1
|
Carter-Su C, Argetsinger LS, Svezhova N. 2022 Cannon lecture: an ode to signal transduction: how the growth hormone pathway revealed insight into height, malignancy, and obesity. Am J Physiol Endocrinol Metab 2023; 325:E425-E437. [PMID: 37672248 PMCID: PMC10874654 DOI: 10.1152/ajpendo.00265.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Walter Cannon was a highly regarded American neurologist and physiologist with extremely broad interests. In the tradition of Cannon and his broad interests, we discuss our laboratory's multifaceted work in signal transduction over the past 40+ years. We show how our questioning of how growth hormone (GH) in the blood communicates with cells throughout the body to promote body growth and regulate body metabolism led to insight into not only body height but also important regulators of malignancy and body weight. Highlights include finding that 1) A critical initiating step in GH signal transduction is GH activating the GH receptor-associated tyrosine kinase JAK2; 2) GH activation of JAK2 leads to activation of a number of signaling proteins, including STAT transcription factors; 3) JAK2 is autophosphorylated on multiple tyrosines that regulate the activity of JAK2 and recruit signaling proteins to GH/GH receptor/JAK2 complexes; 4) Constitutively activated STAT proteins are associated with cancer; 5) GH activation of JAK2 recruits the adapter protein SH2B1 to GH/GH receptor/JAK2 complexes where it facilitates GH regulation of the actin cytoskeleton and motility; and 6) SH2B1 is recruited to other receptors in the brain, where it enhances satiety, most likely in part by regulating leptin action and neuronal connections of appetite-regulating neurons. These findings have led to increased understanding of how GH functions, as well as therapeutic interventions for certain cancer and obese individuals, thereby reinforcing the great importance of supporting basic research since one never knows ahead of time what important insight it can provide.
Collapse
Affiliation(s)
- Christin Carter-Su
- University of Michigan Medical School, Ann Arbor, Michigan, United States
| | | | - Nadezhda Svezhova
- University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
2
|
Huang H, Drici L, Lassen PS, Palmisano G, Larsen MR. TiCPG - a strategy for the simultaneous enrichment of reversibly modified cysteine peptides, phosphopeptides, and sialylated N-Glycopeptides to study cytokines stimulated beta-cells. J Proteomics 2023; 273:104796. [PMID: 36538968 DOI: 10.1016/j.jprot.2022.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Diverse post-translational modifications (PTMs) regulate protein function and interaction to fine-tune biological processes. Reversible phosphorylation, cysteines (Cys) modifications, and N-linked glycosylation are all essentially involved in cellular signaling pathways, such as those initiated by the action of pro-inflammatory cytokines, which can induce pancreatic β-cell death and diabetes. Here we have developed a novel strategy for the simultaneous and comprehensive characterization of the proteome and three PTMs including reversibly modified Cysteines (rmCys), phosphorylation, and sialylated N-linked glycosylation from low amount of sample material. This strategy, termed TiCPG, is based on a combination of chemical labeling and titanium dioxide (TiO2) chromatography. We applied the TiCPG strategy to study the proteome and the three PTMs changes in β-cells subject to pro-inflammatory cytokines stimulation. It enabled quantitative analysis of 8346 rmCys sites, 10,321 phosphosites and 962 sialylated N-glycosites from 5496 proteins. Significant regulation was found on 100 proteins at the expression level, while 3020 PTM peptide isoforms from 1468 proteins were significantly regulated. The three PTMs were involved in cytokine mediated β-cell apoptosis, such as the NFκB and the inducible NO synthase signaling pathways. Overall, the TiCPG strategy is a cheap, straightforward, and powerful tool for studies targeting the three PTMs described above. SIGNIFICANCE: The present study presents a fast and easy method for quantitative assessment of the proteome and three PTMs from minimal amount of sample material. This simple method provides comprehensive and significant knowledge on biological systems and cellular signaling with relatively low analysis time, suitable for younger researchers and researchers that do not have direct access to LC-MSMS in their laboratories. From sub-milligram amount of material, we were able to map known cellular signaling events of proinflammatory cytokine effect on beta-cells and to discover novel PTMs involved in several known signaling pathways.
Collapse
Affiliation(s)
- Honggang Huang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Lylia Drici
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Pernille S Lassen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Departament of Parasitology, Institute of Biomedical Sciences - University of São Paulo, Avenida Prof. Lineu Prestes, 1374 - Edifício Biomédicas II, Cidade Universitária "Armando Salles Oliveira" - CEP, 05508-000 São Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
3
|
Vesting AJ, Jais A, Klemm P, Steuernagel L, Wienand P, Fog-Tonnesen M, Hvid H, Schumacher AL, Kukat C, Nolte H, Georgomanolis T, Altmüller J, Pasparakis M, Schmidt A, Krüger M, Supprian MS, Waisman A, Straub BK, Raschzok N, Bernier M, Birkenfeld AL, Hövelmeyer N, Brüning JC, Wunderlich FT. NIK/MAP3K14 in hepatocytes orchestrates NASH to hepatocellular carcinoma progression via JAK2/STAT5 inhibition. Mol Metab 2022; 66:101626. [PMID: 36356831 PMCID: PMC9676392 DOI: 10.1016/j.molmet.2022.101626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) ranges from steatosis to nonalcoholic steatohepatitis (NASH), which often progresses to hepatocellular carcinoma (HCC) through a largely undefined mechanism. NASH and HCC depend on inflammatory signaling, whose master regulator is the NFκB transcription factor family, activated by canonical and non-canonical pathways. METHODS Here, we investigated non-canonical NFκB-inducing kinase (NIK/MAP3K14) in metabolic NASH, NASH to HCC transition, and DEN-induced HCC. To this end, we performed dietary and chemical interventions in mice that were analyzed via single nucleus sequencing, gene expression and histochemical methods. Ultimately, we verified our mouse results in human patient samples. RESULTS We revealed that hepatocyte-specific NIK deficiency (NIKLKO) ameliorated metabolic NASH complications and reduced hepatocarcinogenesis, independent of its role in the NFκB pathway. Instead, hepatic NIK attenuated hepatoprotective JAK2/STAT5 signaling that is a prerequisite for NASH and NASH to HCC progression in mice and humans. CONCLUSIONS Our data suggest NIK-mediated inhibitory JAK2 phosphorylation at serine 633 that might be amenable for future therapeutic interventions in patients.
Collapse
Affiliation(s)
- Anna Juliane Vesting
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany, Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alexander Jais
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany, Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), 04103 Leipzig, Germany
| | - Paul Klemm
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany, Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lukas Steuernagel
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany, Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Peter Wienand
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany, Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Morten Fog-Tonnesen
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Henning Hvid
- Pathology & Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark
| | - Anna-Lena Schumacher
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Christian Kukat
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | | | - Janine Altmüller
- University of Cologne, Cologne Center for Genomics, Cologne, Germany
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Andreas Schmidt
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Marc Schmidt Supprian
- Institute of Experimental Hematology, TranslaTUM, Klinikum rechts der Isar der Technischen Universität München, 81675 Munich, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) 69120 Heidelberg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Beate Katharina Straub
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Nathanael Raschzok
- General, Visceral, and Transplantation Surgery, Charité-University School of Medicine, 13353 Berlin, Germany- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Berlin, Germany and Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin, Germany
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Andreas L Birkenfeld
- Internal Medicine IV, Clinic of Diabetology, Endocrinology, Nephrology, Internal medicine IV, University Hospital and Faculty of Medicine of the Eberhard Karls University Tübingen, 72016 Tübingen, Germany and Institute of Diabetes Research and Metabolic Diseases, Helmholtz Zentrum München an der Uniklinik Tübingen, Deutsches Zentrum für Diabetesforschung (DZD), Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany, Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany, Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Bader MS, Meyer SC. JAK2 in Myeloproliferative Neoplasms: Still a Protagonist. Pharmaceuticals (Basel) 2022; 15:ph15020160. [PMID: 35215273 PMCID: PMC8874480 DOI: 10.3390/ph15020160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
The discovery of the activating V617F mutation in Janus kinase 2 (JAK2) has been decisive for the understanding of myeloproliferative neoplasms (MPN). Activated JAK2 signaling by JAK2, CALR, and MPL mutations has become a focus for the development of targeted therapies for patients with MPN. JAK2 inhibitors now represent a standard of clinical care for certain forms of MPN and offer important benefits for MPN patients. However, several key aspects remain unsolved regarding the targeted therapy of MPN with JAK2 inhibitors, such as reducing the MPN clone and how to avoid or overcome a loss of response. Here, we summarize the current knowledge on the structure and signaling of JAK2 as central elements of MPN pathogenesis and feature benefits and limitations of therapeutic JAK2 targeting in MPN.
