1
|
Liao H, Wu J, VanDusen NJ, Li Y, Zheng Y. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102344. [PMID: 39494147 PMCID: PMC11531618 DOI: 10.1016/j.omtn.2024.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
CRISPR-Cas9-mediated homology-directed repair (HDR) is a versatile platform for creating precise site-specific DNA insertions, deletions, and substitutions. These precise edits are made possible through the use of exogenous donor templates that carry the desired sequence. CRISPR-Cas9-mediated HDR can be widely used to study protein functions, disease modeling, and gene therapy. However, HDR is limited by its low efficiency, especially in postmitotic cells. Here, we review CRISPR-Cas9-mediated HDR, with a focus on methodologies for boosting HDR efficiency, and applications of precise editing via HDR. First, we describe two common mechanisms of DNA repair, non-homologous end joining (NHEJ), and HDR, and discuss their impact on CRISPR-Cas9-mediated precise genome editing. Second, we discuss approaches for improving HDR efficiency through inhibition of the NHEJ pathway, activation of the HDR pathway, modification of donor templates, and delivery of Cas9/sgRNA reagents. Third, we summarize the applications of HDR for protein labeling in functional studies, disease modeling, and ex vivo and in vivo gene therapies. Finally, we discuss alternative precise editing platforms and their limitations, and describe potential avenues to improving CRISPR-Cas9-mediated HDR efficiency and fidelity in future research.
Collapse
Affiliation(s)
- Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Jiahao Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Nathan J. VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| |
Collapse
|
2
|
Jose B, Punetha M, Tripathi MK, Khanna S, Yadav V, Singh AK, Kumar B, Singh K, Chouhan VS, Sarkar M. CRISPR/Cas mediated disruption of BMPR-1B gene and introduction of FecB mutation into the Caprine embryos using Easi-CRISPR strategy. Theriogenology 2023; 211:125-133. [PMID: 37619525 DOI: 10.1016/j.theriogenology.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Bone Morphogenetic Proteins play a significant role in ovarian physiology and contribute to the reproductive fitness of mammals. The BMPR-1B/FecB mutation, a loss of function mutation increases litter size by 1-2 with each number of mutated alleles in sheep. Considering demand-supply gap of the meat industry, and low replacement rate of indigenous caprine species, the conservative BMPR-1B locus can be explored, and FecB mutated goats can be produced. The experiment one produced CRISPR/Cas mediated KO transferable caprine embryos, and experiment two generated caprine embryos with desired FecB mutation using Easi-CRISPR strategy. In the KO experiment, Cas9 and BMPR-1B guide RNA (100:100ng/ul) were electroporated into single stage caprine zygotes at 750V, 10 ms and 1pulse using Neon transfection system. In the second experiment, phosphorothioate (PS) modified single-stranded oligodeoxynucleotide (ssODN) was used as an HDR template along with CRISPR components (100:100ng/ul, ssODN 100ng/ul). The precise time and method of electroporation, RNP format of CRISPR components and PS modified asymmetric ssODN were the factors that affected the production of mosaicism free BMPR-1B edited caprine embryos. The editing efficiency of KO and KI experiments was 68.52 and 63.16% respectively, and successful production of goats with higher mean ovulation rate can be realized with addition of embryo transfer technology to these experiments.
Collapse
Affiliation(s)
- Bosco Jose
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Meeti Punetha
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India.
| | - Manoj Kumar Tripathi
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Shivani Khanna
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Vijay Yadav
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Amit Kumar Singh
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Brijesh Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Kiranjeet Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Vikrant Singh Chouhan
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Mihir Sarkar
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
3
|
Ge N, Liu M, Li R, Allen NM, Galvin J, Shen S, O'Brien T, Prendiville TW. Using Ribonucleoprotein-based CRISPR/Cas9 to Edit Single Nucleotide on Human Induced Pluripotent Stem Cells to Model Type 3 Long QT Syndrome (SCN5A ±). Stem Cell Rev Rep 2023; 19:2774-2789. [PMID: 37653182 PMCID: PMC10661835 DOI: 10.1007/s12015-023-10602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have been widely used in cardiac disease modelling, drug discovery, and regenerative medicine as they can be differentiated into patient-specific cardiomyocytes. Long QT syndrome type 3 (LQT3) is one of the more malignant congenital long QT syndrome (LQTS) variants with an SCN5A gain-of-function effect on the gated sodium channel. Moreover, the predominant pathogenic variants in LQTS genes are single nucleotide substitutions (missense) and small insertion/deletions (INDEL). CRISPR/Cas9 genome editing has been utilised to create isogenic hiPSCs to control for an identical genetic background and to isolate the pathogenicity of a single nucleotide change. In this study, we described an optimized and rapid protocol to introduce a heterozygous LQT3-specific variant into healthy control hiPSCs using ribonucleoprotein (RNP) and single-stranded oligonucleotide (ssODN). Based on this protocol, we successfully screened hiPSCs carrying a heterozygous LQT3 pathogenic variant (SCN5A±) with high efficiency (6 out of 69) and confirmed no off-target effect, normal karyotype, high alkaline phosphatase activity, unaffected pluripotency, and in vitro embryonic body formation capacity within 2 weeks. In addition, we also provide protocols to robustly differentiate hiPSCs into cardiomyocytes and evaluate the electrophysiological characteristics using Multi-electrode Array. This protocol is also applicable to introduce and/or correct other disease-specific variants into hiPSCs for future pharmacological screening and gene therapeutic development.
Collapse
Affiliation(s)
- Ning Ge
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Min Liu
- Department of Physiology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Rui Li
- Lambe Institute for Translational Research, University of Galway, Galway, Ireland
| | - Nicholas M Allen
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
- Department of Paediatrics, University of Galway, Galway, Ireland
| | - Joseph Galvin
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
| | - Terence W Prendiville
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland.
- National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin 12, Ireland.
| |
Collapse
|
4
|
Riesenberg S, Kanis P, Macak D, Wollny D, Düsterhöft D, Kowalewski J, Helmbrecht N, Maricic T, Pääbo S. Efficient high-precision homology-directed repair-dependent genome editing by HDRobust. Nat Methods 2023; 20:1388-1399. [PMID: 37474806 PMCID: PMC10482697 DOI: 10.1038/s41592-023-01949-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
Homology-directed repair (HDR), a method for repair of DNA double-stranded breaks can be leveraged for the precise introduction of mutations supplied by synthetic DNA donors, but remains limited by low efficiency and off-target effects. In this study, we report HDRobust, a high-precision method that, via the combined transient inhibition of nonhomologous end joining and microhomology-mediated end joining, resulted in the induction of point mutations by HDR in up to 93% (median 60%, s.e.m. 3) of chromosomes in populations of cells. We found that, using this method, insertions, deletions and rearrangements at the target site, as well as unintended changes at other genomic sites, were largely abolished. We validated this approach for 58 different target sites and showed that it allows efficient correction of pathogenic mutations in cells derived from patients suffering from anemia, sickle cell disease and thrombophilia.
Collapse
Affiliation(s)
- Stephan Riesenberg
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Philipp Kanis
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dominik Macak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Damian Wollny
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dorothee Düsterhöft
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Kowalewski
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nelly Helmbrecht
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tomislav Maricic
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| |
Collapse
|
5
|
Dewey EB, Korda Holsclaw J, Saghaey K, Wittmer ME, Sekelsky J. The effect of repeat length on Marcal1-dependent single-strand annealing in Drosophila. Genetics 2023; 223:iyac164. [PMID: 36303322 PMCID: PMC9836020 DOI: 10.1093/genetics/iyac164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 01/19/2023] Open
Abstract
Proper repair of DNA double-strand breaks is essential to the maintenance of genomic stability and avoidance of genetic disease. Organisms have many ways of repairing double-strand breaks, including the use of homologous sequences through homology-directed repair. While homology-directed repair is often error free, in single-strand annealing homologous repeats flanking a double-strand break are annealed to one another, leading to the deletion of one repeat and the intervening sequences. Studies in yeast have shown a relationship between the length of the repeat and single-strand annealing efficacy. We sought to determine the effects of homology length on single-strand annealing in Drosophila, as Drosophila uses a different annealing enzyme (Marcal1) than yeast. Using an in vivo single-strand annealing assay, we show that 50 base pairs are insufficient to promote single-strand annealing and that 500-2,000 base pairs are required for maximum efficiency. Loss of Marcal1 generally followed the same homology length trend as wild-type flies, with single-strand annealing frequencies reduced to about a third of wild-type frequencies regardless of homology length. Interestingly, we find a difference in single-strand annealing rates between 500-base pair homologies that align to the annealing target either nearer or further from the double-strand break, a phenomenon that may be explained by Marcal1 dynamics. This study gives insights into Marcal1 function and provides important information to guide the design of genome engineering strategies that use single-strand annealing to integrate linear DNA constructs into a chromosomal double-strand break.
