1
|
Pan M, Blattner C. Regulation of p53 by E3s. Cancers (Basel) 2021; 13:745. [PMID: 33670160 PMCID: PMC7916862 DOI: 10.3390/cancers13040745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
More than 40 years of research on p53 have given us tremendous knowledge about this protein. Today we know that p53 plays a role in different biological processes such as proliferation, invasion, pluripotency, metabolism, cell cycle control, ROS (reactive oxygen species) production, apoptosis, inflammation and autophagy. In the nucleus, p53 functions as a bona-fide transcription factor which activates and represses transcription of a number of target genes. In the cytoplasm, p53 can interact with proteins of the apoptotic machinery and by this also induces cell death. Despite being so important for the fate of the cell, expression levels of p53 are kept low in unstressed cells and the protein is largely inactive. The reason for the low expression level is that p53 is efficiently degraded by the ubiquitin-proteasome system and the vast inactivity of the tumor suppressor protein under normal growth conditions is due to the absence of activating and the presence of inactivating posttranslational modifications. E3s are important enzymes for these processes as they decorate p53 with ubiquitin and small ubiquitin-like proteins and by this control p53 degradation, stability and its subcellular localization. In this review, we provide an overview about E3s that target p53 and discuss the connection between p53, E3s and tumorigenesis.
Collapse
Affiliation(s)
| | - Christine Blattner
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, PO-box 3640, 76021 Karlsruhe, Germany;
| |
Collapse
|
2
|
Ip WH, Dobner T. Cell transformation by the adenovirus oncogenes E1 and E4. FEBS Lett 2019; 594:1848-1860. [PMID: 31821536 DOI: 10.1002/1873-3468.13717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
Extensive studies on viral-mediated oncogenic transformation by human adenoviruses have revealed much of our current understanding on the molecular mechanisms that are involved in the process. To date, these studies have shown that cell transformation is a multistep process regulated by the cooperation of several adenoviral gene products encoded in the early regions 1 (E1) and 4 (E4). Early region 1A immortalizes primary rodent cells, whereas co-expression of early region protein 1B induces full manifestation of the transformed phenotype. Beside E1 proteins, also some E4 proteins have partial transforming activities through regulating many cellular pathways. Here, we summarize recent data of how adenoviral oncoproteins may contribute to viral transformation and discuss the challenge of pinpointing the underlying mechanisms.
Collapse
Affiliation(s)
- Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
3
|
Hidalgo P, Ip WH, Dobner T, Gonzalez RA. The biology of the adenovirus E1B 55K protein. FEBS Lett 2019; 593:3504-3517. [PMID: 31769868 DOI: 10.1002/1873-3468.13694] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022]
Abstract
The adenovirus E1B 55K (E1B) protein plays major roles in productive adenoviral infection and cellular transformation. Interest in E1B increased because of the potential of adenoviruses as therapeutic vectors, and the E1B gene is commonly deleted from adenovirus vectors for anticancer therapy. E1B activities are spatiotemporally regulated through SUMOylation and phosphorylation, and through interactions with multiple partners that occur presumably at different intracellular sites and times postinfection. E1B is implicated in the formation of viral replication compartments and regulates viral genome replication and transcription, transcriptional repression, degradation of cellular proteins, and several intranuclear steps of viral late mRNA biogenesis. Here, we review advances in our understanding of E1B during productive adenovirus replication and discuss fundamental aspects that remain unresolved.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ramón A Gonzalez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
4
|
Graus D, Konrad KR, Bemm F, Patir Nebioglu MG, Lorey C, Duscha K, Güthoff T, Herrmann J, Ferjani A, Cuin TA, Roelfsema MRG, Schumacher K, Neuhaus HE, Marten I, Hedrich R. High V-PPase activity is beneficial under high salt loads, but detrimental without salinity. THE NEW PHYTOLOGIST 2018; 219:1421-1432. [PMID: 29938800 PMCID: PMC6099232 DOI: 10.1111/nph.15280] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/15/2018] [Indexed: 05/03/2023]
Abstract
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.
Collapse
Affiliation(s)
- Dorothea Graus
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Kai R. Konrad
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Felix Bemm
- Institute of BioinformaticsCenter for Computational and Theoretical, BiologyUniversity of WürzburgAm HublandWürzburgD‐97218Germany
| | - Meliha Görkem Patir Nebioglu
- Centre for Organismal StudiesDevelopmental Biology of PlantsRuprecht‐Karls‐University of HeidelbergIm Neuenheimer Feld 230Heidelberg69120Germany
| | - Christian Lorey
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Kerstin Duscha
- Plant PhysiologyUniversity KaiserslauternPostfach 3049KaiserslauternD‐67653Germany
| | - Tilman Güthoff
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Johannes Herrmann
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Ali Ferjani
- Department of BiologyTokyo Gakugei UniversityNukui Kitamachi 4‐1‐1Koganei‐shiTokyo184‐8501Japan
| | - Tracey Ann Cuin
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTAS7001Australia
| | - M. Rob G. Roelfsema
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Karin Schumacher
- Centre for Organismal StudiesDevelopmental Biology of PlantsRuprecht‐Karls‐University of HeidelbergIm Neuenheimer Feld 230Heidelberg69120Germany
| | - H. Ekkehard Neuhaus
- Plant PhysiologyUniversity KaiserslauternPostfach 3049KaiserslauternD‐67653Germany
| | - Irene Marten
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| |
Collapse
|
5
|
Complete eradication of hepatomas using an oncolytic adenovirus containing AFP promoter controlling E1A and an E1B deletion to drive IL-24 expression. Cancer Gene Ther 2012; 19:619-29. [PMID: 22790965 DOI: 10.1038/cgt.2012.40] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interleukin (IL)-24, a promising therapeutic gene, has been widely used for Cancer Targeting Gene-Viro-Therapy (CTGVT). In this study, IL-24 was inserted into an oncolytic adenovirus in which the E1A gene is driven by an enhanced, short α-fetoprotein (AFP) promoter and the E1B gene is completely deleted to form Ad.enAFP-E1A-ΔE1B-IL-24. This construct has a potent antitumor effect on liver cancer cell lines in vitro, but little or no effect on normal cell lines, such as L-02 and QSG-7701. In vivo, the complete elimination of Huh-7 liver cancer in nude mice with Ad.enAFP-E1A-ΔE1B-IL-24 intratumor injection was observed. The design of Ad.enAFP-E1A-ΔE1B-IL-24 and its potent antitumor effect on liver cancer have not been published previously. The mechanism of the potent antitumor effect of Ad.enAFP-E1A-ΔE1B-IL-24 is due to the upregulation of GADD34 and intrinsic and extrinsic apoptotic signaling.