Collapse
Affiliation(s)
| | - Sara Christina Meyer
- Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland;
- Department of Biomedicine, University Hospital Basel and University of Basel, CH-4031 Basel, Switzerland
- Correspondence:
| |
Collapse
|
5
|
Gou P, Zhang W, Giraudier S. Insights into the Potential Mechanisms of JAK2V617F Somatic Mutation Contributing Distinct Phenotypes in Myeloproliferative Neoplasms. Int J Mol Sci 2022; 23:ijms23031013. [PMID: 35162937 PMCID: PMC8835324 DOI: 10.3390/ijms23031013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are a group of blood cancers in which the bone marrow (BM) produces an overabundance of erythrocyte, white blood cells, or platelets. Philadelphia chromosome-negative MPN has three subtypes, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The over proliferation of blood cells is often associated with somatic mutations, such as JAK2, CALR, and MPL. JAK2V617F is present in 95% of PV and 50–60% of ET and PMF. Based on current molecular dynamics simulations of full JAK2 and the crystal structure of individual domains, it suggests that JAK2 maintains basal activity through self-inhibition, whereas other domains and linkers directly/indirectly enhance this self-inhibited state. Nevertheless, the JAK2V617F mutation is not the only determinant of MPN phenotype, as many normal individuals carry the JAK2V617F mutation without a disease phenotype. Here we review the major MPN phenotypes, JAK-STAT pathways, and mechanisms of development based on structural biology, while also describing the impact of other contributing factors such as gene mutation allele burden, JAK-STAT-related signaling pathways, epigenetic modifications, immune responses, and lifestyle on different MPN phenotypes. The cross-linking of these elements constitutes a complex network of interactions and generates differences in individual and cellular contexts that determine the phenotypic development of MPN.
Collapse
Affiliation(s)
- Panhong Gou
- Laboratoire UMRS-1131, Ecole doctorale 561, Université de Paris, 75010 Paris, France
- INSERM UMR-S1131, Hôpital Saint-Louis, 75010 Paris, France
- Correspondence: (P.G.); (S.G.)
| | - Wenchao Zhang
- BFA, UMR 8251, CNRS, Université de Paris, 75013 Paris, France;
| | - Stephane Giraudier
- Laboratoire UMRS-1131, Ecole doctorale 561, Université de Paris, 75010 Paris, France
- INSERM UMR-S1131, Hôpital Saint-Louis, 75010 Paris, France
- Service de Biologie Cellulaire, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
- Correspondence: (P.G.); (S.G.)
| |
Collapse
|
6
|
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell (HSC) disorders with overproduction of mature myeloid blood cells, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). In 2005, several groups identified a single gain-of-function point mutation JAK2V617F in the majority of MPN patients. The JAK2V617F mutation confers cytokine independent proliferation to hematopoietic progenitor cells by constitutively activating canonical and non-canonical downstream pathways. In this chapter, we focus on (1) the regulation of JAK2, (2) the molecular mechanisms used by JAK2V617F to induce MPNs, (3) the factors that are involved in the phenotypic diversity in MPNs, and (4) the effects of JAK2V617F on hematopoietic stem cells (HSCs). The discovery of the JAK2V617F mutation led to a comprehensive understanding of MPN; however, the question still remains about how one mutation can give rise to three distinct disease entities. Various mechanisms have been proposed, including JAK2V617F allele burden, differential STAT signaling, and host genetic modifiers. In vivo modeling of JAK2V617F has dramatically enhanced the understanding of the pathophysiology of the disease and provided the pre-clinical platform. Interestingly, most of these models do not show an increased hematopoietic stem cell self-renewal and function compared to wildtype controls, raising the question of whether JAK2V617F alone is sufficient to give a clonal advantage in MPN patients. In addition, the advent of modern sequencing technologies has led to a broader understanding of the mutational landscape and detailed JAK2V617F clonal architecture in MPN patients.
Collapse
|
7
|
JAK2S523L, a novel gain-of-function mutation in a critical autoregulatory residue in JAK2V617F- MPNs. Blood Adv 2021; 4:4554-4559. [PMID: 32956452 DOI: 10.1182/bloodadvances.2019001283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
The SH2-JH2 linker domain of JAK2 has been implicated in the negative regulation of JAK2 activity. In 2 patients with myeloproliferative neoplasms (MPNs), we identified and characterized the novel JAK2 mutation S523L, which occurs in a key residue in the linker region. In 1 case, acquisition of JAK2S523L was associated with thrombocytosis and bone marrow megakaryocytic hyperplasia, and there were no other somatic alterations in this patient. The second patient with JAK2S523Lmutation presented with increased hematocrit and had concurrent mutations in RUNX1 and BCORL1. Consistent with the genetic and clinical data, expression of JAK2S523L causes interleukin-3-independent growth in Ba/F3 cells transduced with the erythropoietin receptor by constitutively active Jak2/Stat5 signaling.
Collapse
|
8
|
Franklin DA, James JL, Axelrod ML, Balko JM. MEK inhibition activates STAT signaling to increase breast cancer immunogenicity via MHC-I expression. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:603-612. [PMID: 33062958 PMCID: PMC7556720 DOI: 10.20517/cdr.2019.109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/03/2020] [Indexed: 01/04/2023]
Abstract
AIM Immunotherapy and immune checkpoint inhibitors (ICI) have changed cancer care for many patients; however, breast cancers have exhibited minimal response to single agent ICI therapy. There is a significant need to identify novel targets capable of increasing cancer cell immunogenicity and response to ICIs in breast cancer. Mitogen activated protein kinase (MAPK) signaling is essential for many cellular processes but the relationship between MAPK signaling and cancer cell immunogenicity is less well understood. Recent reports suggest that MEK inhibition (MEKi) affects the tumor-immune microenvironment by altering the expression of interferon responsive PD-L1 and MHC-I through unknown mechanisms. METHODS Using western blotting and flow cytometry, we sought to determine whether MEKi affects JAK-STAT signaling upstream of PD-L1 and MHC-I expression in a panel of mouse mammary cancer and triple negative breast cancer cell lines. RESULTS The cell lines tested exhibited increased STAT activation in response to MEKi treatment. Furthermore, MEKi-induced MHC-I and PD-L1 expression are dependent upon STAT1 in MMTV-Neu cells. Interestingly, MEKi-induced STAT activation and interferon-responsive protein expression are abrogated with ErbB-family inhibitor co-treatment in MMTV-Neu cells, suggesting ErbB receptor signaling dependence, but not in basal-like cell lines. Importantly, analysis of basal-like breast cancer patient samples exhibited an inverse relationship between STAT1 and Ras/MAPK activation signatures. CONCLUSION These findings suggest that MAPK signaling and STAT activation are inversely related in both mouse and human mammary tumors. This work also supports further study of MEKi to increase STAT signaling and potentially, immunotherapy responses through increased MHC-I and PD-L1 expression.
Collapse
Affiliation(s)
- Derek A. Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jamaal L. James
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Margaret L. Axelrod
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Cuesta R, Gritsenko MA, Petyuk VA, Shukla AK, Tsai CF, Liu T, McDermott JE, Holz MK. Phosphoproteome Analysis Reveals Estrogen-ER Pathway as a Modulator of mTOR Activity Via DEPTOR. Mol Cell Proteomics 2019; 18:1607-1618. [PMID: 31189691 PMCID: PMC6683011 DOI: 10.1074/mcp.ra119.001506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
ER-positive breast tumors represent ∼70% of all breast cancer cases. Although their treatment with endocrine therapies is effective in the adjuvant or recurrent settings, the development of resistance compromises their effectiveness. The binding of estrogen to ERα, a transcription factor, triggers the regulation of the target genes (genomic pathway). Additionally, a cytoplasmic fraction of estrogen-bound ERα activates oncogenic signaling pathways such as PI3K/AKT/mTOR (nongenomic pathway). The upregulation of the estrogenic and the PI3K/AKT/mTOR signaling pathways are frequently associated with a poor outcome. To better characterize the connection between these two pathways, we performed a phosphoproteome analysis of ER-positive MCF7 breast cancer cells treated with estrogen or estrogen and the mTORC1 inhibitor rapamycin. Many proteins were identified as estrogen-regulated mTORC1 targets and among them, DEPTOR was selected for further characterization. DEPTOR binds to mTOR and inhibits the kinase activity of both mTOR complexes mTORC1 and mTORC2, but mitogen-activated mTOR promotes phosphorylation-mediated DEPTOR degradation. Although estrogen enhances the phosphorylation of DEPTOR by mTORC1, DEPTOR levels increase in estrogen-stimulated cells. We demonstrated that DEPTOR accumulation is the result of estrogen-ERα-mediated transcriptional upregulation of DEPTOR expression. Consequently, the elevated levels of DEPTOR partially counterbalance the estrogen-induced activation of mTORC1 and mTORC2. These results underscore the critical role of estrogen-ERα as a modulator of the PI3K/AKT/mTOR signaling pathway in ER-positive breast cancer cells. Additionally, these studies provide evidence supporting the use of dual PI3K/mTOR or dual mTORC1/2 inhibitors in combination with endocrine therapies as a first-line treatment option for the patients with ER-positive advanced breast cancer.
