1
|
Tarjányi O, Haerer J, Vecsernyés M, Berta G, Stayer-Harci A, Balogh B, Farkas K, Boldizsár F, Szeberényi J, Sétáló G. Prolonged treatment with the proteasome inhibitor MG-132 induces apoptosis in PC12 rat pheochromocytoma cells. Sci Rep 2022; 12:5808. [PMID: 35388084 PMCID: PMC8987075 DOI: 10.1038/s41598-022-09763-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
Rat pheochromocytoma (PC12) cells were treated with the proteasome inhibitor MG-132 and morphological changes were recorded. Initially, neuronal differentiation was induced but after 24 h signs of morphological deterioration became apparent. We performed nuclear staining, flow cytometry and WST-1 assay then analyzed signal transduction pathways involving Akt, p38 MAPK (Mitogen-Activated Protein Kinase), JNK (c-Jun N-terminal Kinase), c-Jun and caspase-3. Stress signaling via p38, JNK and c-Jun was active even after 24 h of MG-132 treatment, while the survival-mediating Akt phosphorylation declined and the executor of apoptosis (caspase-3) was activated by that time and apoptosis was also observable. We examined subcellular localization of stress signaling components, applied kinase inhibitors and dominant negative H-Ras mutant-expressing PC12 cells in order to decipher connections of stress-mediating pathways. Our results are suggestive of that treatment with the proteasome inhibitor MG-132 has a biphasic nature in PC12 cells. Initially, it induces neuronal differentiation but prolonged treatments lead to apoptosis.
Collapse
Affiliation(s)
- Oktávia Tarjányi
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary.,Signal Transduction Research Group, János Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - Julian Haerer
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary
| | - Mónika Vecsernyés
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary.,Signal Transduction Research Group, János Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary.,Signal Transduction Research Group, János Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - Alexandra Stayer-Harci
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary.,Signal Transduction Research Group, János Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - Bálint Balogh
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary
| | - Kornélia Farkas
- Institute of Bioanalysis, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary
| | - József Szeberényi
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary.,Signal Transduction Research Group, János Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - György Sétáló
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary. .,Signal Transduction Research Group, János Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary.
| |
Collapse
|
2
|
Zhao G, Bailey CG, Feng Y, Rasko J, Lovicu FJ. Negative regulation of lens fiber cell differentiation by RTK antagonists Spry and Spred. Exp Eye Res 2018; 170:148-159. [PMID: 29501879 PMCID: PMC5924633 DOI: 10.1016/j.exer.2018.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/09/2018] [Accepted: 02/25/2018] [Indexed: 11/19/2022]
Abstract
Sprouty (Spry) and Spred proteins have been identified as closely related negative regulators of the receptor tyrosine kinase (RTK)-mediated MAPK pathway, inhibiting cellular proliferation, migration and differentiation in many systems. As the different members of this antagonist family are strongly expressed in the lens epithelium in overlapping patterns, in this study we used lens epithelial explants to examine the impact of these different antagonists on the morphologic and molecular changes associated with fibroblast growth factor (FGF)-induced lens fiber differentiation. Cells in lens epithelial explants were transfected using different approaches to overexpress the different Spry (Spry1, Spry2) and Spred (Spred1, Spred2, Spred3) members, and we compared their ability to undergo FGF-induced fiber differentiation. In cells overexpressing any of the antagonists, the propensity for FGF-induced cell elongation was significantly reduced, indicative of a block to lens fiber differentiation. Of these antagonists, Spry1 and Spred2 appeared to be the most potent among their respective family members, demonstrating the greatest block in FGF-induced fiber differentiation based on the percentage of cells that failed to elongate. Consistent with the reported activity of Spry and Spred, we show that overexpression of Spry2 was able to suppress FGF-induced ERK1/2 phosphorylation in lens cells, as well as the ERK1/2-dependent fiber-specific marker Prox1, but not the accumulation of β-crystallins. Taken together, Spry and Spred proteins that are predominantly expressed in the lens epithelium in situ, appear to have overlapping effects on negatively regulating ERK1/2-signaling associated with FGF-induced lens epithelial cell elongation leading to fiber differentiation. This highlights the important regulatory role for these RTK antagonists in establishing and maintaining the distinct architecture and polarity of the lens.
