1
|
Liu Y, Chen J, Li X, Fan Y, Peng C, Ye X, Wang Y, Xie X. Natural products targeting RAS by multiple mechanisms and its therapeutic potential in cancer: An update since 2020. Pharmacol Res 2025; 212:107577. [PMID: 39756556 DOI: 10.1016/j.phrs.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
RAS proteins, as pivotal signal transduction molecules, are frequently mutated and hyperactivated in various human cancers, closely associated with tumor cell proliferation, survival, and metastasis. Despite extensive research on RAS targeted therapies, developing effective RAS inhibitors remains a significant challenge. Natural products, endowed with unique chemical structures and diverse biological activities through long-term natural selection, have emerged as a vital resource for discovering novel RAS-targeted therapeutic drugs. This review focuses on the latest advancements in targeting RAS with natural products and categorizes these natural products based on their mechanisms of action. Additionally, we discuss the challenges faced by these natural products during clinical translation, including issues related to pharmacokinetics. Strategies such as combination therapy, structural optimization, and drug delivery systems are anticipated to enhance efficacy and overcome these challenges.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China.
| | - Jie Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaochun Ye
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China
| | - Yingshuang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China.
| |
Collapse
|
2
|
Wan X, Yap J, Chen J, Li Y, Faruk R, Tan NCB, Ma Y, Lim Y, Jubri KB, Hu J, Yuan J, Zhang G, Li Q, Yap YS, Lam P, Wang M, Fu NY, Hu J. Oncogenic non-V600 mutations evade the regulatory machinery of RAF including the Cdc37/Hsp90 chaperone and the 14-3-3 scaffold. Theranostics 2025; 15:2035-2051. [PMID: 39897565 PMCID: PMC11780520 DOI: 10.7150/thno.103958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
The Ser/Thr kinase RAF, particularly BRAF isoform is a dominant target of oncogenic mutations and many mutations have been identified in various cancers. However, how these mutations except V600E evade the regulatory machinery of RAF protein and hence trigger its oncogenicity remains unclear. Methods: In this study, we used mutagenesis, peptide affinity assay, immunoprecipitation, immunoblot, and complementary split luciferase assay as well as mouse xenograft tumour model to investigate how the function of RAF is cooperatively regulated by Cdc37/Hsp90 chaperones and 14-3-3 scaffolds and how this regulatory machinery is evaded by prevalent non-V600 mutations. Results: We found that Cdc37/Hsp90 chaperones engaged with mature BRAF proteins promoted together with 14-3-3 scaffolds a switch of BRAF proteins from active open dimers into inactive close monomers. Most non-V600 mutations were enriched on or around the Cdc37/Hsp90-binding segments of BRAF, which impair association of CDc37/Hsp90 chaperones with BRAF and hence trap BRAF in active open conformation favouring dimerization. These BRAF mutants with high dimer propensity sustained a prolonged ERK signaling, and were effectively targeted by RAF dimer breaker plx8394 in vitro and in vivo. In contrast, CRAF and ARAF existed as immature monomers highly packaged with Cdc37/Hsp90 chaperones, which will be released upon dimerization driven by RAS-GTP binding with their N-terminus as well as 14-3-3 scaffold association with their C-terminus. Mature CRAF and ARAF dimers also sustained a prolonged ERK signaling as non-V600 BRAF mutants by virtue of absence of the C-terminal Cdc37/Hsp90-binding segment. Conclusions: Cdc37/Hsp90 chaperones and 14-3-3 scaffolds cooperatively facilitate the switch of RAF proteins from open active dimers to close inactive monomers. Non-V600 mutations disrupt this regulatory machinery, and trap RAF in dimers, which could be targeted by RAF dimer breakers.
Collapse
Affiliation(s)
- Xiaoyu Wan
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Jiajun Yap
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
- The Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Junjun Chen
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Yifan Li
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Regina Faruk
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Nazereth Chor Boon Tan
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Yiying Ma
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Yiting Lim
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Karlina Bte Jubri
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Jingyi Hu
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Jimin Yuan
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Ge Zhang
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Quan Li
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
| | - Yoon Sim Yap
- The Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore 168583
- The Oncology Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Paula Lam
- The Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Department of Physiology, National University of Singapore, 2 Medical Drive, Singapore 117597
- Cellvec Pte. Ltd. 100 Pasir Panjang Road, Singapore 118518
| | - Mei Wang
- The Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Nai Yang Fu
- The Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Jiancheng Hu
- The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583
- The Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
3
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
4
|
Townley RA, Stacy KS, Cheraghi F, de la Cova CC. The Raf/LIN-45 C-terminal distal tail segment negatively regulates signaling in Caenorhabditis elegans. Genetics 2024; 228:iyae152. [PMID: 39288021 PMCID: PMC11538406 DOI: 10.1093/genetics/iyae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024] Open
Abstract
Raf protein kinases act as Ras-GTP sensing components of the ERK signal transduction pathway in animal cells, influencing cell proliferation, differentiation, and survival. In humans, somatic and germline mutations in the genes BRAF and RAF1 are associated with malignancies and developmental disorders. Recent studies shed light on the structure of activated Raf, a heterotetramer consisting of Raf and 14-3-3 dimers, and raised the possibility that a Raf C-terminal distal tail segment (DTS) regulates activation. We investigated the role of the DTS using the Caenorhabditis elegans Raf ortholog lin-45. Truncations removing the DTS strongly enhanced lin-45(S312A), a weak gain-of-function allele equivalent to RAF1 mutations found in patients with Noonan Syndrome. We genetically defined three elements of the LIN-45 DTS, which we termed the active site binding sequence (ASBS), the KTP motif, and the aromatic cluster. In the context of lin-45(S312A), the mutation of each of these elements enhanced activity. We used AlphaFold to predict DTS protein interactions for LIN-45, fly Raf, and human BRAF within the activated heterotetramer complex. We propose the following distinct functions for the LIN-45 DTS elements: (1) the ASBS binds the kinase active site as an inhibitor; (2) phosphorylation of the KTP motif modulates the DTS-kinase domain interaction; and (3) the aromatic cluster anchors the DTS in an inhibitory conformation. Human RASopathy-associated variants in BRAF affect residues of the DTS, consistent with these predictions. This work establishes that the Raf/LIN-45 DTS negatively regulates signaling in C. elegans and provides a model for its function in other Raf proteins.
Collapse
Affiliation(s)
- Robert A Townley
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| | - Kennedy S Stacy
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| | - Fatemeh Cheraghi
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| | - Claire C de la Cova
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201USA
| |
Collapse
|
5
|
Kim H, Noristani HN, Zhai J, Manire M, Zhai J, Li S, Zhong J, Son YJ. Deleting PTEN, but not SOCS3 or myelin inhibitors, robustly boosts BRAF-elicited intraspinal regeneration of peripheral sensory axons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613685. [PMID: 39345461 PMCID: PMC11429726 DOI: 10.1101/2024.09.18.613685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Primary sensory axons fail to regenerate into the spinal cord following dorsal root injury leading to permanent sensory deficits. Re-entry is prevented at the dorsal root entry zone (DREZ), the CNS-PNS interface. Current approaches for promoting DR regeneration across the DREZ have had some success, but sustained, long-distance regeneration, particularly of large-diameter myelinated axons, still remains a formidable challenge. We have previously shown that induced expression of constitutively active B-RAF (kaBRAF) enhanced the regenerative competence of injured DRG neurons in adult mice. In this study, we investigated whether robust intraspinal regeneration can be achieved after a cervical DR injury by selective expression of kaBRAF alone or in combination with deletion of the myelin-associated inhibitors or neuron-intrinsic growth suppressors (PTEN or SOCS3). We found that kaBRAF promoted some axon regeneration across the DREZ but did not produce significant functional recovery by two months. Supplementary deletion of Nogo, MAG, and OMgp only modestly improved kaBRAF-induced regeneration. Deletion of PTEN or SOCS3 individually or in combination failed to promote any growth across the DREZ. In marked contrast, simultaneous deletion of PTEN, but not SOCS3, dramatically enhanced kaBRAF-mediated regeneration enabling many more axons to penetrate the DREZ and grow deep into the spinal cord. This study shows that dual activation of BRAF-MEK-ERK and PI3K-Akt-mTOR signaling is an effective strategy to stimulate robust intraspinal DR regeneration.
Collapse
|
6
|
Christen D, Lauinger M, Brunner M, Dengjel J, Brummer T. The mTOR pathway controls phosphorylation of BRAF at T401. Cell Commun Signal 2024; 22:428. [PMID: 39223665 PMCID: PMC11370054 DOI: 10.1186/s12964-024-01808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BRAF serves as a gatekeeper of the RAS/RAF/MEK/ERK pathway, which plays a crucial role in homeostasis. Since aberrant signalling of this axis contributes to cancer and other diseases, it is tightly regulated by crosstalk with the PI3K/AKT/mTOR pathway and ERK mediated feedback loops. For example, ERK limits BRAF signalling through phosphorylation of multiple residues. One of these, T401, is widely considered as an ERK substrate following acute pathway activation by growth factors. Here, we demonstrate that prominent T401 phosphorylation (pT401) of endogenous BRAF is already observed in the absence of acute stimulation in various cell lines of murine and human origin. Importantly, the BRAF/RAF1 inhibitor naporafenib, the MEK inhibitor trametinib and the ERK inhibitor ulixertinib failed to reduce pT401 levels in these settings, supporting an alternative ERK-independent pathway to T401 phosphorylation. In contrast, the mTOR inhibitor torin1 and the dual-specific PI3K/mTOR inhibitor dactolisib significantly suppressed pT401 levels in all investigated cell types, in both a time and concentration dependent manner. Conversely, genetic mTOR pathway activation by oncogenic RHEB (Q64L) and mTOR (S2215Y and R2505P) mutants substantially increased pT401, an effect that was reverted by dactolisib and torin1 but not by trametinib. We also show that shRNAmir mediated depletion of the mTORC1 complex subunit Raptor significantly enhanced the suppression of T401 phosphorylation by a low torin1 dose, while knockdown of the mTORC2 complex subunit Rictor was less effective. Using mass spectrometry, we provide further evidence that torin1 suppresses the phosphorylation of T401, S405 and S409 but not of other important regulatory phosphorylation sites such as S446, S729 and S750. In summary, our data identify the mTOR axis and its inhibitors of (pre)clinical relevance as novel modulators of BRAF phosphorylation at T401.