Collapse
Affiliation(s)
- Rafael Cuesta
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla NY 10595
| | - Marina A Gritsenko
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Vladislav A Petyuk
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Anil K Shukla
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Chia-Feng Tsai
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Tao Liu
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Jason E McDermott
- ¶Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland WA 99352
| | - Marina K Holz
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla NY 10595; ‖Albert Einstein Cancer Center, Bronx NY 10461.
| |
Collapse
|
10
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
11
|
Benton CB, Boddu PC, DiNardo CD, Bose P, Wang F, Assi R, Pemmaraju N, KC D, Pierce S, Patel K, Konopleva M, Ravandi F, Garcia‐Manero G, Kadia TM, Cortes J, Kantarjian HM, Andreeff M, Verstovsek S. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia. Cancer 2019; 125:1855-1866. [DOI: 10.1002/cncr.31986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Christopher B. Benton
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Prajwal C. Boddu
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Courtney D. DiNardo
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Prithviraj Bose
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Feng Wang
- Department of Genomic Medicine The University of Texas MD Anderson Cancer Center Houston Texas
| | - Rita Assi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Naveen Pemmaraju
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Devendra KC
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Sherry Pierce
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Keyur Patel
- Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston Texas
| | - Marina Konopleva
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Farhad Ravandi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | | | - Tapan M. Kadia
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Jorge Cortes
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Hagop M. Kantarjian
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Michael Andreeff
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Srdan Verstovsek
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
12
|
Hang D, Yin Y, Wang L, Yuan H, Du J, Zhu M, Dai J, Chen N, Hu Z, Shen H, Ma H. Effects of potentially functional polymorphisms in suppressor of cytokine signaling 3 (SOCS3) on the risk of head and neck squamous cancer. J Oral Pathol Med 2017; 46:598-602. [PMID: 27977878 DOI: 10.1111/jop.12539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Suppressor of cytokine signaling 3 (SOCS3) has been identified as an inhibitor of JAK/STAT pathway that plays a significant role in carcinogenesis. SOCS3 and JAK2 polymorphisms may influence the gene expression or function, contributing to the disease susceptibility; however, such effect has not been evaluated in head and neck squamous cell carcinoma (HNSCC). METHODS A case-control study was performed to test the associations of SOCS3 and JAK2 polymorphisms with risk of HNSCC in 576 cases and 1552 cancer-free controls from China. Seven potentially functional polymorphisms predicted by bioinformatics tools were genotyped using Infinium BeadChip platform. The association between genotypes and HNSCC risk was estimated by computing odds ratios (ORs) and 95% confidence intervals (CIs) in univariate and multivariate logistic regression models. RESULTS We found that rs2280148 located at 3'-untranslated region of SOCS3 was significantly associated with an increased risk of HNSCC (additive model: adjusted OR = 1.21, 95% CI = 1.03-1.43, P = 0.021). Moreover, rs8064821 located in the promoter region of SOCS3 was linked with a decreased risk of the cancer (additive model: adjusted OR = 0.83, 95% CI = 0.71-0.97, P = 0.022). Combined analysis of these variants by the number of risk alleles showed a significant locus-dosage effect on the risk of HNSCC (Ptrend = 0.006). CONCLUSIONS We provided the first evidence that SOCS3 polymorphisms may influence the risk of HNSCC, which could be applied as novel biomarkers to identify individuals at high risk of the disease.
Collapse
Affiliation(s)
- Dong Hang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yin Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lihua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ning Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Hubbard SR. Mechanistic Insights into Regulation of JAK2 Tyrosine Kinase. Front Endocrinol (Lausanne) 2017; 8:361. [PMID: 29379470 PMCID: PMC5770812 DOI: 10.3389/fendo.2017.00361] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/04/2023] Open
Abstract
JAK2 is a member of the Janus kinase (JAKs) family of non-receptor protein tyrosine kinases, which includes JAK1-3 and TYK2. JAKs serve as the cytoplasmic signaling components of cytokine receptors and are activated through cytokine-mediated trans-phosphorylation, which leads to receptor phosphorylation and recruitment and phosphorylation of signal transducer and activator of transcription (STAT) proteins. JAKs are unique among tyrosine kinases in that they possess a pseudokinase domain, which is just upstream of the C-terminal tyrosine kinase domain. A wealth of biochemical and clinical data have established that the pseudokinase domain of JAKs is crucial for maintaining a low basal (absence of cytokine) level of tyrosine kinase activity. In particular, gain-of-function mutations in the JAK genes, most frequently, V617F in the pseudokinase domain of JAK2, have been mapped in patients with blood disorders, including myeloproliferative neoplasms and leukemias. Recent structural and biochemical studies have begun to decipher the molecular mechanisms that maintain the basal, low-activity state of JAKs and that, via mutation, lead to constitutive activity and disease. This review will examine these mechanisms and describe how this knowledge could potentially inform drug development efforts aimed at obtaining a mutant (V617F)-selective inhibitor of JAK2.
Collapse
Affiliation(s)
- Stevan R. Hubbard
- Department of Biochemistry and Molecular Pharmacology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, United States
- *Correspondence: Stevan R. Hubbard,
| |
Collapse
|
14
|
Roskoski R. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Pharmacol Res 2016; 111:784-803. [PMID: 27473820 DOI: 10.1016/j.phrs.2016.07.038] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 02/06/2023]
Abstract
The Janus kinase (JAK) family of non-receptor protein-tyrosine kinases consists of JAK1, JAK2, JAK3, and TYK2 (tyrosine kinase-2). Each of these proteins contains a JAK homology pseudokinase (JH2) domain that regulates the adjacent protein kinase domain (JH1). JAK1/2 and TYK2 are ubiquitously expressed whereas JAK3 is found predominantly in hematopoietic cells. The Janus kinase family is regulated by numerous cytokines including interleukins, interferons, and hormones such as erythropoietin, thrombopoietin, and growth hormone. Ligand binding to cytokine and hormone receptors leads to the activation of associated Janus kinases, which then mediate the phosphorylation of the receptors. The SH2 domain of STATs (signal transducers and activators of transcription) binds to the receptor phosphotyrosines thereby promoting STAT phosphorylation by the Janus kinases and consequent activation. STAT dimers are translocated to the nucleus where they participate in the regulation of the expression of thousands of proteins. JAK-STAT dysregulation results in autoimmune disorders such as rheumatoid arthritis, ulcerative colitis, and Crohn disease. JAK-STAT dysregulation also plays a role in the pathogenesis of myelofibrosis, polycythemia vera, and other myeloproliferative illnesses. An activating JAK2 V617F mutation occurs in 95% of people with polycythemia vera and in a lower percentage of people with other neoplasms. JAK1/3 signaling participates in the pathogenesis of inflammatory afflictions while JAK1/2 signaling participates in the development of several malignancies including leukemias and lymphomas as well as myeloproliferative neoplasms. Tofacitinib is a pan-JAK inhibitor that is approved by the FDA for the treatment of rheumatoid arthritis and ruxolitinib is a JAK1/2 inhibitor that is approved for the treatment of polycythemia vera and myelofibrosis.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|
15
|
Ruiz-Medina BE, Ross JA, Kirken RA. Interleukin-2 Receptor β Thr-450 Phosphorylation Is a Positive Regulator for Receptor Complex Stability and Activation of Signaling Molecules. J Biol Chem 2015; 290:20972-20983. [PMID: 26152718 DOI: 10.1074/jbc.m115.660654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 02/02/2023] Open
Abstract
T, B, and natural killer cells are required for normal immune response and are regulated by cytokines such as IL-2. These cell signals are propagated following receptor-ligand engagement, controlling recruitment and activation of effector proteins. The IL-2 receptor β subunit (IL-2Rβ) serves in this capacity and is known to be phosphorylated. Tyrosine phosphorylation of the β chain has been studied extensively. However, the identification and putative regulatory roles for serine and threonine phosphorylation sites have yet to be fully characterized. Using LC-MS/MS and phosphospecific antibodies, a novel IL-2/IL-15 inducible IL-2Rβ phosphorylation site (Thr-450) was identified. IL-2 phosphokinetic analysis revealed that phosphorylation of IL-2Rβ Thr-450 is rapid (2.5 min), transient (peaks at 15 min), and protracted compared with receptor tyrosine phosphorylation and occurs in multiple cell types, including primary human lymphocytes. Pharmacological and siRNA-mediated inhibition of various serine/threonine kinases revealed ERK1/2 as a positive regulator, whereas purified protein phosphatase 1 (PP1), dephosphorylated Thr-450 in vitro. Reconstitution assays demonstrated that Thr-450 is important for regulating IL-2R complex formation, recruitment of JAK3, and activation of AKT and ERK1/2 and a transcriptionally active STAT5. These results provide the first evidence of the identification and functional characterization for threonine phosphorylation of an interleukin receptor.