Collapse
Affiliation(s)
- Evan B Dewey
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julie Korda Holsclaw
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kiyarash Saghaey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mackenzie E Wittmer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeff Sekelsky
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Small-molecule enhancers of CRISPR-induced homology-directed repair in gene therapy: A medicinal chemist's perspective. Drug Discov Today 2022; 27:2510-2525. [PMID: 35738528 DOI: 10.1016/j.drudis.2022.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022]
Abstract
CRISPR technologies are increasingly being investigated and utilized for the treatment of human genetic diseases via genome editing. CRISPR-Cas9 first generates a targeted DNA double-stranded break, and a functional gene can then be introduced to replace the defective copy in a precise manner by templated repair via the homology-directed repair (HDR) pathway. However, this is challenging owing to the relatively low efficiency of the HDR pathway compared with a rival random repair pathway known as non-homologous end joining (NHEJ). Small molecules can be employed to increase the efficiency of HDR and decrease that of NHEJ to improve the efficiency of precise knock-in genome editing. This review discusses the potential usage of such small molecules in the context of gene therapy and their drug-likeness, from a medicinal chemist's perspective.
Collapse
|
7
|
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022; 82:348-388. [PMID: 35063100 PMCID: PMC8887926 DOI: 10.1016/j.molcel.2021.12.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Genome editing technologies operate by inducing site-specific DNA perturbations that are resolved by cellular DNA repair pathways. Products of genome editors include DNA breaks generated by CRISPR-associated nucleases, base modifications induced by base editors, DNA flaps created by prime editors, and integration intermediates formed by site-specific recombinases and transposases associated with CRISPR systems. Here, we discuss the cellular processes that repair CRISPR-generated DNA lesions and describe strategies to obtain desirable genomic changes through modulation of DNA repair pathways. Advances in our understanding of the DNA repair circuitry, in conjunction with the rapid development of innovative genome editing technologies, promise to greatly enhance our ability to improve food production, combat environmental pollution, develop cell-based therapies, and cure genetic and infectious diseases.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lou Baudrier
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Pierre Billon
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
8
|
Gallagher DN, Haber JE. Single-strand template repair: key insights to increase the efficiency of gene editing. Curr Genet 2021; 67:747-753. [PMID: 33881574 DOI: 10.1007/s00294-021-01186-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
DNA double-strand breaks (DSBs) pose a serious hazard for the stability of the genome. CRISPR-Cas9-mediated gene editing intentionally creates a site-specific DSB to modify the genomic sequence, typically from an introduced single-stranded DNA donor. However, unlike typical forms of homologous recombination, single-strand template repair (SSTR) is Rad51-independent. Moreover, this pathway is distinct from other previously characterized Rad51-independent processes. Here, we briefly review the work characterizing this pathway, and how these findings can be used to guide and improve current gene editing strategies.
Collapse
Affiliation(s)
- Danielle N Gallagher
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02154, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02154, USA.
| |
Collapse
|
9
|
Hussain SS, Majumdar R, Moore GM, Narang H, Buechelmaier E, Bazil MJ, Ravindran PT, Leeman J, Li Y, Jalan M, Anderson KS, Farina A, Soni R, Mohibullah N, Hamzic E, Rong-Mullins X, Sifuentes C, Damerla RR, Viale A, Powell SN, Higginson D. Measuring nonhomologous end-joining, homologous recombination and alternative end-joining simultaneously at an endogenous locus in any transfectable human cell. Nucleic Acids Res 2021; 49:e74. [PMID: 33877327 PMCID: PMC8287935 DOI: 10.1093/nar/gkab262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Double strand break (DSB) repair primarily occurs through 3 pathways: non-homologous end-joining (NHEJ), alternative end-joining (Alt-EJ), and homologous recombination (HR). Typical methods to measure pathway usage include integrated cassette reporter assays or visualization of DNA damage induced nuclear foci. It is now well understood that repair of Cas9-induced breaks also involves NHEJ, Alt-EJ, and HR pathways, providing a new format to measure pathway usage. Here, we have developed a simple Cas9-based system with validated repair outcomes that accurately represent each pathway and then converted it to a droplet digital PCR (ddPCR) readout, thus obviating the need for Next Generation Sequencing and bioinformatic analysis with the goal to make Cas9-based system accessible to more laboratories. The assay system has reproduced several important insights. First, absence of the key Alt-EJ factor Pol θ only abrogates ∼50% of total Alt-EJ. Second, single-strand templated repair (SSTR) requires BRCA1 and MRE11 activity, but not BRCA2, establishing that SSTR commonly used in genome editing is not conventional HR. Third, BRCA1 promotes Alt-EJ usage at two-ended DSBs in contrast to BRCA2. This assay can be used in any system, which permits Cas9 delivery and, importantly, allows rapid genotype-to-phenotype correlation in isogenic cell line pairs.
Collapse
Affiliation(s)
- Suleman S Hussain
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rahul Majumdar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Grace M Moore
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Himanshi Narang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erika S Buechelmaier
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medicine, Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Maximilian J Bazil
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Jonathan E Leeman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02189, USA
| | - Yi Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrie S Anderson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Farina
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rekha Soni
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neeman Mohibullah
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edin Hamzic
- Biocomputix, Sarajevo, 71000, Bosnia and Herzegovina
| | - Xiaoqing Rong-Mullins
- Department of Biostatistics, The Ohio State University College of Public Health, Columbus, OH 43210, USA
| | | | - Rama R Damerla
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Agnes Viale
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
10
|
Caron P, Pobega E, Polo SE. A molecular Rosetta Stone to decipher the impact of chromatin features on the repair of Cas9-mediated DNA double-strand breaks. Mol Cell 2021; 81:2059-2060. [PMID: 34019786 DOI: 10.1016/j.molcel.2021.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using a barcoded reporter introduced within a thousand different chromatin locations in human cells, (Schep et al., 2021) characterize repair outcomes of Cas9-induced DNA double-strand breaks (DSBs) and the relative use of DSB repair pathways depending on the local chromatin context.
Collapse
Affiliation(s)
- Pierre Caron
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR 7216 CNRS - University of Paris, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Enrico Pobega
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR 7216 CNRS - University of Paris, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Sophie E Polo
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR 7216 CNRS - University of Paris, 35 rue Hélène Brion, 75205 Paris Cedex 13, France.
| |
Collapse
|
11
|
Gallagher DN, Pham N, Tsai AM, Janto NV, Choi J, Ira G, Haber JE. A Rad51-independent pathway promotes single-strand template repair in gene editing. PLoS Genet 2020; 16:e1008689. [PMID: 33057349 PMCID: PMC7591047 DOI: 10.1371/journal.pgen.1008689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/27/2020] [Accepted: 08/03/2020] [Indexed: 01/26/2023] Open
Abstract
The Rad51/RecA family of recombinases perform a critical function in typical repair of double-strand breaks (DSBs): strand invasion of a resected DSB end into a homologous double-stranded DNA (dsDNA) template sequence to initiate repair. However, repair of a DSB using single stranded DNA (ssDNA) as a template, a common method of CRISPR/Cas9-mediated gene editing, is Rad51-independent. We have analyzed the genetic requirements for these Rad51-independent events in Saccharomyces cerevisiae by creating a DSB with the site-specific HO endonuclease and repairing the DSB with 80-nt single-stranded oligonucleotides (ssODNs), and confirmed these results by Cas9-mediated DSBs in combination with a bacterial retron system that produces ssDNA templates in vivo. We show that single strand template repair (SSTR), is dependent on Rad52, Rad59, Srs2 and the Mre11-Rad50-Xrs2 (MRX) complex, but unlike other Rad51-independent recombination events, independent of Rdh54. We show that Rad59 acts to alleviate the inhibition of Rad51 on Rad52's strand annealing activity both in SSTR and in single strand annealing (SSA). Gene editing is Rad51-dependent when double-stranded oligonucleotides of the same size and sequence are introduced as templates. The assimilation of mismatches during gene editing is dependent on the activity of Msh2, which acts very differently on the 3' side of the ssODN which can anneal directly to the resected DSB end compared to the 5' end. In addition DNA polymerase Polδ's 3' to 5' proofreading activity frequently excises a mismatch very close to the 3' end of the template. We further report that SSTR is accompanied by as much as a 600-fold increase in mutations in regions adjacent to the sequences directly undergoing repair. These DNA polymerase ζ-dependent mutations may compromise the accuracy of gene editing.