Collapse
Affiliation(s)
- Guannan Zhao
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, NSW, Australia
| | - Yue Feng
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - John Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, NSW, Australia; Department of Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
3
|
Adams KW, Kletsov S, Lamm RJ, Elman JS, Mullenbrock S, Cooper GM. Role for Egr1 in the Transcriptional Program Associated with Neuronal Differentiation of PC12 Cells. PLoS One 2017; 12:e0170076. [PMID: 28076410 PMCID: PMC5226839 DOI: 10.1371/journal.pone.0170076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/28/2016] [Indexed: 11/17/2022] Open
Abstract
PC12 cells are a well-established model to study how differences in signal transduction duration can elicit distinct cell behaviors. Epidermal growth factor (EGF) activates transient ERK signaling in PC12 cells that lasts 30–60 min, which in turn promotes proliferation; nerve growth factor (NGF) activates more sustained ERK signaling that lasts 4–6 h, which in turns induces neuronal differentiation. Data presented here extend a previous study by Mullenbrock et al. (2011) that demonstrated that sustained ERK signaling in response to NGF induces preferential expression of a 69-member gene set compared to transient ERK signaling in response to EGF and that the transcription factors AP-1 and CREB play a major role in the preferential expression of several genes within the set. Here, we examined whether the Egr family of transcription factors also contributes to the preferential expression of the gene set in response to NGF. Our data demonstrate that NGF causes transient induction of all Egr family member transcripts, but a corresponding induction of protein was detected for only Egr1 and 2. Chromatin immunoprecipitation experiments provided clearest evidence that, after induction, Egr1 binds 12 of the 69 genes that are preferentially expressed during sustained ERK signaling. In addition, Egr1 expression and binding upstream of its target genes were both sustained in response to NGF versus EGF within the same timeframe that its targets are preferentially expressed. These data thus provide evidence that Egr1 contributes to the transcriptional program activated by sustained ERK signaling in response to NGF, specifically by contributing to the preferential expression of its target genes identified here.
Collapse
Affiliation(s)
- Kenneth W Adams
- Department of Biological Sciences, Bridgewater State University, Bridgewater, Massachusetts, United States of America
| | - Sergey Kletsov
- Department of Biological Sciences, Bridgewater State University, Bridgewater, Massachusetts, United States of America
| | - Ryan J Lamm
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Jessica S Elman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Steven Mullenbrock
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Geoffrey M Cooper
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Mullenbrock S, Shah J, Cooper GM. Global expression analysis identified a preferentially nerve growth factor-induced transcriptional program regulated by sustained mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) and AP-1 protein activation during PC12 cell differentiation. J Biol Chem 2011; 286:45131-45. [PMID: 22065583 DOI: 10.1074/jbc.m111.274076] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neuronal differentiation of PC12 cells in response to NGF is a prototypical model in which signal duration determines a biological response. Sustained ERK activity induced by NGF, as compared with transient activity induced by EGF, is critical to the differentiation of these cells. To characterize the transcriptional program activated preferentially by NGF, we compared global gene expression profiles between cells treated with NGF and EGF for 2-4 h, when sustained ERK signaling in response to NGF is most distinct from the transient signal elicited by EGF. This analysis identified 69 genes that were preferentially up-regulated in response to NGF. As expected, up-regulation of these genes was mediated by sustained ERK signaling. In addition, they were up-regulated in response to other neuritogenic treatments (pituitary adenylate cyclase-activating polypeptide and 12-O-tetradecanoylphorbol-13-acetate plus dbcAMP) and were enriched for genes related to neuronal differentiation/function. Computational analysis and chromatin immunoprecipitation identified binding of CREB and AP-1 family members (Fos, FosB, Fra1, JunB, JunD) upstream of >30 and 50%, respectively, of the preferentially NGF-induced genes. Expression of several AP-1 family members was induced by both EGF and NGF, but their induction was more robust and sustained in response to NGF. The binding of Fos family members to their target genes was similarly sustained in response to NGF and was reduced upon MEK inhibition, suggesting that AP-1 contributes significantly to the NGF transcriptional program. Interestingly, Fra1 as well as two other NGF-induced AP-1 targets (HB-EGF and miR-21) function in positive feedback loops that may contribute to sustained AP-1 activity.