Collapse
Affiliation(s)
- Blanca E Ruiz-Medina
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968
| | - Jeremy A Ross
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968
| | - Robert A Kirken
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968.
| |
Collapse
|
16
|
Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood 2015; 125:3388-92. [PMID: 25824690 DOI: 10.1182/blood-2015-01-621110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/17/2015] [Indexed: 01/01/2023] Open
Abstract
The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2.
Collapse
|
17
|
Abstract
The JAK (Janus kinase) family members serve essential roles as the intracellular signalling effectors of cytokine receptors. This family, comprising JAK1, JAK2, JAK3 and TYK2 (tyrosine kinase 2), was first described more than 20 years ago, but the complexities underlying their activation, regulation and pleiotropic signalling functions are still being explored. Here, we review the current knowledge of their physiological functions and the causative role of activating and inactivating JAK mutations in human diseases, including haemopoietic malignancies, immunodeficiency and inflammatory diseases. At the molecular level, recent studies have greatly advanced our knowledge of the structures and organization of the component FERM (4.1/ezrin/radixin/moesin)-SH2 (Src homology 2), pseudokinase and kinase domains within the JAKs, the mechanism of JAK activation and, in particular, the role of the pseudokinase domain as a suppressor of the adjacent tyrosine kinase domain's catalytic activity. We also review recent advances in our understanding of the mechanisms of negative regulation exerted by the SH2 domain-containing proteins, SOCS (suppressors of cytokine signalling) proteins and LNK. These recent studies highlight the diversity of regulatory mechanisms utilized by the JAK family to maintain signalling fidelity, and suggest alternative therapeutic strategies to complement existing ATP-competitive kinase inhibitors.
Collapse
|
18
|
Shan Y, Gnanasambandan K, Ungureanu D, Kim ET, Hammarén H, Yamashita K, Silvennoinen O, Shaw DE, Hubbard SR. Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase. Nat Struct Mol Biol 2014; 21:579-84. [PMID: 24918548 DOI: 10.1038/nsmb.2849] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/04/2014] [Indexed: 12/31/2022]
Abstract
Janus kinase-2 (JAK2) mediates signaling by various cytokines, including erythropoietin and growth hormone. JAK2 possesses tandem pseudokinase and tyrosine-kinase domains. Mutations in the pseudokinase domain are causally linked to myeloproliferative neoplasms (MPNs) in humans. The structure of the JAK2 tandem kinase domains is unknown, and therefore the molecular bases for pseudokinase-mediated autoinhibition and pathogenic activation remain obscure. Using molecular dynamics simulations of protein-protein docking, we produced a structural model for the autoinhibitory interaction between the JAK2 pseudokinase and kinase domains. A striking feature of our model, which is supported by mutagenesis experiments, is that nearly all of the disease mutations map to the domain interface. The simulations indicate that the kinase domain is stabilized in an inactive state by the pseudokinase domain, and they offer a molecular rationale for the hyperactivity of V617F, the predominant JAK2 MPN mutation.
Collapse
Affiliation(s)
- Yibing Shan
- 1] D. E. Shaw Research, New York, New York, USA. [2]
| | - Kavitha Gnanasambandan
- 1] Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA. [2]
| | - Daniela Ungureanu
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Eric T Kim
- D. E. Shaw Research, New York, New York, USA
| | - Henrik Hammarén
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Kazuo Yamashita
- Systems Immunology Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Olli Silvennoinen
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - David E Shaw
- 1] D. E. Shaw Research, New York, New York, USA. [2] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | - Stevan R Hubbard
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
19
|
New insights into the structure and function of the pseudokinase domain in JAK2. Biochem Soc Trans 2013; 41:1002-7. [PMID: 23863170 DOI: 10.1042/bst20130005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
JAK (Janus kinase) 2 plays a critical role in signal transduction through several cytokine receptors. JAKs contain a typical tyrosine kinase domain preceded by a pseudokinase [JH2 (JAK homology 2)] domain which has been considered to be catalytically inactive. Identification of activating mutations in the JH2 domain of JAK2 as the major cause for polycythaemia vera and other MPNs (myeloproliferative neoplasms) demonstrate the critical regulatory function for this domain, but the underlying mechanisms have remained elusive. We have performed biochemical and functional analysis on the JH2 domain of JAK2. The results indicate that JH2 functions as an active protein kinase and phosphorylates two residues in JAK2 (Ser523 and Tyr570) that have been shown previously to be negative regulatory sites for JAK2 activity. The crystal structure of the JAK2 JH2 domain provides an explanation for the functional findings and shows that JH2 adopts a prototypical kinase fold, but binds MgATP through a non-canonical mode. The structure of the most prevalent pathogenic JH2 mutation V617F shows a high level of similarity to wild-type JH2. The most notable structural deviation is observed in the N-lobe αC-helix. The structural and biochemical data together with MD (molecular dynamics) simulations show that the V617F mutation rigidifies the αC-helix, which results in hyperactivation of the JH1 domain through an as yet unidentified mechanism. These results provide structural and functional insights into the normal and pathogenic function of the JH2 domain of JAK2.
Collapse
|
20
|
Anderson NM, Javadi M, Berndl E, Berberovic Z, Bailey ML, Huang K, Flenniken AM, Osborne LR, Adamson SL, Rossant J, Carter-Su C, Wang C, McNagny KM, Paulson RF, Minden MD, Stanford WL, Barber DL. Enu mutagenesis identifies a novel platelet phenotype in a loss-of-function Jak2 allele. PLoS One 2013; 8:e75472. [PMID: 24086539 PMCID: PMC3783367 DOI: 10.1371/journal.pone.0075472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/14/2013] [Indexed: 01/17/2023] Open
Abstract
Utilizing ENU mutagenesis, we identified a mutant mouse with elevated platelets. Genetic mapping localized the mutation to an interval on chromosome 19 that encodes the Jak2 tyrosine kinase. We identified a A3056T mutation resulting in a premature stop codon within exon 19 of Jak2 (Jak2(K915X)), resulting in a protein truncation and functionally inactive enzyme. This novel platelet phenotype was also observed in mice bearing a hemizygous targeted disruption of the Jak2 locus (Jak2(+/-)). Timed pregnancy experiments revealed that Jak2(K915X/K915X) and Jak2(-/-) displayed embryonic lethality; however, Jak2(K915X/K915X) embryos were viable an additional two days compared to Jak2(-/-) embryos. Our data suggest that perturbing JAK2 activation may have unexpected consequences in elevation of platelet number and correspondingly, important implications for treatment of hematological disorders with constitutive Jak2 activity.
Collapse
Affiliation(s)
- Nicole M. Anderson
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mojib Javadi
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Berndl
- Institute of Biomaterials and Biomedical Engineering, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Monica L. Bailey
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kai Huang
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | | | - Lucy R. Osborne
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - S. Lee Adamson
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Janet Rossant
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christin Carter-Su
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chen Wang
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kelly M. McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert F. Paulson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mark D. Minden
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - William L. Stanford
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dwayne L. Barber
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
Abstract
Activation of Janus kinases (Jaks) occurs through autophosphorylation of key tyrosine residues located primarily within their catalytic domain. Phosphorylation of these tyrosine residues facilitates access of substrates to the active site and serves as an intrinsic indicator of Jak activation. Here, we describe the methods and strategies used for analyzing Jak phosphorylation and activation. Tyrosine-phosphorylated (active) Jaks are primarily detected from cell extracts using anti-phosphotyrosine-directed Western blot analysis of Jak-specific immunoprecipitates. Additionally, receptor pull-down and in vitro kinase assays can also be utilized to measure cellular Jak catalytic activity. In addition to tyrosine phosphorylation, recent evidence indicates Jaks can be serine phosphorylated upon cytokine stimulation, however the lack of commercially available antibodies to detect these sites has hindered their analysis by Western blot. However, phosphoamino acid analysis (PAA) has been employed to monitor Jak serine and threonine phosphorylation. Over the past decade, remarkable advances have been made in our understanding of Jak function and dysfunction, however much remains to be learned about their complex regulatory mechanisms.