Collapse
Affiliation(s)
- Danielle N. Gallagher
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, United States of America
| | - Nhung Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Annie M. Tsai
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, United States of America
| | - Nicolas V. Janto
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, United States of America
| | - Jihyun Choi
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, United States of America
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, United States of America
| |
Collapse
|
12
|
Hewes AM, Sansbury BM, Kmiec EB. The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template. Genes (Basel) 2020; 11:genes11101160. [PMID: 33008045 PMCID: PMC7599521 DOI: 10.3390/genes11101160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas gene editing systems have enabled molecular geneticists to manipulate prokaryotic and eukaryotic genomes with greater efficiency and precision. CRISPR/Cas provides adaptive immunity in bacterial cells by degrading invading viral genomes. By democratizing this activity into human cells, it is possible to knock out specific genes to disable their function and repair errors. The latter of these activities requires the participation of a single-stranded donor DNA template that provides the genetic information to execute correction in a process referred to as homology directed repair (HDR). Here, we utilized an established cell-free extract system to determine the influence that the donor DNA template length has on the diversity of products from CRISPR-directed gene editing. This model system enables us to view all outcomes of this reaction and reveals that donor template length can influence the efficiency of the reaction and the categories of error-prone products that accompany it. A careful measurement of the products revealed a category of error-prone events that contained the corrected template along with insertions and deletions (indels). Our data provides foundational information for those whose aim is to translate CRISPR/Cas from bench to bedside.
Collapse
Affiliation(s)
- Amanda M. Hewes
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE 19713, USA; (A.M.H.); (B.M.S.)
| | - Brett M. Sansbury
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE 19713, USA; (A.M.H.); (B.M.S.)
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Eric B. Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE 19713, USA; (A.M.H.); (B.M.S.)
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-(0)302-623-0628
| |
Collapse
|
13
|
Sansbury BM, Wagner AM, Tarcic G, Barth S, Nitzan E, Goldfus R, Vidne M, Kmiec EB. CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement In Vitro Enabling a Novel Method for Multiplex Site-Directed Mutagenesis. CRISPR J 2020; 2:121-132. [PMID: 30998096 DOI: 10.1089/crispr.2018.0054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Much of our understanding of eukaryotic genes function comes from studies of the activity of their mutated forms or allelic variability. Mutations have helped elucidate how members of an intricate pathway function in relation to each other and how they operate in the context of the regulatory circuitry that surrounds them. A PCR-based site-directed mutagenesis technique is often used to engineer these variants. While these tools are efficient, they are not without significant limitations, most notably off-site mutagenesis, limited scalability, and lack of multiplexing capabilities. To overcome many of these limitations, we now describe a novel method for the introduction of both simple and complex gene mutations in plasmid DNA by using in vitro DNA editing. A specifically designed pair of CRISPR-Cas12a ribonucleoprotein complexes are used to execute site-specific double-strand breaks on plasmid DNA, enabling the excision of a defined DNA fragment. Donor DNA replacement is catalyzed by a mammalian cell-free extract through microhomology annealing of short regions of single-stranded DNA complementarity; we term this method CRISPR-directed DNA mutagenesis (CDM). The products of CDM are plasmids bearing precise donor fragments with specific modifications and CDM could be used for mutagenesis in larger constructs such as Bacterial Artificial Chromosome (BACs) or Yeast Artificial Chromosome (YACs). We further show that this reaction can be multiplexed so that product molecules with multiple site-specific mutations and site-specific deletions can be generated in the same in vitro reaction mixture. Importantly, the CDM method produces fewer unintended mutations in the target gene as compared to the standard site-directed mutagenesis assay; CDM produces no unintended mutations throughout the plasmid backbone. Lastly, this system recapitulates the multitude of reactions that take place during CRISPR-directed gene editing in mammalian cells and affords the opportunity to study the mechanism of action of CRISPR-directed gene editing in mammalian cells by visualizing a multitude of genetic products.
Collapse
Affiliation(s)
- Brett M Sansbury
- 1 Department of Medical Sciences, University of Delaware, Newark, Delaware; Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel.,2 Gene Editing Insitute, Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, Delaware; Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel
| | - Amanda M Wagner
- 2 Gene Editing Insitute, Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, Delaware; Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel
| | - Gabi Tarcic
- 3 NovellusDx, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel
| | - Shaul Barth
- 3 NovellusDx, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel
| | - Erez Nitzan
- 3 NovellusDx, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel
| | - Romy Goldfus
- 3 NovellusDx, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel
| | - Michael Vidne
- 3 NovellusDx, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel
| | - Eric B Kmiec
- 1 Department of Medical Sciences, University of Delaware, Newark, Delaware; Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel.,2 Gene Editing Insitute, Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, Delaware; Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel
| |
Collapse
|
14
|
Sansbury BM, Hewes AM, Kmiec EB. Understanding the diversity of genetic outcomes from CRISPR-Cas generated homology-directed repair. Commun Biol 2019; 2:458. [PMID: 31840103 PMCID: PMC6898364 DOI: 10.1038/s42003-019-0705-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
As CRISPR-Cas systems advance toward clinical application, it is essential to identify all the outcomes of gene-editing activity in human cells. Reports highlighting the remarkable success of homology-directed repair (HDR) in the treatment of inherited diseases may inadvertently underreport the collateral activity of this remarkable technology. We are utilizing an in vitro gene-editing system in which a CRISPR-Cas complex provides the double-stranded cleavage and a mammalian cell-free extract provides the enzymatic activity to promote non-homologous end joining, micro-homology mediated end joining, and homology-directed repair. Here, we detail the broad spectrum of gene-editing reaction outcomes utilizing Cas9 and Cas12a in combination with single-stranded donor templates of the sense and nonsense polarity. This system offers the opportunity to see the range of outcomes of gene-editing reactions in an unbiased fashion, detailing the distribution of DNA repair outcomes as a function of a set of genetic tools.
Collapse
Affiliation(s)
- Brett M. Sansbury
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE USA
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE USA
| | - Amanda M. Hewes
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE USA
| | - Eric B. Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE USA
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE USA
| |
Collapse
|
15
|
Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 2019; 21:1468-1478. [PMID: 31792376 DOI: 10.1038/s41556-019-0425-z] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Eukaryotic cells deploy overlapping repair pathways to resolve DNA damage. Advancements in genome editing take advantage of these pathways to produce permanent genetic changes. Despite recent improvements, genome editing can produce diverse outcomes that can introduce risks in clinical applications. Although homology-directed repair is attractive for its ability to encode precise edits, it is particularly difficult in human cells. Here we discuss the DNA repair pathways that underlie genome editing and strategies to favour various outcomes.
Collapse
|
16
|
Mukherjee K, English N, Meers C, Kim H, Jonke A, Storici F, Torres M. Systematic analysis of linker histone PTM hotspots reveals phosphorylation sites that modulate homologous recombination and DSB repair. DNA Repair (Amst) 2019; 86:102763. [PMID: 31821952 DOI: 10.1016/j.dnarep.2019.102763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Double strand-breaks (DSBs) of genomic DNA caused by ionizing radiation or mutagenic chemicals are a common source of mutation, recombination, chromosomal aberration, and cell death. Linker histones are DNA packaging proteins with established roles in chromatin compaction, gene transcription, and in homologous recombination (HR)-mediated DNA repair. Using a machine-learning model for functional prioritization of eukaryotic post-translational modifications (PTMs) in combination with genetic and biochemical experiments with the yeast linker histone, Hho1, we discovered that site-specific phosphorylation sites regulate HR and HR-mediated DSB repair. Five total sites were investigated (T10, S65, S141, S173, and S174), ranging from high to low function potential as determined by the model. Of these, we confirmed S173/174 are phosphorylated in yeast by mass spectrometry and found no evidence of phosphorylation at the other sites. Phospho-nullifying mutations at these two sites results in a significant decrease in HR-mediated DSB repair templated either with oligonucleotides or a homologous chromosome, while phospho-mimicing mutations have no effect. S65, corresponding to a mammalian phosphosite that is conserved in yeast, exhibited similar effects. None of the mutations affected base- or nucleotide-excision repair, nor did they disrupt non-homologous end joining or RNA-mediated repair of DSBs when sequence heterology between the break and repair template strands was low. More extensive analysis of the S174 phospho-null mutant revealed that its repression of HR and DSB repair is proportional to the degree of sequence heterology between DSB ends and the HR repair template. Taken together, these data demonstrate the utility of machine learning for the discovery of functional PTM hotspots, reveal linker histone phosphorylation sites necessary for HR and HR-mediated DSB repair, and provide insight into the context-dependent control of DNA integrity by the yeast linker histone Hho1.
Collapse
Affiliation(s)
- Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Nolan English
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Hyojung Kim
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Alex Jonke
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Matthew Torres
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA.
| |
Collapse
|
17
|
Maizels N, Davis L. Initiation of homologous recombination at DNA nicks. Nucleic Acids Res 2019; 46:6962-6973. [PMID: 29986051 PMCID: PMC6101574 DOI: 10.1093/nar/gky588] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
Discontinuities in only a single strand of the DNA duplex occur frequently, as a result of DNA damage or as intermediates in essential nuclear processes and DNA repair. Nicks are the simplest of these lesions: they carry clean ends bearing 3′-hydroxyl groups that can undergo ligation or prime new DNA synthesis. In contrast, single-strand breaks also interrupt only one DNA strand, but they carry damaged ends that require clean-up before subsequent steps in repair. Despite their apparent simplicity, nicks can have significant consequences for genome stability. The availability of enzymes that can introduce a nick almost anywhere in a large genome now makes it possible to systematically analyze repair of nicks. Recent experiments demonstrate that nicks can initiate recombination via pathways distinct from those active at double-strand breaks (DSBs). Recombination at targeted DNA nicks can be very efficient, and because nicks are intrinsically less mutagenic than DSBs, nick-initiated gene correction is useful for genome engineering and gene therapy. This review revisits some physiological examples of recombination at nicks, and outlines experiments that have demonstrated that nicks initiate homology-directed repair by distinctive pathways, emphasizing research that has contributed to our current mechanistic understanding of recombination at nicks in mammalian cells.