Collapse
|
6
|
Chronic viral infection and primary central nervous system malignancy. J Neuroimmune Pharmacol 2010; 5:387-403. [PMID: 20387126 PMCID: PMC2914282 DOI: 10.1007/s11481-010-9204-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/05/2010] [Indexed: 01/08/2023]
Abstract
Primary central nervous system (CNS) tumors cause significant morbidity and mortality in both adults and children. While some of the genetic and molecular mechanisms of neuro-oncogenesis are known, much less is known about possible epigenetic contributions to disease pathophysiology. Over the last several decades, chronic viral infections have been associated with a number of human malignancies. In primary CNS malignancies, two families of viruses, namely polyomavirus and herpesvirus, have been detected with varied frequencies in a number of pediatric and adult histological tumor subtypes. However, establishing a link between chronic viral infection and primary CNS malignancy has been an area of considerable controversy, due in part to variations in detection frequencies and methodologies used among researchers. Since a latent viral neurotropism can be seen with a variety of viruses and a widespread seropositivity exists among the population, it has been difficult to establish an association between viral infection and CNS malignancy based on epidemiology alone. While direct evidence of a role of viruses in neuro-oncogenesis in humans is lacking, a more plausible hypothesis of neuro-oncomodulation has been proposed. The overall goals of this review are to summarize the many human investigations that have studied viral infection in primary CNS tumors, discuss potential neuro-oncomodulatory mechanisms of viral-associated CNS disease and propose future research directions to establish a more firm association between chronic viral infections and primary CNS malignancies.
Collapse
|
7
|
Cardoso FM, Kato SEM, Huang W, Flint SJ, Gonzalez RA. An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells. Virology 2008; 378:339-46. [PMID: 18632130 DOI: 10.1016/j.virol.2008.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/03/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
It is well established that the human subgroup C adenovirus type 5 (Ad5) E1B 55 kDa protein can regulate the activity and concentration of the cellular tumor suppressor, p53. However, the contribution(s) of these functions of the E1B protein to viral reproduction remains unclear. To investigate this issue, we examined properties of p53 in normal human cells infected by E1B mutant viruses that display defective entry into the late phase or viral late mRNA export. The steady-state concentrations of p53 were significantly higher in cells infected by the E1B 55 kDa null mutant Hr6 or three mutants carrying small insertions in the E1B 55 kDa protein coding sequence than in Ad5-infected cells. Nevertheless, none of the mutants induced apoptosis in infected cells. Rather, the localization of p53 to E1B containing nuclear sites observed during infection by Ad5 was prevented by mutations that impair interaction of the E1B protein with p53 and/or with the E4 Orf6 protein. These results indicate that the E1B protein fulfills an early function that correlates efficient entry into the late phase with the localization of E1B and p53 in the nucleus of Ad5-infected normal human cells.
Collapse
Affiliation(s)
- F M Cardoso
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México
| | | | | | | | | |
Collapse
|
8
|
Abstract
Adenovirus continues to be an important model system for investigating basic aspects of cell biology. Interactions of several cellular proteins with E1A conserved regions (CR) 1 and 2, and inhibition of apoptosis by E1B proteins are required for oncogenic transformation. CR2 binds RB family members, de-repressing E2F transcription factors, thus activating genes required for cell cycling. E1B-19K is a BCL2 homolog that binds and inactivates proapoptotic BAK and BAX. E1B-55K binds p53, inhibiting its transcriptional activation function. In productively infected cells, E1B-55K and E4orf6 assemble a ubiquitin ligase with cellular proteins Elongins B and C, Cullin 5 and RBX1 that polyubiquitinates p53 and one or more subunits of the MRN complex involved in DNA double-strand break repair, directing them to proteosomal degradation. E1A CR3 activates viral transcription by interacting with the MED23 Mediator subunit, stimulating preinitiation complex assembly on early viral promoters and probably also the rate at which they initiate transcription. The viral E1B-55K/E4orf6 ubiquitin ligase is also required for efficient viral late protein synthesis in many cell types, but the mechanism is not understood. E1A CR1 binds several chromatin-modifying complexes, but how this contributes to stimulation of cellular DNA synthesis and transformation is not clear. E1A CR4 binds the CtBP corepressor, but the mechanism by which this modulates the frequency of transformation remains to be determined. Clearly, adenovirus has much left to teach us about fundamental cellular processes.
Collapse
Affiliation(s)
- Arnold J Berk
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles (UCLA), 90095-1570, USA.
| |
Collapse
|
9
|
Abstract
Replication-selective oncolytic viruses have emerged as a new treatment platform for cancers. However, selectivity and potency need to be improved before virotherapy can become a standard treatment modality. In addition, mechanisms that can be incorporated to enable targeting a broad range of cancer types are highly desirable. Cancer cells are well known to have multiple blocks in apoptosis pathways. On the other hand, viruses have evolved to express numerous antiapoptotic genes to antagonize apoptosis induced upon infection. Viruses with deletions in antiapoptotic genes can therefore be complemented by antiapoptotic genetic changes in cancer cells for efficient replication and oncolysis. In this review, we summarize the recent development of this concept, the potential obstacles, and future directions for optimization.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Molecular Neurosurgery Laboratory, Massachusetts General Hospital and Harvard Medical School, MA, USA.
| | | |
Collapse
|
10
|
Abstract
The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.
Collapse
Affiliation(s)
- C Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Landshuterstr. 22, 93047 Regensburg, Germany
| | | |
Collapse
|
11
|
Nemunaitis J, Cunningham C, Senzer N. Enhanced oncolytic potency of replicative adenovirus expressing p53. Drug Resist Updat 2003; 6:5-7. [PMID: 12654282 DOI: 10.1016/s1368-7646(02)00142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- John Nemunaitis
- US Oncology, Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| | | | | |
Collapse
|
12
|
Abstract
Adenoviruses (Ads) are endemic in the human population and the well-studied group C Ads typically cause an acute infection in the respiratory epithelium. A growing body of evidence suggests that these viruses also establish a persistent infection. The Ad genome encodes several proteins that counteract the host anti-viral mechanisms, which function to limit viral infections. This review describes the adenovirus immuno-regulatory proteins and how they function to block apoptosis of infected cells. In addition to facilitating the successful completion of the viral replication cycle and spread of progeny virus, these functions may help maintain the virus in a persistent state.
Collapse
Affiliation(s)
- Adrienne L McNees
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
13
|
Henry H, Thomas A, Shen Y, White E. Regulation of the mitochondrial checkpoint in p53-mediated apoptosis confers resistance to cell death. Oncogene 2002; 21:748-60. [PMID: 11850803 DOI: 10.1038/sj.onc.1205125] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2001] [Revised: 10/02/2001] [Accepted: 10/29/2001] [Indexed: 01/10/2023]
Abstract
The p53 tumor suppressor protein inhibits tumor formation, in part by inducing apoptosis, which is inhibited by anti-apoptotic Bcl-2 family members Bcl-2 and adenovirus E1B 19K. We have identified p53-apoptotic signaling events which are targeted for inhibition by E1B 19K. Apoptotic signaling by p53 induced a Bid-independent conformational change in Bax, a Bax-Bak interaction, release of cytochrome c and Smac/DIABLO from mitochondria, caspase-9 and -3 activation, cleavage of known caspase substrates, and apoptosis. When p53-dependent apoptosis was blocked by E1B 19K expression, E1B 19K bound Bak, and the Bax-Bak interaction was inhibited. Cytochrome c and Smac/DIABLO release from mitochondria was also inhibited in E1B 19K expressing cells and cells remained viable. After a prolonged p53 death stimulus, the inhibition of the mitochondrial death checkpoint by E1B 19K failed, and cytochrome c and Smac/DIABLO were released from mitochondria, and became degraded. Despite this eventual failure to inhibit the mitochondrial checkpoint, caspase-9 and -3 were not activated, and cells remained viable even upon treatment with an exogenous death stimulus. Thus, p53 induces apoptosis in part through Bax and Bak, and even an incomplete inhibition of this mitochondrial checkpoint may be sufficient to confer resistance to cell death.
