1
|
Deng Q, Yao X, Fang S, Sun Y, Liu L, Li C, Li G, Guo Y, Liu J. Mast cell-mediated microRNA functioning in immune regulation and disease pathophysiology. Clin Exp Med 2025; 25:38. [PMID: 39812911 PMCID: PMC11735496 DOI: 10.1007/s10238-024-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation. In addition to their role in allergic inflammation, MCs are components of the tumor microenvironment (TME). MicroRNAs (miRNAs) are small RNA molecules that do not encode proteins, but regulate post-transcriptional gene expression by binding to the 3' non-coding regions of mRNAs. This plays a crucial role in the function of MC, including the key processes of MC proliferation, maturation, apoptosis, and activation. It has been demonstrated that miRNAs are also present in extracellular vesicles (EVs) secreted by MCs. EVs derived from MCs mediate intercellular communication by carrying miRNAs, affecting various diseases including allergic diseases, intestinal disorders, neuroinflammation, and tumors. These findings provide important insights into the therapeutic mechanisms and targets of miRNAs in MCs that affect diseases. This review discusses the relevance of miRNA production by MCs in regulating their own activity and the effect of miRNAs putatively produced by other cells in the control of MC activity and their participation in selected pathologies.
Collapse
Affiliation(s)
- Qiuping Deng
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Xiuju Yao
- Department of Clinical Laboratory, 363 Hospital, Chengdu, 610016, Sichuan, China
| | - Siyun Fang
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Yueshan Sun
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Lei Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Chao Li
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Guangquan Li
- Department of Clinical Laboratory, 363 Hospital, Chengdu, 610016, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
| | - Jinbo Liu
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Han J, Huang J, Hu J, Shi W, Wang H, Zhang W, Wang J, Shao H, Shen H, Bo H, Tao C, Wu F. miR-744-5p promotes T-cell differentiation via inhibiting STK11. Gene 2024; 926:148635. [PMID: 38830518 DOI: 10.1016/j.gene.2024.148635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
T cells utilized in adoptive T cell immunotherapy are typically activated in vitro. Although these cells demonstrate proliferation and anti-tumor activity following activation, they often face difficulties in sustaining long-term survival post-reinfusion. This issue is attributed to the induction of T cells into a terminal differentiation state upon activation, whereas early-stage differentiated T cells exhibit enhanced proliferation potential and survival capabilities. In previous study, we delineated four T cell subsets at varying stages of differentiation: TN, TSCM, TCM, and TEM, and acquired their miRNA expression profiles via high-throughput sequencing. In the current study, we performed a differential analysis of miRNA across these subsets, identifying a distinct miRNA, hsa-miR-744-5p, characterized by progressively increasing expression levels upon T cell activation. This miRNA is not expressed in TSCM but is notably present in TEM. Target genes of miR-744-5p were predicted, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, revealing that these genes predominantly associate with pathways related to the 'Wnt signaling pathway'. We established that miR-744-5p directly targets STK11, influencing its expression. Further, we investigated the implications of miR-744-5p on T cell differentiation and functionality. Overexpression of miR-744-5p in T cells resulted in heightened apoptosis, reduced proliferation, an increased proportion of late-stage differentiated T cells, and elevated secretion of the cytokine TNF-α. Moreover, post-overexpression of miR-744-5p led to a marked decline in the expression of early-stage differentiation-associated genes in T cells (CCR7, CD62L, LEF1, BCL2) and a significant rise in late-stage differentiation-associated genes (KLRG1, PDCD1, GZMB). In conclusion, our findings affirm that miR-744-5p contributes to the progressive differentiation of T cells by downregulating the STK11 gene expression.
Collapse
Affiliation(s)
- Jiayi Han
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianqing Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jieming Hu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenkai Shi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongqiong Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaben Bo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fenglin Wu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
3
|
Taruselli MT, Qayum AA, Abebayehu D, Caslin HL, Dailey JM, Kotha A, Burchett JR, Kee SA, Maldonado TD, Ren B, Chao W, Zou L, Haque TT, Straus D, Ryan JJ. IL-33 Induces Cellular and Exosomal miR-146a Expression as a Feedback Inhibitor of Mast Cell Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1277-1286. [PMID: 38381001 PMCID: PMC10984763 DOI: 10.4049/jimmunol.2200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
IL-33 is an inflammatory cytokine that promotes allergic disease by activating group 2 innate lymphoid cells, Th2 cells, and mast cells. IL-33 is increased in asthmatics, and its blockade suppresses asthma-like inflammation in mouse models. Homeostatic control of IL-33 signaling is poorly understood. Because the IL-33 receptor, ST2, acts via cascades used by the TLR family, similar feedback mechanisms may exist. MicroRNA (miR)-146a is induced by LPS-mediated TLR4 signaling and serves as a feedback inhibitor. Therefore, we explored whether miR-146a has a role in IL-33 signaling. IL-33 induced cellular and exosomal miR-146a expression in mouse bone marrow-derived mast cells (BMMCs). BMMCs transfected with a miR-146a antagonist or derived from miR-146a knockout mice showed enhanced cytokine expression in response to IL-33, suggesting that miR-146a is a negative regulator of IL-33-ST2 signaling. In vivo, miR-146a expression in plasma exosomes was elevated after i.p. injection of IL-33 in wild-type but not mast cell-deficient KitW-sh/W-sh mice. Finally, KitW-sh/W-sh mice acutely reconstituted with miR-146a knockout BMMCs prior to IL-33 challenge had elevated plasma IL-6 levels compared with littermates receiving wild-type BMMCs. These results support the hypothesis that miR-146a is a feedback regulator of IL-33-mediated mast cell functions associated with allergic disease.
Collapse
Affiliation(s)
| | - Amina Abdul Qayum
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Heather L. Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Jordan M. Dailey
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Aditya Kotha
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Jason R. Burchett
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Sydney A. Kee
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Tania D. Maldonado
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Boyang Ren
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Wei Chao
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Lin Zou
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Tamara T. Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - David Straus
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| |
Collapse
|
4
|
Han L, Chen S, Luan Z, Fan M, Wang Y, Sun G, Dai G. Immune function of colon cancer associated miRNA and target genes. Front Immunol 2023; 14:1203070. [PMID: 37465677 PMCID: PMC10351377 DOI: 10.3389/fimmu.2023.1203070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction Colon cancer is a complex disease that involves intricate interactions between cancer cells and theimmune microenvironment. MicroRNAs (miRNAs) have recently emerged as critical regulators of gene expression in cancer, including colon cancer. There is increasing evidence suggesting that miRNA dysregulation plays a crucial role in modulating the immune microenvironment of intestinal cancer. In particular, miRNAs regulate immune cell activation, differentiation, and function, as well as cytokine and chemokine production in intestinal cancer. It is urgent to fully investigate the potential role of intestinal cancer-related miRNAs in shaping the immune microenvironment. Methods Therefore, this paper aims to identify miRNAs that are potentially associated with colon cancer and regulate a large number of genes related to immune function. We explored the role of these genes in colon cancer patient prognosis, immune infiltration, and tumor purity based on data of 174 colon cancer patients though convolutional neural network, survival analysis and multiple analysis tools. Results Our findings suggest that miRNA regulated genes play important roles in CD4 memory resting cells, macrophages.M2, and Mast cell activated cells, and they are concentrated in the cytokinecytokine receptor interaction pathway. Discussion Our study enhances our understanding of the underlying mechanisms of intestinal cancer and provides new insights into the development of effective therapies. Additionally, identification of miRNA biomarkers could aid in diagnosis and prognosis, as well as guide personalized treatment strategies for patients with intestinal cancer.
Collapse
Affiliation(s)
- Lu Han
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Shiyun Chen
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhe Luan
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mengjiao Fan
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yanrong Wang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Gang Sun
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guanghai Dai
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Fujimura Y, Kumazoe M, Tachibana H. 67-kDa Laminin Receptor-Mediated Cellular Sensing System of Green Tea Polyphenol EGCG and Functional Food Pairing. Molecules 2022; 27:molecules27165130. [PMID: 36014370 PMCID: PMC9416087 DOI: 10.3390/molecules27165130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The body is equipped with a “food factor-sensing system” that senses food factors, such as polyphenols, sulfur-containing compounds, and vitamins, taken into the body, and plays an essential role in manifesting their physiological effects. For example, (–)-epigallocatechin-3-O-gallate (EGCG), the representative catechin in green tea (Camellia sinensi L.), exerts various effects, including anti-cancer, anti-inflammatory, and anti-allergic effects, when sensed by the cell surficial protein 67-kDa laminin receptor (67LR). Here, we focus on three representative effects of EGCG and provide their specific signaling mechanisms, the 67LR-mediated EGCG-sensing systems. Various components present in foods, such as eriodictyol, hesperetin, sulfide, vitamin A, and fatty acids, have been found to act on the food factor-sensing system and affect the functionality of other foods/food factors, such as green tea extract, EGCG, or its O-methylated derivative at different experimental levels, i.e., in vitro, animal models, and/or clinical trials. These phenomena are observed by increasing or decreasing the activity or expression of EGCG-sensing-related molecules. Such functional interaction between food factors is called “functional food pairing”. In this review, we introduce examples of functional food pairings using EGCG.
Collapse
|
6
|
Benazzo A, Bozzini S, Auner S, Berezhinskiy HO, Watzenboeck ML, Schwarz S, Schweiger T, Klepetko W, Wekerle T, Hoetzenecker K, Meloni F, Jaksch P. Differential expression of circulating miRNAs after alemtuzumab induction therapy in lung transplantation. Sci Rep 2022; 12:7072. [PMID: 35490174 PMCID: PMC9056512 DOI: 10.1038/s41598-022-10866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Alemtuzumab is a monoclonal antibody targeting CD52, used as induction therapy after lung transplantation (LTx). Its engagement produces a long-lasting immunodepletion; however, the mechanisms driving cell reconstitution are poorly defined. We hypothesized that miRNAs are involved in this process. The expression of a set of miRNAs, cytokines and co-signaling molecules was measured with RT-qPCR and flow cytometry in prospectively collected serum samples of LTx recipients, after alemtuzumab or no induction therapy. Twenty-six LTx recipients who received alemtuzumab and twenty-seven matched LTx recipients without induction therapy were included in the analysis. One year after transplantation four miRNAs were differentially regulated: miR-23b (p = 0.05) miR-146 (p = 0.04), miR-155 (p < 0.001) and miR-486 (p < 0.001). Expression of 3 miRNAs changed within the alemtuzumab group: miR-146 (p < 0.001), miR-155 (p < 0.001) and miR-31 (p < 0.001). Levels of IL-13, IL-4, IFN-γ, BAFF, IL-5, IL-9, IL-17F, IL-17A and IL-22 were different one year after transplantation compared to baseline. In no-induction group, concentration of sCD27, sB7.2 and sPD-L1 increased overtime. Expression of miR-23b, miR-146, miR-486, miR-155 and miR-31 was different in LTx recipients who received alemtuzumab compared to recipients without induction therapy. The observed cytokine pattern suggested proliferation of specific B cell subsets in alemtuzumab group and co-stimulation of T-cells in no-induction group.