Collapse
Affiliation(s)
- Jeremy A Ross
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | | | | |
Collapse
|
22
|
JAK2 the future: therapeutic strategies for JAK-dependent malignancies. Trends Pharmacol Sci 2012; 33:574-82. [PMID: 22995223 DOI: 10.1016/j.tips.2012.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/18/2012] [Accepted: 08/21/2012] [Indexed: 11/23/2022]
Abstract
The Janus kinase (JAK) proteins are a family of intracellular nonreceptor tyrosine kinases involved in cytokine signaling via the JAK-STAT (signal transducers and activators of transcription) pathway. Genetic studies have identified somatic JAK2(V617F) mutations and other mutant alleles that activate JAK-STAT signaling in most patients with myeloproliferative neoplasms (MPNs). As a result, JAK inhibitors have been developed to treat various malignancies and have been shown to be efficacious in both preclinical and clinical settings. However, available ATP-competitive JAK (type I) inhibitors are associated with dose-dependent toxicities, and do not yet reduce disease burden in MPN patients. Recent studies suggest that genetic and epigenetic mechanisms can cause insensitivity to type I JAK inhibitors. Novel therapies include the development of type II JAK inhibitors and the use of alternative strategies to abrogate JAK-STAT signaling, perhaps with histone deacetylase (HDAC) and heat shock protein 90 (HSP90) inhibitors. These innovative therapies may translate to treatment of other diseases that are dependent on JAK signaling, including B-precursor acute lymphoblastic leukemia (B-ALL).
Collapse
|
23
|
Laurence A, Pesu M, Silvennoinen O, O’Shea J. JAK Kinases in Health and Disease: An Update. Open Rheumatol J 2012; 6:232-44. [PMID: 23028408 PMCID: PMC3460320 DOI: 10.2174/1874312901206010232] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 12/22/2022] Open
Abstract
Janus kinases (Jaks) are critical signaling elements for a large subset of cytokines. As a consequence they play pivotal roles in the patho-physiology of many diseases including neoplastic and autoimmune diseases. Small molecule Jak inhibitors as therapeutic agents have become a reality and the palette of such inhibitors will likely expand. This review will summarize our current knowledge on these key enzymes and their associated pharmaceutical inhibitors.
Collapse
Affiliation(s)
- Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marko Pesu
- Institute of Biomedical Technology, FI-33014 University of Tampere, Finland
- Centre for Laboratory Medicine, FI-33520 Tampere University Hospital, Finland
| | - Olli Silvennoinen
- Institute of Biomedical Technology, FI-33014 University of Tampere, Finland
- Centre for Laboratory Medicine, FI-33520 Tampere University Hospital, Finland
| | - John O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
24
|
Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol 2012; 19:754-9. [PMID: 22820988 PMCID: PMC3414675 DOI: 10.1038/nsmb.2348] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/26/2012] [Indexed: 11/09/2022]
Abstract
The protein tyrosine kinase JAK2 mediates signaling through numerous cytokine receptors. JAK2 possesses a pseudokinase domain (JH2) and a tyrosine kinase domain (JH1). Through unknown mechanisms, JH2 regulates the catalytic activity of JH1, and hyperactivating mutations in the JH2 region of human JAK2 cause myeloproliferative neoplasms (MPNs). We showed previously that JAK2 JH2 is, in fact, catalytically active. Here we present crystal structures of human JAK2 JH2, including both wild type and the most prevalent MPN mutant, V617F. The structures reveal that JH2 adopts the fold of a prototypical protein kinase but binds Mg-ATP noncanonically. The structural and biochemical data indicate that the V617F mutation rigidifies α-helix C in the N lobe of JH2, facilitating trans-phosphorylation of JH1. The crystal structures of JH2 afford new opportunities for the design of novel JAK2 therapeutics targeting MPNs.
Collapse
Affiliation(s)
- Rajintha M Bandaranayake
- Structural Biology Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
25
|
Ray BN, Kweon HK, Argetsinger LS, Fingar DC, Andrews PC, Carter-Su C. Research resource: identification of novel growth hormone-regulated phosphorylation sites by quantitative phosphoproteomics. Mol Endocrinol 2012; 26:1056-73. [PMID: 22570334 PMCID: PMC3858665 DOI: 10.1210/me.2011-1258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
GH and GH receptors are expressed throughout life, and GH elicits a diverse range of responses, including growth and altered metabolism. It is therefore important to understand the full spectrum of GH signaling pathways and cellular responses. We applied mass spectrometry-based phosphoproteomics combined with stable isotope labeling with amino acids in cell culture to identify proteins rapidly phosphorylated in response to GH in 3T3-F442A preadipocytes. We identified 132 phosphosites in 95 proteins that exhibited rapid (5 or 15 min) GH-dependent statistically significant increases in phosphorylation by more than or equal to 50% and 96 phosphosites in 46 proteins that were down-regulated by GH by more than or equal to 30%. Several of the GH-stimulated phosphorylation sites were known (e.g. regulatory Thr/Tyr in Erks 1 and 2, Tyr in signal transducers and activators of transcription (Stat) 5a and 5b, Ser939 in tuberous sclerosis protein (TSC) 2 or tuberin). The remaining 126 GH-stimulated sites were not previously associated with GH. Kyoto Encyclopedia of Genes and Genomes pathway analysis of GH-stimulated sites indicated enrichment in proteins associated with the insulin and mammalian target of rapamycin (mTOR) pathways, regulation of the actin cytoskeleton, and focal adhesions. Akt/protein kinase A consensus sites (RXRXXS/T) were the most commonly phosphorylated consensus sites. Immunoblotting confirmed GH-stimulated phosphorylation of all seven novel GH-dependent sites tested [regulatory sites in proline-rich Akt substrate, 40 kDA (PRAS40), regulatory associated protein of mTOR, ATP-citrate lyase, Na+/H+ exchanger-1, N-myc downstream regulated gene 1, and Shc]). The immunoblot results suggest that many, if not most, of the GH-stimulated phosphosites identified in this large-scale quantitative phosphoproteomics analysis, including sites in multiple proteins in the Akt/ mTOR complex 1 pathway, are phosphorylated in response to GH. Their identification significantly broadens our thinking of GH-regulated cell functions.
Collapse
Affiliation(s)
- Bridgette N Ray
- Departments of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Janus kinase (JAK)-signal transducer and activators of transcription (STAT) signaling pathways play crucial roles in lymphopoiesis. In particular, JAK3 has unique functions in the lymphoid system such that JAK3 ablation results in phenotypes resembling severe combined immunodeficiency syndrome. This review focuses on the biochemistry, immunological functions, and clinical significance of JAK3. Compared with other members of the JAK family, the biochemical properties of JAK3 are relatively less well characterized and thus largely inferred from studies of JAK2. Furthermore, new findings concerning the cross-talks between Notch and JAK signaling pathways through ubiquitin-mediated protein degradation are discussed in more detail.
Collapse
Affiliation(s)
- Wei Wu
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, 73104, USA
| | | |
Collapse
|
27
|
The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol 2011; 18:971-6. [PMID: 21841788 DOI: 10.1038/nsmb.2099] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
Human JAK2 tyrosine kinase mediates signaling through numerous cytokine receptors. The JAK2 JH2 domain functions as a negative regulator and is presumed to be a catalytically inactive pseudokinase, but the mechanism(s) for its inhibition of JAK2 remains unknown. Mutations in JH2 lead to increased JAK2 activity, contributing to myeloproliferative neoplasms (MPNs). Here we show that JH2 is a dual-specificity protein kinase that phosphorylates two negative regulatory sites in JAK2: Ser523 and Tyr570. Inactivation of JH2 catalytic activity increased JAK2 basal activity and downstream signaling. Notably, different MPN mutations abrogated JH2 activity in cells, and in MPN (V617F) patient cells phosphorylation of Tyr570 was reduced, suggesting that loss of JH2 activity contributes to the pathogenesis of MPNs. These results identify the catalytic activity of JH2 as a previously unrecognized mechanism to control basal activity and signaling of JAK2.