Collapse
Affiliation(s)
- Holly Henry
- Howard Hughes Medical Institute, 679 Hoes Lane, Piscataway, New Jersey, NJ 08854, USA
| | | | | | | |
Collapse
|
14
|
Henzler T, Harmache A, Herrmann H, Spring H, Suzan M, Audoly G, Panek T, Bosch V. Fully functional, naturally occurring and C-terminally truncated variant human immunodeficiency virus (HIV) Vif does not bind to HIV Gag but influences intermediate filament structure. J Gen Virol 2001; 82:561-573. [PMID: 11172097 DOI: 10.1099/0022-1317-82-3-561] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A variant human immunodeficiency virus type 1 (HIV-1) vif gene, vifA45-2, which encodes a protein lacking 19 amino acids at the C terminus but which is fully functional in supporting HIV replication in non-permissive cells has been described previously. By employing newly generated anti-VifA45 serum, further properties of VifA45 and its full-length counterpart, VifA45open, in comparison to Vif from HIV strain BH10 are reported in permissive HeLa and COS-7 cells. The results obtained using confocal microscopic localization studies and in vitro binding assays do not support a requirement for the direct interaction of HIV Gag with Vif. Furthermore and in contrast to previous conclusions, detergent solubility analyses do not demonstrate a role for the C terminus of Vif in mediating localization to the fraction containing cellular membrane proteins. Localization of Vif from HIV strain BH10 to perinuclear aggregates in a small fraction (about 10%) of transfected HeLa cells has been previously reported. The intermediate filament protein vimentin colocalizes to these structures. In contrast, VifA45 and VifA45open form perinuclear aggregates in nearly all transfected HeLa cells; vimentin as well as the cytoskeletal-bridging protein plectin, but not the microtubular protein tubulin, become relocalized to these structures. Interestingly, in COS-7 cells, all of the functional Vif proteins tested (Vif from strain BH10, VifA45 and VifA45open) predominantly localize in the cytoplasm but still induce dramatic aggregation of vimentin and plectin, i.e. in these cells the respective Vif proteins are influencing intermediate filament structure in the absence of colocalization.
Collapse
Affiliation(s)
- Tanja Henzler
- Forschungsschwerpunkt Angewandte Tumorvirologie, F02001, and Forschungsschwerpunkt Krebsentstehung und Differenzierung, A01002, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | - Abdallah Harmache
- Forschungsschwerpunkt Angewandte Tumorvirologie, F02001, and Forschungsschwerpunkt Krebsentstehung und Differenzierung, A01002, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | - Harald Herrmann
- Forschungsschwerpunkt Angewandte Tumorvirologie, F02001, and Forschungsschwerpunkt Krebsentstehung und Differenzierung, A01002, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | - Herbert Spring
- Forschungsschwerpunkt Angewandte Tumorvirologie, F02001, and Forschungsschwerpunkt Krebsentstehung und Differenzierung, A01002, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | - Marie Suzan
- Pathogénie des Infections à Lentivirus, INSERM U372, BP178, 13276 Marseille, France3
| | - Gilles Audoly
- Pathogénie des Infections à Lentivirus, INSERM U372, BP178, 13276 Marseille, France3
| | - Therese Panek
- Forschungsschwerpunkt Angewandte Tumorvirologie, F02001, and Forschungsschwerpunkt Krebsentstehung und Differenzierung, A01002, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | - Valerie Bosch
- Forschungsschwerpunkt Angewandte Tumorvirologie, F02001, and Forschungsschwerpunkt Krebsentstehung und Differenzierung, A01002, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Weaver BK, Ando O, Kumar KP, Reich NC. Apoptosis is promoted by the dsRNA-activated factor (DRAF1) during viral infection independent of the action of interferon or p53. FASEB J 2001; 15:501-15. [PMID: 11156966 DOI: 10.1096/fj.00-0222com] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An apoptotic cellular defense mechanism is triggered in response to viral dsRNA generated during the course of infection by many DNA and RNA viruses. We demonstrate that apoptosis induced by dsRNA or a paramyxovirus is independent of the action of interferon as it can proceed in a variety of cell lines and primary cells deficient in an interferon response. Initiation of apoptosis appears to be triggered by activation of a cellular transcription factor, the dsRNA-activated factor (DRAF1). DRAF1 is composed of interferon regulatory factor 3 (IRF-3) and the transcriptional coactivators CREB binding protein (CBP) or p300. We find that activation of IRF-3 in the absence of viral infection stimulates apoptosis. In addition, a negative interfering mutant blocks both target gene induction and apoptosis, demonstrating a requirement for gene expression by IRF-3/DRAF1 to promote apoptosis. IRF-3/DRAF1 target gene expression is also induced in response to a distinct apoptotic stimulus, the DNA damaging agent etoposide. The activity of the p53 tumor suppressor does not appear to be required for IRF-3/DRAF1-mediated apoptosis.
Collapse
Affiliation(s)
- B K Weaver
- Department of Pathology, State University of New York at Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
16
|
Pützer BM, Stiewe T, Parssanedjad K, Rega S, Esche H. E1A is sufficient by itself to induce apoptosis independent of p53 and other adenoviral gene products. Cell Death Differ 2000; 7:177-88. [PMID: 10713732 DOI: 10.1038/sj.cdd.4400618] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Induction of apoptosis seems to be a key function in maintaining normal cell growth by exerting negative controls on cell proliferation and suppressing tumorigenesis. The adenovirus E1A oncogene shows both cell cycle progression and apoptotic functions. To understand the mechanism of E1A-induced apoptosis, the apoptotic function of E1A 13S was investigated in p53-null cells. We show here that E1A is sufficient by itself to induce substantial apoptosis independent of p53 and other adenoviral genes. The apoptotic function of E1A is accompanied by processing of caspase-3 and cleavage of poly(ADP-ribose)-polymerase. Cell death is significantly blocked by the caspase inhibitor zVAD-fmk and when coexpressed with E1B19K, Bcl-2 or the retinoblastoma protein (RB). Analyses of E1A mutants indicated that the apoptotic activity of E1A correlates closely with the ability to bind the key regulators of E2F1-induced apoptosis, p300 and RB. Finally, in vivo relevance of down-modulation of p53-independent apoptosis for efficient transformation is demonstrated.