Collapse
Affiliation(s)
- Steven Mullenbrock
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
5
|
Ahearn IM, Tsai FD, Court H, Zhou M, Jennings BC, Ahmed M, Fehrenbacher N, Linder ME, Philips MR. FKBP12 binds to acylated H-ras and promotes depalmitoylation. Mol Cell 2011; 41:173-85. [PMID: 21255728 DOI: 10.1016/j.molcel.2011.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 09/07/2010] [Accepted: 11/24/2010] [Indexed: 11/19/2022]
Abstract
A cycle of palmitoylation/depalmitoylation of H-Ras mediates bidirectional trafficking between the Golgi apparatus and the plasma membrane, but nothing is known about how this cycle is regulated. We show that the prolyl isomerase (PI) FKBP12 binds to H-Ras in a palmitoylation-dependent fashion and promotes depalmitoylation. A variety of inhibitors of the PI activity of FKBP12, including FK506, rapamycin, and cycloheximide, increase steady-state palmitoylation. FK506 inhibits retrograde trafficking of H-Ras from the plasma membrane to the Golgi in a proline 179-dependent fashion, augments early GTP loading of Ras in response to growth factors, and promotes H-Ras-dependent neurite outgrowth from PC12 cells. These data demonstrate that FKBP12 regulates H-Ras trafficking by promoting depalmitoylation through cis-trans isomerization of a peptidyl-prolyl bond in proximity to the palmitoylated cysteines.
Collapse
Affiliation(s)
- Ian M Ahearn
- Department of Medicine, NYU Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA. 0016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Marampon F, Casimiro MC, Fu M, Powell MJ, Popov VM, Lindsay J, Zani BM, Ciccarelli C, Watanabe G, Lee RJ, Pestell RG. Nerve Growth factor regulation of cyclin D1 in PC12 cells through a p21RAS extracellular signal-regulated kinase pathway requires cooperative interactions between Sp1 and nuclear factor-kappaB. Mol Biol Cell 2008; 19:2566-78. [PMID: 18367547 DOI: 10.1091/mbc.e06-12-1110] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The PC12 pheochromocytoma cell line responds to nerve growth factor (NGF) by exiting from the cell cycle and differentiating to induce extending neurites. Cyclin D1 is an important regulator of G1/S phase cell cycle progression, and it is known to play a role in myocyte differentiation in cultured cells. Herein, NGF induced cyclin D1 promoter, mRNA, and protein expression via the p21(RAS) pathway. Antisense- or small interfering RNA to cyclin D1 abolished NGF-mediated neurite outgrowth, demonstrating the essential role of cyclin D1 in NGF-mediated differentiation. Expression vectors encoding mutants of the Ras/mitogen-activated protein kinase pathway, and chemical inhibitors, demonstrated NGF induction of cyclin D1 involved cooperative interactions of extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase pathways downstream of p21(RAS). NGF induced the cyclin D1 promoter via Sp1, nuclear factor-kappaB, and cAMP-response element/activated transcription factor sites. NGF induction via Sp1 involved the formation of a Sp1/p50/p107 complex. Cyclin D1 induction by NGF governs differentiation and neurite outgrowth in PC12 cells.