Collapse
|
28
|
Sanz A, Ungureanu D, Pekkala T, Ruijtenbeek R, Touw IP, Hilhorst R, Silvennoinen O. Analysis of Jak2 catalytic function by peptide microarrays: the role of the JH2 domain and V617F mutation. PLoS One 2011; 6:e18522. [PMID: 21533163 PMCID: PMC3078918 DOI: 10.1371/journal.pone.0018522] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/10/2011] [Indexed: 12/27/2022] Open
Abstract
Janus kinase 2 (JAK2) initiates signaling from several cytokine receptors and is required for biological responses such as erythropoiesis. JAK2 activity is controlled by regulatory proteins such as Suppressor of Cytokine Signaling (SOCS) proteins and protein tyrosine phosphatases. JAK2 activity is also intrinsically controlled by regulatory domains, where the pseudokinase (JAK homology 2, JH2) domain has been shown to play an essential role. The physiological role of the JH2 domain in the regulation of JAK2 activity was highlighted by the discovery of the acquired missense point mutation V617F in myeloproliferative neoplasms (MPN). Hence, determining the precise role of this domain is critical for understanding disease pathogenesis and design of new treatment modalities. Here, we have evaluated the effect of inter-domain interactions in kinase activity and substrate specificity. By using for the first time purified recombinant JAK2 proteins and a novel peptide micro-array platform, we have determined initial phosphorylation rates and peptide substrate preference for the recombinant kinase domain (JH1) of JAK2, and two constructs comprising both the kinase and pseudokinase domains (JH1-JH2) of JAK2. The data demonstrate that (i) JH2 drastically decreases the activity of the JAK2 JH1 domain, (ii) JH2 increased the Km for ATP (iii) JH2 modulates the peptide preference of JAK2 (iv) the V617F mutation partially releases this inhibitory mechanism but does not significantly affect substrate preference or Km for ATP. These results provide the biochemical basis for understanding the interaction between the kinase and the pseudokinase domain of JAK2 and identify a novel regulatory role for the JAK2 pseudokinase domain. Additionally, this method can be used to identify new regulatory mechanisms for protein kinases that provide a better platform for designing specific strategies for therapeutic approaches.
Collapse
Affiliation(s)
- Arturo Sanz
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Daniela Ungureanu
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Tuija Pekkala
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | | | - Ivo P. Touw
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Riet Hilhorst
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Olli Silvennoinen
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
29
|
Mikami Y, Asano M, Honda MJ, Takagi M. Bone morphogenetic protein 2 and dexamethasone synergistically increase alkaline phosphatase levels through JAK/STAT signaling in C3H10T1/2 cells. J Cell Physiol 2010; 223:123-33. [PMID: 20039267 DOI: 10.1002/jcp.22017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alkaline phosphatase (ALP) is generally believed to be a faithful marker of osteoblast differentiation, and its expression is induced by bone morphogenetic protein-2 (BMP-2) and dexamethasone (Dex). However, the effects of combined administration of BMP-2 and Dex on ALP transcription have not been extensively examined. In this study, we found that BMP-2 and Dex synergistically increase ALP levels in mouse C3H10T1/2 pluripotent stem cells. However, switching from one inducer to the other, by adding BMP-2 or Dex to cell cultures at different times, was no more effective than continuous treatment with either inducer alone. A significant induction of ALP mRNA expression was observed only in cells continuously treated with both inducers. This result suggests that both BMP-2 and Dex may act in the same pathway or at the same stage of differentiation. A luciferase assay using ALP promoter deletion constructs showed that a region of the promoter containing a putative signal transducer and activator of transcription 3 (STAT3) response element (SRE) responds to treatment with a combination of BMP-2 and Dex. Furthermore, a ChIP assay indicated that STAT3 bound to the SRE. In addition, a STAT3 siRNA suppressed the synergistic effect of BMP-2 and Dex on ALP levels. These results indicate that STAT3 may play an important role in regulating ALP expression. To our knowledge, this is the first time that STAT3 has been implicated in the regulation of ALP expression by BMP-2 and Dex. These findings raise the possibility of developing new strategies for the enhancement of bone formation using a combination of BMPs and Dex.
Collapse
Affiliation(s)
- Yoshikazu Mikami
- 1st Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
30
|
Abstract
JAK2 (Janus tyrosine kinase 2) is important for signalling through many cytokine receptors, and a gain-of-function JAK2 mutation in its pseudokinase domain, V617F, has been implicated in Philadelphia chromosome-negative myeloproliferative neoplasms. How this mutation hyperactivates JAK2 is poorly understood. In the present paper we report our findings that the V617F mutation has little effect on the Vmax of JAK2 kinase activity, but lowers the Km value for substrates. Therefore under physiological conditions where the concentration level of substrates is presumably below saturation, JAK2(V617F) exhibits hyperactivation compared with wild-type JAK2. This lower Km of JAK2(V617F) towards substrates requires the JAK2 FERM (4.1/ezrin/radixin/moesin) domain, as deletion of the FERM domain abolished this effect. We also show that, in contrast with its positive role in JAK2(V617F) hyperactivation, the FERM domain in wild-type JAK2 is inhibitory. Deletion or mutations of the FERM domain resulted in increased basal JAK2 kinase activity. The results of the present study provide the biochemical basis for how V617F hyperactivates JAK2, and identifies novel regulating roles of the JAK2 FERM domain to control kinase activity at different activation states.
Collapse
|
31
|
Ross JA, Cheng H, Nagy ZS, Frost JA, Kirken RA. Protein phosphatase 2A regulates interleukin-2 receptor complex formation and JAK3/STAT5 activation. J Biol Chem 2009; 285:3582-3591. [PMID: 19923221 DOI: 10.1074/jbc.m109.053843] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible protein phosphorylation plays a key role in interleukin-2 (IL-2) receptor-mediated activation of Janus tyrosine kinase 3 (JAK3) and signal transducer and activator of transcription 5 (STAT5) in lymphocytes. Although the mechanisms governing IL-2-induced tyrosine phosphorylation and activation of JAK3/STAT5 have been extensively studied, the role of serine/threonine phosphorylation in controlling these effectors remains to be elucidated. Using phosphoamino acid analysis, JAK3 and STAT5 were determined to be serine and tyrosine-phosphorylated in response to IL-2 stimulation of the human natural killer-like cell line, YT. IL-2 stimulation also induced serine/threonine phosphorylation of IL-2Rbeta, but not IL-2Rgamma. To investigate the regulation of serine/threonine phosphorylation in IL-2 signaling, the roles of protein phosphatase 1 (PP1) and 2A (PP2A) were examined. Inhibition of phosphatase activity by calyculin A treatment of YT cells resulted in a significant induction of serine phosphorylation of JAK3 and STAT5, and serine/threonine phosphorylation of IL-2Rbeta. Moreover, inhibition of PP2A, but not PP1, diminished IL-2-induced tyrosine phosphorylation of IL-2Rbeta, JAK3, and STAT5, and abolished STAT5 DNA binding activity. Serine/threonine phosphorylation of IL-2Rbeta by a staurosporine-sensitive kinase also blocked its association with JAK3 and IL-2Rgamma in YT cells. Taken together, these data indicate that serine/threonine phosphorylation negatively regulates IL-2 signaling at multiple levels, including receptor complex formation and JAK3/STAT5 activation, and that this regulation is counteracted by PP2A. These findings also suggest that PP2A may serve as a therapeutic target for modulating JAK3/STAT5 activation in human disease.
Collapse
Affiliation(s)
- Jeremy A Ross
- From the Department of Biological Sciences, University of Texas, El Paso, Texas 79968
| | - Hanyin Cheng
- From the Department of Biological Sciences, University of Texas, El Paso, Texas 79968; the Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, and
| | - Zsuzsanna S Nagy
- From the Department of Biological Sciences, University of Texas, El Paso, Texas 79968
| | - Jeffrey A Frost
- the Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030
| | - Robert A Kirken
- From the Department of Biological Sciences, University of Texas, El Paso, Texas 79968.
| |
Collapse
|
32
|
Kurdi M, Booz GW. JAK redux: a second look at the regulation and role of JAKs in the heart. Am J Physiol Heart Circ Physiol 2009; 297:H1545-56. [PMID: 19717737 DOI: 10.1152/ajpheart.00032.2009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A number of type 1 receptor cytokine family members protect the heart from acute and chronic oxidative stress. This protection involves activation of two intracellular signaling cascades: the reperfusion injury salvage kinase (RISK) pathway, which entails activation of phosphatidylinositol 3-kinase (PI3-kinase) and ERK1/2, and JAK-STAT signaling, which involves activation of transcription factor signal transducer and activator of transcription 3 (STAT3). Obligatory for activation of both RISK and STAT3 by nearly all of these cytokines are the kinases JAK1 and JAK2. Yet surprisingly little is known about how JAK1 and JAK2 are regulated in the heart or how they couple to PI3-kinase activation. Although the JAKs are linked to antioxidative stress programs in the heart, we recently reported that these kinases are inhibited by oxidative stress in cardiac myocytes. In contrast, others have reported that cardiac JAK2 is activated by acute oxidative stress by an undefined process. Here we summarize recent insights into the regulation of JAK1 and JAK2. Besides oxidative stress, inhibitory regulation involves phosphorylation, nitration, and intramolecular restraints. Stimulatory regulation involves phosphorylation and adaptor proteins. The net effect of stress on JAK activity in the heart likely represents the sum of both inhibitory and stimulatory processes, along with their dynamic interaction. Thus the regulation of JAKs in the heart, once touted as the paragon of simplicity, is proving rather complicated indeed, requiring a second look. It is our contention that a better understanding of the regulation of this kinase family that is implicated in cardiac protection could translate into effective therapeutic strategies for preventing myocardial damage or repairing the injured heart.