Collapse
Affiliation(s)
- B M Pützer
- Institute of Molecular Biology (Cancer Research), University of Essen, Medical School, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | | | | | |
Collapse
|
17
|
Yamashita T, Tonoki H, Nakata D, Yamano S, Segawa K, Moriuchi T. Adenovirus type 5 E1A immortalizes primary rat cells expressing wild-type p53. Microbiol Immunol 1999; 43:1037-44. [PMID: 10609613 DOI: 10.1111/j.1348-0421.1999.tb01233.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenovirus (Ad) E1A induces apoptosis in cells expressing wild-type p53, and stable transformation by Ad E1A requires the co-introduction of an anti-apoptotic gene such as Ad E1B 19K. Thus, cells immortalized by Ad E1A alone might have lost functional p53. In order to analyze the p53 in rat cells expressing Ad E1A, we established rat cell lines by transfecting primary rat embryo fibroblast (REF) and baby rat kidney (BRK) cells with cloned Ad5 E1A. By using a yeast functional assay, we analyzed p53 in six primary REF and three BRK cell lines immortalized by Ad5 E1A as well as five spontaneously immortalized rat cell lines (REF52, NRK, WFB, Rat-1 and 3Y1). The yeast functional assay revealed that all of the spontaneously and Ad5 ElA-immortalized rat cell lines except for 3Y1 expressed wild-type p53. All of the Ad5 E1A-immortalized rat cell lines contained p53 detectable by immunoprecipitation. Recombinant adenovirus expressing rat p53 cloned from a REF cell line immortalized by Ad5 E1A, as well as that expressing murine wild-type p53, induced apoptosis in p53-null cells in collaboration with E1A. Thus, it is suggested that the mutation of p53 appears to be not frequent in the spontaneous immortalization of primary rat cells, and that the functional loss of wild-type p53 is not a prerequisite of E1A-mediated immortalization.
Collapse
Affiliation(s)
- T Yamashita
- Department of Molecular Biology, Cancer Research Institute, Sapporo Medical University School of Medicine, Hokkaido, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Kannabiran C, Morris GF, Mathews MB. Dual action of the adenovirus E1A 243R oncoprotein on the human proliferating cell nuclear antigen promoter: repression of transcriptional activation by p53. Oncogene 1999; 18:7825-33. [PMID: 10618724 DOI: 10.1038/sj.onc.1203294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The promoter of the human proliferating cell nuclear antigen (PCNA) gene is activated by the adenovirus oncoprotein E1A 243R in HeLa cells. To understand the effect of this oncoprotein on PCNA expression in cells that are sensitive to oncogenic transformation by adenovirus, we studied the effect of E1A 243R on PCNA promoter-directed reporter gene expression in cloned rat embryo fibroblast (CREF) and primary baby rat kidney cells. In contrast to the results obtained in HeLa cells, E1A repressed the PCNA promoter in both cell-types. Promoter analysis identified a p53-responsive element that mediates E1A-induced repression. Repression required the intact N-terminus of E1A 243R, as shown by the ability of mutant E1A proteins to repress the promoter, and correlated with the p300-binding region of E1A. The adenovirus E1B 19K protein relieved repression by E1A 243R. These results reveal dual pathways for induction of this essential DNA replication factor and suggest a mechanism for oncogenic cooperativity between the E1A and E1B oncoproteins.
Collapse
Affiliation(s)
- C Kannabiran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | | | | |
Collapse
|
19
|
Dumont A, Hehner SP, Hofmann TG, Ueffing M, Dröge W, Schmitz ML. Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene 1999; 18:747-57. [PMID: 9989825 DOI: 10.1038/sj.onc.1202325] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reactive oxygen species (ROS) play an important role in cell death induced by many different stimuli. This study shows that hydrogen peroxide-induced apoptosis in T-cells did not require tyrosine kinase p561ck, phosphatase CD45, the CD95 receptor and its associated Caspase-8. H2O2-triggered cell death led to the induced cleavage and activation of Caspase-3. Hydrogen peroxide-treatment of T-cells resulted in the formation of mitochondrial permeability transition pores, a rapid decrease of the mitochondrial transmembrane potential delta psi(m) and the release of Cytochrome C. Inhibition of the mitochondrial permeability transition by bongkrekic acid (BA), or interference with the mitochondrial electron transport system by rotenone or menadione prevented the cytotoxic effect of H2O2. Antimycin A, a mitochondrial inhibitor that increases the release of mitochondrial ROS (MiROS), enhanced apoptosis. Overexpression of Bcl-2 and the viral anti-apoptotic proteins BHRF-1 and E1B 19K counteracted H2O2-induced apoptosis. Pharmacological and genetic inhibition of transcription factor NF-kappaB protected cells from hydrogen peroxide-elicited cell death. This detrimental effect of NF-kappaB mediating hydrogen peroxide-induced cell death presumably relies on the induced expression of death effector genes such as p53, which was NF-kappaB-dependently upregulated in the presence of H2O2.
Collapse
Affiliation(s)
- A Dumont
- Department of Immunochemistry, German Cancer Research Center (DKFZ), Heidelberg
| | | | | | | | | | | |
Collapse
|
20
|
Nevels M, Spruss T, Wolf H, Dobner T. The adenovirus E4orf6 protein contributes to malignant transformation by antagonizing E1A-induced accumulation of the tumor suppressor protein p53. Oncogene 1999; 18:9-17. [PMID: 9926915 DOI: 10.1038/sj.onc.1202284] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The adenovirus type 5 (Ad5) E4orf6 protein promotes focus formation of primary baby rat kidney (BRK) cells in cooperation with Ad5 E1 proteins. This activity is most likely related to the ability of the E4orf6 protein to bind to p53 and modulate its tumor suppressor functions. In this study we report that transformed BRK cells that stably express E4orf6 in addition to E1A and E1B (ABS cells) displayed multiple additional properties commonly associated with a high grade of oncogenic transformation compared to cells expressing only E1A and E1B (AB cells). These properties included morphological alterations, markedly enhanced growth rates and growth to much higher saturation densities. Following injection into nude mice ABS-derived tumors exhibited accelerated growth and, based on histopathological criteria, proofed to be much more malignant compared to tumors generated by AB cells. Interestingly, these highly transformed properties of ABS cells correlated with a dramatic reduction of p53 steady-state levels which inversely correlated with E4orf6 expression. From these results we conclude that expression of the Ad5 E4orf6 protein (i) confers additional transformed in vitro properties to primary rat cells expressing the Ad5 E1 proteins, and (ii) increases the tumorigenic and malignant potential of these cells in vivo. Our data suggest that the Ad5 E4orf6 protein enhances the intrinsic ability of E1-transformed rat cells to grow in a neoplastic state by completely inactivating p53 tumor suppressor function in combination with the E1A and E1B proteins.
Collapse
Affiliation(s)
- M Nevels
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
21
|
Ilić D, Almeida EA, Schlaepfer DD, Dazin P, Aizawa S, Damsky CH. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol 1998; 143:547-60. [PMID: 9786962 PMCID: PMC2132850 DOI: 10.1083/jcb.143.2.547] [Citation(s) in RCA: 379] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/1998] [Revised: 09/03/1998] [Indexed: 11/22/2022] Open
Abstract
In many malignant cells, both the anchorage requirement for survival and the function of the p53 tumor suppressor gene are subverted. These effects are consistent with the hypothesis that survival signals from extracellular matrix (ECM) suppress a p53-regulated cell death pathway. We report that survival signals from fibronectin are transduced by the focal adhesion kinase (FAK). If FAK or the correct ECM is absent, cells enter apoptosis through a p53-dependent pathway activated by protein kinase C lambda/iota and cytosolic phospholipase A2. This pathway is suppressible by dominant-negative p53 and Bcl2 but not CrmA. Upon inactivation of p53, cells survive even if they lack matrix signals or FAK. This is the first report that p53 monitors survival signals from ECM/FAK in anchorage- dependent cells.