Collapse
Affiliation(s)
- Francesco Marampon
- Department of Cancer Biology and Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sephashvili M, Zhuravliova E, Barbakadze T, Khundadze M, Narmania N, Mikeladze DG. L-NAME has opposite effects on the productions of S-adenosylhomocysteine and S-adenosylmethionine in V12-H-Ras and M-CR3B-Ras pheochromocytoma cells. Neurochem Res 2006; 31:1205-10. [PMID: 17004132 DOI: 10.1007/s11064-006-9148-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
Homocysteine is a sulfur-containing, nonproteinogenic, neurotoxic amino acid biosynthesized during methyl cycles after demethylation of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) and subsequent hydrolysis of SAH into homocysteine and adenosine. Formed homocysteine is either catabolized into cystathionine (transsulfuration pathway) by cystathionine beta-synthase, or remethylated into methionine (remethylation pathway) by methionine synthase. To demonstrate the specificity of Ras-elicited effects on the activity of methyl cycles, wild-type pheochromocytoma PC12, mutant oncogenic rasH gene (MVR) expressing PC12 pheochromocytoma and normal c-rasH stably transfected M-CR3B cells were incubated with the N(omega)-nitro-L-arginine methyl ester (L-NAME), and manumycin, (inhibitors of nitric oxide synthase and farnesyltransferase, respectively). We have found that L-NAME significantly changes the SAM/SAH ratio in both MCR and MVR cells. Moreover, these alterations have reciprocal character; in the MCR cells, the SAM/SAH ratio was raised, whereas in the MVR cells this ratio was decreased. We conclude that depletion of endogenous NO with L-NAME increased the production of SAH only in cells with mutated oncogenic RasH, possibly through enhancement of production of reactive oxygen species (ROS). Oxidative stress can increase cystathionine beta-synthase activity that switches methyl cycles from remethylation into transsulfuration pathway to maintain the intracellular glutathione pool (essential for the redox-regulating capacity of cells) via an adaptive process.
Collapse
Affiliation(s)
- Maia Sephashvili
- Laboratory of Neurochemistry, Institute of Physiology, 14 Gotua st., Tbilisi, 0160, Georgia
| | | | | | | | | | | |
Collapse
|
8
|
Chaturvedi K, Sarkar DK. Mediation of basic fibroblast growth factor-induced lactotropic cell proliferation by Src-Ras-mitogen-activated protein kinase p44/42 signaling. Endocrinology 2005; 146:1948-55. [PMID: 15637287 PMCID: PMC2869484 DOI: 10.1210/en.2004-1448] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Basic fibroblast growth factor (bFGF), which is secreted from folliculostellate cells in the anterior pituitary, is known to be involved in the communication between folliculostellate cells and lactotropes during estradiol-induced lactotropic cell proliferation. We studied the role of MAPK p44/42 in bFGF-regulated cell proliferation using enriched lactotropes and the lactotrope-derived PR1 cell line. In cell cultures, bFGF increased cell proliferation of PR1 cells and enriched lactotropes. In both of these cell populations, bFGF also increased phosphorylation of MAPK p44/42. U0126, an inhibitor of MAPK p44/42, blocked the bFGF-induced activation of MAPK p44/42 as well as the bFGF-induced cell proliferation of enriched lactotropes and PR1 cells. Treatment of PR1 cells with bFGF increased the activity of Ras p21, whereas overexpression of a dominant negative mutant of Ras p21 abrogated the bFGF-induced activation of MAPK p44/42 in these cells. Furthermore, the Src kinase inhibitor PP1 suppressed bFGF-induced activation of MAPK p44/42 in both enriched lactotropes and PR1 cells. The Src kinase inhibitor PP1 also reduced bFGF activation of Ras p21 and cell proliferation in PR1 cells. On the other hand, the bFGF-induced activation of MAPK p44/42 in enriched lactotropes and PR1 cells was not affected by protein kinase C inhibitors. These data suggest that bFGF induction of lactotropic cell proliferation is possibly mediated by activation of Src kinase, Ras p21, and MAPK p44/42.
Collapse
Affiliation(s)
- Kirti Chaturvedi
- Endocrinology Program and Department of Animal Sciences, Rutgers, The State University of New Jersey, 84 Lipman Drive, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
9
|
Shi GX, Andres DA. Rit contributes to nerve growth factor-induced neuronal differentiation via activation of B-Raf-extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades. Mol Cell Biol 2005; 25:830-46. [PMID: 15632082 PMCID: PMC543422 DOI: 10.1128/mcb.25.2.830-846.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.