Collapse
Affiliation(s)
- A Benazzo
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.
- Department of Thoracic Surgery, Lung Transplantation Research Lab, Medical University of Vienna, Vienna, Austria.
- Division of Thoracic Surgery, Medical University of Vienna, Währinger Guertel 18-20, 1090, Vienna, Austria.
| | - S Bozzini
- Department of Internal Medicine, Unit of Respiratory Diseases, Laboratory of Cell Biology and Immunology, University of Pavia and IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - S Auner
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Lung Transplantation Research Lab, Medical University of Vienna, Vienna, Austria
| | - H Oya Berezhinskiy
- Department of Thoracic Surgery, Lung Transplantation Research Lab, Medical University of Vienna, Vienna, Austria
| | - M L Watzenboeck
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - S Schwarz
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - T Schweiger
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - W Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - T Wekerle
- Section of Transplantation Immunology, Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - K Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - F Meloni
- Department of Internal Medicine, Unit of Respiratory Diseases, Laboratory of Cell Biology and Immunology, University of Pavia and IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - P Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Kim YE, Choi SW, Kim MK, Nguyen TL, Kim J. Therapeutic Hydrogel Patch to Treat Atopic Dermatitis by Regulating Oxidative Stress. NANO LETTERS 2022; 22:2038-2047. [PMID: 35226507 DOI: 10.1021/acs.nanolett.1c04899] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease associated with unbalanced immune responses in skin tissue. Although steroid drugs and antihistamines are generally used to treat AD, continuous administration causes multiple side effects. High oxidative stress derived from reactive oxygen species (ROS) has been implicated in the pathogenesis of AD. A high level of ROS promotes the release of pro-inflammatory cytokines and T-cell differentiation, resulting in the onset and deterioration of AD. Here, we report a therapeutic hydrogel patch suppressing the high oxidative stress generated in AD lesions. The hydrogel embedded with ROS-scavenging ceria nanoparticles leads to the decrease of both extracellular and intracellular ROS and exhibits cytoprotective effects in a highly oxidative condition. AD-induced mouse model studies show enhanced therapeutic outcomes, including a decrease in the epidermal thickness and levels of AD-associated immunological biomarkers. These findings indicate that a ROS-scavenging hydrogel could be a promising therapeutic hydrogel patch for treating and managing AD.
Collapse
Affiliation(s)
- Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seung Woo Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea
| | - Min Kyung Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Casali P, Li S, Morales G, Daw CC, Chupp DP, Fisher AD, Zan H. Epigenetic Modulation of Class-Switch DNA Recombination to IgA by miR-146a Through Downregulation of Smad2, Smad3 and Smad4. Front Immunol 2021; 12:761450. [PMID: 34868004 PMCID: PMC8635144 DOI: 10.3389/fimmu.2021.761450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
IgA is the predominant antibody isotype at intestinal mucosae, where it plays a critical role in homeostasis and provides a first line of immune protection. Dysregulation of IgA production, however, can contribute to immunopathology, particularly in kidneys in which IgA deposition can cause nephropathy. Class-switch DNA recombination (CSR) to IgA is directed by TGF-β signaling, which activates Smad2 and Smad3. Activated Smad2/Smad3 dimers are recruited together with Smad4 to the IgH α locus Iα promoter to activate germline Iα-Cα transcription, the first step in the unfolding of CSR to IgA. Epigenetic factors, such as non-coding RNAs, particularly microRNAs, have been shown to regulate T cells, dendritic cells and other immune elements, as well as modulate the antibody response, including CSR, in a B cell-intrinsic fashion. Here we showed that the most abundant miRNA in resting B cells, miR-146a targets Smad2, Smad3 and Smad4 mRNA 3'UTRs and keeps CSR to IgA in check in resting B cells. Indeed, enforced miR-146a expression in B cells aborted induction of IgA CSR by decreasing Smad levels. By contrast, upon induction of CSR to IgA, as directed by TGF-β, B cells downregulated miR-146a, thereby reversing the silencing of Smad2, Smad3 and Smad4, which, once expressed, led to recruitment of Smad2, Smad3 and Smad4 to the Iα promoter for activation of germline Iα-Cα transcription. Deletion of miR-146a in miR-146a-/- mice significantly increased circulating levels of steady state total IgA, but not IgM, IgG or IgE, and heightened the specific IgA antibody response to OVA. In miR-146a-/- mice, the elevated systemic IgA levels were associated with increased IgA+ B cells in intestinal mucosae, increased amounts of fecal free and bacteria-bound IgA as well as kidney IgA deposition, a hallmark of IgA nephropathy. Increased germline Iα-Cα transcription and CSR to IgA in miR-146a-/- B cells in vitro proved that miR-146a-induced Smad2, Smad3 and Smad4 repression is B cell intrinsic. The B cell-intrinsic role of miR-146a in the modulation of CSR to IgA was formally confirmed in vivo by construction and OVA immunization of mixed bone marrow μMT/miR-146a-/- chimeric mice. Thus, by inhibiting Smad2, Smad3 and Smad4 expression, miR-146a plays an important and B cell intrinsic role in modulation of CSR to IgA and the IgA antibody response.
Collapse
Affiliation(s)
- Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, United States
| | | | | | | | | | | | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, United States
| |
Collapse
|
9
|
Yang X, Toyofuku WM, Scott MD. Differential Leukocyte MicroRNA Responses Following Pan T Cell, Allorecognition and Allosecretome-Based Therapeutic Activation. Arch Immunol Ther Exp (Warsz) 2021; 69:30. [PMID: 34677693 PMCID: PMC8536625 DOI: 10.1007/s00005-021-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
Effective immunomodulation of T-cell responses is critical in treating both autoimmune diseases and cancer. Our previous studies have demonstrated that secretomes derived from control or methoxypolyethylene glycol mixed lymphocyte alloactivation assays exerted potent immunomodulatory activity that was mediated by microRNAs (miRNA). The immunomodulatory effects of biomanufactured miRNA-based allo-secretome therapeutics (SYN, TA1, IA1 and IA2) were compared to Pan T-cell activators (PHA and anti-CD3/CD28) and lymphocyte alloactivation. The differential effects of these activation strategies on resting peripheral blood mononuclear cells (PBMC) were assessed via T-cell proliferation, subset analysis and miRNA expression profiles. Mitogen-induced PBMC proliferation (> 85%) significantly exceeded that arising from either allostimulation (~ 30%) or the pro-inflammatory IA1 secretome product (~ 12%). Consequent to stimulation, the ratio of CD4 to CD8 cells of the resting PBMC (CD4:CD8; 1.7 ± 0.1) decreased in the Pan T cell, allrecognition and IA1 activated cells (averages of 1.1 ± 0.2; 1.2 ± 0.1 and 1.0 ± 0.1). These changes arose consequent to the expansion of both CD4+CD8+ and CD4–CD8– populations as well as the shrinkage of the CD4 subset and the expansion of the CD8 T cells. Importantly, these activation strategies induced vastly different miRNA expression profiles which were associated with significant differences in cellular differentiation and biological function. These findings support the concept that the “differential patterns of miRNA expression” regulate the biologic immune response in a “lock and key” manner. The biomanufacturing of miRNA-enriched secretome biotherapeutics may be a successful therapeutic approach for the systemic treatment of autoimmune diseases (TA1) and cancer (IA1).
Collapse
Affiliation(s)
- Xining Yang
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Wendy M Toyofuku
- University of British Columbia Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada.,Canadian Blood Services and the Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mark D Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,University of British Columbia Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada. .,Canadian Blood Services and the Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
10
|
Zhang Y, Ding N, Xie S, Ding Y, Huang M, Ding X, Jiang L. Identification of important extracellular vesicle RNA molecules related to sperm motility and prostate cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:104-126. [PMID: 39697534 PMCID: PMC11648515 DOI: 10.20517/evcna.2021.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2024]
Abstract
Aim Many male diseases are associated with sperm quality, such as prostate cancer (PCa), oligospermia, and asthenospermia. Seminal plasma extracellular vesicles (SPEVs) play important roles in sperm function. In this study, we explored the specific RNA molecules in SPEVs that play an important role in sperm motility and found promising biomarkers of PCa in SPEVs. Methods Pigs have become an ideal model for human biomedical research. In this study, the whole transcriptome profiles of SPEVs of boars with high or low sperm motility were studied for the first time. Important long non-coding RNAs, microRNAs, and genes were identified through differentially expressed analysis and weighted correlation network analysis (WGCNA). In addition, we established a diagnosis model of PCa by differentially expressed miRNAs homologous with human. Results In total, 27 differentially expressed miRNAs, 106 differentially expressed lncRNAs, and 503 differentially expressed genes were detected between the groups. The results of WGCNA show one module was significantly associated with sperm motility (r = 0.98, FDR = 2 × 10-6). The value of highly homologous miRNAs for the diagnosis of PCa was assessed and the combination of hsa-miR-27a-3p, hsa-miR-27b-3p, hsa-miR-155-5p, and hsa-miR-378a-3p exhibited the highest sensitivity (AUC = 0.914). Interestingly, mRNA expression of SPEVs was mainly enriched in resting memory CD4 T cells and monocytes, and 33 cell marker genes of monocytes overlapped with the differentially expressed genes. Conclusion These data demonstrate that SPEVs of individuals with high and low sperm motility exhibit distinct transcriptional profiles, which provide valuable information for further research on diagnosis and molecular mechanism of diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Jiang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Kundu D, Kennedy L, Meadows V, Baiocchi L, Alpini G, Francis H. The Dynamic Interplay Between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expr 2020; 20:77-88. [PMID: 32727636 PMCID: PMC7650013 DOI: 10.3727/105221620x15960509906371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mast cells are key players in acute immune responses that are evidenced by degranulation leading to a heightened allergic response. Activation of mast cells can trigger a number of different pathways contributing to metabolic conditions and disease progression. Aging results in irreversible physiological changes affecting all organs, including the liver. The liver undergoes senescence, changes in protein expression, and cell signaling phenotypes during aging, which regulate disease progression. Cellular senescence contributes to the age-related changes. Unsurprisingly, mast cells also undergo age-related changes in number, localization, and activation throughout their lifetime, which adversely affects the etiology and progression of many physiological conditions including liver diseases. In this review, we discuss the role of mast cells during aging, including features of aging (e.g., senescence) in the context of biliary diseases such as primary biliary cholangitis and primary sclerosing cholangitis and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Debjyoti Kundu
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lindsey Kennedy
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leonardo Baiocchi
- †Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Alpini
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ‡Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ‡Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
12
|
Sanada T, Sano T, Sotomaru Y, Alshargabi R, Yamawaki Y, Yamashita A, Matsunaga H, Iwashita M, Shinjo T, Kanematsu T, Asano T, Nishimura F. Anti-inflammatory effects of miRNA-146a induced in adipose and periodontal tissues. Biochem Biophys Rep 2020; 22:100757. [PMID: 32346618 PMCID: PMC7178317 DOI: 10.1016/j.bbrep.2020.100757] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA) plays an important role in diverse cellular biological processes such as inflammatory response, differentiation and proliferation, and carcinogenesis. miR-146a has been suggested as a negative regulator of the inflammatory reaction. Although, it has been reported as expressed in inflamed adipose and periodontal tissues, however, miR-146a's inhibitory effects against inflammatory response in both the tissues, are not well understood. Therefore, in this study, the inhibitory effects of miR-146a on both adipose and periodontal inflammation, was investigated. In vitro study has revealed that miR-146a transfection into either adipocytes or gingival fibroblasts, has resulted in a reduced cytokine gene expression, observed on co-culturing the cells with macrophages in the presence of lipopolysaccharides (LPS), in comparison to the control miRNA transfected. Similarly, miR-146a transfection into macrophages resulted in a reduced expression of TNF-α gene and protein in response to LPS stimulation. In vivo study revealed that a continuous intravenous miR-146a administration into mice via tail vein, protected the mice from developing high-fat diet-induced obesity and the inflammatory cytokine gene expression was down-regulated in both adipose and periodontal tissues. miR-146a appeared to be induced by macrophage-derived inflammatory signals such as TNF-α by negative feed-back mechanism, and it suppressed inflammatory reaction in both adipose and periodontal tissues. Therefore, miR-146a could be suggested as a potential therapeutic molecule and as a common inflammatory regulator for both obesity-induced diabetes and related periodontal diseases. miR-146a induced by adipose and periodontal inflammation via macrophage mediators. miR-146a is a negative inflammation regulator in adipose and periodontal tissues. miR-146a is a potential therapeutic target against obesity and periodontal diseases.