Collapse
Affiliation(s)
- D Ilić
- Departments of Stomatology and Anatomy, University of California San Francisco, San Francisco, California 94143-0512, USA
| | | | | | | | | | | |
Collapse
|
22
|
Goldsmith KT, Dion LD, Curiel DT, Garver RI. trans E1 component requirements for maximal replication of E1-defective recombinant adenovirus. Virology 1998; 248:406-19. [PMID: 9721248 DOI: 10.1006/viro.1998.9293] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Strategies that enable E1-defective recombinant adenoviruses to selectively undergo replication in neoplastic tissue may be useful for future investigations or therapies of malignancies. A growing body of evidence suggests that some molecular alterations commonly associated with malignancies, such as p53 mutations, can modify the specific E1 requirements for replication of human serotype adenoviruses. In the studies reported here, a panel of human non-small cell lung cancer cell lines with previously defined p53 status were characterized for basal interleukin-6 (IL-6) and bcl-2 content because previous studies have indicated both proteins can functionally substitute for the replication requirements provided by native E1 viral proteins. Cell lines were infected with E1-defective adenovirus 5 and simultaneously transfected with different combinations of E1 plasmids, or a bcl-2 expression plasmid, and adenovirus present in the cells was quantified 6 days later. These assays demonstrated that E1A with both 19- and 55-kDa E1B-encoding plasmids were required for maximal adenoviral replication, independent of the varying p53/IL-6/basal bcl-2 phenotypes of the host cell lines. E1A was required for maximal replication enablement, independent of the basal IL-6 content of these cell lines, and exogenous IL-6 also did not obviate the E1A requirement. Interestingly, the bcl-2 expression plasmid did not consistently substitute for the 19-kDa expression plasmid in the context of this replication complementation assay. These results suggest that (1) basal levels of IL-6 greater than that present in these cell lines are necessary for functional replacement of the E1A replication function and (2) bcl-2 does not predictably substitute for the 19-kDa E1B replication function in the context of trans complementation.
Collapse
Affiliation(s)
- K T Goldsmith
- Gene Therapy Program, Birmingham VAMC, Birmingham, Alabama, 35294, USA
| | | | | | | |
Collapse
|
23
|
|
24
|
Perez D, White E. E1B 19K inhibits Fas-mediated apoptosis through FADD-dependent sequestration of FLICE. J Cell Biol 1998; 141:1255-66. [PMID: 9606216 PMCID: PMC2137191 DOI: 10.1083/jcb.141.5.1255] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1998] [Revised: 04/28/1998] [Indexed: 02/07/2023] Open
Abstract
E1B 19K, the adenovirus Bcl-2 homologue, is a potent inhibitor of apoptosis induced by various stimuli including Fas and tumor necrosis factor-alpha. Fas and TNFR-1 belong to a family of cytokine-activated receptors that share key components in their signaling pathways, Fas-associating protein with death domain (FADD) and FADD-like interleukin-1beta-converting enzyme (FLICE), to induce an apoptotic response. We demonstrate here that E1B 19K and Bcl-xL are able to inhibit apoptosis induced by FADD, but not FLICE. Surprisingly, apoptosis was abrogated by E1B 19K and Bcl-xL when FADD and FLICE were coexpressed. Immunofluorescence studies demonstrated that FADD expression produced large insoluble death effector filaments that may represent oligomerized FADD. E1B 19K expression disrupted FADD filament formation causing FADD and FLICE to relocalize to membrane and cytoskeletal structures where E1B 19K is normally localized. E1B 19K, however, does not detectably bind to FADD, nor does it inhibit FADD and FLICE from being recruited to the death-inducing signaling complex (DISC) when Fas is stimulated. Thus, E1B 19K may inhibit Fas-mediated cell death downstream of FADD recruitment of FLICE but upstream of FLICE activation by disrupting FADD oligomerization and sequestering an essential component of the DISC.
Collapse
Affiliation(s)
- D Perez
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
25
|
Abstract
A family of p34Cdc2 related protein kinases, the PITSLRE kinases, is generated by alternative splicing and promoter utilization from three duplicated and tandemly linked genes on human chromosome 1p36.3, which is frequently deleted during the late stages of tumorigenesis. PITSLRE mRNA, protein, and enzyme activity are induced during Fas receptor- and glucocorticoid-mediated apoptosis of human T cells. Several PITSLRE isoforms are specific targets of proteolysis during apoptosis, generating an enzymatically active 50 kDa isoform. Inhibition of this protease activity blocks PITSLRE processing and enzyme activation, as well as apoptosis. Thus, PITSLRE kinases may be integral downstream components of apoptotic signal transduction pathway(s). Furthermore, PITSLRE genes, and their products, are physically altered in human neuroblastoma tumors, suggesting that they may be tumor suppressors.
Collapse
Affiliation(s)
- J M Lahti
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
26
|
|
27
|
Affiliation(s)
- L Grasso
- Department of Microbiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
28
|
Trihn D, Jeang KT, Semmes O. HTLV-I Tax and Cytokeratin: Tax-Expressing Cells Show Morphological Changes in Keratin-Containing Cytoskeletal Networks. J Biomed Sci 1997; 4:47-53. [PMID: 11725133 DOI: 10.1007/bf02255593] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Human T cell leukemia virus type I (HTLV-I) has been linked to the development of an aggressive lymphoproliferative disorder (adult T cell leukemia), a chronic neurodegenerative presentation (HTLV-I-associated myelopathy/tropical spastic paraparesis) and numerous less well-defined inflammatory conditions. The viral regulatory protein Tax has been implicated in cellular transformation events leading to the onset of adult T cell leukemia. Details on the stepwise processes through which Tax induces morphological changes in cells are poorly understood. We show here that Tax can bind to a class of intermediate filaments, the cytokeratins (Ker). Tax interacts with the 1B helical coil of keratin 8, a domain critical for higher-order intermediate filament matrix formation. Expression of Tax in epithelial cells visibly altered the structural pattern of the Ker network. In a T lymphocyte cell line, induction of Tax expression resulted in increased cellular adherence/invasion of Matrigel filters. We propose that one aspect of Tax function is the induction of morphological changes in cellular cytoskeletal structures. This finding for Tax-expressing cells might be one factor contributing directly to the pathogenesis of HTLV-I disease(s). Copyright 1997 S. Karger AG, Basel
Collapse
Affiliation(s)
- D. Trihn
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md., USA
| | | | | |
Collapse
|
29
|
Affiliation(s)
- S Desnoyers
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
30
|
Limbourg FP, Städtler H, Chinnadurai G, Baeuerle PA, Schmitz ML. A hydrophobic region within the adenovirus E1B 19 kDa protein is necessary for the transient inhibition of NF-kappaB activated by different stimuli. J Biol Chem 1996; 271:20392-8. [PMID: 8702775 DOI: 10.1074/jbc.271.34.20392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The early transcribed adenovirus proteins E1A and E1B display a variety of functions in the transformation of primary rodent cells and the regulation of apoptosis and transcription. We have recently shown recently that the E1B 19 kDa protein from Adenovirus 5 (Ad 5) can functionally antagonize the stimulatory effect of E1A 13S on the human transcription factor NF-kappaB. Here we show that expression of E1B 19 kDa negatively interfered with the activation of NF-kappaB by different stimuli, such as the E1A 13S protein, and treatment with phorbol ester and tumor necrosis factor alpha. This suggests that E1B 19 kDa acts on a common upstream signaling event. Band shift experiments showed that expression of E1B 19 kDa impaired the generation of the nuclear, DNA-binding form of NF-kappaB. Domain mapping experiments employing various E1B 19 kDa mutants revealed the necessity of a hydrophobic Bcl-2 homology region between amino acids 90 and 96 for NF-kappaB inhibition. Co-transfection experiments showed that the inhibitory effect of E1B 19 kDa on E1A 13S-activated NF-kappaB transcription was gradually lost in the course of time. Thus the continuous stimulatory action of E1A 13S can finally override the antagonistic effects of E1B 19 kDa on NF-kappaB activity. In contrast to E1B 19 kDa, expression of the E1B 55 kDa protein did not result in a de novo activation of NF-kappaB, but co-stimulated the transcriptional potential of activated NF-kappaB.