Collapse
Affiliation(s)
- Geng-Xian Shi
- Department of Molecular and Cellular Biochemistry, Room MS639, Chandler Medical Center, University of Kentucky College of Medicine, 800 Rose St., Lexington, KY 40536-0298, USA
| | | |
Collapse
|
10
|
Chaturvedi K, Sarkar DK. Involvement of protein kinase C-dependent mitogen-activated protein kinase p44/42 signaling pathway for cross-talk between estradiol and transforming growth factor-beta3 in increasing basic fibroblast growth factor in folliculostellate cells. Endocrinology 2004; 145:706-15. [PMID: 14605008 PMCID: PMC2895416 DOI: 10.1210/en.2003-1063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have recently shown that TGF-beta3, in the presence of estradiol, increases the release of basic fibroblast growth factor (bFGF) from folliculostellate (FS) cells in the pituitary. We determined the interactive effects of TGF-beta3 and estradiol on bFGF production and release from FS cells, and the role of the MAPK pathway in TGF-beta3 and estradiol interaction. We found that TGF-beta3 and estradiol alone moderately increased cell content and release of bFGF from FS cells; but together, they markedly increased the peptide. Estradiol and TGF-beta3 alone moderately activated MAPK p44/42; together they produced marked activation of MAPK p44/42. Pretreatment of FS cells with an MAPK kinase 1/2 inhibitor or with protein kinase C inhibitors suppressed the activation of MAPK p44/42, bFGF release, and protein level increases, all of which were induced by TGF-beta3 and estradiol. Estradiol and TGF-beta3, either alone or in combination, increased the levels of active Ras. Furthermore, bFGF induction by TGF-beta3 and estradiol was blocked by overexpression of Ras N17, a dominant negative mutant of Ras p21. Estrogen receptor blocker ICI 182,780 failed to prevent estrogen's and TGF-beta3's effects on bFGF. These data suggest that an estradiol receptor-independent protein kinase C- activated Ras-dependent MAPK pathway is involved in the cross-talk between TGF-beta3 and estradiol to increase bFGF production and/or release from FS cells.
Collapse
Affiliation(s)
- Kirti Chaturvedi
- Endocrinology Program, Biomedical Division of the Center of Alcohol Studies and Department of Animal Sciences, Rutgers, The State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
11
|
Abstract
Sialylation is essential for development and regeneration in mammals. Using N-propanoylmannosamine, a novel precursor of sialic acid, we were able to incorporate unnatural sialic acids with a prolonged N-acyl side chain (e.g., N-propanoylneuraminic acid) into cell surface glycoconjugates. Here we report that this biochemical engineering of sialic acid leads to a stimulation of neuronal cells. Both PC12 cells and cerebellar neurons showed a significant increase in neurite outgrowth after treatment with this novel sialic acid precursor. Furthermore, also the reestablishment of the perforant pathway was stimulated in brain slices. In addition, we surprisingly identified several cytosolic proteins with regulatory functions, which are differentially expressed after treatment with N-propanoylmannosamine. Because sialic acid is the only monosaccharide that is activated in the nucleus, we hypothesize that transcription could be modulated by the unnatural CMP-N-propanoylneuraminic acid and that sialic acid activation might be a general tool to regulate cellular functions, such as neurite outgrowth.
Collapse
|
12
|
Jeong HS, Kim SW, Baek KJ, Lee HS, Kwon NS, Kim YM, Yun HY. Involvement of Ras in survival responsiveness to nitric oxide toxicity in pheochromocytoma cells. J Neurooncol 2002; 60:97-107. [PMID: 12635656 DOI: 10.1023/a:1020627106602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nitric oxide (NO) plays a key role in attenuation of tumor growth by activated macrophages that generate large amount of cytotoxic/cytostatic free radicals. However, some tumor cells may survive from NO cytotoxicity and continue to proliferate to malignant tumors. Since a protooncogene product Ras was shown to be activated by NO, this study investigated the involvement of Ras in the cell survival in response to NO cytotoxicity in pheochromocytoma (PC12) cells. Treatment with Ras inhibitor or constitutive expression of dominant negative Ras markedly increased NO-induced cell death. NO-resistant PC12 cells (PC12-NO-R) exhibited higher steady state Ras activity than the parental PC12 cells. Inducible expression using tetracycline-on (Tet-on) system of Ras mutants (dominant negative Ras or dominant active Ras) demonstrated that blockade of Ras activity increased NO-induced cell death whereas enhancement of Ras activity attenuated NO-induced cell death. Furthermore, inducible expression of NO-insensitive mutant Ras selectively increased cellular vulnerability to NO but not to ROS. NO, Ras inhibitor and extracellular signal-regulated kinase (Erk) blocker synergistically increased cell death. These observations suggest that Ras activity may be a critical factor for survival response of tumor cells to NO toxicity and pharmacological agents affecting Ras activity may enhance efficacy of NO-mediated tumor therapies.