Collapse
Affiliation(s)
- Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA.,Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Luther Davis
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Harmsen T, Klaasen S, van de Vrugt H, Te Riele H. DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break. Nucleic Acids Res 2019; 46:2945-2955. [PMID: 29447381 PMCID: PMC5888797 DOI: 10.1093/nar/gky076] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/25/2018] [Indexed: 12/14/2022] Open
Abstract
Single-stranded oligodeoxyribonucleotide (ssODN)-mediated repair of CRISPR/Cas9-induced DNA double-strand breaks (DSB) can effectively be used to introduce small genomic alterations in a defined locus. Here, we reveal DNA mismatch repair (MMR) activity is crucial for efficient nucleotide substitution distal from the Cas9-induced DNA break when the substitution is instructed by the 3' half of the ssODN. Furthermore, protecting the ssODN 3' end with phosphorothioate linkages enhances MMR-dependent gene editing events. Our findings can be exploited to optimize efficiencies of nucleotide substitutions distal from the DSB and imply that oligonucleotide-mediated gene editing is effectuated by templated break repair.
Collapse
Affiliation(s)
- Tim Harmsen
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Sjoerd Klaasen
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Henri van de Vrugt
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Department of Clinical Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
19
|
Li G, Zhang X, Ou H, Wang H, Liu D, Yang H, Wu Z. PIK-75 promotes homology-directed DNA repair. J Genet Genomics 2019; 46:141-144. [PMID: 30935856 DOI: 10.1016/j.jgg.2019.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/19/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Guoling Li
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xianwei Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Ou
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Haoqiang Wang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huaqiang Yang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhenfang Wu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Janssen JM, Chen X, Liu J, Gonçalves MAFV. The Chromatin Structure of CRISPR-Cas9 Target DNA Controls the Balance between Mutagenic and Homology-Directed Gene-Editing Events. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:141-154. [PMID: 30884291 PMCID: PMC6424062 DOI: 10.1016/j.omtn.2019.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
Gene editing based on homology-directed repair (HDR) depends on donor DNA templates and programmable nucleases, e.g., RNA-guided CRISPR-Cas9 nucleases. However, next to inducing HDR involving the mending of chromosomal double-stranded breaks (DSBs) with donor DNA substrates, programmable nucleases also yield gene disruptions, triggered by competing non-homologous end joining (NHEJ) pathways. It is, therefore, imperative to identify parameters underlying the relationship between these two outcomes in the context of HDR-based gene editing. Here we implemented quantitative cellular systems, based on epigenetically regulated isogenic target sequences and donor DNA of viral, non-viral, and synthetic origins, to investigate gene-editing outcomes resulting from the interaction between different chromatin conformations and donor DNA structures. We report that, despite a significantly higher prevalence of NHEJ-derived events at euchromatin over Krüppel-associated box (KRAB)-impinged heterochromatin, HDR frequencies are instead generally less impacted by these alternative chromatin conformations. Hence, HDR increases in relation to NHEJ when open euchromatic target sequences acquire a closed heterochromatic state, with donor DNA structures determining, to some extent, the degree of this relative increase in HDR events at heterochromatin. Finally, restricting nuclease activity to HDR-permissive G2 and S phases of the cell cycle through a Cas9-Geminin construct yields lower, hence more favorable, NHEJ to HDR ratios, independently of the chromatin structure.
Collapse
Affiliation(s)
- Josephine M Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Xiaoyu Chen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jin Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
21
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
22
|
Brinkman EK, van Steensel B. Rapid Quantitative Evaluation of CRISPR Genome Editing by TIDE and TIDER. Methods Mol Biol 2019; 1961:29-44. [PMID: 30912038 DOI: 10.1007/978-1-4939-9170-9_3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Current genome editing tools enable targeted mutagenesis of selected DNA sequences in many species. However, the efficiency and the type of introduced mutations by the genome editing method are largely dependent on the target site. As a consequence, the outcome of the editing operation is difficult to predict. Therefore, a quick assay to quantify the frequency of mutations is vital for a proper assessment of genome editing actions. We developed two methods that are rapid, cost-effective, and readily applicable: (1) TIDE, which can accurately identify and quantify insertions and deletions (indels) that arise after introduction of double strand breaks (DSBs); (2) TIDER, which is suited for template-mediated editing events including point mutations. Both methods only require a set of PCR reactions and standard Sanger sequencing runs. The sequence traces are analyzed by the TIDE or TIDER algorithm (available at https://tide.nki.nl or https://deskgen.com ). The routine is easy, fast, and provides much more detailed information than current enzyme-based assays. TIDE and TIDER accelerate testing and designing of DSB-based genome editing strategies.
Collapse
Affiliation(s)
- Eva Karina Brinkman
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Borsenberger V, Onésime D, Lestrade D, Rigouin C, Neuvéglise C, Daboussi F, Bordes F. Multiple Parameters Drive the Efficiency of CRISPR/Cas9-Induced Gene Modifications in Yarrowia lipolytica. J Mol Biol 2018; 430:4293-4306. [PMID: 30227135 DOI: 10.1016/j.jmb.2018.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 01/15/2023]
Abstract
Yarrowia lipolytica is an oleaginous yeast of growing industrial interest for biotechnological applications. In the last few years, genome edition has become an easier and more accessible prospect with the world wild spread development of CRISPR/Cas9 technology. In this study, we focused our attention on the production of the two key elements of the CRISPR-Cas9 ribonucleic acid protein complex in this non-conventional yeast. The efficiency of NHEJ-induced knockout was measured by time-course monitoring using multiple parameters flow cytometry, as well as phenotypic and genotypic observations, and linked to nuclease production levels showing that its strong overexpression is unnecessary. Thus, the limiting factor for the generation of a functional ribonucleic acid protein complex clearly resides in guide expression, which was probed by testing different linker lengths between the transfer RNA promoter and the sgRNA. The results highlight a clear deleterious effect of mismatching bases at the 5' end of the target sequence. For the first time in yeast, an investigation of its maturation from the primary transcript was undertaken by sequencing multiple sgRNAs extracted from the host. These data provide insights into of the yeast small RNA processing, from synthesis to maturation, and suggests a pathway for their degradation in Y. lipolytica. Subsequently, a whole-genome sequencing of a modified strain detected no abnormal modification due to off-target effects, confirming CRISPR/Cas9 as a safe strategy for editing Y. lipolytica genome. Finally, the optimized system was used to promote in vivo directed mutagenesis via homology-directed repair with a ssDNA oligonucleotide.
Collapse
Affiliation(s)
| | - Djamila Onésime
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, Paris, France
| | | | - Coraline Rigouin
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, Paris, France
| | - Fayza Daboussi
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France
| | - Florence Bordes
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France.
| |
Collapse
|
24
|
Charlesworth CT, Camarena J, Cromer MK, Vaidyanathan S, Bak RO, Carte JM, Potter J, Dever DP, Porteus MH. Priming Human Repopulating Hematopoietic Stem and Progenitor Cells for Cas9/sgRNA Gene Targeting. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:89-104. [PMID: 30195800 PMCID: PMC6023838 DOI: 10.1016/j.omtn.2018.04.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022]
Abstract
Engineered nuclease-mediated gene targeting through homologous recombination (HR) in hematopoietic stem and progenitor cells (HSPCs) has the potential to treat a variety of genetic hematologic and immunologic disorders. Here, we identify critical parameters to reproducibly achieve high frequencies of RNA-guided (single-guide RNA [sgRNA]; CRISPR)-Cas9 nuclease (Cas9/sgRNA) and rAAV6-mediated HR at the β-globin (HBB) locus in HSPCs. We identified that by transducing HSPCs with rAAV6 post-electroporation, there was a greater than 2-fold electroporation-aided transduction (EAT) of rAAV6 endocytosis with roughly 70% of the cell population having undergone transduction within 2 hr. When HSPCs are cultured at low densities (1 × 105 cells/mL) prior to HBB targeting, HSPC expansion rates are significantly positively correlated with HR frequencies in vitro as well as in repopulating cells in immunodeficient NSG mice in vivo. We also show that culturing fluorescence-activated cell sorting (FACS)-enriched HBB-targeted HSPCs at low cell densities in the presence of the small molecules, UM171 and SR1, stimulates the expansion of gene-edited HSPCs as measured by higher engraftment levels in immunodeficient mice. This work serves not only as an optimized protocol for genome editing HSPCs at the HBB locus for the treatment of β-hemoglobinopathies but also as a foundation for editing HSPCs at other loci for both basic and translational research.