Collapse
Affiliation(s)
- Daniel Christen
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Freiburg and, Heidelberg, 69120, Germany
| | - Manuel Lauinger
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Brunner
- Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany.
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Freiburg and, Heidelberg, 69120, Germany.
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, 79106, Freiburg, Germany.
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
7
|
Sun Y, Zhou R, Hu J, Feng S, Hu Q. Reversible control of kinase signaling through chemical-induced dephosphorylation. Commun Biol 2024; 7:1073. [PMID: 39217250 PMCID: PMC11366001 DOI: 10.1038/s42003-024-06771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The coordination between kinases and phosphatases is crucial for regulating the phosphorylation levels of essential signaling molecules. Methods enabling precise control of kinase activities are valuable for understanding the kinase functions and for developing targeted therapies. Here, we use the abscisic acid (ABA)-induced proximity system to reversibly control kinase signaling by recruiting phosphatases. Using this method, we found that the oncogenic tyrosine kinase BCR::ABL1 can be inhibited by recruiting various cytoplasmic phosphatases. We also discovered that the oncogenic serine/threonine kinase BRAF(V600E), which has been reported to bypass phosphorylation regulation, can be positively regulated by protein phosphatase 1 (PP1) and negatively regulated by PP5. Additionally, we observed that the dual-specificity kinase MEK1 can be inhibited by recruiting PP5. This suggests that bifunctional molecules capable of recruiting PP5 to MEK or RAF kinases could be promising anticancer drug candidates. Thus, the ABA-induced dephosphorylation method enables rapid screening of phosphatases to precisely control kinase signaling.
Collapse
Affiliation(s)
- Ying Sun
- Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Rihong Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jin Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qi Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Jeon H, Tkacik E, Eck MJ. Signaling from RAS to RAF: The Molecules and Their Mechanisms. Annu Rev Biochem 2024; 93:289-316. [PMID: 38316136 DOI: 10.1146/annurev-biochem-052521-040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Townley RA, Stacy KS, Cheraghi F, de la Cova CC. The Raf/LIN-45 C-terminal distal tail segment negatively regulates signaling in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603803. [PMID: 39071268 PMCID: PMC11275798 DOI: 10.1101/2024.07.16.603803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Raf protein kinases act as Ras-GTP sensing components of the ERK signal transduction pathway in animal cells, influencing cell proliferation, differentiation, and survival. In humans, somatic and germline mutations in the genes BRAF and RAF1 are associated with malignancies and developmental disorders. Recent studies shed light on the structure of activated Raf, a heterotetramer consisting of Raf and 14-3-3 dimers, and raised the possibility that a Raf C-terminal distal tail segment (DTS) regulates activation. We investigated the role of the DTS using the Caenorhabditis elegans, which has a single Raf ortholog termed lin-45 . We discovered that truncations removing the DTS strongly enhanced lin-45(S312A) , a weak gain-of-function allele equivalent to RAF1 mutations found in patients with Noonan Syndrome. We generated mutations to test three elements of the LIN-45 DTS, which we termed the active site binding sequence (ASBS), the KTP motif, and the aromatic cluster. In the context of lin-45(S312A), mutation of either the ASBS, KTP motif, or aromatic cluster enhanced activity. We used AlphaFold to predict DTS protein interactions for LIN-45, fly Raf, and human BRAF, within the activated heterotetramer complex. We propose distinct functions for the LIN-45 DTS elements: i) the ASBS binds the kinase active site as an inhibitor, ii) phosphorylation of the KTP motif modulates DTS-kinase domain interaction, and iii) the aromatic cluster anchors the DTS in an inhibitory conformation. This work establishes that the Raf/LIN-45 DTS negatively regulates signaling in C. elegans and provides a model for its function in other Raf proteins.
Collapse
|
10
|
Spencer-Smith R, Morrison DK. Regulation of RAF family kinases: new insights from recent structural and biochemical studies. Biochem Soc Trans 2024; 52:1061-1069. [PMID: 38695730 PMCID: PMC11346419 DOI: 10.1042/bst20230552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, U.S.A
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, U.S.A
| |
Collapse
|
11
|
Liu NF, Enomoto M, Marshall CB, Ikura M. Reconstitution and characterization of BRAF in complex with 14-3-3 and KRAS4B on nanodiscs. Protein Sci 2024; 33:e5016. [PMID: 38747381 PMCID: PMC11094772 DOI: 10.1002/pro.5016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
RAF kinases are key components of the RAS-MAPK signaling pathway, which drives cell growth and is frequently overactivated in cancer. Upstream signaling activates the small GTPase RAS, which recruits RAF to the cell membrane, driving a transition of the latter from an auto-inhibited monomeric conformation to an active dimer. Despite recent progress, mechanistic details underlying RAF activation remain unclear, particularly the role of RAS and the membrane in mediating this conformational rearrangement of RAF together with 14-3-3 to permit RAF kinase domain dimerization. Here, we reconstituted an active complex of dimeric BRAF, a 14-3-3 dimer and two KRAS4B on a nanodisc bilayer and verified that its assembly is GTP-dependent. Biolayer interferometry (BLI) was used to compare the binding affinities of monomeric versus dimeric full-length BRAF:14-3-3 complexes for KRAS4B-conjugated nanodiscs (RAS-ND) and to investigate the effects of membrane lipid composition and spatial density of KRAS4B on binding. 1,2-Dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and higher KRAS4B density enhanced the interaction of BRAF:14-3-3 with RAS-ND to different degrees depending on BRAF oligomeric state. We utilized our reconstituted system to dissect the effects of KRAS4B and the membrane on the kinase activity of monomeric and dimeric BRAF:14-3-3 complexes, finding that KRAS4B or nanodiscs alone were insufficient to stimulate activity, whereas RAS-ND increased activity of both states of BRAF. The reconstituted assembly of full-length BRAF with 14-3-3 and KRAS on a cell-free, defined lipid bilayer offers a more holistic biophysical perspective to probe regulation of this multimeric signaling complex at the membrane surface.
Collapse
Affiliation(s)
- Ningdi F. Liu
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Masahiro Enomoto
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
12
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
13
|
Grogan L, Shapiro P. Progress in the development of ERK1/2 inhibitors for treating cancer and other diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:181-207. [PMID: 39034052 DOI: 10.1016/bs.apha.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The extracellular signal-regulated kinases-1 and 2 (ERK1/2) are ubiquitous regulators of many cellular functions, including proliferation, differentiation, migration, and cell death. ERK1/2 regulate cell functions by phosphorylating a diverse collection of protein substrates consisting of other kinases, transcription factors, structural proteins, and other regulatory proteins. ERK1/2 regulation of cell functions is tightly regulated through the balance between activating phosphorylation by upstream kinases and inactivating dephosphorylation by phosphatases. Disruption of homeostatic ERK1/2 regulation caused by elevated extracellular signals or mutations in upstream regulatory proteins leads to the constitutive activation of ERK1/2 signaling and uncontrolled cell proliferation observed in many types of cancer. Many inhibitors of upstream kinase regulators of ERK1/2 have been developed and are part of targeted therapeutic options to treat a variety of cancers. However, the efficacy of these drugs in providing sustained patient responses is limited by the development of acquired resistance often involving re-activation of ERK1/2. As such, recent drug discovery efforts have focused on the direct targeting of ERK1/2. Several ATP competitive ERK1/2 inhibitors have been identified and are being tested in cancer clinical trials. One drug, Ulixertinib (BVD-523), has received FDA approval for use in the Expanded Access Program for patients with no other therapeutic options. This review provides an update on ERK1/2 inhibitors in clinical trials, their successes and limitations, and new academic drug discovery efforts to modulate ERK1/2 signaling for treating cancer and other diseases.
Collapse
Affiliation(s)
- Lena Grogan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
14
|
Chen W, Geng D, Chen J, Han X, Xie Q, Guo G, Chen X, Zhang W, Tang S, Zhong X. Roles and mechanisms of aberrant alternative splicing in melanoma - implications for targeted therapy and immunotherapy resistance. Cancer Cell Int 2024; 24:101. [PMID: 38462618 PMCID: PMC10926661 DOI: 10.1186/s12935-024-03280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Despite advances in therapeutic strategies, resistance to immunotherapy and the off-target effects of targeted therapy have significantly weakened the benefits for patients with melanoma. MAIN BODY Alternative splicing plays a crucial role in transcriptional reprogramming during melanoma development. In particular, aberrant alternative splicing is involved in the efficacy of immunotherapy, targeted therapy, and melanoma metastasis. Abnormal expression of splicing factors and variants may serve as biomarkers or therapeutic targets for the diagnosis and prognosis of melanoma. Therefore, comprehensively integrating their roles and related mechanisms is essential. This review provides the first detailed summary of the splicing process in melanoma and the changes occurring in this pathway. CONCLUSION The focus of this review is to provide strategies for developing novel diagnostic biomarkers and summarize their potential to alter resistance to targeted therapies and immunotherapy.