Collapse
Affiliation(s)
- Hyun Sik Jeong
- Department of Biochemistry, College of Medicine, Chung-Ang University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Kimmelman AC, Nuñez Rodriguez N, Chan AML. R-Ras3/M-Ras induces neuronal differentiation of PC12 cells through cell-type-specific activation of the mitogen-activated protein kinase cascade. Mol Cell Biol 2002; 22:5946-61. [PMID: 12138204 PMCID: PMC133986 DOI: 10.1128/mcb.22.16.5946-5961.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
R-Ras3/M-Ras is a novel member of the Ras subfamily of GTP-binding proteins which has a unique expression pattern highly restricted to the mammalian central nervous system. In situ hybridization using an R-Ras3 cRNA probe revealed high levels of R-Ras3 transcripts in the hippocampal region of the mouse brain as well as a pattern of expression in the cerebellum that was distinct from that of H-Ras. We found that R-Ras3 was activated by nerve growth factor (NGF) and basic fibroblast growth factor as well as by the guanine nucleotide exchange factor GRP but not by epidermal growth factor. Ectopic expression of either R-Ras3 or GRP in PC12 cells induced efficient neuronal differentiation. The ability of NGF as well as GRP to promote differentiation of PC12 cells was attenuated by an R-Ras3 dominant-negative mutant. Furthermore, the biological action of R-Ras3 in PC12 cells was dependent on the mitogen-activated protein kinase (MAPK). Interestingly, whereas R-Ras3 was unable to mediate efficient activation of MAPK activity in NIH 3T3 cells, it was able to do so in PC12 cells. This cell-type specificity is in stark contrast to that of H-Ras, which can stimulate the MAPK pathway in both cell types. Indeed, this pattern of MAPK activation could be explained by the fact that R-Ras3 was unable to activate c-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf, in PC12 cells. Thus, R-Ras3 is implicated in a novel pathway of neuronal differentiation by coupling specific trophic factors to the MAPK cascade through the activation of B-Raf.
Collapse
Affiliation(s)
- Alec C Kimmelman
- The Derald H. Ruttenberg Cancer Center, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
14
|
Katoh H, Yasui H, Yamaguchi Y, Aoki J, Fujita H, Mori K, Negishi M. Small GTPase RhoG is a key regulator for neurite outgrowth in PC12 cells. Mol Cell Biol 2000; 20:7378-87. [PMID: 10982854 PMCID: PMC86291 DOI: 10.1128/mcb.20.19.7378-7387.2000] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rho family of small GTPases has been implicated in cytoskeletal reorganization and subsequent morphological changes in various cell types. Among them, Rac and Cdc42 have been shown to be involved in neurite outgrowth in neuronal cells. In this study, we examined the role of RhoG, another member of Rho family GTPases, in nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Expression of wild-type RhoG in PC12 cells induced neurite outgrowth in the absence of NGF, and the morphology of wild-type RhoG-expressing cells was similar to that of NGF-differentiated cells. Constitutively active RhoG-transfected cells extended short neurites but developed large lamellipodial or filopodial structures at the tips of neurites. RhoG-induced neurite outgrowth was inhibited by coexpression with dominant-negative Rac1 or Cdc42. In addition, expression of constitutively active RhoG elevated endogenous Rac1 and Cdc42 activities. We also found that the NGF-induced neurite outgrowth was enhanced by expression of wild-type RhoG whereas expression of dominant-negative RhoG suppressed the neurite outgrowth. Furthermore, constitutively active Ras-induced neurite outgrowth was also suppressed by dominant-negative RhoG. Taken together, these results suggest that RhoG is a key regulator in NGF-induced neurite outgrowth, acting downstream of Ras and upstream of Rac1 and Cdc42 in PC12 cells.