Collapse
Affiliation(s)
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Rasmus O Bak
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Jason M Carte
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Jason Potter
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Thind AK, Wicker T, Müller T, Ackermann PM, Steuernagel B, Wulff BBH, Spannagl M, Twardziok SO, Felder M, Lux T, Mayer KFX, Keller B, Krattinger SG. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome dynamics between two wheat cultivars. Genome Biol 2018; 19:104. [PMID: 30115097 PMCID: PMC6097286 DOI: 10.1186/s13059-018-1477-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent improvements in DNA sequencing and genome scaffolding have paved the way to generate high-quality de novo assemblies of pseudomolecules representing complete chromosomes of wheat and its wild relatives. These assemblies form the basis to compare the dynamics of wheat genomes on a megabase scale. RESULTS Here, we provide a comparative sequence analysis of the 700-megabase chromosome 2D between two bread wheat genotypes-the old landrace Chinese Spring and the elite Swiss spring wheat line 'CH Campala Lr22a'. Both chromosomes were assembled into megabase-sized scaffolds. There is a high degree of sequence conservation between the two chromosomes. Analysis of large structural variations reveals four large indels of more than 100 kb. Based on the molecular signatures at the breakpoints, unequal crossing over and double-strand break repair were identified as the molecular mechanisms that caused these indels. Three of the large indels affect copy number of NLRs, a gene family involved in plant immunity. Analysis of SNP density reveals four haploblocks of 4, 8, 9 and 48 Mb with a 35-fold increased SNP density compared to the rest of the chromosome. Gene content across the two chromosomes was highly conserved. Ninety-nine percent of the genic sequences were present in both genotypes and the fraction of unique genes ranged from 0.4 to 0.7%. CONCLUSIONS This comparative analysis of two high-quality chromosome assemblies enabled a comprehensive assessment of large structural variations and gene content. The insight obtained from this analysis will form the basis of future wheat pan-genome studies.
Collapse
Affiliation(s)
- Anupriya Kaur Thind
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Thomas Müller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Patrick M Ackermann
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | | | | | | | | | | | - Thomas Lux
- Helmholtz Zentrum Munich, Munich, Germany
| | - Klaus F X Mayer
- Helmholtz Zentrum Munich, Munich, Germany
- School of Life Sciences, Technical University Munich, Munich, Germany
- College of Science, King Saud University, Riad, Kingdom of Saudi Arabia
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Simon G Krattinger
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland.
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
26
|
Brinkman EK, Kousholt AN, Harmsen T, Leemans C, Chen T, Jonkers J, van Steensel B. Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res 2018; 46:e58. [PMID: 29538768 PMCID: PMC6007333 DOI: 10.1093/nar/gky164] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 11/21/2022] Open
Abstract
Template-directed CRISPR/Cas9 editing is a powerful tool for introducing subtle mutations in genomes. However, the success rate of incorporation of the desired mutations at the target site is difficult to predict and therefore must be empirically determined. Here, we adapted the widely used TIDE method for quantification of templated editing events, including point mutations. The resulting TIDER method is a rapid, cheap and accessible tool for testing and optimization of template-directed genome editing strategies. A free web tool for TIDER data analysis is available at http://tide.nki.nl.
Collapse
Affiliation(s)
- Eva K Brinkman
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Arne N Kousholt
- Division of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Tim Harmsen
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Christ Leemans
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Tao Chen
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
- Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
- Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
27
|
Chen Y, Spitzer S, Agathou S, Karadottir RT, Smith A. Gene Editing in Rat Embryonic Stem Cells to Produce In Vitro Models and In Vivo Reporters. Stem Cell Reports 2018; 9:1262-1274. [PMID: 29020614 PMCID: PMC5639479 DOI: 10.1016/j.stemcr.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Rat embryonic stem cells (ESCs) offer the potential for sophisticated genome engineering in this valuable biomedical model species. However, germline transmission has been rare following conventional homologous recombination and clonal selection. Here, we used the CRISPR/Cas9 system to target genomic mutations and insertions. We first evaluated utility for directed mutagenesis and recovered clones with biallelic deletions in Lef1. Mutant cells exhibited reduced sensitivity to glycogen synthase kinase 3 inhibition during self-renewal. We then generated a non-disruptive knockin of dsRed at the Sox10 locus. Two clones produced germline chimeras. Comparative expression of dsRed and SOX10 validated the fidelity of the reporter. To illustrate utility, live imaging of dsRed in neonatal brain slices was employed to visualize oligodendrocyte lineage cells for patch-clamp recording. Overall, these results show that CRISPR/Cas9 gene editing technology in germline-competent rat ESCs is enabling for in vitro studies and for generating genetically modified rats. Gene mutation and homologous recombination in rat ESCs using CRISPR/Cas9 Lef1 mutants exhibit predicted loss of hypersensitivity to GSK3 inhibition Sox10 knockin rat provides a vital reporter of neural crest and oligodendroglia Sox10::dsRed facilitates patch-clamp recording from oligodendroglial lineage cells
Collapse
Affiliation(s)
- Yaoyao Chen
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sonia Spitzer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Sylvia Agathou
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Ragnhildur Thora Karadottir
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
28
|
Sansbury BM, Wagner AM, Nitzan E, Tarcic G, Kmiec EB. CRISPR-Directed In Vitro Gene Editing of Plasmid DNA Catalyzed by Cpf1 (Cas12a) Nuclease and a Mammalian Cell-Free Extract. CRISPR J 2018; 1:191-202. [PMID: 30687813 PMCID: PMC6345151 DOI: 10.1089/crispr.2018.0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Extraordinary efforts are underway to offer greater versatility and broader applications for CRISPR-directed gene editing. Here, we report the establishment of a system for studying this process in a mammalian cell-free extract prepared from HEK-293 human embryonic kidney cells. A ribonucleoprotein (RNP) particle and a mammalian cell-free extract coupled with a genetic readout are used to generate and identify specific deletions or insertions within a plasmid target. A Cpf1 (Cas12a) RNP induces a double-stranded break, and the cell-free extract provides the appropriate enzymatic activities to direct specific deletion through resection and homology directed repair in the presence of single- and double-stranded donor DNA. This cell-free system establishes a foundation to study the heterogeneous products of gene editing, as well as the relationship between nonhomologous end joining and homology directed repair and related regulatory circuitries simultaneously in a controlled environment.
Collapse
Affiliation(s)
- Brett M Sansbury
- Department of Medical Laboratory Sciences, University of Delaware, Newark, Delaware.,Gene Editing Insitute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, Delaware
| | - Amanda M Wagner
- Gene Editing Insitute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, Delaware
| | - Erez Nitzan
- NovellusDx, Jerusalem Bio-Park, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel
| | - Gabi Tarcic
- NovellusDx, Jerusalem Bio-Park, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel
| | - Eric B Kmiec
- Department of Medical Laboratory Sciences, University of Delaware, Newark, Delaware.,Gene Editing Insitute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, Delaware
| |
Collapse
|
29
|
Gallagher DN, Haber JE. Repair of a Site-Specific DNA Cleavage: Old-School Lessons for Cas9-Mediated Gene Editing. ACS Chem Biol 2018; 13:397-405. [PMID: 29083855 DOI: 10.1021/acschembio.7b00760] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CRISPR/Cas9-mediated gene editing may involve nonhomologous end-joining to create various insertion/deletions (indels) or may employ homologous recombination to modify precisely the target DNA sequence. Our understanding of these processes has been guided by earlier studies using other site-specific endonucleases, both in model organisms such as budding yeast and in mammalian cells. We briefly review what has been gleaned from such studies using the HO and I-SceI endonucleases and how these findings guide current gene editing strategies.
Collapse
Affiliation(s)
- Danielle N. Gallagher
- Rosenstiel Basic Medical
Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 22454-9110, United States
| | - James E. Haber
- Rosenstiel Basic Medical
Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 22454-9110, United States
| |
Collapse
|
30
|
Engineering of Yeast Glycoprotein Expression. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:93-135. [DOI: 10.1007/10_2018_69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Davis L, Maizels N. Two Distinct Pathways Support Gene Correction by Single-Stranded Donors at DNA Nicks. Cell Rep 2017; 17:1872-1881. [PMID: 27829157 DOI: 10.1016/j.celrep.2016.10.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/12/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022] Open
Abstract
Nicks are the most common form of DNA damage. The mechanisms of their repair are fundamental to genomic stability and of practical importance for genome engineering. We define two pathways that support homology-directed repair by single-stranded DNA donors. One depends upon annealing-driven strand synthesis and acts at both nicks and double-strand breaks. The other depends upon annealing-driven heteroduplex correction and acts at nicks. Homology-directed repair via these pathways, as well as mutagenic end joining, are inhibited by RAD51 at nicks but largely independent of RAD51 at double-strand breaks. Guidelines for coordinated design of targets and donors for gene correction emerge from definition of these pathways. This analysis further suggests that naturally occurring nicks may have significant recombinogenic and mutagenic potential that is normally inhibited by RAD51 loading onto DNA, thereby identifying a function for RAD51 in maintenance of genomic stability.