Collapse
Affiliation(s)
- Wanxian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Deyi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Jiasheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xiaosha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Qihu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Genghong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xuefen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Wancong Zhang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xiaoping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
15
|
Riaud M, Maxwell J, Soria-Bretones I, Dankner M, Li M, Rose AAN. The role of CRAF in cancer progression: from molecular mechanisms to precision therapies. Nat Rev Cancer 2024; 24:105-122. [PMID: 38195917 DOI: 10.1038/s41568-023-00650-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
The RAF family of kinases includes key activators of the pro-tumourigenic mitogen-activated protein kinase pathway. Hyperactivation of RAF proteins, particularly BRAF and CRAF, drives tumour progression and drug resistance in many types of cancer. Although BRAF is the most studied RAF protein, partially owing to its high mutation incidence in melanoma, the role of CRAF in tumourigenesis and drug resistance is becoming increasingly clinically relevant. Here, we summarize the main known regulatory mechanisms and gene alterations that contribute to CRAF activity, highlighting the different oncogenic roles of CRAF, and categorize RAF1 (CRAF) mutations according to the effect on kinase activity. Additionally, we emphasize the effect that CRAF alterations may have on drug resistance and how precision therapies could effectively target CRAF-dependent tumours. Here, we discuss preclinical and clinical findings that may lead to improved treatments for all types of oncogenic RAF1 alterations in cancer.
Collapse
Affiliation(s)
- Melody Riaud
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jennifer Maxwell
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabel Soria-Bretones
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Matthew Dankner
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Meredith Li
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - April A N Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada.
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Al Hmada Y, Brodell RT, Kharouf N, Flanagan TW, Alamodi AA, Hassan SY, Shalaby H, Hassan SL, Haikel Y, Megahed M, Santourlidis S, Hassan M. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers (Basel) 2024; 16:470. [PMID: 38275910 PMCID: PMC10814963 DOI: 10.3390/cancers16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.
Collapse
Affiliation(s)
- Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulhadi A. Alamodi
- College of Health Sciences, Jackson State University, 310 W Woodrow Wilson Ave Ste 300, Jackson, MS 39213, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
17
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
18
|
Ram A, Murphy D, DeCuzzi N, Patankar M, Hu J, Pargett M, Albeck JG. A guide to ERK dynamics, part 1: mechanisms and models. Biochem J 2023; 480:1887-1907. [PMID: 38038974 PMCID: PMC10754288 DOI: 10.1042/bcj20230276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Extracellular signal-regulated kinase (ERK) has long been studied as a key driver of both essential cellular processes and disease. A persistent question has been how this single pathway is able to direct multiple cell behaviors, including growth, proliferation, and death. Modern biosensor studies have revealed that the temporal pattern of ERK activity is highly variable and heterogeneous, and critically, that these dynamic differences modulate cell fate. This two-part review discusses the current understanding of dynamic activity in the ERK pathway, how it regulates cellular decisions, and how these cell fates lead to tissue regulation and pathology. In part 1, we cover the optogenetic and live-cell imaging technologies that first revealed the dynamic nature of ERK, as well as current challenges in biosensor data analysis. We also discuss advances in mathematical models for the mechanisms of ERK dynamics, including receptor-level regulation, negative feedback, cooperativity, and paracrine signaling. While hurdles still remain, it is clear that higher temporal and spatial resolution provide mechanistic insights into pathway circuitry. Exciting new algorithms and advanced computational tools enable quantitative measurements of single-cell ERK activation, which in turn inform better models of pathway behavior. However, the fact that current models still cannot fully recapitulate the diversity of ERK responses calls for a deeper understanding of network structure and signal transduction in general.
Collapse
Affiliation(s)
- Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Devan Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Nicholaus DeCuzzi
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Madhura Patankar
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Jason Hu
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| |
Collapse
|
19
|
Chakraborty J, Chakraborty S, Chakraborty S, Narayan MN. Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194988. [PMID: 37739217 DOI: 10.1016/j.bbagrm.2023.194988] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized cellular signaling pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple protein complexes such as RAS-RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Institute for Advancing Health through Agriculture, Texas A&M Agrilife, College Station, TX, USA
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell School of Medicine, New York, USA
| | - Sohag Chakraborty
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, USA
| | - Mahesh N Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
20
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
21
|
Townley R, Deniaud A, Stacy KS, Torres CSR, Cheraghi F, Wicker NB, de la Cova CC. The E3/E4 ubiquitin ligase UFD-2 suppresses normal and oncogenic signaling mediated by a Raf ortholog in Caenorhabditis elegans. Sci Signal 2023; 16:eabq4355. [PMID: 37643243 PMCID: PMC10656100 DOI: 10.1126/scisignal.abq4355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Signaling by the kinase cascade composed of Raf, MEK, and ERK is critical for animal development and is often inappropriately activated in human malignancies. We sought to identify factors that control signaling mediated by the Caenorhabditis elegans Raf ortholog LIN-45. A genetic screen showed that the degradation of LIN-45 required the E3/E4 ubiquitin ligase UFD-2. Both UFD-2 and its partner, the ATP-dependent segregase CDC-48, were required for the developmental regulation of LIN-45 protein abundance. We showed that UFD-2 acted in the same pathway as the E3 ubiquitin ligase SCFSEL-10 to decrease LIN-45 abundance in cells in which Raf-MEK-ERK signaling was most highly active. UFD-2 also reduced the protein abundance of activated LIN-45 carrying a mutation equivalent to the cancer-associated BRAF(V600E) variant. Our structure-function studies showed that the disruption of LIN-45 domains that mediate protein-protein interactions, including the conserved cysteine-rich domain and 14-3-3 binding motifs, were required for UFD-2-independent degradation of LIN-45. We propose a model in which UFD-2 and CDC-48 act downstream of SCFSEL-10 to remove LIN-45 from its protein interaction partners and facilitate proteasomal targeting and degradation. These findings imply that UFD-2 and CDC-48 may be important for Raf degradation during normal and oncogenic Ras and MAPK signaling in mammalian cells.
Collapse
Affiliation(s)
- Robert Townley
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, 53201 USA
| | - Augustin Deniaud
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, 53201 USA
| | - Kennedy S. Stacy
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, 53201 USA
| | | | - Fatemeh Cheraghi
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, 53201 USA
| | - Nicole B. Wicker
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, 53201 USA
| | - Claire C. de la Cova
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, 53201 USA
| |
Collapse
|
22
|
Feng S, Sanford JA, Weber T, Hutchinson-Bunch CM, Dakup PP, Paurus VL, Attah K, Sauro HM, Qian WJ, Wiley HS. A Phosphoproteomics Data Resource for Systems-level Modeling of Kinase Signaling Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551714. [PMID: 37577496 PMCID: PMC10418157 DOI: 10.1101/2023.08.03.551714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Building mechanistic models of kinase-driven signaling pathways requires quantitative measurements of protein phosphorylation across physiologically relevant conditions, but this is rarely done because of the insensitivity of traditional technologies. By using a multiplexed deep phosphoproteome profiling workflow, we were able to generate a deep phosphoproteomics dataset of the EGFR-MAPK pathway in non-transformed MCF10A cells across physiological ligand concentrations with a time resolution of <12 min and in the presence and absence of multiple kinase inhibitors. An improved phosphosite mapping technique allowed us to reliably identify >46,000 phosphorylation sites on >6600 proteins, of which >4500 sites from 2110 proteins displayed a >2-fold increase in phosphorylation in response to EGF. This data was then placed into a cellular context by linking it to 15 previously published protein databases. We found that our results were consistent with much, but not all previously reported data regarding the activation and negative feedback phosphorylation of core EGFR-ERK pathway proteins. We also found that EGFR signaling is biphasic with substrates downstream of RAS/MAPK activation showing a maximum response at <3ng/ml EGF while direct substrates, such as HGS and STAT5B, showing no saturation. We found that RAS activation is mediated by at least 3 parallel pathways, two of which depend on PTPN11. There appears to be an approximately 4-minute delay in pathway activation at the step between RAS and RAF, but subsequent pathway phosphorylation was extremely rapid. Approximately 80 proteins showed a >2-fold increase in phosphorylation across all experiments and these proteins had a significantly higher median number of phosphorylation sites (~18) relative to total cellular phosphoproteins (~4). Over 60% of EGF-stimulated phosphoproteins were downstream of MAPK and included mediators of cellular processes such as gene transcription, transport, signal transduction and cytoskeletal arrangement. Their phosphorylation was either linear with respect to MAPK activation or biphasic, corresponding to the biphasic signaling seen at the level of the EGFR. This deep, integrated phosphoproteomics data resource should be useful in building mechanistic models of EGFR and MAPK signaling and for understanding how downstream responses are regulated.
Collapse
Affiliation(s)
- Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - James A. Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Thomas Weber
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | | | - Panshak P. Dakup
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Vanessa L. Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Kwame Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Herbert M. Sauro
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| |
Collapse
|
23
|
Park E, Rawson S, Schmoker A, Kim BW, Oh S, Song K, Jeon H, Eck MJ. Cryo-EM structure of a RAS/RAF recruitment complex. Nat Commun 2023; 14:4580. [PMID: 37516774 PMCID: PMC10387098 DOI: 10.1038/s41467-023-40299-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/19/2023] [Indexed: 07/31/2023] Open
Abstract
RAF-family kinases are activated by recruitment to the plasma membrane by GTP-bound RAS, whereupon they initiate signaling through the MAP kinase cascade. Prior structural studies of KRAS with RAF have focused on the isolated RAS-binding and cysteine-rich domains of RAF (RBD and CRD, respectively), which interact directly with RAS. Here we describe cryo-EM structures of a KRAS bound to intact BRAF in an autoinhibited state with MEK1 and a 14-3-3 dimer. Analysis of this KRAS/BRAF/MEK1/14-3-3 complex reveals KRAS bound to the RAS-binding domain of BRAF, captured in two orientations. Core autoinhibitory interactions in the complex are unperturbed by binding of KRAS and in vitro activation studies confirm that KRAS binding is insufficient to activate BRAF, absent membrane recruitment. These structures illustrate the separability of binding and activation of BRAF by RAS and suggest stabilization of this pre-activation intermediate as an alternative therapeutic strategy to blocking binding of KRAS.