Collapse
Affiliation(s)
- H Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Egea J, Espinet C, Soler RM, Peiró S, Rocamora N, Comella JX. Nerve growth factor activation of the extracellular signal-regulated kinase pathway is modulated by Ca(2+) and calmodulin. Mol Cell Biol 2000; 20:1931-46. [PMID: 10688641 PMCID: PMC110811 DOI: 10.1128/mcb.20.6.1931-1946.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nerve growth factor is a member of the neurotrophin family of trophic factors that have been reported to be essential for the survival and development of sympathetic neurons and a subset of sensory neurons. Nerve growth factor exerts its effects mainly by interaction with the specific receptor TrkA, which leads to the activation of several intracellular signaling pathways. Once activated, TrkA also allows for a rapid and moderate increase in intracellular calcium levels, which would contribute to the effects triggered by nerve growth factor in neurons. In this report, we analyzed the relationship of calcium to the activation of the Ras/extracellular signal-regulated kinase pathway in PC12 cells. We observed that calcium and calmodulin are both necessary for the acute activation of extracellular signal-regulated kinases after TrkA stimulation. We analyzed the elements of the pathway that lead to this activation, and we observed that calmodulin antagonists completely block the initial Raf-1 activation without affecting the function of upstream elements, such as Ras, Grb2, Shc, and Trk. We have broadened our study to other stimuli that activate extracellular signal-regulated kinases through tyrosine kinase receptors, and we have observed that calmodulin also modulates the activation of such kinases after epidermal growth factor receptor stimulation in PC12 cells and after TrkB stimulation in cultured chicken embryo motoneurons. Calmodulin seems to regulate the full activation of Raf-1 after Ras activation, since functional Ras is necessary for Raf-1 activation after nerve growth factor stimulation and calmodulin-Sepharose is able to precipitate Raf-1 in a calcium-dependent manner.
Collapse
Affiliation(s)
- J Egea
- Grup de Neurobiologia Molecular, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, 25198 Lleida, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Goi T, Rusanescu G, Urano T, Feig LA. Ral-specific guanine nucleotide exchange factor activity opposes other Ras effectors in PC12 cells by inhibiting neurite outgrowth. Mol Cell Biol 1999; 19:1731-41. [PMID: 10022860 PMCID: PMC83966 DOI: 10.1128/mcb.19.3.1731] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ras proteins can activate at least three classes of downstream target proteins: Raf kinases, phosphatidylinositol-3 phosphate (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (Ral-GEFs). In NIH 3T3 cells, activated Ral-GEFs contribute to Ras-induced cell proliferation and oncogenic transformation by complementing the activities of Raf and PI3 kinases. In PC12 cells, activated Raf and PI3 kinases mediate Ras-induced cell cycle arrest and differentiation into a neuronal phenotype. Here, we show that in PC12 cells, Ral-GEF activity acts opposite to other Ras effectors. Elevation of Ral-GEF activity induced by transfection of a mutant Ras protein that preferentially activates Ral-GEFs, or by transfection of the catalytic domain of the Ral-GEF Rgr, suppressed cell cycle arrest and neurite outgrowth induced by nerve growth factor (NGF) treatment. In addition, Rgr reduced neurite outgrowth induced by a mutant Ras protein that preferentially activates Raf kinases. Furthermore, inhibition of Ral-GEF activity by expression of a dominant negative Ral mutant accelerated cell cycle arrest and enhanced neurite outgrowth in response to NGF treatment. Ral-GEF activity may function, at least in part, through inhibition of the Rho family GTPases, CDC42 and Rac. In contrast to Ras, which was activated for hours by NGF treatment, Ral was activated for only approximately 20 min. These findings suggest that one function of Ral-GEF signaling induced by NGF is to delay the onset of cell cycle arrest and neurite outgrowth induced by other Ras effectors. They also demonstrate that Ras has the potential to promote both antidifferentiation and prodifferentiation signaling pathways through activation of distinct effector proteins. Thus, in some cell types the ratio of activities among Ras effectors and their temporal regulation may be important determinants for cell fate decisions between proliferation and differentiation.