Collapse
Affiliation(s)
- F P Limbourg
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University, Hermann-Herder-Strasse, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Douglas JL, Quinlan MP. Efficient nuclear localization and immortalizing ability, two functions dependent on the adenovirus type 5 (Ad5) E1A second exon, are necessary for cotransformation with Ad5 E1B but not with T24ras. J Virol 1995; 69:8061-5. [PMID: 7494322 PMCID: PMC189754 DOI: 10.1128/jvi.69.12.8061-8065.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Expression of adenovirus type 5 E1A 12S is sufficient to immortalize primary baby rat kidney cells, but another viral or cellular oncogene, such as E1B or T24ras, is necessary for complete transformation. The regions of 12S sufficient for T24ras cotransformation have been well characterized and are located in the first exon. The second exon is dispensable for ras cotransformation, although it contains a region which appears to modulate the transforming phenotype. The same 12S first exon regions important in ras transformation are also necessary for E1B transformation. Analysis of an extensive series of second exon deletion and amino acid point mutations demonstrated that mutations affecting either the efficient nuclear localization and/or the immortalizing ability of the 12S protein also prevented cooperation with E1B. In general, the entire C-terminal half of 12S, including the nuclear localization signal, was necessary for efficient cotransformation with E1B. In addition to the differences between T24ras and E1B regarding 12S regions necessary for cotransformation, the characteristics of E1B-cotransformed foci differed from those of T24ras. The E1B foci took longer to appear and had a much slower growth rate. No hypertransformed foci were produced with E1B cotransfections, and established E1A-E1B lines exhibited minimal growth in soft agar compared with that of E1A-T24ras lines.
Collapse
Affiliation(s)
- J L Douglas
- Department of Microbiology and Immunology, University of Tennessee Health Science Center, Memphis 38163, USA
| | | |
Collapse
|
32
|
Caravokyri C, Leppard KN. Constitutive episomal expression of polypeptide IX (pIX) in a 293-based cell line complements the deficiency of pIX mutant adenovirus type 5. J Virol 1995; 69:6627-33. [PMID: 7474071 PMCID: PMC189571 DOI: 10.1128/jvi.69.11.6627-6633.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The human adenovirus type 5 capsid is composed of a number of distinct polypeptides. It has been shown previously that one of these, polypeptide IX (pIX), is not absolutely required for the production of viable virus. However, viruses lacking this polypeptide have a significantly reduced packaging limit and, in the one case studied, also show a thermolabile virion phenotype. This report describes the use of eukaryotic episomal vectors based on the Epstein-Barr virus replicon to generate cells which stably express pIX. These cells provide pIX that is efficiently incorporated into virions that are genetically pIX-; such enhanced thermostability. These cells have also been used to isolate a genetically pIX- virus having a genome of length some 2.3 kbp in excess of the previously defined packaging limit for pIX- virus; the resulting virions have wild-type thermostability. These cells expand the theoretical capacity of adenovirus vectors for foreign DNA to around 9.2 kbp and may therefore be useful in gene therapy applications in which vector capacity is limiting.
Collapse
Affiliation(s)
- C Caravokyri
- Department of Biological Sciences, Universiy of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
33
|
Antoni BA, Sabbatini P, Rabson AB, White E. Inhibition of apoptosis in human immunodeficiency virus-infected cells enhances virus production and facilitates persistent infection. J Virol 1995; 69:2384-92. [PMID: 7884884 PMCID: PMC188911 DOI: 10.1128/jvi.69.4.2384-2392.1995] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Apoptosis is one of several mechanisms by which human immunodeficiency virus type 1 (HIV-1) exerts its cytopathic effects. CD4+ Jurkat T-cell lines overexpressing the adenovirus E1B 19K protein, a potent inhibitor of apoptosis, were used to examine the consequences of inhibition of apoptosis during acute and chronic HIV-1 infections. E1B 19K protein expression inhibited HIV-induced apoptosis, enhanced virus production, and established high levels of persistent viral infection. One E1B 19K-expressing line appeared to undergo HIV-induced death via a nonapoptotic mechanism, illustrating that HIV infection results in lymphocyte depletion through multiple pathways. Increased virus production associated with sustained cell viability suggests that therapeutic approaches involving inhibition of HIV-induced programmed cell death may be problematic.
Collapse
Affiliation(s)
- B A Antoni
- Laboratory of Viral Pathogenesis, Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- E S Razvi
- Department of Pathology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | |
Collapse
|
35
|
Transformation and Tumorigenesis Mediated by the Adenovirus E1A and E1B Oncogenes. INFECTIOUS AGENTS AND PATHOGENESIS 1995. [DOI: 10.1007/978-1-4899-1100-1_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
|
37
|
Affiliation(s)
- W S Wold
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, MO 63104, USA
| | | | | |
Collapse
|
38
|
O'Callaghan DJ, Colle CF, Flowers CC, Smith RH, Benoit JN, Bigger CA. Identification and initial characterization of the IR6 protein of equine herpesvirus 1. J Virol 1994; 68:5351-64. [PMID: 8057419 PMCID: PMC236935 DOI: 10.1128/jvi.68.9.5351-5364.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The IR6 gene of equine herpesvirus 1 (EHV-1) is a novel gene that maps within each inverted repeat (IR), encodes a potential protein of 272 amino acids, and is expressed as a 1.2-kb RNA whose synthesis begins at very early times (1.5 h) after infection and continues throughout the infection cycle (C. A. Breeden, R. R. Yalamanchili, C.F. Colle, and D.J. O'Callaghan, Virology 191:649-660,1992). To identify the IR6 protein and ascertain its properties, we generated an IR6-specific polyclonal antiserum to a TrpE/IR6 fusion protein containing 129 amino acids (residues 134 to 262) of the IR6 protein. This antiserum immunoprecipitated a 33-kDa protein generated by in vitro translation of mRNA transcribed from a pGEM construct (IR6/pGEM-3Z) that contains the entire IR6 open reading frame. The anti-IR6 antibody also recognized an infected-cell protein of approximately 33 kDa that was expressed as early as 1 to 2 h postinfection and was synthesized throughout the infection cycle. A variety of biochemical analyses including radiolabeling the IR6 protein with oligosaccharide precursors, translation of IR6 mRNA in the presence of canine pancreatic microsomes, radiolabeling the IR6 protein in the presence of tunicamycin, and pulse-chase labeling experiments indicated that the two potential sites for N-linked glycosylation were not used and that the IR6 protein does not enter the secretory pathway. To address the possibility that the unique IR6 gene encodes a novel regulatory protein, we transiently transfected an IR6 expression construct into L-M fibroblasts alone or with an immediate-early gene expression construct along with a representative EHV-1 immediate-early, early, or late promoter-chloramphenicol acetyltransferase reporter construct. The results indicated that the IR6 protein does not affect the expression of these representative promoter constructs. Interestingly, the IR6 protein was shown to be phosphorylated and to associate with purified EHV-1 virions and nucleocapsids. Lastly, immunofluorescence and laser-scanning confocal microscopic analyses revealed that the IR6 protein is distributed throughout the cytoplasm at early times postinfection and that by 4 to 6 h it appears as "dash-shaped" structures that localize to the perinuclear region. At late times after infection (8 to 12 h), these structures assemble around the nucleus, and three-dimensional image analyses reveal that the IR6 protein forms a crown-like structure that surrounds the nucleus as a perinuclear network.