Collapse
Affiliation(s)
- Taiki Sanada
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tomomi Sano
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Rehab Alshargabi
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Yosuke Yamawaki
- Department of Advanced Pharmacology, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Akiko Yamashita
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Hiroaki Matsunaga
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Misaki Iwashita
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Takanori Shinjo
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Takashi Kanematsu
- Laboratory of Cell Biology and Pharmacology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tomoichiro Asano
- Department of Biological Chemistry, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Fusanori Nishimura
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| |
Collapse
|
13
|
Abstract
Mast cells are innate immune cells that intersect with the adaptive immunity and play a crucial role in the initiation of allergic reactions and the host defense against certain parasites and venoms. When activated in an allergen- and immunoglobulin E (IgE)-dependent manner, these cells secrete a large variety of allergenic mediators that are pre-stored in secretory granules or
de novo–synthesized. Traditionally, studies have predominantly focused on understanding this mechanism of mast cell activation and regulation. Along this line of study, recent studies have shed light on what structural features are required for allergens and how IgE, particularly anaphylactic IgE, is produced. However, the last few years have seen a flurry of new studies on IgE-independent mast cell activation, particularly via Mrgprb2 (mouse) and MRGPRX2 (human). These studies have greatly advanced our understanding of how mast cells exert non-histaminergic itch, pain, and drug-induced pseudoallergy by interacting with sensory neurons. Recent studies have also characterized mast cell activation and regulation by interleukin-33 (IL-33) and other cytokines and by non-coding RNAs. These newly identified mechanisms for mast cell activation and regulation will further stimulate the allergy/immunology community to develop novel therapeutic strategies for treatment of allergic and non-allergic diseases.
Collapse
Affiliation(s)
- Hwan Soo Kim
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA.,Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yu Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Kazumi Kasakura
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA.,Department of Dermatlogy, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| |
Collapse
|
14
|
Mossallam GI, Fattah RA, Mahmoud HK. Nuclear factor-κB1 and MicroRNA-146a polymorphisms and risk of acute graft versus host disease post allogeneic stem cell transplantation. Immunobiology 2019; 225:151876. [PMID: 31813598 DOI: 10.1016/j.imbio.2019.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe inflammatory complication of haematopoeitic stem cell transplantation. The nuclear factor- Kappa Beta (NF-κB) signaling pathway regulates T cell activation. The NF-κB controls the expression of microRNA-146a (miR-146a) that in turn regulates NF-κB activation through a negative feedback loop. We aim to analyze the association between NF-κB1 encoding p50 (rs28362491, -94 in.ertion/deletion ATTG) and miR-146a (rs2910164, G > C) polymorphisms and risk of aGVHD. Genotyping was performed for 135 HLA-matched donors using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP).The incidence of aGVHD grades II-IV was 24/135 (17.8 %). NF-κB1 genotype and cytomegalovirus infection were significantly associated with risk of aGVHD II-IV (p = 0.022, HR = 3.17, 95 % CI:1.18-8.51 and p = 0.048, HR = 2.56, 95 % CI:1.01-6.52, respectively). In multivariate analysis, NF-κB1homozygous deletion/deletion genotype was the only independent risk factor associated with aGVHD II-IV (p = 0.013, HR = 3.50, 95 % CI:1.30-9.44). No significant association could be observed between miR-146a polymorphism and aGVHD. Combined NF-κB1 and miR146a genotype analysis warrants investigation in a larger cohort. Our preliminary data do not support the association between miR146a and aGVHD, but suggest an association between NF-κB1 and risk of aGVHD that may pave the way for the development of a novel targeted therapy if proved in a larger cohort.
Collapse
Affiliation(s)
- Ghada I Mossallam
- Bone Marrow Transplantation Laboratory Unit, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Raafat Abdel Fattah
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt Bone Marrow Transplantation Unit, Nasser Institute Hospital for Research and Treatment, Cairo, Egypt
| | - Hossam K Mahmoud
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt Bone Marrow Transplantation Unit, Nasser Institute Hospital for Research and Treatment, Cairo, Egypt
| |
Collapse
|
15
|
Identifying the culprits in neurological autoimmune diseases. J Transl Autoimmun 2019; 2:100015. [PMID: 32743503 PMCID: PMC7388404 DOI: 10.1016/j.jtauto.2019.100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
The target organ of neurological autoimmune diseases (NADs) is the central or peripheral nervous system. Multiple sclerosis (MS) is the most common NAD, whereas Guillain-Barré syndrome (GBS), myasthenia gravis (MG), and neuromyelitis optica (NMO) are less common NADs, but the incidence of these diseases has increased exponentially in the last few years. The identification of a specific culprit in NADs is challenging since a myriad of triggering factors interplay with each other to cause an autoimmune response. Among the factors that have been associated with NADs are genetic susceptibility, epigenetic mechanisms, and environmental factors such as infection, microbiota, vitamins, etc. This review focuses on the most studied culprits as well as the mechanisms used by these to trigger NADs. Neurological autoimmune diseases are caused by a complex interaction between genes, environmental factors, and epigenetic deregulation. Infectious agents can cause an autoimmune reaction to myelin epitopes through molecular mimicry and/or bystander activation. Gut microbiota dysbiosis contributes to neurological autoimmune diseases. Smoking increases the risk of NADs through inflammatory signaling pathways, oxidative stress, and Th17 differentiation. Deficiency in vitamin D favors NAD development through direct damage to the central and peripheral nervous system.
Collapse
|
16
|
MicroRNA Involvement in Allergic and Non-Allergic Mast Cell Activation. Int J Mol Sci 2019; 20:ijms20092145. [PMID: 31052286 PMCID: PMC6539777 DOI: 10.3390/ijms20092145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Allergic inflammation is accompanied by the coordinated expression of numerous genes and proteins that initiate, sustain, and propagate immune responses and tissue remodeling. MicroRNAs (miRNAs) are a large class of small regulatory molecules that are able to control the translation of target mRNAs and consequently regulate various biological processes at the posttranscriptional level. MiRNA profiles have been identified in multiple allergic inflammatory diseases and in the tumor microenvironment. Mast cells have been found to co-localize within the above conditions. More specifically, in addition to being essential in initiating the allergic response, mast cells play a key role in both innate and adaptive immunity as well as in modulating tumor growth. This review summarizes the possible role of various miRNAs in the above-mentioned processes wherein mast cells have been found to be involved. Understanding the role of miRNAs in mast cell activation and function may serve as an important tool in developing diagnostic as well as therapeutic approaches in mast cell-dependent pathological conditions.
Collapse
|
17
|
Just J, Munk Ipsen P, Kruhøffer M, Lykkemark S, Skjold T, Schiøtz PO, Hoffmann HJ. Human Mast Cell Sensitization with IgE Increases miRNA-210 Expression. Int Arch Allergy Immunol 2019; 179:102-107. [PMID: 30965334 DOI: 10.1159/000496513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) represent important post-transcriptional regulators with a dynamic expression profile during health and disease. OBJECTIVES We explored the miRNA profile of human mast cells (MCs) during sen-sitization with IgE, during activation through IgE, and relat ed it to prostaglandin D2 synthesis and histamine release. METHOD We investigated the expression pattern of 762 miRNAs during the IgE-mediated sensitization and activation of MCs cultured from CD133+ stem cells that were isolated from allergic asthmatic patients and nonatopic controls. RESULTS IgE-mediated sensitization increased the expression of miRNA-210 eight-fold. This increase was sustained during IgE-mediated MC activation. Furthermore, we confirmed the increase of the miRNA-132/212 cluster after MC activation. Predicted target genes of miRNA-210/132/212 were enriched in several pathways known to be involved in MC activation. Histamine release was significantly higher in MCs from allergic patients when compared to controls, and a number of miRNAs correlated with histamine release and prostaglandin D2 synthesis during MC activation. CONCLUSION The miRNAs and analysis presented here can help to elucidate the role of miRNAs in mediator release during MC activation. We speculate that miRNA-210 could be important in MC sensitization that leads to allergic symptoms.
