes, and subsequent suppression of gene transcription and translation. Therefore, in the presence of significant damage cell death is instigated to ensure that genomic stability is maintained. While most stresses lead to an arrest in mitosis, some promote premature mitotic exit, allowing cells to bypass mitotic cell death. This mini-review will focus on the effects and outcomes that common stresses have on mitosis, and how this impacts on the efficacy of mitotic chemotherapies.
Collapse
Affiliation(s)
- Andrew Burgess
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia ; St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia , Sydney, NSW , Australia
| | - Mina Rasouli
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia
| | - Samuel Rogers
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia
| |
Collapse
|
46
|
Interactome analysis of AMP-activated protein kinase (AMPK)-α1 and -β1 in INS-1 pancreatic beta-cells by affinity purification-mass spectrometry. Sci Rep 2014; 4:4376. [PMID: 24625528 PMCID: PMC3953747 DOI: 10.1038/srep04376] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/26/2014] [Indexed: 12/23/2022] Open
Abstract
The heterotrimeric enzyme AMP-activated protein kinase (AMPK) is a major metabolic factor that regulates the homeostasis of cellular energy. In particular, AMPK mediates the insulin resistance that is associated with type 2 diabetes. Generally, cellular processes require tight regulation of protein kinases, which is effected through their formation of complex with other proteins and substrates. Despite their critical function in regulation and pathogenesis, there are limited data on the interaction of protein kinases. To identify proteins that interact with AMPK, we performed large-scale affinity purification (AP)-mass spectrometry (MS) of the AMPK-α1 and -β1 subunits. Through a comprehensive analysis, using a combination of immunoprecipitaion and ion trap mass spectrometry, we identified 381 unique proteins in the AMPKα/β interactomes: 325 partners of AMPK-α1 and 243 for AMPK-β1. Further, we identified 196 novel protein-protein interactions with AMPK-α1 and AMPK-β1. Notably, in our bioinformatics analysis, the novel interaction partners mediated functions that are related to the regulation of actin organization. Specifically, several such proteins were linked to pancreatic beta-cell functions, including glucose-stimulated insulin secretion, beta-cell development, beta-cell differentiation, and cell-cell communication.
Collapse
|
47
|
Kim M, Hunter RW, Garcia-Menendez L, Gong G, Yang YY, Kolwicz SC, Xu J, Sakamoto K, Wang W, Tian R. Mutation in the γ2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Circ Res 2014; 114:966-975. [PMID: 24503893 PMCID: PMC3971100 DOI: 10.1161/circresaha.114.302364] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 02/06/2014] [Indexed: 01/01/2023]
Abstract
RATIONALE AMP-activated protein kinase is a master regulator of cell metabolism and an attractive drug target for cancer and metabolic and cardiovascular diseases. Point mutations in the regulatory γ2-subunit of AMP-activated protein kinase (encoded by Prkag2 gene) caused a unique form of human cardiomyopathy characterized by cardiac hypertrophy, ventricular preexcitation, and glycogen storage. Understanding the disease mechanisms of Prkag2 cardiomyopathy is not only beneficial for the patients but also critical to the use of AMP-activated protein kinase as a drug target. OBJECTIVE We sought to identify the pro-growth-signaling pathway(s) triggered by Prkag2 mutation and to distinguish it from the secondary response to glycogen storage. METHODS AND RESULTS In a mouse model of N488I mutation of the Prkag2 gene (R2M), we rescued the glycogen storage phenotype by genetic inhibition of glucose-6-phosphate-stimulated glycogen synthase activity. Ablation of glycogen storage eliminated the ventricular preexcitation but did not affect the excessive cardiac growth in R2M mice. The progrowth effect in R2M hearts was mediated via increased insulin sensitivity and hyperactivity of Akt, resulting in activation of mammalian target of rapamycin and inactivation of forkhead box O transcription factor-signaling pathways. Consequently, cardiac myocyte proliferation during the postnatal period was enhanced in R2M hearts followed by hypertrophic growth in adult hearts. Inhibition of mammalian target of rapamycin activity by rapamycin or restoration of forkhead box O transcription factor activity by overexpressing forkhead box O transcription factor 1 rescued the abnormal cardiac growth. CONCLUSIONS Our study reveals a novel mechanism for Prkag2 cardiomyopathy, independent of glycogen storage. The role of γ2-AMP-activated protein kinase in cell growth also has broad implications in cardiac development, growth, and regeneration.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/physiology
- Animals
- Cardiomyopathy, Hypertrophic, Familial/enzymology
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/metabolism
- Cardiomyopathy, Hypertrophic, Familial/physiopathology
- Cell Division
- Cell Enlargement
- Disease Models, Animal
- Forkhead Box Protein O1
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/physiology
- Gene Knock-In Techniques
- Genetic Complementation Test
- Glucose-6-Phosphate/metabolism
- Glucose-6-Phosphate/pharmacology
- Glycogen/biosynthesis
- Glycogen Storage Disease/genetics
- Glycogen Storage Disease/metabolism
- Glycogen Storage Disease/physiopathology
- Glycogen Synthase/genetics
- Glycogen Synthase/physiology
- Insulin Resistance/genetics
- Mice
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Pre-Excitation Syndromes/genetics
- Proto-Oncogene Proteins c-akt/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/physiology
Collapse
Affiliation(s)
- Maengjo Kim
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA
| | - Roger W. Hunter
- MRC Protein Phosphorylation unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH
| | - Lorena Garcia-Menendez
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA
| | - Guohua Gong
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA
| | - Yu-Ying Yang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA
| | - Stephen C. Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA
| | - Jason Xu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA
| | - Kei Sakamoto
- MRC Protein Phosphorylation unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA
| |
Collapse
|
48
|
Zadra G, Photopoulos C, Tyekucheva S, Heidari P, Weng QP, Fedele G, Liu H, Scaglia N, Priolo C, Sicinska E, Mahmood U, Signoretti S, Birnberg N, Loda M. A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol Med 2014; 6:519-38. [PMID: 24497570 PMCID: PMC3992078 DOI: 10.1002/emmm.201302734] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
5′AMP-activated kinase (AMPK) constitutes a hub for cellular metabolic and growth control, thus representing an ideal therapeutic target for prostate cancers (PCas) characterized by increased lipogenesis and activation of mTORC1 pathway. However, whether AMPK activation itself is sufficient to block cancer cell growth remains to be determined. A small molecule screening was performed and identified MT 63–78, a specific and potent direct AMPK activator. Here, we show that direct activation of AMPK inhibits PCa cell growth in androgen sensitive and castration resistant PCa (CRPC) models, induces mitotic arrest, and apoptosis. In vivo, AMPK activation is sufficient to reduce PCa growth, whereas the allelic loss of its catalytic subunits fosters PCa development. Importantly, despite mTORC1 blockade, the suppression of de novo lipogenesis is the underpinning mechanism responsible for AMPK-mediated PCa growth inhibition, suggesting AMPK as a therapeutic target especially for lipogenesis-driven PCas. Finally, we demonstrate that MT 63–78 enhances the growth inhibitory effect of AR signaling inhibitors MDV3100 and abiraterone. This study thus provides a rationale for their combined use in CRPC treatment.
Collapse
Affiliation(s)
- Giorgia Zadra
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang F, Liu C, Xu Y, Qi G, Yuan G, Cheng Z, Wang J, Wang G, Wang Z, Zhu W, Zhou Z, Zhao X, Tian L, Jin C, Yuan J, Zhang G, Chen Y, Wang L, Lu T, Yan H, Ruan Y, Yue W, Zhang D. A two-stage association study suggests BRAP as a susceptibility gene for schizophrenia. PLoS One 2014; 9:e86037. [PMID: 24454952 PMCID: PMC3893271 DOI: 10.1371/journal.pone.0086037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/04/2013] [Indexed: 01/05/2023] Open
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder in which altered immune function typically plays an important role in mediating the effect of environmental insults and regulation of inflammation. The breast cancer suppressor protein associated protein (BRAP) is suggested to exert vital effects in neurodevelopment by modulating the mitogen-activated protein kinase cascade and inflammation signaling. To explore the possible role of BRAP in SZ, we conducted a two-stage study to examine the association of BRAP polymorphisms with SZ in the Han Chinese population. In stage one, we screened SNPs in BRAP from our GWAS data, which detected three associated SNPs, with rs3782886 being the most significant one (P = 2.31E-6, OR = 0.67). In stage two, we validated these three SNPs in an independently collected population including 1957 patients and 1509 controls, supporting the association of rs3782886 with SZ (P = 1.43E-6, OR = 0.73). Furthermore, cis-eQTL analysis indicates that rs3782886 genotypes are associated with mRNA levels of aldehyde dehydrogenase 2 family (ALDH2) (P = 0.0039) and myosin regulatory light chain 2 (MYL2) (P < 1.0E-4). Our data suggest that the BRAP gene may confer vulnerability for SZ in Han Chinese population, adding further evidence for the involvement of developmental and/or neuroinflammatory cascades in the illness.
Collapse
Affiliation(s)
- Fuquan Zhang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Chenxing Liu
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Guoyang Qi
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Guozhen Yuan
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Zaohuo Cheng
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Jidong Wang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Guoqiang Wang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Zhiqiang Wang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Wei Zhu
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Zhenhe Zhou
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Xingfu Zhao
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Lin Tian
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Chunhui Jin
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Janmin Yuan
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Guofu Zhang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Yaguang Chen
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Lifang Wang
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Tianlan Lu
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Hao Yan
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Yanyan Ruan
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Weihua Yue
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- * E-mail: (DZ); (WY)
| | - Dai Zhang
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- * E-mail: (DZ); (WY)
| |
Collapse
|
50
|
Decarreau J, Driver J, Asbury C, Wordeman L. Rapid measurement of mitotic spindle orientation in cultured mammalian cells. Methods Mol Biol 2014; 1136:31-40. [PMID: 24633791 PMCID: PMC4037854 DOI: 10.1007/978-1-4939-0329-0_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Factors that influence the orientation of the mitotic spindle are important for the maintenance of stem cell populations and in cancer development. However, screening for these factors requires rapid quantification of alterations of the angle of the mitotic spindle in cultured cell lines. Here we describe a method to image mitotic cells and rapidly score the angle of the mitotic spindle using a simple MATLAB application to analyze a stack of Z-images.
Collapse
Affiliation(s)
- Justin Decarreau
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|