Collapse
Affiliation(s)
- D J O'Callaghan
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130
| | | | | | | | | | | |
Collapse
|
39
|
Brown CR, Doxsey SJ, White E, Welch WJ. Both viral (adenovirus E1B) and cellular (hsp 70, p53) components interact with centrosomes. J Cell Physiol 1994; 160:47-60. [PMID: 8021299 DOI: 10.1002/jcp.1041600107] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human 293 cells, transformed by and expressing the early region of the adenovirus genome (i.e., E1A and E1B), contain a phase-dense cytoplasmic structure situated in close proximity to the nucleus. Via indirect immunofluorescence studies such structures have been previously shown to contain both the adenovirus E1B (55 kDa) protein as well as the tumor suppressor gene product p53. Here we show that such structures also stain positive for the cytoplasmic hsp 70 proteins. Such phase-dense structures containing hsp 70, p53, and adenovirus E1B are not unique to 293 cells but also are observed in rodent cell lines stabily transfected with the early region of the adenovirus genome. Using an antibody against a centrosomal protein, pericentrin, we show that these cytoplasmic phase-dense structures are in close proximity to the centrosome. Cell fractionation studies revealed such structures to be highly detergent insoluble. However, like the centrosome, the cytoplasmic phase-dense structures could be rendered detergent soluble following treatment of the cells with agents that disrupt the integrity of the cytoskeleton. While the phase-dense structures appear in close proximity to the centrosome in interphase cells, during mitosis the centrosome and the phase-dense bodies separate from one another. Owing to these observations we examined whether hsp70 and p53 might also co-localize with the centrosome in other cell types not expressing the adenovirus E1A/E1B proteins. We show that a portion of both hsp70 and p53 indeed are present within the centrosome in Hela, COS, and 3T3 cells. These observations raise the possibility that components like hsp70 and p53 may participate in the mechanism(s) controlling cell division in mammalian cells.
Collapse
Affiliation(s)
- C R Brown
- Department of Medicine, University of California, San Francisco 94143-0854
| | | | | | | |
Collapse
|
40
|
Kiyono T, Hiraiwa A, Ishii S, Takahashi T, Ishibashi M. Inhibition of p53-mediated transactivation by E6 of type 1, but not type 5, 8, or 47, human papillomavirus of cutaneous origin. J Virol 1994; 68:4656-61. [PMID: 8207840 PMCID: PMC236394 DOI: 10.1128/jvi.68.7.4656-4661.1994] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transient transfection experiments indicated (i) that E6 protein of non-cancer-associated cutaneous human papillomavirus type 1 (HPV-1) can inhibit p53-mediated transcriptional transactivation in both p53-deficient human cells (H358) and normal rat cells (3Y1), but those of cancer-associated cutaneous HPV-5, -8, and -47 cannot do so in either H358 or 3Y1 cells, and (ii) that E6 proteins of HPV-16 and -18 can inhibit the p53 function in H358 cells but not in 3Y1 cells.
Collapse
Affiliation(s)
- T Kiyono
- Laboratory of Viral Oncology, Aichi Cancer Center, Nagoya, Japan
| | | | | | | | | |
Collapse
|
41
|
Role of membrane anchor domain of Bcl-2 in suppression of apoptosis caused by E1B-defective adenovirus. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89417-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Hershberger PA, LaCount DJ, Friesen PD. The apoptotic suppressor P35 is required early during baculovirus replication and is targeted to the cytosol of infected cells. J Virol 1994; 68:3467-77. [PMID: 8189486 PMCID: PMC236849 DOI: 10.1128/jvi.68.6.3467-3477.1994] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The p35 gene of Autographa californica nuclear polyhedrosis virus (AcMNPV) is required to block virus-induced apoptosis. The trans-dominant activity of p35 suppresses premature cell death and facilitates AcMNPV replication in a cell line- and host-specific manner. To characterize the p35 gene product (P35), a specific polyclonal antiserum was raised. As revealed by immunoblot analyses of wild-type AcMNPV-infected cells, P35 appeared early (8 to 12 h) and accumulated through the late stages of infection (24 to 36 h). Biochemical fractionation of cells both early and late in infection and indirect immunochemical staining demonstrated that P35 localized predominantly to the cytosol (150,000 x g supernatant); comparatively minor quantities of P35 were associated with intracellular membranes. The cytoplasmic localization of P35 was independent of virus infection. The functional significance of the early and late synthesis of P35 was examined by constructing recombinant viruses in which the timing and level of p35 expression were altered. Delaying P35 synthesis by placing p35 under exclusive control of a strong, very late promoter failed to suppress intracellular DNA fragmentation and apoptotic blebbing in most cells. Thus, earlier expression of p35 was required to block virus-induced apoptosis. Site-specific mutagenesis of the p35 promoter demonstrated that low levels of P35 were sufficient to block apoptosis, whereas higher levels were required to maintain wild-type virus gene expression. Consistent with an early role in infection, P35 was also detected in the budded form of AcMNPV. Because of the lack of sequence similarity and its cytosolic targeting, P35 may function in a manner that is mechanistically distinct from other apoptotic regulators, including Bcl-2 and the adenovirus E1B 19-kDa protein.