Collapse
Affiliation(s)
- Jesper Just
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Pernille Munk Ipsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Simon Lykkemark
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Tina Skjold
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Oluf Schiøtz
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Jürgen Hoffmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark, .,Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark,
| |
Collapse
|
18
|
Lu D, Yamawaki T, Zhou H, Chou WY, Chhoa M, Lamas E, Escobar SS, Arnett HA, Ge H, Juan T, Wang S, Li CM. Limited differential expression of miRNAs and other small RNAs in LPS-stimulated human monocytes. PLoS One 2019; 14:e0214296. [PMID: 30908559 PMCID: PMC6433273 DOI: 10.1371/journal.pone.0214296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/11/2019] [Indexed: 01/01/2023] Open
Abstract
Monocytes are a distinct subset of myeloid cells with diverse functions in early inflammatory immune modulation. While previous studies have surveyed the role of miRNA regulation on different myeloid cell lines and primary cultures, the time-dependent kinetics of inflammatory stimulation on miRNA expression and the relationship between miRNA-to-target RNA expression have not been comprehensively profiled in monocytes. In this study, we use next-generation sequencing and RT-PCR assays to analyze the non-coding small RNA transcriptome of unstimulated and lipopolysaccharide (LPS)-stimulated monocytes at 6 and 24 hours. We identified a miRNA signature consisting of five mature miRNAs (hsa-mir-146a, hsa-mir-155, hsa-mir-9, hsa-mir-147b, and hsa-mir-193a) upregulated by LPS-stimulated monocytes after 6 hours and found that most miRNAs were also upregulated after 24 hours of stimulation. Only one miRNA gene was down-regulated and no other small RNAs were found dysregulated in monocytes after LPS treatment. In addition, novel tRNA-derived fragments were also discovered in monocytes although none showed significant changes upon LPS stimulation. Interrogation of validated miRNA targets by transcriptomic analysis revealed that absolute expression of most miRNA targets implicating in innate immune response decreased over time in LPS-stimulated monocytes although their expression patterns along the treatment were heterogeneous. Our findings reveal a potential role by which selective miRNA upregulation and stable expression of other small RNAs enable monocytes to develop finely tuned cellular responses during acute inflammation.
Collapse
Affiliation(s)
- Daniel Lu
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Tracy Yamawaki
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Hong Zhou
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Wen-Yu Chou
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Mark Chhoa
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Edwin Lamas
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Sabine S. Escobar
- Inflammation/Oncology TA, Amgen Research, South San Francisco, California, United States of America
| | - Heather A. Arnett
- Inflammation/Oncology TA, Amgen Research, South San Francisco, California, United States of America
| | - Huanying Ge
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Todd Juan
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Songli Wang
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Chi-Ming Li
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Li Y, Liu J, Zhang J, Zhang W, Wu Z. Characterization of microRNA profile in IgE-mediated mouse BMMCs degranulation. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 53:550-560. [PMID: 30473142 DOI: 10.1016/j.jmii.2018.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/28/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mast cells play a central role in innate and adaptive immunity by releasing pre-formed and de novo synthesized mediators, which include microRNAs. Although miRNAs have been confirmed to function in cell proliferation, differentiation, apoptosis, and the immune response, their functions are still limited in mast cells degranulation. METHODS Here, we survey miRNA expression profiles in activated mouse bone marrow-derived mast cells (BMMCs) with a miRNA microarray and compare the profiles to those from resting BMMCs. Partial miRNAs were selected for confirmation by qPCR, and let-7i was selected for function discover in mast cell degranulation process. TargetScan Mouse database were used for target genes prediction, gene ontology (GO) were used for gene molecular function classifications, and Cytoscape software were used to construct gene network of degranulation. RESULTS We found 13 up-regulated miRNAs and 7 down-regulated miRNAs in DNP activated BMMCs by miRNA microarray; and let-7b, let-7c, let-7d, let-7f, let-7i, and miR-652 were up-regulated, and miR-296-3p was down-regulated in DNP-stimulated BMMCs by qPCR. In the function research, let-7i can inhibit mast cell degranulation by suppress Exco8 expression. Overall, the data indicate that miRNAs participate in mast cell activation, especial for mast cell degranulation process.
Collapse
Affiliation(s)
- Yanhong Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jie Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaojiao Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenjin Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhengli Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Research Center of Fishery Resource and Environment, Southwest University, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
20
|
Baumjohann D, Heissmeyer V. Posttranscriptional Gene Regulation of T Follicular Helper Cells by RNA-Binding Proteins and microRNAs. Front Immunol 2018; 9:1794. [PMID: 30108596 PMCID: PMC6079247 DOI: 10.3389/fimmu.2018.01794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022] Open
Abstract
T follicular helper (Tfh) cells are critically involved in the establishment of potent antibody responses against infectious pathogens, such as viruses and bacteria, but their dysregulation may also result in aberrant antibody responses that frequently coincide with autoimmune diseases or allergies. The fate and identity of Tfh cells is tightly controlled by gene regulation on the transcriptional and posttranscriptional level. Here, we provide deeper insights into the posttranscriptional mechanisms that regulate Tfh cell differentiation, function, and plasticity through the actions of RNA-binding proteins (RBPs) and small endogenously expressed regulatory RNAs called microRNAs (miRNAs). The Roquin family of RBPs has been shown to dampen spontaneous activation and differentiation of naïve CD4+ T cells into Tfh cells, since CD4+ T cells with Roquin mutations accumulate as Tfh cells and provide inappropriate B cell help in the production of autoantibodies. Moreover, Regnase-1, an endoribonuclease that regulates a set of targets, which strongly overlaps with that of Roquin, is crucial for the prevention of autoantibody production. Interestingly, both Roquin and Regnase-1 proteins are cleaved and inactivated after TCR stimulation by the paracaspase MALT1. miRNAs are expressed in naïve CD4+ T cells and help preventing spontaneous differentiation into effector cells. While most miRNAs are downregulated upon T cell activation, several miRNAs have been shown to regulate the fate of these cells by either promoting (e.g., miR-17-92 and miR-155) or inhibiting (e.g., miR-146a) Tfh cell differentiation. Together, these different aspects highlight a complex and dynamic regulatory network of posttranscriptional gene regulation in Tfh cells that may also be active in other T helper cell populations, including Th1, Th2, Th17, and Treg.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
21
|
Emming S, Chirichella M, Monticelli S. MicroRNAs as modulators of T cell functions in cancer. Cancer Lett 2018; 430:172-178. [PMID: 29800683 DOI: 10.1016/j.canlet.2018.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are short RNA molecules that regulate gene expression post-transcriptionally. They have emerged as important modulators of T lymphocyte biology, influencing cell activation, differentiation and proliferation in response to environmental signals. Here, we will discuss how miRNAs expressed by T cells can influence two key aspects of tumorigenesis, namely the direct, cell-intrinsic oncogenic transformation of T lymphocytes, as well as the indirect effects on tumor growth mediated by altered immune surveillance. We will specifically focus on three miRNAs that have been shown to regulate different aspects of T cell biology in both physiological and pathological conditions, namely miR-155, miR-146a and miR-181a. We aim at providing examples of the fundamental importance of miRNA-regulated networks in determining the fate of T lymphocytes during oncogenic transformation and in the control of tumor growth.
Collapse
Affiliation(s)
- Stefan Emming
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michele Chirichella
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland.
| |
Collapse
|
22
|
Heffler E, Allegra A, Pioggia G, Picardi G, Musolino C, Gangemi S. MicroRNA Profiling in Asthma: Potential Biomarkers and Therapeutic Targets. Am J Respir Cell Mol Biol 2017; 57:642-650. [PMID: 28489455 DOI: 10.1165/rcmb.2016-0231tr] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Asthma is a heterogeneous chronic inflammatory disorder in which different endotypes contribute to define clinical inflammatory phenotypes. MicroRNAs (miRNAs) are a group of minute, endogenous 22-25 nt RNA elements that join to particular mRNAs to reduce translation and increase messenger RNA degradation. miRNAs operate in post-transcriptional control and regulate physiological and pathological processes in several illnesses. The purpose of this work is to review and discuss the current knowledge about the function of miRNAs in asthma, focusing particularly on their biological properties, pathophysiologic actions, and possible use as markers and treatments for asthma.
Collapse
Affiliation(s)
- Enrico Heffler
- 1 Personalized Medicine Asthma and Allergy Clinic, Humanitas Research Hospital, and.,2 Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alessandro Allegra
- 3 Division of Hematology, Department of General Surgery and Oncology, University of Messina
| | - Giovanni Pioggia
- 4 Institute of Applied Sciences and Intelligent Systems-Messina Unit, and
| | - Giuseppe Picardi
- 5 Respiratory Diseases and Allergy, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Caterina Musolino
- 3 Division of Hematology, Department of General Surgery and Oncology, University of Messina
| | - Sebastiano Gangemi
- 4 Institute of Applied Sciences and Intelligent Systems-Messina Unit, and.,6 School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital "G. Martino," Messina, Italy; and
| |
Collapse
|
23
|
Singh PB, Pua HH, Happ HC, Schneider C, von Moltke J, Locksley RM, Baumjohann D, Ansel KM. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. J Exp Med 2017; 214:3627-3643. [PMID: 29122948 PMCID: PMC5716040 DOI: 10.1084/jem.20170545] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022] Open
Abstract
Singh et al. examined microRNA expression and physiological requirements in type 2 innate lymphoid cells (ILC2s). The miR-17∼92 cluster promotes ILC2 growth, cytokine expression, and function in allergic inflammation. MicroRNAs (miRNAs) exert powerful effects on immunity through coordinate regulation of multiple target genes in a wide variety of cells. Type 2 innate lymphoid cells (ILC2s) are tissue sentinel mediators of allergic inflammation. We established the physiological requirements for miRNAs in ILC2 homeostasis and immune function and compared the global miRNA repertoire of resting and activated ILC2s and T helper type 2 (TH2) cells. After exposure to the natural allergen papain, mice selectively lacking the miR-17∼92 cluster in ILC2s displayed reduced lung inflammation. Moreover, miR-17∼92–deficient ILC2s exhibited defective growth and cytokine expression in response to IL-33 and thymic stromal lymphopoietin in vitro. The miR-17∼92 cluster member miR-19a promoted IL-13 and IL-5 production and inhibited expression of several targets, including SOCS1 and A20, signaling inhibitors that limit IL-13 and IL-5 production. These findings establish miRNAs as important regulators of ILC2 biology, reveal overlapping but nonidentical miRNA-regulated gene expression networks in ILC2s and TH2 cells, and reinforce the therapeutic potential of targeting miR-19 to alleviate pathogenic allergic responses.