Collapse
Affiliation(s)
- Eunyoung Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Pfizer R&D Center, 3200 Walnut St, Boulder, CO, 80301, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anna Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Byeong-Won Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sehee Oh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kangkang Song
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA, 01605, USA
| | - Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Chessel A, De Crozé N, Molina MD, Taberner L, Dru P, Martin L, Lepage T. RAS-independent ERK activation by constitutively active KSR3 in non-chordate metazoa. Nat Commun 2023; 14:3970. [PMID: 37407549 DOI: 10.1038/s41467-023-39606-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
During early development of the sea urchin embryo, activation of ERK signalling in mesodermal precursors is not triggered by extracellular RTK ligands but by a cell-autonomous, RAS-independent mechanism that was not understood. We discovered that in these cells, ERK signalling is activated through the transcriptional activation of a gene encoding a protein related to Kinase Suppressor of Ras, that we named KSR3. KSR3 belongs to a family of catalytically inactive allosteric activators of RAF. Phylogenetic analysis revealed that genes encoding kinase defective KSR3 proteins are present in most non-chordate metazoa but have been lost in flies and nematodes. We show that the structure of KSR3 factors resembles that of several oncogenic human RAF mutants and that KSR3 from echinoderms, cnidarians and hemichordates activate ERK signalling independently of RAS when overexpressed in cultured cells. Finally, we used the sequence of KSR3 factors to identify activating mutations of human B-RAF. These findings reveal key functions for this family of factors as activators of RAF in RAS-independent ERK signalling in invertebrates. They have implications on the evolution of the ERK signalling pathway and suggest a mechanism for its co-option in the course of evolution.
Collapse
Affiliation(s)
- Aline Chessel
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Noémie De Crozé
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Maria Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Laura Taberner
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Philippe Dru
- CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Luc Martin
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Thierry Lepage
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France.
| |
Collapse
|
25
|
Rohrer L, Spohr C, Beha C, Griffin R, Braun S, Halbach S, Brummer T. Analysis of RAS and drug induced homo- and heterodimerization of RAF and KSR1 proteins in living cells using split Nanoluc luciferase. Cell Commun Signal 2023; 21:136. [PMID: 37316874 DOI: 10.1186/s12964-023-01146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The dimerization of RAF kinases represents a key event in their activation cycle and in RAS/ERK pathway activation. Genetic, biochemical and structural approaches provided key insights into this process defining RAF signaling output and the clinical efficacy of RAF inhibitors (RAFi). However, methods reporting the dynamics of RAF dimerization in living cells and in real time are still in their infancy. Recently, split luciferase systems have been developed for the detection of protein-protein-interactions (PPIs), incl. proof-of-concept studies demonstrating the heterodimerization of the BRAF and RAF1 isoforms. Due to their small size, the Nanoluc luciferase moieties LgBiT and SmBiT, which reconstitute a light emitting holoenzyme upon fusion partner promoted interaction, appear as well-suited to study RAF dimerization. Here, we provide an extensive analysis of the suitability of the Nanoluc system to study the homo- and heterodimerization of BRAF, RAF1 and the related KSR1 pseudokinase. We show that KRASG12V promotes the homo- and heterodimerization of BRAF, while considerable KSR1 homo- and KSR1/BRAF heterodimerization already occurs in the absence of this active GTPase and requires a salt bridge between the CC-SAM domain of KSR1 and the BRAF-specific region. We demonstrate that loss-of-function mutations impairing key steps of the RAF activation cycle can be used as calibrators to gauge the dynamics of heterodimerization. This approach identified the RAS-binding domains and the C-terminal 14-3-3 binding motifs as particularly critical for the reconstitution of RAF mediated LgBiT/SmBiT reconstitution, while the dimer interface was less important for dimerization but essential for downstream signaling. We show for the first time that BRAFV600E, the most common BRAF oncoprotein whose dimerization status is controversially portrayed in the literature, forms homodimers in living cells more efficiently than its wildtype counterpart. Of note, Nanoluc activity reconstituted by BRAFV600E homodimers is highly sensitive to the paradox-breaking RAFi PLX8394, indicating a dynamic and specific PPI. We report the effects of eleven ERK pathway inhibitors on RAF dimerization, incl. third-generation compounds that are less-defined in terms of their dimer promoting abilities. We identify Naporafenib as a potent and long-lasting dimerizer and show that the split Nanoluc approach discriminates between type I, I1/2 and II RAFi. Video Abstract.
Collapse
Affiliation(s)
- Lino Rohrer
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Corinna Spohr
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Carina Beha
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Ricarda Griffin
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Sandra Braun
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany.
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
- Center for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, 79104, Germany.
| |
Collapse
|
26
|
Ma TP, Izrael-Tomasevic A, Mroue R, Budayeva H, Malhotra S, Raisner R, Evangelista M, Rose CM, Kirkpatrick DS, Yu K. AzidoTMT Enables Direct Enrichment and Highly Multiplexed Quantitation of Proteome-Wide Functional Residues. J Proteome Res 2023. [PMID: 37285454 DOI: 10.1021/acs.jproteome.2c00703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advances in targeted covalent inhibitors have aroused significant interest for their potential in drug development for difficult therapeutic targets. Proteome-wide profiling of functional residues is an integral step of covalent drug discovery aimed at defining actionable sites and evaluating compound selectivity in cells. A classical workflow for this purpose is called IsoTOP-ABPP, which employs an activity-based probe and two isotopically labeled azide-TEV-biotin tags to mark, enrich, and quantify proteome from two samples. Here we report a novel isobaric 11plex-AzidoTMT reagent and a new workflow, named AT-MAPP, that significantly expands multiplexing power as compared to the original isoTOP-ABPP. We demonstrate its application in identifying cysteine on- and off-targets using a KRAS G12C covalent inhibitor ARS-1620. However, changes in some of these hits can be explained by modulation at the protein and post-translational levels. Thus, it would be crucial to interrogate site-level bona fide changes in concurrence to proteome-level changes for corroboration. In addition, we perform a multiplexed covalent fragment screening using four acrylamide-based compounds as a proof-of-concept. This study identifies a diverse set of liganded cysteine residues in a compound-dependent manner with an average hit rate of 0.07% in intact cell. Lastly, we screened 20 sulfonyl fluoride-based compounds to demonstrate that the AT-MAPP assay is flexible for noncysteine functional residues such as tyrosine and lysine. Overall, we envision that 11plex-AzidoTMT will be a useful addition to the current toolbox for activity-based protein profiling and covalent drug development.
Collapse
Affiliation(s)
- Taylur P Ma
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Rana Mroue
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Hanna Budayeva
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Ryan Raisner
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Marie Evangelista
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher M Rose
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Donald S Kirkpatrick
- Interline Therapeutics, Inc., South San Francisco, California 94080, United States
| | - Kebing Yu
- Fuhong Biopharma, Inc., Shanghai 201206, China
| |
Collapse
|
27
|
Liu C, Ye D, Yang H, Chen X, Su Z, Li X, Ding M, Liu Y. RAS-targeted cancer therapy: Advances in drugging specific mutations. MedComm (Beijing) 2023; 4:e285. [PMID: 37250144 PMCID: PMC10225044 DOI: 10.1002/mco2.285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Rat sarcoma (RAS), as a frequently mutated oncogene, has been studied as an attractive target for treating RAS-driven cancers for over four decades. However, it is until the recent success of kirsten-RAS (KRAS)G12C inhibitor that RAS gets rid of the title "undruggable". It is worth noting that the therapeutic effect of KRASG12C inhibitors on different RAS allelic mutations or even different cancers with KRASG12C varies significantly. Thus, deep understanding of the characteristics of each allelic RAS mutation will be a prerequisite for developing new RAS inhibitors. In this review, the structural and biochemical features of different RAS mutations are summarized and compared. Besides, the pathological characteristics and treatment responses of different cancers carrying RAS mutations are listed based on clinical reports. In addition, the development of RAS inhibitors, either direct or indirect, that target the downstream components in RAS pathway is summarized as well. Hopefully, this review will broaden our knowledge on RAS-targeting strategies and trigger more intensive studies on exploiting new RAS allele-specific inhibitors.
Collapse
Affiliation(s)
- Cen Liu
- Beijing University of Chinese MedicineBeijingChina
| | - Danyang Ye
- Beijing University of Chinese MedicineBeijingChina
| | - Hongliu Yang
- Beijing University of Chinese MedicineBeijingChina
| | - Xu Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Zhijun Su
- Beijing University of Chinese MedicineBeijingChina
| | - Xia Li
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mei Ding
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yonggang Liu
- Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
28
|
Sun Y, Li X, Yin C, Zhang J, Liang E, Wu X, Ni Y, Arbesman J, Goding CR, Chen S. AMPK Phosphorylates ZDHHC13 to Increase MC1R Activity and Suppress Melanomagenesis. Cancer Res 2023; 83:1062-1073. [PMID: 36701140 PMCID: PMC10073341 DOI: 10.1158/0008-5472.can-22-2595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Inherited genetic variations in the melanocortin-1 receptor (MC1R) responsible for human red hair color (RHC) variants are associated with impaired DNA damage repair and increased melanoma risk. MC1R signaling is critically dependent on palmitoylation, primarily mediated by the protein acyltransferase zinc finger DHHC-type palmitoyltransferase 13 (ZDHHC13). A better understanding of how ZDHHC13 is physiologically activated could help identify approaches to prevent melanomagenesis in redheads. Here, we report that AMP-activated protein kinase (AMPK) phosphorylates ZDHHC13 at S208 to strengthen the interaction between ZDHHC13 and MC1R-RHC, leading to enhanced MC1R palmitoylation in redheads. Consequently, phosphorylation of ZDHHC13 by AMPK increased MC1R-RHC downstream signaling. AMPK activation and MC1R palmitoylation repressed UVB-induced transformation of human melanocytes in vitro and delayed melanomagenesis in vivo in C57BL/6J-MC1R-RHC mice. The importance of AMPK to MC1R signaling was validated in human melanomas where AMPK upregulation correlated with expression of factors downstream from MC1R signaling and with prolonged patient survival. These findings suggest AMPK activation as a promising strategy to reduce melanoma risk, especially for individuals with red hair. SIGNIFICANCE Phosphorylation of ZDHHC13 by AMPK at S208 promotes MC1R activation and suppresses melanocyte transformation, indicating activation of AMPK as a potential approach to prevent melanoma in people with red hair.