Collapse
Affiliation(s)
- P A Hershberger
- Institute for Molecular Virology, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
43
|
Zhang Y, Schneider RJ. Adenovirus inhibition of cell translation facilitates release of virus particles and enhances degradation of the cytokeratin network. J Virol 1994; 68:2544-55. [PMID: 7511174 PMCID: PMC236732 DOI: 10.1128/jvi.68.4.2544-2555.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Infection of animal cells by a number of viruses generally results in an array of metabolic defects, including inhibition of host DNA, RNA, and protein synthesis, and morphological alterations known as cytopathic effects. For adenovirus infection there is a profound loss of cell structural integrity and a marked inhibition of host protein synthesis, the latter generally assumed necessary to enhance virus production. We examined the purpose of viral inhibition of cell translation and found that it was related in part to cytopathic wasting of infected cells. We show that viral shutoff of host translation promotes destruction of the intermediate filament network, particularly cytokeratins which are proteolysed at keratins K7 and K18 by the adenovirus late-acting L3 23-kDa proteinase. We found that if adenovirus is prevented from inhibiting cell translation, the intermediate filament network remains relatively intact, keratin proteins are still synthesized, and cells possess an almost normal morphological appearance and lyse poorly, reducing the release of nascent virus particles by several hundredfold. Remarkably, in tissue culture cells the accumulation of late viral structural proteins is only marginally reduced if host translation shutoff does not occur. Thus, a surprising major function for adenovirus inhibition of cellular protein synthesis is to enhance impairment of cellular structural integrity, facilitating cell lysis and release of progeny adenovirus particles.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, New York University School of Medicine, New York 10016
| | | |
Collapse
|
44
|
|
45
|
Scherrer K, Bey F. The prosomes (multicatalytic proteinases; proteasomes) and their relationship to the untranslated messenger ribonucleoproteins, the cytoskeleton, and cell differentiation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 49:1-64. [PMID: 7863004 DOI: 10.1016/s0079-6603(08)60047-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- K Scherrer
- Institute Jacques Monod CNRS, Paris, France
| | | |
Collapse
|
46
|
Telling GC, Perera S, Szatkowski-Ozers M, Williams J. Absence of an essential regulatory influence of the adenovirus E1B 19-kilodalton protein on viral growth and early gene expression in human diploid WI38, HeLa, and A549 cells. J Virol 1994; 68:541-7. [PMID: 8254769 PMCID: PMC236319 DOI: 10.1128/jvi.68.1.541-547.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in the gene encoding the adenovirus (Ad) early region 1B 19-kDa protein (the 19K gene) result in multiple phenotypic effects upon infection of permissive human cells. It has been reported, for example, that Ad type 2 (Ad2) and Ad5 with mutations in the 19K gene (19K-defective mutants) have a marked growth advantage compared with wild-type virus in human diploid WI38 cells (E. White, B. Faha, and B. Stillman, Mol. Cell. Biol. 6:3763-3773, 1986), and it was proposed that this host range phenotype stems from the large increase in viral early gene expression reported to occur in the mutant-infected cells. These observations gave rise to the hypothesis that the 19-kDa protein (the 19K protein) normally functions as a negative regulator of Ad early gene expression and growth. We have tested this hypothesis and find that Ad5 and Ad12 wild-type viruses grow as efficiently as their respective 19K-defective mutants, in1 and dl337 and pm700 and in700, in WI38 and other human cell types. Neither the accumulation of E1A cytoplasmic mRNAs nor the synthesis of E1A and other viral early proteins in these cells is altered as a result of these mutations in the 19K gene, and we conclude that the 19K protein does not play an essential role in regulating viral early gene expression or viral growth in human cells.
Collapse
Affiliation(s)
- G C Telling
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | | | | | | |
Collapse
|
47
|
Telling GC, Williams J. The E1B 19-kilodalton protein is not essential for transformation of rodent cells in vitro by adenovirus type 5. J Virol 1993; 67:1600-11. [PMID: 8437231 PMCID: PMC237531 DOI: 10.1128/jvi.67.3.1600-1611.1993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The newly constructed adenovirus type 5 mutant in1 carries a single AT base pair insertion immediately after nucleotide position 1715 in the E1B gene sequence which destroys the proximal AUG normally present in E1B messages and prevents production of intact E1B 19-kDa protein in infected cells. We have used in1, variants of in1 containing mutant alleles of viral genes known to enhance transformation frequency, and adenovirus type 5 mutant dl337 (S. Pilder, J. Logan, and T. Shenk, J. Virol. 52:664-671, 1984), in which the sequence between nucleotides 1770 and 1916 within the 19-kDa reading frame is deleted, to test the generally accepted hypothesis that this E1B protein is essential for the transformation of rodent cells and maintenance of the transformed phenotype. We find that these mutants transform rat embryo cells, rat kidney and mouse kidney primary cells, and cells of the 3Y1 rat line with decreased frequencies only when virus is added to these various cells at high input multiplicities of infection. In contrast, when lower doses of virus are used, the mutants transform with wild-type frequencies. Cells infected with higher doses of mutant virus show increased levels of DNA degradation and cell killing compared with those of cells infected with the same levels of wild-type virus, and these effects most likely contribute to the decreased transformation frequencies observed. On the basis of these results and the results of phenotypic analyses of numerous transformants, we propose that the E1B 19-kDa protein is not required for induction and/or maintenance of transformed-cell characteristics in rodent cells infected with adenovirus type 5.
Collapse
Affiliation(s)
- G C Telling
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
48
|
Subramanian T, Tarodi B, Govindarajan R, Boyd JM, Yoshida K, Chinnadurai G. Mutational analysis of the transforming and apoptosis suppression activities of the adenovirus E1B 175R protein. Gene 1993; 124:173-81. [PMID: 8444341 DOI: 10.1016/0378-1119(93)90391-f] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The role of the adenovirus-2 E1B 19-kDa (175R) T antigen in E1a-cooperative transformation was determined by cotransfection of plasmids expressing E1A or E1B 175R T antigens into primary rat kidney (BRK) cells. Transformed cells were selected by virtue of their resistance to the antibiotic Geneticin (G418) conferred by neo gene co-expression from plasmids coding for 175R. 175R cooperated efficiently with genomic E1a and specifically with the 289R protein coded by the 13S mRNA in the transformation of primary BRK cells. Mutational analysis of the 175R protein revealed that the N terminus and the C-terminal 30 amino acids are not essential for E1a-cooperative transformation. Several conserved sequences located in the middle of the 175R protein are essential for transformation. The effect of various mutants to suppress apoptosis (programmed cell death) induced by an anti-cancer agent, cisplatin, was examined in cells producing the E1A and E1B 175R proteins. Apoptosis was measured by flow cytometric analysis and indicates that the 175R protein efficiently prevents cisplatin-induced apoptosis. This suggests that the 175R function involved in transformation segregates with its ability to suppress cisplatin-induced apoptosis.
Collapse
Affiliation(s)
- T Subramanian
- St. Louis University School of Medicine, Institute for Molecular Virology, MO 63110
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The past year has been extremely fruitful for research on intermediate filaments in general, and keratins in particular. Unprecedented progress has been made in our understanding of the structural requirements for keratin filament assembly and network formation, the dynamism characterizing keratin filaments, their function, and implication in human genetic disorders primarily affecting the skin. These exciting findings have several implications for future research.
Collapse
Affiliation(s)
- P A Coulombe
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
50
|
Shay JW, Wright WE, Werbin H. Toward a molecular understanding of human breast cancer: a hypothesis. Breast Cancer Res Treat 1993; 25:83-94. [PMID: 8518411 DOI: 10.1007/bf00662404] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A rate limiting step in most metastatic breast cancers is the development of unlimited proliferative potential by mammary epithelial cells. We describe mechanisms by which these cells can attain this state. The two independent mortality mechanisms controlling fibroblast senescence and immortalization (M1 and M2) are also found in human mammary epithelial cells. However, although both p53 and Rb are involved in the M1 mechanism of fibroblast cellular senescence, in human mammary epithelial cells only p53 is involved. The M1/M2 mechanisms may be induced by the gradual loss of telomere ends that occur as normal cells divide. Loss of telomere ends may result in genomic instability and in altered gene expression due to heterochromatin changes in subtelomeric regions. Events which can abrogate p53 functions are described, as is the current state of knowledge about the function of p53. All these factors are included in a molecular model for the onset of breast cancer.
Collapse
Affiliation(s)
- J W Shay
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9039
| | | | | |
Collapse
|