Collapse
Affiliation(s)
- Priti B Singh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
| | - Heather H Pua
- Department of Pathology, University of California, San Francisco, San Francisco, CA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
| | - Hannah C Happ
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
| | - Christoph Schneider
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Jakob von Moltke
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, San Francisco, CA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
| | - Dirk Baumjohann
- Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - K Mark Ansel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA .,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
24
|
Verma K, Jyotsana N, Buenting I, Luther S, Pfanne A, Thum T, Ganser A, Heuser M, Weissinger EM, Hambach L. miR-625-3p is upregulated in CD8+ T cells during early immune reconstitution after allogeneic stem cell transplantation. PLoS One 2017; 12:e0183828. [PMID: 28854245 PMCID: PMC5576678 DOI: 10.1371/journal.pone.0183828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/11/2017] [Indexed: 01/24/2023] Open
Abstract
Alloreactive CD8+ T-cells mediate the curative graft-versus-leukaemia effect, the anti-viral immunity and graft-versus-host-disease (GvHD) after allogeneic stem cell transplantation (SCT). Thus, immune reconstitution with CD8+ T-cells is critical for the outcome of patients after allogeneic SCT. Certain miRNAs such as miR-146a or miR-155 play an important role in the regulation of post-transplant immunity in mice. While some miRNAs e.g. miR-423 or miR-155 are regulated in plasma or full blood during acute GvHD also in man, the relevance and expression profile of miRNAs in T-cells after allogeneic SCT is unknown. miR-625-3p has recently been described to be overexpressed in colorectal malignancies where it promotes migration, invasion and apoptosis resistance. Since similar regulative functions in cancer and T-cells have been described for an increasing number of miRNAs, we assumed a role for the cancer-related miR-625-3p also in T-cells. Here, we studied miR-625-3p expression selectively in CD8+ T-cells both in vitro and during immune reconstitution after allogeneic SCT in man. T-cell receptor stimulation lead to miR-625-3p upregulation in human CD8+ T-cells in vitro. Maintenance of elevated miR-625-3p expression levels was dependent on ongoing T-cell proliferation and was abrogated by withdrawal of interleukin 2 or the mTOR inhibitor rapamycin. Finally, miR-625-3p expression was analyzed in human CD8+ T-cells purified from 137 peripheral blood samples longitudinally collected from 74 patients after allogeneic SCT. miR-625-3p expression was upregulated on day 25 and on day 45, i.e. during the early phase of CD8+ T-cell reconstitution after allogeneic SCT and subsequently declined with completion of CD8+ T-cell reconstitution until day 150. In conclusion, this study has shown for the first time that miR-625-3p is regulated in CD8+ T-cells during proliferation in vitro and during early immune reconstitution after allogeneic SCT in vivo. These results warrant further studies to identify the targets and function of miR-625-3p in CD8+ T-cells and to analyze its predictive value for an effective immune reconstitution.
Collapse
Affiliation(s)
- Kriti Verma
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Integrated Research and Treatment Center for Transplantation (IFB-Tx), Hannover, Germany
| | - Nidhi Jyotsana
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Ivonne Buenting
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Susanne Luther
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Arnold Ganser
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Eva M. Weissinger
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lothar Hambach
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
25
|
Monticelli S, Natoli G. Transcriptional determination and functional specificity of myeloid cells: making sense of diversity. Nat Rev Immunol 2017; 17:595-607. [DOI: 10.1038/nri.2017.51] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Kumar Kingsley SM, Vishnu Bhat B. Role of MicroRNAs in the development and function of innate immune cells. Int Rev Immunol 2017; 36:154-175. [DOI: 10.1080/08830185.2017.1284212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Manoj Kumar Kingsley
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - B. Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
27
|
Abstract
DNA methylation and specifically the DNA methyltransferase enzyme DNMT3A are involved in the pathogenesis of a variety of hematological diseases and in regulating the function of immune cells. Although altered DNA methylation patterns and mutations in DNMT3A correlate with mast cell proliferative disorders in humans, the role of DNA methylation in mast cell biology is not understood. By using mast cells lacking Dnmt3a, we found that this enzyme is involved in restraining mast cell responses to acute and chronic stimuli, both in vitro and in vivo. The exacerbated mast cell responses observed in the absence of Dnmt3a were recapitulated or enhanced by treatment with the demethylating agent 5-aza-2'-deoxycytidine as well as by down-modulation of Dnmt1 expression, further supporting the role of DNA methylation in regulating mast cell activation. Mechanistically, these effects were in part mediated by the dysregulated expression of the scaffold protein IQGAP2, which is characterized by the ability to regulate a wide variety of biological processes. Altogether, our data demonstrate that DNMT3A and DNA methylation are key modulators of mast cell responsiveness to acute and chronic stimulation.
Collapse
|
28
|
Intranasal Delivery of miR-146a Mimics Delayed Seizure Onset in the Lithium-Pilocarpine Mouse Model. Mediators Inflamm 2017; 2017:6512620. [PMID: 28242958 PMCID: PMC5294386 DOI: 10.1155/2017/6512620] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/07/2016] [Accepted: 12/25/2016] [Indexed: 11/17/2022] Open
Abstract
Unveiling the key mechanism of temporal lobe epilepsy (TLE) for the development of novel treatments is of increasing interest, and anti-inflammatory miR-146a is now considered a promising molecular target for TLE. In the current study, a C57BL/6 TLE mouse model was established using the lithium-pilocarpine protocol. The seizure degree was evaluated according to the Racine scale, and level 5 was considered the threshold for generalized convulsions. Animals were sacrificed to analyze the hippocampus at three time points (2 h and 4 and 8 weeks after pilocarpine administration to evaluate the acute, latent, and chronic phases, resp.). After intranasal delivery of miR-146a mimics (30 min before pilocarpine injection), the percent of animals with no induced seizures increased by 6.7%, the latency to generalized convulsions was extended, and seizure severity was reduced. Additionally, hippocampal damage was alleviated. While the relative miR-146a levels significantly increased, the expression of its target mRNAs (IRAK-1 and TRAF-6) and typical inflammatory modulators (NF-κB, TNF-α, IL-1β, and IL-6) decreased, supporting an anti-inflammatory role of miR-146a via the TLR pathway. This study is the first to demonstrate that intranasal delivery of miR-146a mimics can improve seizure onset and hippocampal damage in the acute phase of lithium-pilocarpine-induced seizures, which provides inflammation-based clues for the development of novel TLE treatments.
Collapse
|
29
|
Molderings GJ. Transgenerational transmission of systemic mast cell activation disease-genetic and epigenetic features. Transl Res 2016; 174:86-97. [PMID: 26880691 DOI: 10.1016/j.trsl.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 02/08/2023]
Abstract
Systemic mast cell activation disease (MCAD) comprises disorders characterized by an enhanced release of mast cell mediators accompanied by a varying accumulation of dysfunctional mast cells. Within the last years, evidence has been presented that MCAD is a multifactorial polygenic determined disease with the KIT(D816V) mutation and its induced functional consequences considered as special case. The respective genes encode proteins for various signaling pathways, epigenetic regulators, the RNA splicing machinery, and transcription factors. Transgenerational transmission of MCAD appears to be quite common. The basics of the molecular mechanisms underlying predisposition of the disease, that is, somatic and germline mutations and the contribution of epigenetic processes have become identifiable. The aim of the present review is to present and discuss available genetic, epigenetic and epidemiological findings, and to present a model of MCAD pathogenesis.
Collapse
Affiliation(s)
- Gerhard J Molderings
- Institute of Human Genetics, University Hospital of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany.
| |
Collapse
|
30
|
MicroRNA in United Airway Diseases. Int J Mol Sci 2016; 17:ijms17050716. [PMID: 27187364 PMCID: PMC4881538 DOI: 10.3390/ijms17050716] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 01/15/2023] Open
Abstract
The concept of united airway diseases (UAD) has received increasing attention in recent years. Sustained and increased inflammation is a common feature of UAD, which is inevitably accompanied with marked gene modification and tight gene regulation. However, gene regulation in the common inflammatory processes in UAD remains unclear. MicroRNA (miRNA), a novel regulator of gene expression, has been considered to be involved in many inflammatory diseases. Although there are an increasing number of studies of miRNAs in inflammatory upper and lower airway diseases, few miRNAs have been identified that directly link the upper and lower airways. In this article, therefore, we reviewed the relevant studies available in order to improve the understanding of the roles of miRNAs in the interaction and pathogenesis of UAD.
Collapse
|
31
|
Montagner S, Leoni C, Emming S, Della Chiara G, Balestrieri C, Barozzi I, Piccolo V, Togher S, Ko M, Rao A, Natoli G, Monticelli S. TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities. Cell Rep 2016; 15:1566-1579. [PMID: 27160912 DOI: 10.1016/j.celrep.2016.04.044] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 03/08/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022] Open
Abstract
Dioxygenases of the TET family impact genome functions by converting 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC). Here, we identified TET2 as a crucial regulator of mast cell differentiation and proliferation. In the absence of TET2, mast cells showed disrupted gene expression and altered genome-wide 5hmC deposition, especially at enhancers and in the proximity of downregulated genes. Impaired differentiation of Tet2-ablated cells could be relieved or further exacerbated by modulating the activity of other TET family members, and mechanistically it could be linked to the dysregulated expression of C/EBP family transcription factors. Conversely, the marked increase in proliferation induced by the loss of TET2 could be rescued exclusively by re-expression of wild-type or catalytically inactive TET2. Our data indicate that, in the absence of TET2, mast cell differentiation is under the control of compensatory mechanisms mediated by other TET family members, while proliferation is strictly dependent on TET2 expression.
Collapse
Affiliation(s)
- Sara Montagner
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Cristina Leoni
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Stefan Emming
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Giulia Della Chiara
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Chiara Balestrieri
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Iros Barozzi
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Viviana Piccolo
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Susan Togher
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Myunggon Ko
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; School of Life Sciences, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Anjana Rao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), 6500 Bellinzona, Switzerland.
| |
Collapse
|
32
|
Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells. Sci Rep 2016; 6:19225. [PMID: 26754091 PMCID: PMC4709792 DOI: 10.1038/srep19225] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs involved in various biological processes by regulating their target genes. Green tea polyphenol (−)-epigallocatechin-3-O-gallate (EGCG) inhibits melanoma tumor growth by activating 67-kDa laminin receptor (67LR) signaling. To examine the effect of EGCG on miRNA expression in melanoma cells, we performed miRNA microarray analysis. We showed that EGCG up-regulated miRNA-let-7b expression through 67LR in melanoma cells. The EGCG-induced up-regulation of let-7b led to down-regulation of high mobility group A2 (HMGA2), a target gene related to tumor progression. 67LR-dependent cAMP/protein kinase A (PKA)/protein phosphatase 2A (PP2A) signaling pathway activation was involved in the up-regulation of let-7b expression induced by EGCG. These findings provide a basis for understanding the mechanism of miRNA regulation by EGCG.