Collapse
Affiliation(s)
- Yu Sun
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- These authors contributed equally to this work
| | - Xin Li
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- These authors contributed equally to this work
| | - Chengqian Yin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- These authors contributed equally to this work
| | - Judy Zhang
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Ershang Liang
- The Graduate School of Arts and Sciences, Fordham University, Bronx, New York 10458, USA
| | - Xianfang Wu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Joshua Arbesman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Shuyang Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
29
|
Hendrikse CSE, Theelen PMM, van der Ploeg P, Westgeest HM, Boere IA, Thijs AMJ, Ottevanger PB, van de Stolpe A, Lambrechts S, Bekkers RLM, Piek JMJ. The potential of RAS/RAF/MEK/ERK (MAPK) signaling pathway inhibitors in ovarian cancer: A systematic review and meta-analysis. Gynecol Oncol 2023; 171:83-94. [PMID: 36841040 DOI: 10.1016/j.ygyno.2023.01.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/01/2023] [Accepted: 01/30/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND The RAS/RAF/MEK/ERK (MAPK) pathway plays a role in ovarian carcinogenesis. Low-grade serous ovarian carcinoma (LGSOC) frequently harbors activating MAPK mutations. MAPK inhibitors have been used in small subsets of ovarian carcinoma (OC) patients to control tumor growth. Therefore, we performed a meta-analysis to evaluate the effectiveness of MAPK inhibitors in OC patients. We aimed to determine the clinical benefit rate (CBR), the subgroup of MAPK inhibitors with the best CBR and overall response rate (ORR), and the most common adverse events. METHODS We conducted a search in PubMed, Embase via Ovid, the Cochrane library and clinicaltrials.gov on studies evaluating the efficacy of single MAPK pathway inhibition with MAPK pathway inhibitors in OC patients. Our primary outcome included the CBR, defined by the proportion of patients with stable disease (SD), complete (CR) and partial response (PR). Secondary outcomes included the ORR (including PR and CR) and grade 3 and 4 adverse events. Meta-analysis was performed using a random-effects model. RESULTS We included nine studies with a total of 319 OC patients, for which we determined a pooled CBR of 63% (95%-CI 39-84%, I2 = 92%). Combined treatment with Raf- and MEK inhibitors in in BRAFv600 mutated LGSOC (n = 6) had the greatest efficacy with a CBR of 100% and ORR of 83%. MEK inhibitors had the best efficacy as a single agent. Subgroup analysis by tumor histology demonstrated a significantly higher CBR and ORR in patients with LGSOC, with a pooled CBR and ORR of 87% (95%-CI 81-92%, I2 = 0%) and 27% (95%-CI 10-48%, I2 = 77%) respectively. Adverse events of grade 3 or higher were reported frequently: 123 in 167 patients. CONCLUSIONS MEK inhibitors are the most promising single agents in (LGS)OC. However, dual MAPK pathway inhibition should be considered in patients with a BRAFv600 mutation, or non-mutated OC with depleted treatment options due indications of higher efficacy and tolerable toxicity profiles.
Collapse
Affiliation(s)
- C S E Hendrikse
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands.
| | - P M M Theelen
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - P van der Ploeg
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - H M Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda, the Netherlands
| | - I A Boere
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - A M J Thijs
- Department of Internal Medicine and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - P B Ottevanger
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A van de Stolpe
- Drug Companion Diagnostics Company - Therapeutics (DCDC-Tx), Vught, the Netherlands
| | - S Lambrechts
- Department of Obstetrics and Gynecology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - R L M Bekkers
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - J M J Piek
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| |
Collapse
|
30
|
Fröhlich F, Gerosa L, Muhlich J, Sorger PK. Mechanistic model of MAPK signaling reveals how allostery and rewiring contribute to drug resistance. Mol Syst Biol 2023; 19:e10988. [PMID: 36700386 PMCID: PMC9912026 DOI: 10.15252/msb.202210988] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/27/2023] Open
Abstract
BRAF is prototypical of oncogenes that can be targeted therapeutically and the treatment of BRAFV600E melanomas with RAF and MEK inhibitors results in rapid tumor regression. However, drug-induced rewiring generates a drug adapted state thought to be involved in acquired resistance and disease recurrence. In this article, we study mechanisms of adaptive rewiring in BRAFV600E melanoma cells using an energy-based implementation of ordinary differential equation (ODE) modeling in combination with proteomic, transcriptomic and imaging data. We develop a method for causal tracing of ODE models and identify two parallel MAPK reaction channels that are differentially sensitive to RAF and MEK inhibitors due to differences in protein oligomerization and drug binding. We describe how these channels, and timescale separation between immediate-early signaling and transcriptional feedback, create a state in which the RAS-regulated MAPK channel can be activated by growth factors under conditions in which the BRAFV600E -driven channel is fully inhibited. Further development of the approaches in this article is expected to yield a unified model of adaptive drug resistance in melanoma.
Collapse
Affiliation(s)
- Fabian Fröhlich
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| | - Luca Gerosa
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA,Present address:
Genentech, Inc.South San FranciscoCAUSA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
31
|
Trinder SM, McKay C, Power P, Topp M, Chan B, Valvi S, McCowage G, Govender D, Kirby M, Ziegler DS, Manoharan N, Hassall T, Kellie S, Heath J, Alvaro F, Wood P, Laughton S, Tsui K, Dodgshun A, Eisenstat DD, Endersby R, Luen SJ, Koh ES, Sim HW, Kong B, Gottardo NG, Whittle JR, Khuong-Quang DA, Hansford JR. BRAF-mediated brain tumors in adults and children: A review and the Australian and New Zealand experience. Front Oncol 2023; 13:1154246. [PMID: 37124503 PMCID: PMC10140567 DOI: 10.3389/fonc.2023.1154246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway signaling pathway is one of the most commonly mutated pathways in human cancers. In particular, BRAF alterations result in constitutive activation of the rapidly accelerating fibrosarcoma-extracellular signal-regulated kinase-MAPK significant pathway, leading to cellular proliferation, survival, and dedifferentiation. The role of BRAF mutations in oncogenesis and tumorigenesis has spurred the development of targeted agents, which have been successful in treating many adult cancers. Despite advances in other cancer types, the morbidity and survival outcomes of patients with glioma have remained relatively stagnant. Recently, there has been recognition that MAPK dysregulation is almost universally present in paediatric and adult gliomas. These findings, accompanying broad molecular characterization of gliomas, has aided prognostication and offered opportunities for clinical trials testing targeted agents. The use of targeted therapies in this disease represents a paradigm shift, although the biochemical complexities has resulted in unexpected challenges in the development of effective BRAF inhibitors. Despite these challenges, there are promising data to support the use of BRAF inhibitors alone and in combination with MEK inhibitors for patients with both low-grade and high-grade glioma across age groups. Safety and efficacy data demonstrate that many of the toxicities of these targeted agents are tolerable while offering objective responses. Newer clinical trials will examine the use of these therapies in the upfront setting. Appropriate duration of therapy and durability of response remains unclear in the glioma patient cohort. Longitudinal efficacy and toxicity data are needed. Furthermore, access to these medications remains challenging outside of clinical trials in Australia and New Zealand. Compassionate access is limited, and advocacy for mechanism of action-based drug approval is ongoing.
Collapse
Affiliation(s)
- Sarah M. Trinder
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Campbell McKay
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Phoebe Power
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Monique Topp
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Bosco Chan
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Santosh Valvi
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Geoffrey McCowage
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
- Australasian Children’s Cancer Trials, Clayton, VIC, Australia
| | - Dinisha Govender
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Maria Kirby
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - David S. Ziegler
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Neevika Manoharan
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Tim Hassall
- Queensland Children’s Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Stewart Kellie
- Westmead Children’s Hospital, University of Sydney, Westmead, NSW, Australia
| | - John Heath
- Department of Pediatric Oncology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Frank Alvaro
- Department of Pediatric Oncology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Paul Wood
- Monash Medical Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen Laughton
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Karen Tsui
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Andrew Dodgshun
- Children’s Haematology/Oncology Centre, Christchurch Hospital, Christchurch, New Zealand
| | - David D. Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Stephen J. Luen
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool and Macarther Cancer Therapy Centres, Liverpool, NSW, Australia
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Hao-Wen Sim
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
| | - Benjamin Kong
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Nicholas G. Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
| | - James R. Whittle
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Jordan R. Hansford
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- South Australian Health and Medical Research Institute South Australia, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Jordan R. Hansford,
| |
Collapse
|
32
|
Yang H, Zhou X, Fu D, Le C, Wang J, Zhou Q, Liu X, Yuan Y, Ding K, Xiao Q. Targeting RAS mutants in malignancies: successes, failures, and reasons for hope. Cancer Commun (Lond) 2023; 43:42-74. [PMID: 36316602 PMCID: PMC9859734 DOI: 10.1002/cac2.12377] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 01/22/2023] Open
Abstract
RAS genes are the most frequently mutated oncogenes and play critical roles in the development and progression of malignancies. The mutation, isoform (KRAS, HRAS, and NRAS), position, and type of substitution vary depending on the tissue types. Despite decades of developing RAS-targeted therapies, only small subsets of these inhibitors are clinically effective, such as the allele-specific inhibitors against KRASG12C . Targeting the remaining RAS mutants would require further experimental elucidation of RAS signal transduction, RAS-altered metabolism, and the associated immune microenvironment. This study reviews the mechanisms and efficacy of novel targeted therapies for different RAS mutants, including KRAS allele-specific inhibitors, combination therapies, immunotherapies, and metabolism-associated therapies.