Collapse
Affiliation(s)
- Mazen Kurdi
- Department of Chemistry and Biochemistry, Faculty of Sciences, Lebanese University, Rafic Hariri Educational Campus, Hadath, Lebanon
| | | |
Collapse
|
33
|
Zhao L, Dong H, Zhang CC, Kinch L, Osawa M, Iacovino M, Grishin NV, Kyba M, Huang LJS. A JAK2 interdomain linker relays Epo receptor engagement signals to kinase activation. J Biol Chem 2009; 284:26988-98. [PMID: 19638629 DOI: 10.1074/jbc.m109.011387] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
JAK2 (Janus kinase 2) is essential for cytokine receptor signaling, and several lines of evidence support a causal role of an activating JAK2 mutation in myeloproliferative disorders. JAK2 activity is autoinhibited by its pseudokinase domain in the basal state, and the inhibition is released by cytokine stimulation; how engagement of the cognate receptor triggers this release is unknown. From a functional screen for gain-of-function JAK2 mutations, we discovered 13 missense mutations, nine in the pseudokinase domain and four in the Src homology 2 (SH2)-pseudokinase domain linker. These mutations identified determinants for autoinhibition and inducible activation in JAK2. Two of the mutants, K539I and N622I, resulted in erythrocytosis in mice. Scanning mutagenesis of the SH2-pseudokinase domain linker indicated that its N-terminal part was essential for interaction of JAK2 with the Epo receptor, whereas certain mutations in the C-terminal region conferred constitutive activation. We further showed that substitutions for Glu(543)-Asp(544) in this linker or Leu(611), Arg(683), or Phe(694) in the hinge proximal region of the pseudokinase domain resulted in activated JAK2 mutants that could not be further stimulated by Epo. These results suggest that the SH2-pseudokinase domain linker acts as a switch that relays cytokine engagement to JAK2 activation by flexing the pseudokinase domain hinge.
Collapse
Affiliation(s)
- Lequn Zhao
- Department of Cell Biology, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Enhancement of TRAIL cytotoxicity by AG-490 in human ALL cells is characterized by downregulation of cIAP-1 and cIAP-2 through inhibition of Jak2/Stat3. Cell Res 2009; 19:1079-89. [PMID: 19564891 DOI: 10.1038/cr.2009.80] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability of death-inducing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to selectively kill a variety of cancer cells has been largely described, but one of the major concerns with the treatment is the occurrence of drug resistance and possible toxic side effects. Here, we report that TRAIL induces apoptosis in Jurkat and SUPT1 T cell lines and in human T-ALL blasts but not in healthy subject-derived peripheral blood mononuclear cells. In parallel, the treatment with TRAIL and Tyrphostin (AG-490), a selective Janus kinase 2 inhibitor, produces an evident enhancement of cytotoxicity, characterized by a significant inhibition of Stat3 phosphorylation compared to controls or to TRAIL alone-treated samples, and associated with a dramatic decrease of both cIAP-1 and cIAP-2 mRNA levels. Downregulation of cIAP-1 and cIAP-2 by specific small interference RNAs significantly amplifies TRAIL-reduced cytotoxicity. All together, these findings strongly indicate that cIAP-1 and cIAP-2 downregulation is a fundamental step in the signaling pathways mediating the combinatorial effect of TRAIL and AG-490 on T cell leukemia. These findings may help to open new routes for the development of less toxic pharmacological strategies in the treatment of patients affected by TRAIL-sensitive leukemias.
Collapse
|
35
|
Abstract
The Janus family kinases (Jaks), Jak1, Jak2, Jak3, and Tyk2, form one subgroup of the non-receptor protein tyrosine kinases. They are involved in cell growth, survival, development, and differentiation of a variety of cells but are critically important for immune cells and hematopoietic cells. Data from experimental mice and clinical observations have unraveled multiple signaling events mediated by Jaks in innate and adaptive immunity. Deficiency of Jak3 or Tyk2 results in defined clinical disorders, which are also evident in mouse models. A striking phenotype associated with inactivating Jak3 mutations is severe combined immunodeficiency syndrome, whereas mutation of Tyk2 results in another primary immunodeficiency termed autosomal recessive hyperimmunoglobulin E syndrome. By contrast, complete deletion of Jak1 or Jak2 in the mouse are not compatible with life and, unsurprisingly, do not have counterparts in human disease. However, activating mutations of each of the Jaks are found in association with malignant transformation, the most common being gain-of-function mutations of Jak2 in polycythemia vera and other myeloproliferative disorders. Our existing knowledge on Jak signaling pathways and fundamental work on their biochemical structure and intracellular interactions allow us to develop new strategies for controlling autoimmune diseases or malignancies by developing selective Jak inhibitors, which are now coming into clinical use. Despite the fact that Jaks were discovered only a little more than a decade ago, at the time of writing there are 20 clinical trials underway testing the safety and efficacy of Jak inhibitors.
Collapse
Affiliation(s)
- Kamran Ghoreschi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
36
|
Regulation of Jak2 function by phosphorylation of Tyr317 and Tyr637 during cytokine signaling. Mol Cell Biol 2009; 29:3367-78. [PMID: 19364823 DOI: 10.1128/mcb.00278-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Jak2, the cognate tyrosine kinase for numerous cytokine receptors, undergoes multisite phosphorylation during cytokine stimulation. To understand the role of phosphorylation in Jak2 regulation, we used mass spectrometry to identify numerous Jak2 phosphorylation sites and characterize their significance for Jak2 function. Two sites outside of the tyrosine kinase domain, Tyr(317) in the FERM domain and Tyr(637) in the JH2 domain, exhibited strong regulation of Jak2 activity. Mutation of Tyr(317) promotes increased Jak2 activity, and the phosphorylation of Tyr(317) during cytokine signaling requires prior activation loop phosphorylation, which is consistent with a role for Tyr(317) in the feedback inhibition of Jak2 kinase activity after receptor stimulation. Comparison to several previously identified regulatory phosphorylation sites on Jak2 revealed a dominant role for Tyr(317) in the attenuation of Jak2 signaling. In contrast, mutation of Tyr(637) decreased Jak2 signaling and activity and partially suppressed the activating JH2 V617F mutation, suggesting a role for Tyr(637) phosphorylation in the release of JH2 domain-mediated suppression of Jak2 kinase activity during cytokine stimulation. The phosphorylation of Tyr(317) and Tyr(637) act in concert with other regulatory events to maintain appropriate control of Jak2 activity and cytokine signaling.
Collapse
|
37
|
Robertson SA, Leinninger GM, Myers MG. Molecular and neural mediators of leptin action. Physiol Behav 2008; 94:637-42. [PMID: 18501391 PMCID: PMC2516921 DOI: 10.1016/j.physbeh.2008.04.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/02/2008] [Indexed: 01/17/2023]
Abstract
The adipose tissue-derived hormone, leptin, acts via its receptor (LepRb) in the brain to regulate energy balance and neuroendocrine function. Parsing the biology of leptin requires understanding LepRb signaling and the roles for specific signaling pathways in neural and physiological leptin action. Since the leptin acts via a broadly distributed network of LepRb-expressing neurons, understanding the function of each of these LepRb neural populations will also be crucial. Here, we review the status of knowledge regarding the molecular mediators of leptin action and the neural substrate via which leptin acts to regulate physiologic processes.
Collapse
Affiliation(s)
- Scott A. Robertson
- Division of Metabolism, Endocrinology and Diabetes, Department of Medicine and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gina M. Leinninger
- Division of Metabolism, Endocrinology and Diabetes, Department of Medicine and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin G. Myers
- Division of Metabolism, Endocrinology and Diabetes, Department of Medicine and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Phosphorylation of human Jak3 at tyrosines 904 and 939 positively regulates its activity. Mol Cell Biol 2008; 28:2271-82. [PMID: 18250158 DOI: 10.1128/mcb.01789-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Janus tyrosine kinase 3 (Jak3) is essential for signaling by interleukin-2 (IL-2) family cytokines and proper immune function. Dysfunctional regulation of Jak3 may result in certain disease states. However, the molecular mechanisms governing Jak3 activation are not fully understood. In this study, we used a functional-proteomics approach to identify two novel tyrosine phosphorylation sites within Jak3, Y904 and Y939, which are conserved among Jak family proteins. By using phosphospecific antibodies, both residues were observed to be rapidly induced by stimulation of cells with IL-2 or other gammac cytokines. Mechanistic studies indicated that Y904 and Y939 regulate Jak3 activities. A phenylalanine substitution at either site greatly reduced Jak3 kinase activity in vitro and its ability to phosphorylate signal transducer and activator of transcription 5 (Stat5) in vivo, suggesting that phosphorylation of these previously unrecognized residues positively regulates Jak3 activity. Y904 and Y939 were required for optimal ATP usage by Jak3, while phosphorylation of Y939 preferentially promoted Stat5 activity in intact cells. Together, these findings demonstrate positive functional roles for two novel Jak3 phosphoregulatory sites which may be similarly important for other Jak family members. Identification of these sites also provides new therapeutic opportunities to modulate Jak3 function.