Collapse
|
33
|
Song J, Lee JE. miR-155 is involved in Alzheimer's disease by regulating T lymphocyte function. Front Aging Neurosci 2015; 7:61. [PMID: 25983691 PMCID: PMC4415416 DOI: 10.3389/fnagi.2015.00061] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 04/09/2015] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is considered the most common cause of sporadic dementia. In AD, adaptive and innate immune responses play a crucial role in clearance of amyloid beta and maintenance of cognitive functions. In addition to other changes in the immune system, AD alters the T-cell responses that affect activation of glial cells, neuronal cells, macrophages, and secretion of pro-inflammatory cytokines. These changes in the immune system influence AD pathogenesis. Micro-RNA (miRNA)-155 is a multifunctional miRNA with a distinct expression profile. It is involved in diverse physiological and pathological mechanisms, such as immunity and inflammation. Recent studies indicate that miR-155 regulates T-cell functions during inflammation. In this article, we summarize recent studies describing the therapeutic potential of miR-155 via regulation of T cells in AD. Further, we propose that regulation of miR-155 might be a new protective approach against AD pathogenesis.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine Seoul, South Korea ; Brain Korea 21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine Seoul, South Korea
| |
Collapse
|
34
|
Xu HY, Wang ZY, Chen JF, Wang TY, Wang LL, Tang LL, Lin XY, Zhang CW, Chen BC. Association between ankylosing spondylitis and the miR-146a and miR-499 polymorphisms. PLoS One 2015; 10:e0122055. [PMID: 25836258 PMCID: PMC4383612 DOI: 10.1371/journal.pone.0122055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/06/2015] [Indexed: 01/07/2023] Open
Abstract
miRNAs are small, non-coding RNAs that regulate the expression of multiple target genes at the post-transcriptional level. Single-nucleotide polymorphisms (SNPs) in miRNA sequences may alter miRNA expression and have been implicated in the pathogenesis of multiple forms of arthritis, including rheumatoid arthritis (RA) and osteoarthritis. The present study explored the association between ankylosing spondylitis (AS) and two single nucleotide polymorphisms (SNPs), miR-146a rs2910164G>C and miR-499 rs3746444T>C, in a Han Chinese population. A case-control study consisting of 102 subjects with AS and 105 healthy controls was designed. The two miRNA SNPs were identified by direct sequencing. Subsequently, their gene and genotype frequencies were compared with healthy controls. A significant difference was observed in the miR-146a rs2910164G>C SNP. The frequency of the G allele was markedly higher in the AS patients than in the healthy controls (P = 0.005, Pc = 0.01, OR = 1.787), and the frequency of the GG genotype was higher in AS patients than in controls (P = 0.014, Pc = 0.042, OR = 2.516). However, no significant association was found between the miR-499 rs3746444T>C variant and susceptibility to AS. This is the first study to address the association between the miR-146a rs2910164G>C and miR-499 rs3746444T>C polymorphisms and AS, and it suggests a potential pathogenic factor for AS. Further studies are needed to validate our findings in a larger series, as well as in other ethnic backgrounds.
Collapse
Affiliation(s)
- Hui Ying Xu
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhang Yang Wang
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jing Feng Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tian Yang Wang
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ling Ling Wang
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Li Li Tang
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xian-yang Lin
- Injury Orthopaedics of Traditional Chinese medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chun-wu Zhang
- Injury Orthopaedics of Traditional Chinese medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- * E-mail:
| | - Bi-cheng Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
35
|
Mele F, Basso C, Leoni C, Aschenbrenner D, Becattini S, Latorre D, Lanzavecchia A, Sallusto F, Monticelli S. ERK phosphorylation and miR-181a expression modulate activation of human memory TH17 cells. Nat Commun 2015; 6:6431. [DOI: 10.1038/ncomms7431] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022] Open
|
36
|
Next-generation sequencing identifies deregulation of microRNAs involved in both innate and adaptive immune response in ALK+ ALCL. PLoS One 2015; 10:e0117780. [PMID: 25688981 PMCID: PMC4331429 DOI: 10.1371/journal.pone.0117780] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/02/2015] [Indexed: 12/21/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL) is divided into two systemic diseases according to the expression of the anaplastic lymphoma kinase (ALK). We investigated the differential expression of miRNAs between ALK+ ALCL, ALK- ALCL cells and normal T-cells using next generation sequencing (NGS). In addition, a C/EBPβ-dependent miRNA profile was generated. The data were validated in primary ALCL cases. NGS identified 106 miRNAs significantly differentially expressed between ALK+ and ALK- ALCL and 228 between ALK+ ALCL and normal T-cells. We identified a signature of 56 miRNAs distinguishing ALK+ ALCL, ALK- ALCL and T-cells. The top candidates significant differentially expressed between ALK+ and ALK- ALCL included 5 upregulated miRNAs: miR-340, miR-203, miR-135b, miR-182, miR-183; and 7 downregulated: miR-196b, miR-155, miR-146a, miR-424, miR-503, miR-424*, miR-542-3p. The miR-17-92 cluster was also upregulated in ALK+ cells. Additionally, we identified a signature of 3 miRNAs significantly regulated by the transcription factor C/EBPβ, which is specifically overexpressed in ALK+ ALCL, including the miR-181 family. Of interest, miR-181a, which regulates T-cell differentiation and modulates TCR signalling strength, was significantly downregulated in ALK+ ALCL cases. In summary, our data reveal a miRNA signature linking ALK+ ALCL to a deregulated immune response and may reflect the abnormal TCR antigen expression known in ALK+ ALCL.
Collapse
|
37
|
Kroesen BJ, Teteloshvili N, Smigielska-Czepiel K, Brouwer E, Boots AMH, van den Berg A, Kluiver J. Immuno-miRs: critical regulators of T-cell development, function and ageing. Immunology 2015; 144:1-10. [PMID: 25093579 DOI: 10.1111/imm.12367] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are instrumental to many aspects of immunity, including various levels of T-cell immunity. Over the last decade, crucial immune functions were shown to be regulated by specific miRNAs. These 'immuno-miRs' regulate generic cell biological processes in T cells, such as proliferation and apoptosis, as well as a number of T-cell-specific features that are fundamental to the development, differentiation and function of T cells. In this review, we give an overview of the current literature with respect to the role of miRNAs at various stages of T-cell development, maturation, differentiation, activation and ageing. Little is known about the involvement of miRNAs in thymic T-cell development, although miR-181a and miR-150 have been implicated herein. In contrast, several broadly expressed miRNAs including miR-21, miR-155 and miR-17~92, have now been shown to regulate T-cell activation. Other miRNAs, including miR-146a, show a more T-cell-subset-specific expression pattern and are involved in the regulation of processes unique to that specific T-cell subset. Importantly, differences in the miRNA target gene repertoires of different T-cell subsets allow similar miRNAs to control different T-cell-subset-specific functions. Interestingly, several of the here described immuno-miRs have also been implicated in T-cell ageing and there are clear indications for causal involvement of miRNAs in immunosenescence. It is concluded that immuno-miRs have a dynamic regulatory role in many aspects of T-cell differentiation, activation, function and ageing. An important notion when studying miRNAs in relation to T-cell biology is that specific immuno-miRs may have quite unrelated functions in closely related T-cell subsets.
Collapse
Affiliation(s)
- Bart-Jan Kroesen
- Department of Laboratory Medicine, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
During an immune response, CD8(+)T cells can differentiate into multiple types of effector and memory cells that are important components of immune surveillance. However, their dysregulation has been implicated in infection with viruses or intracellular bacteria and tumorigenesis. miRNAs have been identified as crucial regulators of gene expression, and they perform this function by repressing specific target genes at the post-transcriptional level. Most miRNAs expressed in a given cell type serve the function to impede broadly cell-type-inappropriate gene expression and potently deepen a pre-existing differentiation program. It is increasingly recognized that miRNAs directly modulate the concentration of many regulatory proteins that are required for the development of immune cells in the thymus and their responses in the periphery. This review outlines our current understanding of the function of miRNAs in CD8(+)T cell biology as it impacts expression of protein-coding genes in the context of proper development, infection, as well as oncogenesis. In addition, we conclude with a perspective on future challenges and the clinical relevance of miRNA biology.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
39
|
Saki N, Abroun S, Soleimani M, Hajizamani S, Shahjahani M, Kast RE, Mortazavi Y. Involvement of MicroRNA in T-Cell Differentiation and Malignancy. Int J Hematol Oncol Stem Cell Res 2015; 9:33-49. [PMID: 25802699 PMCID: PMC4369232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/17/2014] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs are 19-22 nucleotide RNAs involved in such important processes as development, proliferation, differentiation and apoptosis. Different miRNAs are uniquely expressed in lymphoid T cells, and play a role indevelopment and differentiation of various subtypes by targeting their target genes. Recent studies have shown that aberrant miRNA expression may be involved in T cell leukemogenesis and lymphogenesis, and may function as tumor suppressor (such as miR-451, miR-31, miR-150, and miR-29a) or oncogene (e.g. miR-222, miR-223, miR-17-92, miR-155). MiRNAs can be used as new biomarkers for prognosis and diagnosis or as an index of disease severity in T-cell leukemia and lymphoma. This article presents a review of studies in recent years on the role of miRNAs in T-cell development and their aberrant expression in pathogenesis of T-cell leukemia and lymphoma. Characterizing miRNAs can help recognize their role as new important molecules with prognostic and therapeutic applications.
Collapse
Affiliation(s)
- Najmaldin Saki
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Corresponding author: Saeid Abroun, Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran., Tel: +982182883860,
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeideh Hajizamani
- Health research institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Yousef Mortazavi
- Department of Pathology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
40
|
Oskeritzian CA. Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. Mol Immunol 2015; 63:104-12. [PMID: 24766823 PMCID: PMC4226394 DOI: 10.1016/j.molimm.2014.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/02/2023]
Abstract
Mast cells (MC) are found in all vascularized tissues at homeostasis and, until recently, were viewed only as effector cells of allergic reactions via degranulation, the canonical process through which MC release mediators, including histamine and pre-formed proteases and cytokines such as TNF. Cross-linking of IgE bound to surface high affinity receptors for IgE (FcɛRI) by a specific antigen (Ag) triggers signaling events leading to degranulation. We and others have reported the concomitant production and export of an influential multifaceted sphingolipid mediator, sphingosine-1-phosphate (S1P) transported outside of MC by ATP-binding cassettes (ABC) transporters, i.e., independently of degranulation. Indeed, the MC horizon expanded by the discovery of their unique ability to selectively release mediators depending upon the stimulus and receptors involved. Aside from degranulation and transporter usage, MC are also endowed with piecemeal degranulation, a slower process during which mediator release occurs with minor morphological changes. The broad spectrum of pro- and anti-inflammatory bioactive substances MC produce and release, their amounts and delivery pace render these cells bona fide fine-tuners of the immune response. In this viewpoint article, MC developmental, phenotypic and functional plasticity, its modulation by microRNAs and its relevance to immunity, inflammation and cancer will be discussed.