Collapse
Affiliation(s)
- Hang Yang
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Xinyi Zhou
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Dongliang Fu
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Chenqin Le
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Jiafeng Wang
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Quan Zhou
- Department of Cell BiologySchool of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiangrui Liu
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ying Yuan
- Department of Medical Oncologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Qian Xiao
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| |
Collapse
|
33
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y, Giordano A. Cell cycle control by the insulin-like growth factor signal: at the crossroad between cell growth and mitotic regulation. Cell Cycle 2023; 22:1-37. [PMID: 36005738 PMCID: PMC9769454 DOI: 10.1080/15384101.2022.2108117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In proliferating cells and tissues a number of checkpoints (G1/S and G2/M) preceding cell division (M-phase) require the signal provided by growth factors present in serum. IGFs (I and II) have been demonstrated to constitute key intrinsic components of the peptidic active fraction of mammalian serum. In vivo genetic ablation studies have shown that the cellular signal triggered by the IGFs through their cellular receptors represents a non-replaceable requirement for cell growth and cell cycle progression. Retroactive and current evaluation of published literature sheds light on the intracellular circuitry activated by these factors providing us with a better picture of the pleiotropic mechanistic actions by which IGFs regulate both cell size and mitogenesis under developmental growth as well as in malignant proliferation. The present work aims to summarize the cumulative knowledge learned from the IGF ligands/receptors and their intracellular signaling transducers towards control of cell size and cell-cycle with particular focus to their actionable circuits in human cancer. Furthermore, we bring novel perspectives on key functional discriminants of the IGF growth-mitogenic pathway allowing re-evaluation on some of its signal components based upon established evidences.
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states,CONTACT Pierluigi Scalia ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA9102, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Antonio Giordano
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,School of Medical Biotechnology, University of Siena, Italy
| |
Collapse
|
34
|
Song Y, Bi Z, Liu Y, Qin F, Wei Y, Wei X. Targeting RAS-RAF-MEK-ERK signaling pathway in human cancer: Current status in clinical trials. Genes Dis 2023; 10:76-88. [PMID: 37013062 PMCID: PMC10066287 DOI: 10.1016/j.gendis.2022.05.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Molecular target inhibitors have been regularly approved by Food and Drug Administration (FDA) for tumor treatment, and most of them intervene in tumor cell proliferation and metabolism. The RAS-RAF-MEK-ERK pathway is a conserved signaling pathway that plays vital roles in cell proliferation, survival, and differentiation. The aberrant activation of the RAS-RAF-MEK-ERK signaling pathway induces tumors. About 33% of tumors harbor RAS mutations, while 8% of tumors are driven by RAF mutations. Great efforts have been dedicated to targeting the signaling pathway for cancer treatment in the past decades. In this review, we summarized the development of inhibitors targeting the RAS-RAF-MEK-ERK pathway with an emphasis on those used in clinical treatment. Moreover, we discussed the potential combinations of inhibitors that target the RAS-RAF-MEK-ERK signaling pathway and other signaling pathways. The inhibitors targeting the RAS-RAF-MEK-ERK pathway have essentially modified the therapeutic strategy against various cancers and deserve more attention in the current cancer research and treatment.
Collapse
Affiliation(s)
| | | | - Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
35
|
Spencer-Smith R, Terrell EM, Insinna C, Agamasu C, Wagner ME, Ritt DA, Stauffer J, Stephen AG, Morrison DK. RASopathy mutations provide functional insight into the BRAF cysteine-rich domain and reveal the importance of autoinhibition in BRAF regulation. Mol Cell 2022; 82:4262-4276.e5. [PMID: 36347258 PMCID: PMC9677513 DOI: 10.1016/j.molcel.2022.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/16/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
BRAF is frequently mutated in human cancer and the RASopathy syndromes, with RASopathy mutations often observed in the cysteine-rich domain (CRD). Although the CRD participates in phosphatidylserine (PS) binding, the RAS-RAF interaction, and RAF autoinhibition, the impact of these activities on RAF function in normal and disease states is not well characterized. Here, we analyze a panel of CRD mutations and show that they increase BRAF activity by relieving autoinhibition and/or enhancing PS binding, with relief of autoinhibition being the major factor determining mutation severity. Further, we show that CRD-mediated autoinhibition prevents the constitutive plasma membrane localization of BRAF that causes increased RAS-dependent and RAS-independent function. Comparison of the BRAF- and CRAF-CRDs also indicates that the BRAF-CRD is a stronger mediator of autoinhibition and PS binding, and given the increased catalytic activity of BRAF, our studies reveal a more critical role for CRD-mediated autoinhibition in BRAF regulation.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Christine Insinna
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Constance Agamasu
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Morgan E Wagner
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Jim Stauffer
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA.
| |
Collapse
|
36
|
Wang H, Chi L, Yu F, Dai H, Si X, Gao C, Wang Z, Liu L, Zheng J, Ke Y, Liu H, Zhang Q. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorg Med Chem 2022; 70:116922. [PMID: 35849914 DOI: 10.1016/j.bmc.2022.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Hongling Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
37
|
Shang D, Zhou T, Zhuang X, Wu Y, Liu H, Tu Z. Molecular dissection on inhibition of Ras-induced cellular senescence by small t antigen of SV40. Cell Mol Life Sci 2022; 79:242. [PMID: 35429286 PMCID: PMC11072472 DOI: 10.1007/s00018-022-04275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
Simian virus 40 (SV40) is a potentially oncogenic virus of monkey origin. Transmission, prevalence, and pathogenicity rates of SV40 are unclear, but infection can occur in humans, for example individuals with high contact with rhesus macaques and individuals that received contaminated early batches of polio vaccines in 1950-1963. In addition, several human polyomaviruses, proven carcinogenic, are also highly common in global populations. Cellular senescence is a major mechanism of cancer prevention in vivo. Hyperactivation of Ras usually induces cellular senescence rather than cell transformation. Previous studies suggest small t antigen (ST) of SV40 may interfere with cellular senescence induced by Ras. In the current study, ST was demonstrated to inhibit Ras-induced cellular senescence (RIS) and accumulation of DNA damage in Ras-activated cells. In addition, ST suppressed the signal transmission from BRaf to MEK and thus blocked the downstream transmission of the activated Ras signal. B56γ knockdown mimicked the inhibitory effects of ST overexpression on RIS. Furthermore, KSR1 knockdown inhibited Ras activation and the subsequent cellular senescence. Further mechanism studies indicated that the phosphorylation level of KSR1 rather than the levels of the total protein regulates the activation of Ras signaling pathway. In sum, ST inhibits the continuous hyperactivation of Ras signals by interfering with the normal functions of PP2A-B56γ of dephosphorylating KSR1, thus inhibiting the occurrence of cellular senescence. Although the roles of SV40 in human carcinogenesis are controversial so far, our study has shown that ST of polyomaviruses has tumorigenic potential by inhibiting oncogene-induced senescence (OIS) as a proof of concept.
Collapse
Affiliation(s)
- Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Tianchu Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xinying Zhuang
- School of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Yanfang Wu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
38
|
Venkatanarayan A, Liang J, Yen I, Shanahan F, Haley B, Phu L, Verschueren E, Hinkle TB, Kan D, Segal E, Long JE, Lima T, Liau NPD, Sudhamsu J, Li J, Klijn C, Piskol R, Junttila MR, Shaw AS, Merchant M, Chang MT, Kirkpatrick DS, Malek S. CRAF dimerization with ARAF regulates KRAS-driven tumor growth. Cell Rep 2022; 38:110351. [PMID: 35139374 DOI: 10.1016/j.celrep.2022.110351] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
KRAS, which is mutated in ∼30% of all cancers, activates the RAF-MEK-ERK signaling cascade. CRAF is required for growth of KRAS mutant lung tumors, but the requirement for CRAF kinase activity is unknown. Here, we show that subsets of KRAS mutant tumors are dependent on CRAF for growth. Kinase-dead but not dimer-defective CRAF rescues growth inhibition, suggesting that dimerization but not kinase activity is required. Quantitative proteomics demonstrates increased levels of CRAF:ARAF dimers in KRAS mutant cells, and depletion of both CRAF and ARAF rescues the CRAF-loss phenotype. Mechanistically, CRAF depletion causes sustained ERK activation and induction of cell-cycle arrest, while treatment with low-dose MEK or ERK inhibitor rescues the CRAF-loss phenotype. Our studies highlight the role of CRAF in regulating MAPK signal intensity to promote tumorigenesis downstream of mutant KRAS and suggest that disrupting CRAF dimerization or degrading CRAF may have therapeutic benefit.