Collapse
|
39
|
Regulation of lymphocyte development by cell-type-specific interpretation of Notch signals. Mol Cell Biol 2008; 28:2078-90. [PMID: 18195039 DOI: 10.1128/mcb.00844-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Notch signaling pathways exert diverse biological effects depending on the cellular context where Notch receptors are activated. How Notch signaling is integrated with environmental cues is a central issue. Here, we show that Notch activation accelerates ubiquitin-mediated and mitogen-activated protein kinase (MAPK)-dependent degradation of E2A transcription factors and Janus kinases, molecules essential for both B- and T-lymphocyte development. However, these events occur in B lymphocytes, but not T lymphocytes, due to their different levels of MAPK, thus providing one mechanism whereby Notch inhibits B-cell development without impairing T-cell differentiation. Lymphoid progenitors expressing a Notch-resistant E2A mutant differentiated into B-lineage cells on stromal cells expressing Notch ligands and in the thymus of transplant recipients. Bone marrow transplant assays and examination of steady-state B lymphopoiesis also revealed that the expression of Notch-resistant E2A and constitutively active STAT5 in mice neutralized the effects of Notch-induced degradation, allowing B-cell development through a bone marrow-like program in the thymus. These findings illustrate that Notch function can be influenced by MAPKs, producing distinct outcomes in different cellular contexts.
Collapse
|
40
|
Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity. Mol Cell Biol 2007; 28:1792-801. [PMID: 18160720 DOI: 10.1128/mcb.01447-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Janus kinases are essential for signal transduction by a variety of cytokine receptors and when inappropriately activated can cause hematopoietic disorders and oncogenesis. Consequently, it can be predicted that the interaction of the kinases with receptors and the events required for activation are highly controlled. In a screen to identify phosphorylation events regulating Jak2 activity in EpoR signaling, we identified a mutant (Jak2-Y613E) which has the property of being constitutively activated, as well as an inactivating mutation (Y766E). Although no evidence was obtained to indicate that either site is phosphorylated in signaling, the consequences of the Y613E mutation are similar to those observed with recently described activating mutations in Jak2 (Jak2-V617F and Jak2-L611S). However, unlike the V617F or L611S mutant, the Y613E mutant requires the presence of the receptor but not Epo stimulation for activation and downstream signaling. The properties of the Jak2-Y613E mutant suggest that under normal conditions, Jak2 that is not associated with a receptor is locked into an inactive state and receptor binding through the FERM domain relieves steric constraints, allowing the potential to be activated with receptor engagement.
Collapse
|
41
|
Kurdi M, Booz GW. Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J Cardiovasc Pharmacol 2007; 50:126-41. [PMID: 17703129 DOI: 10.1097/fjc.0b013e318068dd49] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of the transcription factor signal transducers and activators of transcription (STAT) 3 is a defining feature of the interleukin (IL)-6 family of cytokines, which include IL-6, leukemia inhibitory factor, and cardiotrophin-1. These cytokines, as well as STAT3 activation, have been shown to be protective for cardiac myocytes and necessary for ischemia preconditioning. However, the mechanisms that regulate IL-6-type cytokine signaling in cardiac myocytes are largely unexplored. We propose that the protective character of IL-6-type cytokine signaling in cardiac myocytes is determined principally by three mechanisms: redox status of the nonreceptor tyrosine kinase Janus kinase 1 (JAK) 1 that activates STAT3, phosphorylation of STAT3 within the transcriptional activation domain on serine 727, and STAT3-mediated induction of suppressor of cytokine signaling (SOCS) 3 that terminates IL-6-type cytokine signaling. Moreover, we hypothesize that hyperactivation of the JAK kinases, particularly JAK2, mismatched STAT3 serine-tyrosine phosphorylation or heightened STAT3 transcriptional activity, and SOCS3 induction may ultimately prove detrimental. Here we summarize recent evidence that supports this hypothesis, as well as additional possible mechanisms of JAK-STAT regulation. Understanding how IL-6-type cytokine signaling is regulated in cardiac myocytes has great significance for exploiting the therapeutic potential of these cytokines and the phenomenon of preconditioning.
Collapse
Affiliation(s)
- Mazen Kurdi
- Division of Molecular Cardiology, Cardiovascular Research Institute, College of Medicine, The Texas A&M University System Health Science Center, College Station, TX 76504, USA
| | | |
Collapse
|
42
|
Rahmani M, Nguyen TK, Dent P, Grant S. The multikinase inhibitor sorafenib induces apoptosis in highly imatinib mesylate-resistant bcr/abl+ human leukemia cells in association with signal transducer and activator of transcription 5 inhibition and myeloid cell leukemia-1 down-regulation. Mol Pharmacol 2007; 72:788-95. [PMID: 17595328 DOI: 10.1124/mol.106.033308] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The effects of the multikinase inhibitor sorafenib (BAY 43-9006), an agent shown previously to induce apoptosis in human leukemia cells through inhibition of myeloid cell leukemia-1 (Mcl-1) translation, have been examined in Bcr/Abl(+) leukemia cells resistant to imatinib mesylate (IM). When administered at pharmacologically relevant concentrations (10-15 microM), sorafenib potently induced apoptosis in imatinib mesylate-resistant cells expressing high levels of Bcr/Abl, cells exhibiting a Bcr/Abl-independent, Lyn-dependent form of resistance, and CD34(+) cells obtained from imatinib-resistant patients. In addition, Ba/F3 cells expressing mutations rendering them resistant to IM (e.g., E255K, M351T) or to IM, dasatinib, and nilotinib (T315I) remained fully sensitive to sorafenib. Induction of apoptosis by sorafenib was associated with rapid and pronounced down-regulation of Mcl-1 and diminished signal transducer and activator of transcription (STAT) 5 phosphorylation and reporter activity but only very modest and delayed inactivation of the Bcr/Abl downstream target Crkl. Moreover, transfection with a constitutively active STAT5 construct partially but significantly protected cells from sorafenib lethality. Ba/F3 cells expressing Bcr/Abl mutations were as sensitive to sorafenib-induced Mcl-1 down-regulation and dephosphorylation of STAT5 and eukaryotic initiation factor 4E as wild-type cells. Finally, stable knockdown of Bcl-2-interacting mediator of cell death (Bim) with short hairpin RNA in K562 cells significantly diminished sorafenib lethality, arguing strongly for a functional role of this proapoptotic Bcl-2 family member in the lethality of this agent. Together, these findings suggest that sorafenib effectively induces apoptosis in highly imatinib-resistant chronic myelogenous leukemia cells, most likely by inhibiting or down-regulating targets (i.e., STAT5 and Mcl-1) downstream or independent of Bcr/Abl.
Collapse
Affiliation(s)
- Mohamed Rahmani
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
43
|
Ishida-Takahashi R, Rosario F, Gong Y, Kopp K, Stancheva Z, Chen X, Feener EP, Myers MG. Phosphorylation of Jak2 on Ser(523) inhibits Jak2-dependent leptin receptor signaling. Mol Cell Biol 2006; 26:4063-73. [PMID: 16705160 PMCID: PMC1489076 DOI: 10.1128/mcb.01589-05] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leptin receptor, LRb, and other cytokine receptors are devoid of intrinsic enzymatic activity and rely upon the activity of constitutively associated Jak family tyrosine kinases to mediate intracellular signaling. In order to clarify mechanisms by which Jak2, the cognate LRb-associated Jak kinase, is regulated and mediates downstream signaling, we employed tandem mass spectroscopic analysis to identify phosphorylation sites on Jak2. We identified Ser523 as the first-described site of Jak2 serine phosphorylation and demonstrated that this site is phosphorylated on Jak2 from intact cells and mouse spleen. Ser523 was highly phosphorylated in HEK293 cells independently of LRb-Jak2 activation, suggesting a potential role for the phosphorylation of Ser523 in the regulation of LRb by other pathways. Indeed, mutation of Ser523 sensitized and prolonged signaling by Jak2 following activation by the intracellular domain of LRb. The effect of Ser523 on Jak2 function was independent of Tyr570-mediated inhibition. Thus, the phosphorylation of Jak2 on Ser523 inhibits Jak2 activity and represents a novel mechanism for the regulation of Jak2-dependent cytokine signaling.
Collapse
|