Collapse
Affiliation(s)
- Luther Davis
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
32
|
Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing. Nat Biomed Eng 2017; 1:878-888. [PMID: 31015609 DOI: 10.1038/s41551-017-0145-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Gene disruption by clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) is highly efficient and relies on the error-prone non-homologous end-joining pathway. Conversely, precise gene editing requires homology-directed repair (HDR), which occurs at a lower frequency than non-homologous end-joining in mammalian cells. Here, by testing whether manipulation of DNA repair factors improves HDR efficacy, we show that transient ectopic co-expression of RAD52 and a dominant-negative form of tumour protein p53-binding protein 1 (dn53BP1) synergize to enable efficient HDR using a single-stranded oligonucleotide DNA donor template at multiple loci in human cells, including patient-derived induced pluripotent stem cells. Co-expression of RAD52 and dn53BP1 improves multiplexed HDR-mediated editing, whereas expression of RAD52 alone enhances HDR with Cas9 nickase. Our data show that the frequency of non-homologous end-joining-mediated double-strand break repair in the presence of these two factors is not suppressed and suggest that dn53BP1 competitively antagonizes 53BP1 to augment HDR in combination with RAD52. Importantly, co-expression of RAD52 and dn53BP1 does not alter Cas9 off-target activity. These findings support the use of RAD52 and dn53BP1 co-expression to overcome bottlenecks that limit HDR in precision genome editing.
Collapse
|
33
|
Fuster-García C, García-García G, González-Romero E, Jaijo T, Sequedo MD, Ayuso C, Vázquez-Manrique RP, Millán JM, Aller E. USH2A Gene Editing Using the CRISPR System. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:529-541. [PMID: 28918053 PMCID: PMC5573797 DOI: 10.1016/j.omtn.2017.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/06/2023]
Abstract
Usher syndrome (USH) is a rare autosomal recessive disease and the most common inherited form of combined visual and hearing impairment. Up to 13 genes are associated with this disorder, with USH2A being the most prevalent, due partially to the recurrence rate of the c.2299delG mutation. Excluding hearing aids or cochlear implants for hearing impairment, there are no medical solutions available to treat USH patients. The repair of specific mutations by gene editing is, therefore, an interesting strategy that can be explored using the CRISPR/Cas9 system. In this study, this method of gene editing is used to target the c.2299delG mutation on fibroblasts from an USH patient carrying the mutation in homozygosis. Successful in vitro mutation repair was demonstrated using locus-specific RNA-Cas9 ribonucleoproteins with subsequent homologous recombination repair induced by an engineered template supply. Effects on predicted off-target sites in the CRISPR-treated cells were discarded after a targeted deep-sequencing screen. The proven effectiveness and specificity of these correction tools, applied to the c.2299delG pathogenic variant of USH2A, indicates that the CRISPR system should be considered to further explore a potential treatment of USH.
Collapse
Affiliation(s)
- Carla Fuster-García
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Gema García-García
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elisa González-Romero
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Teresa Jaijo
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - María D Sequedo
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carmen Ayuso
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Genética, Fundación Jiménez Díaz, University Hospital, Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, UAM, Madrid, Spain
| | - Rafael P Vázquez-Manrique
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M Millán
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| | - Elena Aller
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
34
|
Mazina OM, Keskin H, Hanamshet K, Storici F, Mazin AV. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break Repair. Mol Cell 2017; 67:19-29.e3. [PMID: 28602639 DOI: 10.1016/j.molcel.2017.05.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/09/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022]
Abstract
RNA can serve as a template for DNA double-strand break repair in yeast cells, and Rad52, a member of the homologous recombination pathway, emerged as an important player in this process. However, the exact mechanism of how Rad52 contributes to RNA-dependent DSB repair remained unknown. Here, we report an unanticipated activity of yeast and human Rad52: inverse strand exchange, in which Rad52 forms a complex with dsDNA and promotes strand exchange with homologous ssRNA or ssDNA. We show that in eukaryotes, inverse strand exchange between homologous dsDNA and RNA is a distinctive activity of Rad52; neither Rad51 recombinase nor the yeast Rad52 paralog Rad59 has this activity. In accord with our in vitro results, our experiments in budding yeast provide evidence that Rad52 inverse strand exchange plays an important role in RNA-templated DSB repair in vivo.
Collapse
Affiliation(s)
- Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Havva Keskin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kritika Hanamshet
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
35
|
Kan Y, Ruis B, Takasugi T, Hendrickson EA. Mechanisms of precise genome editing using oligonucleotide donors. Genome Res 2017; 27:1099-1111. [PMID: 28356322 PMCID: PMC5495063 DOI: 10.1101/gr.214775.116] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/24/2017] [Indexed: 12/26/2022]
Abstract
The use of programmable meganucleases is transforming genome editing and functional genomics. CRISPR/Cas9 was developed such that targeted genomic lesions could be introduced in vivo with unprecedented ease. In the presence of homology donors, these lesions facilitate high-efficiency precise genome editing (PGE) via homology-directed repair (HDR) pathways. However, the identity and hierarchy of the HDR (sub)pathways leading to the formation of PGE products remain elusive. Here, we established a green to blue fluorescent protein conversion system to systematically characterize oligodeoxynucleotide (ODN)-mediated PGE using Cas9 and its nickase variants in human cells. We demonstrate that, unlike double-stranded DNA (dsDNA) donors with central heterologies, ODNs generated short conversion tracts with Gaussian-like distributions. Interestingly, single-nick–induced PGE using ODN donors produced conversion tracts biased either mostly uni- or bidirectional depending on the relative strandedness of the ODNs and the nick. Moreover, the ODNs were physically incorporated into the genome only in the bidirectional, but not in the unidirectional, conversion pathway. In the presence of double-stranded genomic lesions, the unidirectional conversion pathway was preferentially utilized even though the knock-in mutation could theoretically have been converted by both pathways. Collectively, our results suggest that ODN-mediated PGE utilizes synthesis-dependent strand annealing and single-stranded DNA incorporation pathways. Both of these pathways generate short conversion tracts with Gaussian-like distributions. Although synthesis-dependent strand annealing is preferentially utilized, our work unequivocally establishes the existence of a single-stranded DNA incorporation pathway in human cells. This work extends the paradigms of HDR-mediated gene conversion and establishes guidelines for PGE in human cells.
Collapse
Affiliation(s)
- Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Taylor Takasugi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
36
|
Annealing of Complementary DNA Sequences During Double-Strand Break Repair in Drosophila Is Mediated by the Ortholog of SMARCAL1. Genetics 2017; 206:467-480. [PMID: 28258182 DOI: 10.1534/genetics.117.200238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/22/2017] [Indexed: 12/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) pose a serious threat to genomic integrity. If unrepaired, they can lead to chromosome fragmentation and cell death. If repaired incorrectly, they can cause mutations and chromosome rearrangements. DSBs are repaired using end-joining or homology-directed repair strategies, with the predominant form of homology-directed repair being synthesis-dependent strand annealing (SDSA). SDSA is the first defense against genomic rearrangements and information loss during DSB repair, making it a vital component of cell health and an attractive target for chemotherapeutic development. SDSA has also been proposed to be the primary mechanism for integration of large insertions during genome editing with CRISPR/Cas9. Despite the central role for SDSA in genome stability, little is known about the defining step: annealing. We hypothesized that annealing during SDSA is performed by the annealing helicase SMARCAL1, which can anneal RPA-coated single DNA strands during replication-associated DNA damage repair. We used unique genetic tools in Drosophila melanogaster to test whether the fly ortholog of SMARCAL1, Marcal1, mediates annealing during SDSA. Repair that requires annealing is significantly reduced in Marcal1 null mutants in both synthesis-dependent and synthesis-independent (single-strand annealing) assays. Elimination of the ATP-binding activity of Marcal1 also reduced annealing-dependent repair, suggesting that the annealing activity requires translocation along DNA. Unlike the null mutant, however, the ATP-binding defect mutant showed reduced end joining, shedding light on the interaction between SDSA and end-joining pathways.