Collapse
Affiliation(s)
| | - Jason Liang
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ivana Yen
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Frances Shanahan
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lilian Phu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Erik Verschueren
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Trent B Hinkle
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David Kan
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ehud Segal
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason E Long
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tony Lima
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nicholas P D Liau
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason Li
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christiaan Klijn
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Melissa R Junttila
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Andrey S Shaw
- Department of Research Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark Merchant
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Matthew T Chang
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Shiva Malek
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
39
|
The role of T-LAK cell-originated protein kinase in targeted cancer therapy. Mol Cell Biochem 2022; 477:759-769. [PMID: 35037144 DOI: 10.1007/s11010-021-04329-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Targeted therapy has gradually become the first-line clinical tumor therapy due to its high specificity and low rate of side effects. TOPK (T-LAK cell-originated protein kinase), a MAP kinase, is highly expressed in various tumor tissues, while it is rarely expressed in normal tissues, with the exceptions of testicular germ cells and some fetal tissues. It can promote cancer cell proliferation and migration and is also related to drug resistance. Therefore, TOPK is considered a good therapeutic target. Moreover, a number of studies have shown that targeting TOPK can inhibit the proliferation of cancer cells and promote their apoptosis. Here, we discussed the biological functions of TOPK in cancer and summarized its tumor-related signaling network and known TOPK inhibitors. Finally, the role of TOPK in targeted cancer therapy was concluded, and future research directions for TOPK were assessed.
Collapse
|
40
|
Shui B, La Rocca G, Ventura A, Haigis KM. Interplay between K-RAS and miRNAs. Trends Cancer 2022; 8:384-396. [PMID: 35093302 PMCID: PMC9035052 DOI: 10.1016/j.trecan.2022.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/25/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023]
Abstract
K-RAS is frequently mutated in cancers, and its overactivation can lead to oncogene-induced senescence (OIS), a barrier to cellular transformation. Feedback onto K-RAS limits its signaling to avoid senescence while achieving the appropriate level of activation that promotes proliferation and survival. Such regulation could be mediated by miRNAs, as aberrant RAS signaling and miRNA activity coexist in several cancers, with miRNAs acting both up- and downstream of K-RAS. Several miRNAs both regulate and are regulated by K-RAS, suggesting a noncoding RNA-based feedback mechanism. Functional interactions between K-RAS and the miRNA machinery have also begun to unfold. This review comprehensively surveys the state of knowledge connecting K-RAS to miRNA function and proposes a model for the regulation of K-RAS signaling by noncoding RNAs.
Collapse
|
41
|
Zhang M, Maloney R, Jang H, Nussinov R. The mechanism of Raf activation through dimerization. Chem Sci 2021; 12:15609-15619. [PMID: 35003591 PMCID: PMC8654025 DOI: 10.1039/d1sc03444h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023] Open
Abstract
Raf, a threonine/serine kinase in the Raf/MEK/ERK pathway, regulates cell proliferation. Raf's full activation requires dimerization. Aberrant activation through dimerization is an important therapeutic target. Despite its clinical importance, fundamental questions, such as how the side-to-side dimerization promotes the OFF-to-ON transition of Raf's kinase domain and how the fully activated ON-state kinase domain is stabilized in the dimer for Raf signaling, remain unanswered. Herein, we decipher an atomic-level mechanism of Raf activation through dimerization, clarifying this enigma. The mechanism reveals that the replacement of intramolecular π–π stacking by intermolecular π–π stacking at the dimer interface releases the structural constraint of the αC-helix, promoting the OFF-to-ON transition. During the transition, the inhibitory hydrophobic interactions were disrupted, making the phosphorylation sites in A-loop approach the HRD motif for cis-autophosphorylation. Once fully activated, the ON-state kinase domain can be stabilized by a newly identified functional N-terminal basic (NtB) motif in the dimer for Raf signaling. This work provides atomic level insight into critical steps in Raf activation and outlines a new venue for drug discovery against Raf dimerization. We decipher an atomic-level mechanism of Raf activation through dimerization, revealing that the disruption of intramolecular π–π stacking at the dimer interface promotes the OFF-to-ON transition.![]()
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute Frederick MD 21702 USA +1-301-846-5579
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute Frederick MD 21702 USA +1-301-846-5579
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute Frederick MD 21702 USA +1-301-846-5579
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute Frederick MD 21702 USA +1-301-846-5579.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
42
|
Nussinov R, Zhang M, Maloney R, Jang H. Ras isoform-specific expression, chromatin accessibility, and signaling. Biophys Rev 2021; 13:489-505. [PMID: 34466166 PMCID: PMC8355297 DOI: 10.1007/s12551-021-00817-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
The anchorage of Ras isoforms in the membrane and their nanocluster formations have been studied extensively, including their detailed interactions, sizes, preferred membrane environments, chemistry, and geometry. However, the staggering challenge of their epigenetics and chromatin accessibility in distinct cell states and types, which we propose is a major factor determining their specific expression, still awaits unraveling. Ras isoforms are distinguished by their C-terminal hypervariable region (HVR) which acts in intracellular transport, regulation, and membrane anchorage. Here, we review some isoform-specific activities at the plasma membrane from a structural dynamic standpoint. Inspired by physics and chemistry, we recognize that understanding functional specificity requires insight into how biomolecules can organize themselves in different cellular environments. Within this framework, we suggest that isoform-specific expression may largely be controlled by the chromatin density and physical compaction, which allow (or curb) access to "chromatinized DNA." Genes are preferentially expressed in tissues: proteins expressed in pancreatic cells may not be equally expressed in lung cells. It is the rule-not an exception, and it can be at least partly understood in terms of chromatin organization and accessibility state. Genes are expressed when they can be sufficiently exposed to the transcription machinery, and they are less so when they are persistently buried in dense chromatin. Notably, chromatin accessibility can similarly determine expression of drug resistance genes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University, 69978 Tel Aviv, Israel
| | - Mingzhen Zhang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Ryan Maloney
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| |
Collapse
|
43
|
Whiteaker JR, Sharma K, Hoffman MA, Kuhn E, Zhao L, Cocco AR, Schoenherr RM, Kennedy JJ, Voytovich U, Lin C, Fang B, Bowers K, Whiteley G, Colantonio S, Bocik W, Roberts R, Hiltke T, Boja E, Rodriguez H, McCormick F, Holderfield M, Carr SA, Koomen JM, Paulovich AG. Targeted mass spectrometry-based assays enable multiplex quantification of receptor tyrosine kinase, MAP Kinase, and AKT signaling. CELL REPORTS METHODS 2021; 1:100015. [PMID: 34671754 PMCID: PMC8525888 DOI: 10.1016/j.crmeth.2021.100015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/16/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
SUMMARY A primary goal of the US National Cancer Institute's Ras initiative at the Frederick National Laboratory for Cancer Research is to develop methods to quantify RAS signaling to facilitate development of novel cancer therapeutics. We use targeted proteomics technologies to develop a community resource consisting of 256 validated multiple reaction monitoring (MRM)-based, multiplexed assays for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. As proof of concept, we quantify the response of melanoma (A375 and SK-MEL-2) and colorectal cancer (HCT-116 and HT-29) cell lines to BRAF inhibition by PLX-4720. These assays replace over 60 Western blots with quantitative mass spectrometry-based assays of high molecular specificity and quantitative precision, showing the value of these methods for pharmacodynamic measurements and mechanism of action studies. Methods, fit-for-purpose validation, and results are publicly available as a resource for the community at assays.cancer.gov. MOTIVATION A lack of quantitative, multiplexable assays for phosphosignaling limits comprehensive investigation of aberrant signaling in cancer and evaluation of novel treatments. To alleviate this limitation, we sought to develop assays using targeted mass spectrometry for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. The resulting assays provide a resource for replacing over 60 Western blots in examining cancer signaling and tumor biology with high molecular specificity and quantitative rigor.
Collapse
Affiliation(s)
- Jeffrey R. Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kanika Sharma
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Melissa A. Hoffman
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric Kuhn
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Lei Zhao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexandra R. Cocco
- Gillings School of Global Public Health, Kenan-Flagler Business School, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Regine M. Schoenherr
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob J. Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ulianna Voytovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chenwei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kiah Bowers
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Gordon Whiteley
- Antibody Characterization Laboratory, Leidos Biochemical Research Inc, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD 21701, USA
| | - Simona Colantonio
- Antibody Characterization Laboratory, Leidos Biochemical Research Inc, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD 21701, USA
| | - William Bocik
- Antibody Characterization Laboratory, Leidos Biochemical Research Inc, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD 21701, USA
| | - Rhonda Roberts
- Antibody Characterization Laboratory, Leidos Biochemical Research Inc, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD 21701, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Matthew Holderfield
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA 94063, USA
| | - Steven A. Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - John M. Koomen
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Amanda G. Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
44
|
Ou M, Xu X, Chen Y, Li L, Zhang L, Liao Y, Sun W, Quach C, Feng J, Tang L. MDM2 induces EMT via the B‑Raf signaling pathway through 14‑3‑3. Oncol Rep 2021; 46:120. [PMID: 33955525 PMCID: PMC8129971 DOI: 10.3892/or.2021.8071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/23/2021] [Indexed: 12/28/2022] Open
Abstract
MDM2 proto‑oncogene, E3 ubiquitin protein ligase (MDM2) is a well‑known oncogene and has been reported to be closely associated with epithelial‑to‑mesenchymal transition (EMT). The present study first demonstrated that the expression levels of MDM2 were markedly increased in TGF‑β‑induced EMT using quantitative PCR and western blotting. In addition, MDM2 was demonstrated to be associated with pathological grade in clinical glioma samples by immunohistochemical staining. Furthermore, overexpression of MDM2 promoted EMT in glioma, lung cancer and breast cancer cell lines using a scratch wound migration assay. Subsequently, the present study explored the mechanism by which MDM2 promoted EMT and revealed that MDM2 induced EMT by upregulating EMT‑related transcription factors via activation of the B‑Raf signaling pathway through tyrosine 3‑monooxygenase activation protein ε using RNA sequencing and western blotting. This mechanism depended on the p53 gene. Furthermore, in vivo experiments and the colony formation experiment demonstrated that MDM2 could promote tumor progression and induce EMT via the B‑Raf signaling pathway. Since EMT contributes to increased drug resistance in tumor cells, the present study also explored the relationship between MDM2 and drug sensitivity using an MTT assay, and identified that MDM2 promoted cell insensitivity to silibinin treatment in an EMT‑dependent manner. This finding is crucial for the development of cancer therapies and can also provide novel research avenues for future biological and clinical studies.