Collapse
Affiliation(s)
- Carole A Oskeritzian
- University of South Carolina School of Medicine, Department of Pathology, Microbiology and Immunology, Building 2, Room C10, 6439 Garners Ferry Road, Columbia, SC 29209, USA.
| |
Collapse
|
41
|
Möhnle P, Schütz SV, van der Heide V, Hübner M, Luchting B, Sedlbauer J, Limbeck E, Hinske LC, Briegel J, Kreth S. MicroRNA-146a controls Th1-cell differentiation of human CD4+ T lymphocytes by targeting PRKCε. Eur J Immunol 2014; 45:260-72. [PMID: 25308712 DOI: 10.1002/eji.201444667] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/28/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022]
Abstract
T-cell functions must be tightly controlled to keep the balance between vital proinflammatory activity and detrimental overactivation. MicroRNA-146a (miR-146a) has been identified as a key negative regulator of T-cell responses in mice. Its role in human T cells and its relevance to human inflammatory disease, however, remains poorly defined. In this study, we have characterized miR-146a-driven pathways in primary human T cells. Our results identify miR-146a as a critical gatekeeper of Th1-cell differentiation processes acting via molecular mechanisms not uncovered so far. MiR-146a targets protein kinase C epsilon (PRKCε), which is part of a functional complex consisting of PRKCε and signal transducer and activator of transcription 4 (STAT4). Within this complex, PRKCε phosphorylates STAT4, which in turn is capable of promoting Th1-cell differentiation processes in human CD4(+) T lymphocytes. In addition, we observed that T cells of sepsis patients had reduced levels of miR-146a and an increased PRKCε expression in the initial hyperinflammatory phase of the disease. Collectively, our results identify miR-146a as a potent inhibitor of Th1-cell differentiation in human T cells and suggest that dysregulation of miR-146a contributes to the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Patrick Möhnle
- Research Group Molecular Medicine, Department of Anesthesiology, University of Munich (LMU), Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sheppard HM, Verdon D, Brooks AES, Feisst V, Ho YYJ, Lorenz N, Fan V, Birch NP, Didsbury A, Dunbar PR. MicroRNA regulation in human CD8+ T cell subsets--cytokine exposure alone drives miR-146a expression. J Transl Med 2014; 12:292. [PMID: 25331734 PMCID: PMC4219087 DOI: 10.1186/s12967-014-0292-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/08/2014] [Indexed: 12/21/2022] Open
Abstract
Background microRNAs (miRNAs) are emerging as key regulators of the immune system, but their role in CD8+ T cell differentiation is not well explored. Some evidence suggests that signals from cell surface receptors influence the expression of miRNAs in CD8+ T cells, and may have consequent effects on cell phenotype and function. We set out to investigate whether common gamma chain cytokines modulated human CD8+ T cell expression of miR-146a, which previous studies have associated with different stages of CD8+ differentiation. We also investigated how changes in miR-146a related to other miRNAs that alter with CD8+ differentiation status. Methods We treated human CD8+ T cells with the cytokines IL-2, IL-7 or IL-15 either at rest or after stimulation with anti-CD3 and anti-CD28. For some experiments we also purified human CD8+ T cell subsets ex vivo. Flow cytometry was used in parallel to assess cell surface memory marker expression. Total RNA from these cells was subjected to microarray analysis and real-time PCR for miRNA expression. Nucleofection studies were performed to assess potential mRNA targets of miR-146a. Results We find that miR-146a is up-regulated in naïve CD8+ T cells exposed to IL-2 or IL-15, even in the absence of an activating T cell receptor stimulus, but not when IL-7 is also present. miR-146a expression correlates with a memory phenotype in both ex vivo and in vitro cultured cells although in our hands overexpression of miR-146a was not sufficient alone to drive a full memory phenotype. In ex vivo analysis, miR-146a was one of a small number of miRNAs that was differentially expressed between naïve and memory CD8+ T cells. Conclusions miR-146a is emerging as a critical regulator of immune system. Our data shows that miR-146a expression is strongly influenced by the cytokine milieu even in the absence of a T cell receptor stimulus. Our results have implications for studies designed to assess the function of miR-146a, help to define a fingerprint of miRNA expression in CD8+ T cell subsets and may be useful when designing optimal protocols for T cell expansion as efficacy of T cell immunotherapy is correlated with an ‘early’ memory phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0292-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hilary M Sheppard
- School of Biological Sciences, University of Auckland, Thomas Building, Auckland, NZ, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, NZ, New Zealand.
| | - Daniel Verdon
- School of Biological Sciences, University of Auckland, Thomas Building, Auckland, NZ, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, NZ, New Zealand.
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Thomas Building, Auckland, NZ, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, NZ, New Zealand.
| | - Vaughan Feisst
- School of Biological Sciences, University of Auckland, Thomas Building, Auckland, NZ, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, NZ, New Zealand.
| | - Yu-Yu Joyce Ho
- School of Biological Sciences, University of Auckland, Thomas Building, Auckland, NZ, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, NZ, New Zealand.
| | - Natalie Lorenz
- School of Biological Sciences, University of Auckland, Thomas Building, Auckland, NZ, New Zealand.
| | - Vicky Fan
- Bioinformatics Institute, University of Auckland, Auckland, NZ, New Zealand.
| | - Nigel P Birch
- School of Biological Sciences, University of Auckland, Thomas Building, Auckland, NZ, New Zealand. .,Centre for Brain Research, University of Auckland, Auckland, NZ, New Zealand.
| | - Alicia Didsbury
- School of Biological Sciences, University of Auckland, Thomas Building, Auckland, NZ, New Zealand.
| | - P Rod Dunbar
- School of Biological Sciences, University of Auckland, Thomas Building, Auckland, NZ, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, NZ, New Zealand.
| |
Collapse
|
43
|
Oh SY, Brandal S, Kapur R, Zhu Z, Takemoto CM. Global microRNA expression is essential for murine mast cell development in vivo. Exp Hematol 2014; 42:919-23.e1. [PMID: 25201754 PMCID: PMC4250304 DOI: 10.1016/j.exphem.2014.07.266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 11/26/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that have been shown to play a critical role in normal physiology and disease, such as hematopoietic development and cancer. However, their role in mast-cell function and development is poorly understood. The major objective of this study was to determine how global miRNA expression affects mast-cell physiology. The RNase III endonuclease, Dicer, is required for the processing of pre-miRNAs into mature miRNAs. To investigate the effect of global miRNA depletion on mast cells in vivo, we generated a mast-cell-specific knock out of Dicer in mice. Transgenic mice (Mcpt5-Cre) that express Cre selectively in connective tissue mast cells were crossed with mice carrying the floxed conditional Dicer allele (Dicer fl/fl). Mcpt5-Cre × Dicer fl/fl mice with homozygous Dicer gene deletion in mast cells were found to have a profound mast-cell deficiency with near complete loss of peritoneal, gastrointestinal, and skin mast cells. We examined the in vivo functional consequence of mast-cell-specific Dicer deletion using an immunoglobulin-E-dependent passive systemic anaphylaxis murine model. Immunoglobulin-E-sensitized wild type Mcpt5-Cre × Dicer +/+ and heterozygous Mcpt5-Cre × Dicer fl/+ mice show marked hypothermia with antigen; however, homozygous Mcpt5-Cre × Dicer fl/fl mice were completely unresponsive to antigen challenge. These studies suggest a critical role for Dicer and miRNA expression for establishment of tissue compartments of functional mast cells in vivo.
Collapse
Affiliation(s)
- Sun Young Oh
- Division of Allergy and Clinical Immunology, Johns Hopkins Allergy and Asthma Center, Baltimore MD
| | - Stephanie Brandal
- Division of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore MD
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Cancer Research Institute, Indianapolis, IN
| | - Zhou Zhu
- Division of Allergy and Clinical Immunology, Johns Hopkins Allergy and Asthma Center, Baltimore MD
- Section of Allergy and Clinical Immunology, Yale School of Medicine, New Haven, CT
| | - Clifford M. Takemoto
- Division of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore MD
| |
Collapse
|
44
|
Blank U, Madera-Salcedo IK, Danelli L, Claver J, Tiwari N, Sánchez-Miranda E, Vázquez-Victorio G, Ramírez-Valadez KA, Macias-Silva M, González-Espinosa C. Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells. Front Immunol 2014; 5:453. [PMID: 25295038 PMCID: PMC4170139 DOI: 10.3389/fimmu.2014.00453] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/05/2014] [Indexed: 12/31/2022] Open
Abstract
Upon activation mast cells (MCs) secrete numerous inflammatory compounds stored in their cytoplasmic secretory granules by a process called anaphylactic degranulation, which is responsible for type I hypersensitivity responses. Prestored mediators include histamine and MC proteases but also some cytokines and growth factors making them available within minutes for a maximal biological effect. Degranulation is followed by the de novo synthesis of lipid mediators such as prostaglandins and leukotrienes as well as a vast array of cytokines, chemokines, and growth factors, which are responsible for late phase inflammatory responses. While lipid mediators diffuse freely out of the cell through lipid bilayers, both anaphylactic degranulation and secretion of cytokines, chemokines, and growth factors depends on highly regulated vesicular trafficking steps that occur along the secretory pathway starting with the translocation of proteins to the endoplasmic reticulum. Vesicular trafficking in MCs also intersects with endocytic routes, notably to form specialized cytoplasmic granules called secretory lysosomes. Some of the mediators like histamine reach granules via specific vesicular monoamine transporters directly from the cytoplasm. In this review, we try to summarize the available data on granule biogenesis and signaling events that coordinate the complex steps that lead to the release of the inflammatory mediators from the various vesicular carriers in MCs.
Collapse
Affiliation(s)
- Ulrich Blank
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | - Iris Karina Madera-Salcedo
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | - Luca Danelli
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | - Julien Claver
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | - Neeraj Tiwari
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | | | - Genaro Vázquez-Victorio
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City , México
| | | | - Marina Macias-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City , México
| | | |
Collapse
|
45
|
Myeloid-derived microRNAs, miR-223, miR27a, and miR-652, are dominant players in myeloid regulation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:870267. [PMID: 25177699 PMCID: PMC4142666 DOI: 10.1155/2014/870267] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/29/2014] [Accepted: 07/16/2014] [Indexed: 02/08/2023]
Abstract
In the past few years expanding knowledge has been accumulated about the role of microRNAs (miRNAs) not only in hematopoiesis and cancer, but also in inflammatory and infectious diseases. Regarding myeloid cells, our knowledge is relatively insufficient, therefore we intended to collect the available data of miRNA profiles of myeloid cells. In addition to a rather general myeloid regulator miR-223, two other miRNAs seem to be useful subjects in understanding of myeloid miRNA biology: miR-27a and miR-652. We review functions of these three miRNAs and other myeloid miRNAs focusing on their roles in monocytes, neutrophils, eosinophils, basophils and mast cells.