Collapse
|
37
|
Vriend LEM, Krawczyk PM. Nick-initiated homologous recombination: Protecting the genome, one strand at a time. DNA Repair (Amst) 2016; 50:1-13. [PMID: 28087249 DOI: 10.1016/j.dnarep.2016.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Abstract
Homologous recombination (HR) is an essential, widely conserved mechanism that utilizes a template for accurate repair of DNA breaks. Some early HR models, developed over five decades ago, anticipated single-strand breaks (nicks) as initiating lesions. Subsequent studies favored a more double-strand break (DSB)-centered view of HR initiation and at present this pathway is primarily considered to be associated with DSB repair. However, mounting evidence suggests that nicks can indeed initiate HR directly, without first being converted to DSBs. Moreover, recent studies reported on novel branches of nick-initiated HR (nickHR) that rely on single-, rather than double-stranded repair templates and that are characterized by mechanistically and genetically unique properties. The physiological significance of nickHR is not well documented, but its high-fidelity nature and low mutagenic potential are relevant in recently developed, precise gene editing approaches. Here, we review the evidence for stimulation of HR by nicks, as well as the data on the interactions of nickHR with other DNA repair pathways and on its mechanistic properties. We conclude that nickHR is a bona-fide pathway for nick repair, sharing the molecular machinery with the canonical HR but nevertheless characterized by unique properties that secure its inclusion in DNA repair models and warrant future investigations.
Collapse
Affiliation(s)
- Lianne E M Vriend
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Przemek M Krawczyk
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Wang K, Tang X, Liu Y, Xie Z, Zou X, Li M, Yuan H, Ouyang H, Jiao H, Pang D. Efficient Generation of Orthologous Point Mutations in Pigs via CRISPR-assisted ssODN-mediated Homology-directed Repair. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e396. [PMID: 27898095 PMCID: PMC5155319 DOI: 10.1038/mtna.2016.101] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
Abstract
Precise genome editing in livestock is of great value for the fundamental investigation of disease modeling. However, genetically modified pigs carrying subtle point mutations were still seldom reported despite the rapid development of programmable endonucleases. Here, we attempt to investigate single-stranded oligonucleotides (ssODN) mediated knockin by introducing two orthologous pathogenic mutations, p.E693G for Alzheimer's disease and p.G2019S for Parkinson's disease, into porcine APP and LRRK2 loci, respectively. Desirable homology-directed repair (HDR) efficiency was achieved in porcine fetal fibroblasts (PFFs) by optimizing the dosage and length of ssODN templates. Interestingly, incomplete HDR alleles harboring partial point mutations were observed in single-cell colonies, which indicate the complex mechanism of ssODN-mediated HDR. The effect of mutation-to-cut distance on incorporation rate was further analyzed by deep sequencing. We demonstrated that a mutation-to-cut distance of 11 bp resulted in a remarkable difference in HDR efficiency between two point mutations. Finally, we successfully obtained one cloned piglet harboring the orthologous p.C313Y mutation at the MSTN locus via somatic cell nuclear transfer (SCNT). Our proof-of-concept study demonstrated efficient ssODN-mediated incorporation of pathogenic point mutations in porcine somatic cells, thus facilitating further development of disease modeling and genetic breeding in pigs.
Collapse
Affiliation(s)
- Kankan Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Yan Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Zicong Xie
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Xiaodong Zou
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Mengjing Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Hongming Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Huping Jiao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| |
Collapse
|
39
|
Abstract
Double-strand breaks (DSBs) pose a severe challenge to genome integrity; consequently, cells have developed efficient mechanisms to repair DSBs through several pathways of homologous recombination and other nonhomologous end-joining processes. Much of our understanding of these pathways has come from the analysis of site-specific DSBs created by the HO endonuclease in the budding yeast Saccharomyces cerevisiae. I was fortunate to get in on the ground floor of analyzing the fate of synchronously induced DSBs through the study of what I coined "in vivo biochemistry." I have had the remarkable good fortune to profit from the development of new techniques that have permitted an ever more detailed dissection of these repair mechanisms, which are described here.
Collapse
Affiliation(s)
- James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02453;
| |
Collapse
|
40
|
Bialk P, Sansbury B, Rivera-Torres N, Bloh K, Man D, Kmiec EB. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides. Sci Rep 2016; 6:32681. [PMID: 27609304 PMCID: PMC5016854 DOI: 10.1038/srep32681] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9.
Collapse
Affiliation(s)
- Pawel Bialk
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
| | - Brett Sansbury
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Department of Medical Laboratory Science, College of Health Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Natalia Rivera-Torres
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Department of Medical Laboratory Science, College of Health Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Kevin Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Dula Man
- Department of Chemistry, Delaware State University, Dover, Delaware, United States of America
| | - Eric B Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Department of Medical Laboratory Science, College of Health Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
41
|
Wicker T, Yu Y, Haberer G, Mayer KFX, Marri PR, Rounsley S, Chen M, Zuccolo A, Panaud O, Wing RA, Roffler S. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nat Commun 2016; 7:12790. [PMID: 27599761 PMCID: PMC5023962 DOI: 10.1038/ncomms12790] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/02/2016] [Indexed: 12/16/2022] Open
Abstract
DNA (class 2) transposons are mobile genetic elements which move within their ‘host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind. DNA transposons are numerous in plant genomes. Here, Wicker et al. analyse transposon polymorphisms in rice and other grasses and show that sequences flanking excision sites contain up to 10 times more mutations than average, suggesting transposons are a major factor shaping the evolution of grass genomes.
Collapse
Affiliation(s)
- Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Yeisoo Yu
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Georg Haberer
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | | | | | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101 China
| | - Andrea Zuccolo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR5096 UPVD/CNRS, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA.,International Rice Research Institute, Los Baños, 4031 Laguna, Philippines.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Stefan Roffler
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
42
|
Bhargava R, Onyango DO, Stark JM. Regulation of Single-Strand Annealing and its Role in Genome Maintenance. Trends Genet 2016; 32:566-575. [PMID: 27450436 DOI: 10.1016/j.tig.2016.06.007] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 01/19/2023]
Abstract
Single-strand annealing (SSA) is a DNA double-strand break (DSB) repair pathway that uses homologous repeats to bridge DSB ends. SSA involving repeats that flank a single DSB causes a deletion rearrangement between the repeats, and hence is relatively mutagenic. Nevertheless, this pathway is conserved, in that SSA events have been found in several organisms. In this review, we describe the mechanism of SSA and its regulation, including the cellular conditions that may favor SSA versus other DSB repair events. We will also evaluate the potential contribution of SSA to cancer-associated genome rearrangements, and to DSB-induced gene targeting.
Collapse
Affiliation(s)
- Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - David O Onyango
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| |
Collapse
|
43
|
Finnigan GC, Thorner J. mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence. G3 (BETHESDA, MD.) 2016; 6:2147-56. [PMID: 27185399 PMCID: PMC4938667 DOI: 10.1534/g3.116.029801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
Genome editing exploiting CRISPR/Cas9 has been adopted widely in academia and in the biotechnology industry to manipulate DNA sequences in diverse organisms. Molecular engineering of Cas9 itself and its guide RNA, and the strategies for using them, have increased efficiency, optimized specificity, reduced inappropriate off-target effects, and introduced modifications for performing other functions (transcriptional regulation, high-resolution imaging, protein recruitment, and high-throughput screening). Moreover, Cas9 has the ability to multiplex, i.e., to act at different genomic targets within the same nucleus. Currently, however, introducing concurrent changes at multiple loci involves: (i) identification of appropriate genomic sites, especially the availability of suitable PAM sequences; (ii) the design, construction, and expression of multiple sgRNA directed against those sites; (iii) potential difficulties in altering essential genes; and (iv) lingering concerns about "off-target" effects. We have devised a new approach that circumvents these drawbacks, as we demonstrate here using the yeast Saccharomyces cerevisiae First, any gene(s) of interest are flanked upstream and downstream with a single unique target sequence that does not normally exist in the genome. Thereafter, expression of one sgRNA and cotransformation with appropriate PCR fragments permits concomitant Cas9-mediated alteration of multiple genes (both essential and nonessential). The system we developed also allows for maintenance of the integrated, inducible Cas9-expression cassette or its simultaneous scarless excision. Our scheme-dubbed mCAL for " M: ultiplexing of C: as9 at A: rtificial L: oci"-can be applied to any organism in which the CRISPR/Cas9 methodology is currently being utilized. In principle, it can be applied to install synthetic sequences into the genome, to generate genomic libraries, and to program strains or cell lines so that they can be conveniently (and repeatedly) manipulated at multiple loci with extremely high efficiency.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| |
Collapse
|
44
|
Paix A, Schmidt H, Seydoux G. Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs. Nucleic Acids Res 2016; 44:e128. [PMID: 27257074 PMCID: PMC5009740 DOI: 10.1093/nar/gkw502] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/23/2016] [Indexed: 01/04/2023] Open
Abstract
Recombineering, the use of endogenous homologous recombination systems to recombine DNA in vivo, is a commonly used technique for genome editing in microbes. Recombineering has not yet been developed for animals, where non-homology-based mechanisms have been thought to dominate DNA repair. Here, we demonstrate, using Caenorhabditis elegans, that linear DNAs with short homologies (∼35 bases) engage in a highly efficient gene conversion mechanism. Linear DNA repair templates with homology to only one side of a double-strand break (DSB) initiate repair efficiently, and short overlaps between templates support template switching. We demonstrate the use of single-stranded, bridging oligonucleotides (ssODNs) to target PCR fragments for repair of DSBs induced by CRISPR/Cas9 on chromosomes. Based on these findings, we develop recombineering strategies for precise genome editing that expand the utility of ssODNs and eliminate in vitro cloning steps for template construction. We apply these methods to the generation of GFP knock-in alleles and gene replacements without co-integrated markers. We conclude that, like microbes, metazoans possess robust homology-dependent repair mechanisms that can be harnessed for recombineering and genome editing.