Collapse
Affiliation(s)
- Mengting Ou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Li Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Lu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yi Liao
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400044, P.R. China
| | - Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
45
|
NRF2 DLG Domain Mutations Identified in Japanese Liver Cancer Patients Affect the Transcriptional Activity in HCC Cell Lines. Int J Mol Sci 2021; 22:ijms22105296. [PMID: 34069882 PMCID: PMC8157386 DOI: 10.3390/ijms22105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Geographically, East Asia had the highest liver cancer burden in 2017. Besides this, liver cancer-related deaths were high in Japan, accounting for 3.90% of total deaths. The development of liver cancer is influenced by several factors, and genetic alteration is one of the critical factors among them. Therefore, the detailed mechanism driving the oncogenic transformation of liver cells needs to be elucidated. Recently, many researchers have focused on investigating the liver cancer genome and identified somatic mutations (MTs) of several transcription factors. In this line, next-generation sequencing of the cancer genome identified that oxidative stress-related transcription factor NRF2 (NFE2L2) is mutated in different cancers, including hepatocellular carcinoma (HCC). Here, we demonstrated that NRF2 DLG motif mutations (NRF2 D29A and L30F), found in Japanese liver cancer patients, upregulate the transcriptional activity of NRF2 in HCC cell lines. Moreover, the transcriptional activity of NRF2 mutations is not suppressed by KEAP1, presumably because NRF2 MTs disturb proper NRF2-KEAP1 binding and block KEAP1-mediated degradation of NRF2. Additionally, we showed that both MTs upregulate the transcriptional activity of NRF2 on the MMP9 promoter in Hepa1-6 and Huh7 cells, suggesting that MT derived gain-of-function of NRF2 may be important for liver tumor progression. We also found that ectopic overexpression of oncogenic BRAF WT and V600E increases the transcriptional activity of NRF2 WT on both the 3xARE reporter and MMP9 promoter. Interestingly, NRF2 D29A and L30F MTs with oncogenic BRAF V600E MT synergistically upregulate the transcription activity of NRF2 on the 3xARE reporter and MMP9 promoter in Hepa1-6 and Huh7 cells. In summary, our findings suggest that MTs in NRF2 have pathogenic effects, and that NRF2 MTs together with oncogenic BRAF V600E MT synergistically cause more aberrant transcriptional activity. The high activity of NRF2 MTs in HCC with BRAF MT warrants further exploration of the potential diagnostic, prognostic, and therapeutic utility of this pathway in HCC.
Collapse
|
46
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
47
|
Kholodenko BN, Rauch N, Kolch W, Rukhlenko OS. A systematic analysis of signaling reactivation and drug resistance. Cell Rep 2021; 35:109157. [PMID: 34038718 PMCID: PMC8202068 DOI: 10.1016/j.celrep.2021.109157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/24/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence suggests that the reactivation of initially inhibited signaling pathways causes drug resistance. Here, we analyze how network topologies affect signaling responses to drug treatment. Network-dependent drug resistance is commonly attributed to negative and positive feedback loops. However, feedback loops by themselves cannot completely reactivate steady-state signaling. Newly synthesized negative feedback regulators can induce a transient overshoot but cannot fully restore output signaling. Complete signaling reactivation can only occur when at least two routes, an activating and inhibitory, connect an inhibited upstream protein to a downstream output. Irrespective of the network topology, drug-induced overexpression or increase in target dimerization can restore or even paradoxically increase downstream pathway activity. Kinase dimerization cooperates with inhibitor-mediated alleviation of negative feedback. Our findings inform drug development by considering network context and optimizing the design drug combinations. As an example, we predict and experimentally confirm specific combinations of RAF inhibitors that block mutant NRAS signaling. Kholodenko et al. uncover signaling network circuitries and molecular mechanisms necessary and sufficient for complete reactivation or overshoot of steady-state signaling after kinase inhibitor treatment. The two means to revive signaling output fully are through network topology or reactivation of the kinase activity of the primary drug target. Blocking RAF dimer activity by a combination of type I½ and type II RAF inhibitors efficiently blocks mutant NRAS-driven ERK signaling.
Collapse
Affiliation(s)
- Boris N Kholodenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland; Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| | - Nora Rauch
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
48
|
Wang C, Wang H, Zheng C, Liu Z, Gao X, Xu F, Niu Y, Zhang L, Xu P. Research progress of MEK1/2 inhibitors and degraders in the treatment of cancer. Eur J Med Chem 2021; 218:113386. [PMID: 33774345 DOI: 10.1016/j.ejmech.2021.113386] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/25/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
Mitogen-activated protein kinase kinases 1 and 2 (MEK1/2) are the crucial part of the RAS-RAF-MEK-ERK pathway (or ERK pathway), which is involved in the regulation of various cellular processes including proliferation, survival, and differentiation et al. Targeting MEK has become an important strategy for cancer therapy, and 4 MEK inhibitors (MEKis) have been approved by FDA to date. However, the application of MEKis is limited due to acquired resistance under long-term treatment. Fortunately, an emerging technology, named proteolysis targeting chimera (PROTAC), could break through this limitation by inducing MEK1/2 degradation. Compared to MEKis, MEK1/2 PROTAC is rarely studied and only three MEK1/2 PROTAC molecules, have been reported until now. This paper will outline the ERK pathway and the mechanism and research progress of MEK1/2 inhibitors, but focus on the development of MEK degraders and their optimization strategies. PAC-1 strategy which can induce MEK degradation indirectly, other PROTACs on ERK pathway, the advantages and challenges of PROTAC technology will be subsequently discussed.
Collapse
Affiliation(s)
- Chao Wang
- National Pharmaceutical Teaching Laboratory Center, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Han Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Cangxin Zheng
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiaozuo Gao
- Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
49
|
Cho E, Lou HJ, Kuruvilla L, Calderwood DA, Turk BE. PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK. Cell Rep 2021; 34:108928. [PMID: 33789117 PMCID: PMC8068315 DOI: 10.1016/j.celrep.2021.108928] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/26/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Flux through the RAF-MEK-ERK protein kinase cascade is shaped by phosphatases acting on the core components of the pathway. Despite being an established drug target and a hub for crosstalk regulation, little is known about dephosphorylation of MEK, the central kinase within the cascade. Here, we identify PPP6C, a phosphatase frequently mutated or downregulated in melanoma, as a major MEK phosphatase in cells exhibiting oncogenic ERK pathway activation. Recruitment of MEK to PPP6C occurs through an interaction with its associated regulatory subunits. Loss of PPP6C causes hyperphosphorylation of MEK at activating and crosstalk phosphorylation sites, promoting signaling through the ERK pathway and decreasing sensitivity to MEK inhibitors. Recurrent melanoma-associated PPP6C mutations cause MEK hyperphosphorylation, suggesting that they promote disease at least in part by activating the core oncogenic pathway driving melanoma. Collectively, our studies identify a key negative regulator of ERK signaling that may influence susceptibility to targeted cancer therapies. Through an shRNA screen, Cho et al. identify PPP6C as a phosphatase that inactivates the kinase MEK, sensitizing tumor cells to clinical MEK inhibitors. This study suggests that cancer-associated loss-of-function PPP6C mutations prevalent in melanoma serve to activate the core oncogenic RAF-MEK-ERK pathway that drives the disease.
Collapse
Affiliation(s)
- Eunice Cho
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Leena Kuruvilla
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
50
|
Barbosa R, Acevedo LA, Marmorstein R. The MEK/ERK Network as a Therapeutic Target in Human Cancer. Mol Cancer Res 2021; 19:361-374. [PMID: 33139506 PMCID: PMC7925338 DOI: 10.1158/1541-7786.mcr-20-0687] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
The RAS-RAF-MEK-ERK pathway is the most well-studied of the MAPK cascades and is critical for cell proliferation, differentiation, and survival. Abnormalities in regulation resulting from mutations in components of this pathway, particularly in upstream proteins, RAS and RAF, are responsible for a significant fraction of human cancers and nearly all cutaneous melanomas. Activation of receptor tyrosine kinases by growth factors and various extracellular signals leads to the sequential activation of RAS, RAF, MEK, and finally ERK, which activates numerous transcription factors and facilitates oncogenesis in the case of aberrant pathway activation. While extensive studies have worked to elucidate the activation mechanisms and structural components of upstream MAPK components, comparatively less attention has been directed toward the kinases, MEK and ERK, due to the infrequency of oncogenic-activating mutations in these kinases. However, acquired drug resistance has become a major issue in the treatment of RAS- and RAF-mutated cancers. Targeting the terminal kinases in the MAPK cascade has shown promise for overcoming many of these resistance mechanisms and improving treatment options for patients with MAPK-aberrant cancers. Here, we will describe the role of MEK and ERK in MAPK signaling and summarize the current understanding of their interaction and activation mechanisms. We will also discuss existing approaches for targeting MEK and ERK, and the benefits of alternative strategies. Areas requiring further exploration will be highlighted to guide future research endeavors and aid in the development of alternative therapeutic strategies to combat surmounting drug resistance in treating MAPK-mediated cancers. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/3/361/F1.large.jpg.
Collapse
Affiliation(s)
- Renee Barbosa
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lucila A Acevedo
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronen Marmorstein
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|