Collapse
|
46
|
Deho' L, Leoni C, Brodie TM, Montagner S, De Simone M, Polletti S, Barozzi I, Natoli G, Monticelli S. Two functionally distinct subsets of mast cells discriminated By IL-2-independent CD25 activities. THE JOURNAL OF IMMUNOLOGY 2014; 193:2196-206. [PMID: 25063866 DOI: 10.4049/jimmunol.1400516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We identified two mast cell subsets characterized by the differential expression of surface CD25 (IL-2Rα) and by different abilities to produce cytokines and to proliferate, both in vitro and in vivo. CD25 can be expressed on the surface of immune cells in the absence of the other chains of the IL-2R, which are indispensable for IL-2 signaling. We show that functional differences between the two mast cell populations were dependent on CD25 itself, which directly modulated proliferation and cytokine responses. These effects were completely independent from IL-2 or the expression of the other chains of the high-affinity IL-2R, indicating an autonomous and previously unappreciated role for CD25 in regulating cell functions. Cells genetically ablated for CD25 completely recapitulated the CD25-negative phenotype and never acquired the properties characteristic of CD25-positive mast cells. Finally, adoptive transfer experiments in the mouse demonstrated a different impact of these populations in models of anaphylaxis and contact sensitivity. Our findings indicate a general role for CD25 in contexts where IL-2 signaling is not involved, and may have important implications for all mast cell-related diseases, as well as in all cell types expressing CD25 independently of its IL-2-related functions.
Collapse
Affiliation(s)
- Lorenzo Deho'
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | - Cristina Leoni
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | - Tess M Brodie
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | - Sara Montagner
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | - Marco De Simone
- National Institute for Molecular Genetics, 20122 Milan, Italy; and
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Iros Barozzi
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland;
| |
Collapse
|
47
|
Srigopalram S, Jayraaj IA, Kaleeswaran B, Balamurugan K, Ranjithkumar M, Kumar TS, Park JI, Nou IS. Ellagic acid normalizes mitochondrial outer membrane permeabilization and attenuates inflammation-mediated cell proliferation in experimental liver cancer. Appl Biochem Biotechnol 2014; 173:2254-66. [PMID: 24972653 DOI: 10.1007/s12010-014-1031-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/19/2014] [Indexed: 01/22/2023]
Abstract
Despite great advances in our understanding of the molecular causes of liver cancer, significant gaps still remain in our knowledge of the disease pathogenesis and development of effective strategies for early diagnosis and treatment. The present study was conducted to evaluate the chemopreventive activity of ellagic acid (EA) against experimental liver cancer in rats. This is the first report that implies a possible role of EA in controlling liver cancer through activation of mitochondrial outer membrane permeability via activating proteins such as Bax, bcl-2, cyt-C, and caspase-9, which play important roles in apoptosis. Downregulation of NF-κB, cyclin D1, cyclin E1, matrix metalloproteinases (MMP)-2, MMP-9, and proliferating cell nuclear antigen (PCNA) were noted in EA-treated experimental rats and controlled inflammation mediated liver cancer when compared to the diethylnitrosamine (DEN)-induced group. Transmission electron microscopy (TEM) analysis of the livers of experimental rats demonstrated that EA treatment renovated its internal architecture. Overall, these results demonstrate the value of molecular approaches in identifying the potential role of EA as an effective chemopreventive agent.
Collapse
Affiliation(s)
- S Srigopalram
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 540-950, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Biethahn K, Orinska Z, Vigorito E, Goyeneche-Patino DA, Mirghomizadeh F, Föger N, Bulfone-Paus S. miRNA-155 controls mast cell activation by regulating the PI3Kγ pathway and anaphylaxis in a mouse model. Allergy 2014; 69:752-62. [PMID: 24734904 DOI: 10.1111/all.12407] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mast cells (MCs) play a central role in allergic and inflammatory disorders by rapid degranulation and release of inflammatory mediators upon antigen-driven engagement of the FcεRI. Receptor-mediated MC responses are controlled by the activation of different isoforms of phosphoinositide-3-kinase (PI3K) and the downstream signaling processes. Recent evidence suggests that miRNAs are important molecular players regulating the PI3K/Akt pathway. METHODS The role of miR-155 in the regulation of MC functions in vivo was studied in the passive cutaneous anaphylaxis (PCA) MC-dependent model. WT and miR-155(-/-) mice were injected intradermally with anti-DNP-IgE and intravenously with the antigen DNP-HSA. Ear swelling was assessed to evaluate the anaphylactic response. All investigations, to characterize miR-155 specific activities in MCs, were conducted comparing WT and miR-155(-/-) bone marrow-derived MCs (BMMCs). RESULTS We report that miR-155(-/-) mice display enhanced anaphylaxis reactions. Although miR-155(-/-) BMMCs show normal development, proliferation, and survival, miR-155 deficiency enhances FcεRI-mediated degranulation and release of TNF-α, IL-13, and IL-6. Interestingly, the level of Akt phosphorylation on both of its regulatory residues Thr308 and Ser473 was increased in miR-155(-/-) compared to WT BMMCs. Gene expression profiling showed that miR-155(-/-) BMMCs exhibited significantly increased expression of the adapter PI3Kγ subunits Pik3r5 (p101) and Pik3r6 (p84, p87(PIKAP) ). Furthermore, selective blockade of the PI3Kγ pathway inhibited degranulation in miR-155(-/-) BMMCs. CONCLUSIONS Thus, we suggest that miR-155 plays a critical role in FcεRI-mediated MC responses by modulating components of the PI3Kγ pathway. This newly identified mechanism of miRNA-controlled MC activation may affect the initiation and maintenance of allergic disorders.
Collapse
Affiliation(s)
| | - Z. Orinska
- Research Center Borstel; Borstel Germany
| | | | | | | | - N. Föger
- Research Center Borstel; Borstel Germany
- Institute for Clinical Chemistry; Hannover Medical School; Hannover Germany
| | - S. Bulfone-Paus
- Research Center Borstel; Borstel Germany
- Faculty of Human and Medical Sciences; Institute for Inflammation and Repair and MCCIR; University of Manchester; Manchester UK
| |
Collapse
|
49
|
Xiang Y, Eyers F, Young IG, Rosenberg HF, Foster PS, Yang M. Identification of microRNAs regulating the developmental pathways of bone marrow derived mast cells. PLoS One 2014; 9:e98139. [PMID: 24848502 PMCID: PMC4029961 DOI: 10.1371/journal.pone.0098139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/28/2014] [Indexed: 11/23/2022] Open
Abstract
Background MicroRNAs (miRNAs) play important roles in leukocyte differentiation, although those utilised for specific programs and key functions remain incompletely characterised. As a global approach to gain insights into the potential regulatory role of miRNA in mast cell differentiation we characterised expression in BM cultures from the initiation of differentiation. In cultures enriched in differentiating mast cells we characterised miRNA expression and identified miRNA targeting the mRNA of putative factors involved in differentiation pathways and cellular identity. Detailed pathway analysis identified a unique miRNA network that is intimately linked to the mast cell differentiation program. Methodology/Principal Findings We identified 86 unique miRNAs with expression patterns that were up- or down- regulated at 5-fold or more during bone marrow derived mast cells (BMMC) development. By employing TargetScan and MeSH databases, we identified 524 transcripts involved in 30 canonical pathways as potentially regulated by these specific 86 miRNAs. Furthermore, by applying miRanda and IPA analyses, we predict that 7 specific miRNAs of this group are directly associated with the expression of c-Kit and FcεRIα and likewise, that 18 miRNAs promote expression of Mitf, GATA1 and c/EBPα three core transcription factors that direct mast cell differentiation. Furthermore, we have identified 11 miRNAs that may regulate the expression of STATs-3, -5a/b, GATA2 and GATA3 during differentiation, along with 13 miRNAs that target transcripts encoding Ndst2, mMCP4 and mMCP6 and thus may regulate biosynthesis of mast cell secretory mediators. Conclusions/Significance This investigation characterises changes in miRNA expression in whole BM cultures during the differentiation of mast cells and predicts functional links between miRNAs and their target mRNAs for the regulation of development. This information provides an important resource for further investigations of the contributions of miRNAs to mast cell differentiation and function.
Collapse
Affiliation(s)
- Yang Xiang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Fiona Eyers
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Ian G. Young
- Department of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul S. Foster
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- * E-mail: (MY); (PSF)
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- * E-mail: (MY); (PSF)
| |
Collapse
|
50
|
Yang M, Eyers F, Xiang Y, Guo M, Young IG, Rosenberg HF, Foster PS. Expression profiling of differentiating eosinophils in bone marrow cultures predicts functional links between microRNAs and their target mRNAs. PLoS One 2014; 9:e97537. [PMID: 24824797 PMCID: PMC4019607 DOI: 10.1371/journal.pone.0097537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/18/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that regulate complex transcriptional networks underpin immune responses. However, little is known about the specific miRNA networks that control differentiation of specific leukocyte subsets. In this study, we profiled miRNA expression during differentiation of eosinophils from bone marrow (BM) progenitors (bmEos), and correlated expression with potential mRNA targets involved in crucial regulatory functions. Profiling was performed on whole BM cultures to document the dynamic changes in miRNA expression in the BM microenvironment over the differentiation period. miRNA for network analysis were identified in BM cultures enriched in differentiating eosinophils, and chosen for their potential ability to target mRNA of factors that are known to play critical roles in eosinophil differentiation pathways or cell identify. METHODOLOGY/PRINCIPAL FINDINGS We identified 68 miRNAs with expression patterns that were up- or down- regulated 5-fold or more during bmEos differentiation. By employing TargetScan and MeSH databases, we identified 348 transcripts involved in 30 canonical pathways as potentially regulated by these miRNAs. Furthermore, by applying miRanda and Ingenuity Pathways Analysis (IPA), we identified 13 specific miRNAs that are temporally associated with the expression of IL-5Rα and CCR3 and 14 miRNAs associated with the transcription factors GATA-1/2, PU.1 and C/EBPε. We have also identified 17 miRNAs that may regulate the expression of TLRs 4 and 13 during eosinophil differentiation, although we could identify no miRNAs targeting the prominent secretory effector, eosinophil major basic protein. CONCLUSIONS/SIGNIFICANCE This is the first study to map changes in miRNA expression in whole BM cultures during the differentiation of eosinophils, and to predict functional links between miRNAs and their target mRNAs for the regulation of eosinophilopoiesis. Our findings provide an important resource that will promote the platform for further understanding of the role of these non-coding RNAs in the regulation of eosinophil differentiation and function.
Collapse
Affiliation(s)
- Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- * E-mail: (MY); (PSF)
| | - Fiona Eyers
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Yang Xiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Man Guo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ian G. Young
- Department of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul S. Foster
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- * E-mail: (MY); (PSF)
| |
Collapse
|