Collapse
Affiliation(s)
- Alexandre Paix
- Dept of Molecular Biology and Genetics, HHMI, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore MD 21205, USA
| | - Helen Schmidt
- Dept of Molecular Biology and Genetics, HHMI, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore MD 21205, USA
| | - Geraldine Seydoux
- Dept of Molecular Biology and Genetics, HHMI, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore MD 21205, USA
| |
Collapse
|
45
|
Jasin M, Haber JE. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst) 2016; 44:6-16. [PMID: 27261202 DOI: 10.1016/j.dnarep.2016.05.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution.
Collapse
Affiliation(s)
- Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 02454-9110, USA.
| |
Collapse
|
46
|
Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, Perrouault L, Tesson L, Edouard J, Thinard R, Cherifi Y, Menoret S, Fontanière S, de Crozé N, Fraichard A, Sohm F, Anegon I, Concordet JP, Giovannangeli C. Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases. Cell Rep 2016; 14:2263-2272. [PMID: 26923600 DOI: 10.1016/j.celrep.2016.02.018] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/16/2015] [Accepted: 01/28/2016] [Indexed: 01/08/2023] Open
Abstract
Genome editing has now been reported in many systems using TALEN and CRISPR-Cas9 nucleases. Precise mutations can be introduced during homology-directed repair with donor DNA carrying the wanted sequence edit, but efficiency is usually lower than for gene knockout and optimal strategies have not been extensively investigated. Here, we show that using phosphorothioate-modified oligonucleotides strongly enhances genome editing efficiency of single-stranded oligonucleotide donors in cultured cells. In addition, it provides better design flexibility, allowing insertions more than 100 bp long. Despite previous reports of phosphorothioate-modified oligonucleotide toxicity, clones of edited cells are readily isolated and targeted sequence insertions are achieved in rats and mice with very high frequency, allowing for homozygous loxP site insertion at the mouse ROSA locus in particular. Finally, when detected, imprecise knockin events exhibit indels that are asymmetrically positioned, consistent with genome editing taking place by two steps of single-strand annealing.
Collapse
Affiliation(s)
- Jean-Baptiste Renaud
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Charlotte Boix
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Marine Charpentier
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Anne De Cian
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Julien Cochennec
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | | | - Loïc Perrouault
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Laurent Tesson
- INSERM U1064, CHU de Nantes, Nantes 44093, France; Platform Rat Transgenesis Immunophenomic, CNRS UMS3556, Nantes 44093, France
| | - Joanne Edouard
- Amagen, CNRS UMS 3504, INRA UMS 1374, Institut de Neurobiologie A. Fessard, Gif-sur-Yvette 91198, France
| | - Reynald Thinard
- INSERM U1064, CHU de Nantes, Nantes 44093, France; Platform Rat Transgenesis Immunophenomic, CNRS UMS3556, Nantes 44093, France
| | | | - Séverine Menoret
- INSERM U1064, CHU de Nantes, Nantes 44093, France; Platform Rat Transgenesis Immunophenomic, CNRS UMS3556, Nantes 44093, France
| | | | - Noémie de Crozé
- Amagen, CNRS UMS 3504, INRA UMS 1374, Institut de Neurobiologie A. Fessard, Gif-sur-Yvette 91198, France
| | | | - Frédéric Sohm
- Amagen, CNRS UMS 3504, INRA UMS 1374, Institut de Neurobiologie A. Fessard, Gif-sur-Yvette 91198, France
| | - Ignacio Anegon
- INSERM U1064, CHU de Nantes, Nantes 44093, France; Platform Rat Transgenesis Immunophenomic, CNRS UMS3556, Nantes 44093, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France.
| | - Carine Giovannangeli
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France.
| |
Collapse
|
47
|
Rivera-Torres N, Kmiec EB. Genetic spell-checking: gene editing using single-stranded DNA oligonucleotides. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:463-70. [PMID: 26402400 PMCID: PMC11388886 DOI: 10.1111/pbi.12473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
Single-stranded oligonucleotides (ssODNs) can be used to direct the exchange of a single nucleotide or the repair of a single base within the coding region of a gene in a process that is known, generically, as gene editing. These molecules are composed of either all DNA residues or a mixture of RNA and DNA bases and utilize inherent metabolic functions to execute the genetic alteration within the context of a chromosome. The mechanism of action of gene editing is now being elucidated as well as an understanding of its regulatory circuitry, work that has been particularly important in establishing a foundation for designing effective gene editing strategies in plants. Double-strand DNA breakage and the activation of the DNA damage response pathway play key roles in determining the frequency with which gene editing activity takes place. Cellular regulators respond to such damage and their action impacts the success or failure of a particular nucleotide exchange reaction. A consequence of such activation is the natural slowing of replication fork progression, which naturally creates a more open chromatin configuration, thereby increasing access of the oligonucleotide to the DNA template. Herein, how critical reaction parameters influence the effectiveness of gene editing is discussed. Functional interrelationships between DNA damage, the activation of DNA response pathways and the stalling of replication forks are presented in detail as potential targets for increasing the frequency of gene editing by ssODNs in plants and plant cells.
Collapse
Affiliation(s)
- Natalia Rivera-Torres
- Gene Editing Institute, Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Eric B Kmiec
- Gene Editing Institute, Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| |
Collapse
|
48
|
Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 2016; 7:10431. [PMID: 26786405 PMCID: PMC4736110 DOI: 10.1038/ncomms10431] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023] Open
Abstract
The CRISPR-Cas system is a powerful tool for generating genetically modified animals; however, targeted knock-in (KI) via homologous recombination remains difficult in zygotes. Here we show efficient gene KI in rats by combining CRISPR-Cas with single-stranded oligodeoxynucleotides (ssODNs). First, a 1-kb ssODN co-injected with guide RNA (gRNA) and Cas9 messenger RNA produce GFP-KI at the rat Thy1 locus. Then, two gRNAs with two 80-bp ssODNs direct efficient integration of a 5.5-kb CAG-GFP vector into the Rosa26 locus via ssODN-mediated end joining. This protocol also achieves KI of a 200-kb BAC containing the human SIRPA locus, concomitantly knocking out the rat Sirpa gene. Finally, three gRNAs and two ssODNs replace 58-kb of the rat Cyp2d cluster with a 6.2-kb human CYP2D6 gene. These ssODN-mediated KI protocols can be applied to any target site with any donor vector without the need to construct homology arms, thus simplifying genome engineering in living organisms. CRISPR-Cas9 is a powerful genome engineering tool but gene knock-in is limited by fragment size and efficiency of recombination. Here the authors used a modified strategy employing single-strand oligonucleotides to efficiently knock-in large DNA fragments and humanise native rat loci.
Collapse
Affiliation(s)
- Kazuto Yoshimi
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Mouse Genomics Resource Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Yayoi Kunihiro
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | - Birger Voigt
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 2016; 34:339-44. [PMID: 26789497 DOI: 10.1038/nbt.3481] [Citation(s) in RCA: 785] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/13/2016] [Indexed: 12/31/2022]
Abstract
Targeted genomic manipulation by Cas9 can efficiently generate knockout cells and organisms via error-prone nonhomologous end joining (NHEJ), but the efficiency of precise sequence replacement by homology-directed repair (HDR) is substantially lower. Here we investigate the interaction of Cas9 with target DNA and use our findings to improve HDR efficiency. We show that dissociation of Cas9 from double-stranded DNA (dsDNA) substrates is slow (lifetime ∼6 h) but that, before complete dissociation, Cas9 asymmetrically releases the 3' end of the cleaved DNA strand that is not complementary to the sgRNA (nontarget strand). By rationally designing single-stranded DNA (ssDNA) donors of the optimal length complementary to the strand that is released first, we increase the rate of HDR in human cells when using Cas9 or nickase variants to up to 60%. We also demonstrate HDR rates of up to 0.7% using a catalytically inactive Cas9 mutant (dCas9), which binds DNA without cleaving it.
Collapse
Affiliation(s)
- Christopher D Richardson
- Innovative Genomics Initiative, University of California, Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Graham J Ray
- Innovative Genomics Initiative, University of California, Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Mark A DeWitt
- Innovative Genomics Initiative, University of California, Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Gemma L Curie
- Innovative Genomics Initiative, University of California, Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jacob E Corn
- Innovative Genomics Initiative, University of California, Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
50
|
Genome Editing by Aptamer-Guided Gene Targeting (AGT). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|