Collapse
Affiliation(s)
- T Goi
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
17
|
p21 ras and phosphatidylinositol-3 kinase are required for survival of wild-type and NF1 mutant sensory neurons. J Neurosci 1999. [PMID: 9852579 DOI: 10.1523/jneurosci.18-24-10420.1998] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nerve growth factor (NGF) is a required differentiation and survival factor for sympathetic and a majority of neural crest-derived sensory neurons in the developing vertebrate peripheral nervous system. Although much is known about the function of NGF, the intracellular signaling cascade that it uses continues to be a subject of intense study. p21 ras signaling is considered necessary for sensory neuron survival. How additional intermediates downstream or in parallel may function has not been fully understood yet. Two intracellular signaling cascades, extra cellular regulated kinase (erk) and phosphatidylinositol-3 (PI 3) kinase, transduce NGF signaling in the pheochromocytoma cell line PC12. To elucidate the role these cascades play in survival and differentiation, we used a combination of recombinant adenoviruses and chemical inhibitors to perturb these pathways in sensory neurons from wild-type mice and mice deficient for neurofibromin in which the survival and differentiation pathway is constitutively active. We demonstrate that ras activity is both necessary and sufficient for the survival of embryonic sensory neurons. Downstream of ras, however, the erk cascade is neither required nor sufficient for neuron survival or overall differentiation. Instead, the activity of PI 3 kinase is necessary for the survival of the wild-type and neurofibromin-deficient neurons. Therefore, we conclude that in sensory neurons, NGF acts via a signaling pathway, which includes both ras and PI 3 kinase.
Collapse
|
18
|
Szeberényi J. Normal stimulation of the synthesis, phosphorylation and DNA binding activity of c-Fos and Zif268 proteins by nerve growth factor is not sufficient to mediate neuronal differentiation of PC12 cells. Mol Cell Biochem 1998; 189:71-7. [PMID: 9879656 DOI: 10.1023/a:1006813501633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Early-response genes (ERGs) are rapidly induced by nerve growth factor (NGF) in the PC12 rat pheochromocytoma cell line. To analyze the possible role of Ras and ERGs in neuronal differentiation, experiments were carried out to study the involvement of Ras proteins in the NGF-stimulated expression of two ERG-coded proteins (c-Fos and Zif268) implicated in NGF signaling. Using PC12 subclones expressing the dominant negative Ha-Ras Asn-17 protein, NGF-induced expression, phosphorylation and DNA-binding of these ERG products were found to be not sufficient to convey the biological response of PC12 cells to NGF.
Collapse
Affiliation(s)
- J Szeberényi
- Department of Medical Biology, University Medical Biology, University Medical School of Pécs, Hungary
| |
Collapse
|
19
|
Ladha MH, Lee KY, Upton TM, Reed MF, Ewen ME. Regulation of exit from quiescence by p27 and cyclin D1-CDK4. Mol Cell Biol 1998; 18:6605-15. [PMID: 9774675 PMCID: PMC109245 DOI: 10.1128/mcb.18.11.6605] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1998] [Accepted: 08/18/1998] [Indexed: 11/20/2022] Open
Abstract
The synthesis of cyclin D1 and its assembly with cyclin-dependent kinase 4 (CDK4) to form an active complex is a rate-limiting step in progression through the G1 phase of the cell cycle. Using an activated allele of mitogen-activated protein kinase kinase 1 (MEK1), we show that this kinase plays a significant role in positively regulating the expression of cyclin D1. This was found both in quiescent serum-starved cells and in cells expressing dominant-negative Ras. Despite the observation that cyclin D1 is a target of MEK1, in cycling cells, activated MEK1, but not cyclin D1, is capable of overcoming a G1 arrest induced by Ras inactivation. Either wild-type or catalytically inactive CDK4 cooperates with cyclin D1 in reversing the G1 arrest induced by inhibition of Ras activity. In quiescent NIH 3T3 cells expressing either ectopic cyclin D1 or activated MEK1, cyclin D1 is able to efficiently associate with CDK4; however, the complex is inactive. A significant percentage of the cyclin D1-CDK4 complexes are associated with p27 in serum-starved activated MEK1 or cyclin D1 cell lines. Reduction of p27 levels by expression of antisense p27 allows for S-phase entry from quiescence in NIH 3T3 cells expressing ectopic cyclin D1, but not in parental cells.
Collapse
Affiliation(s)
- M H Ladha
- The Dana-Farber Cancer Institute and the Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
In this report, we describe a novel local mechanism necessary for optimal axonal growth that involves hepatocyte growth factor (HGF). Sympathetic neurons of the superior cervical ganglion coexpress bioactive HGF and its receptor, the Met tyrosine kinase, both in vivo and in vitro. Exogenous HGF selectively promotes the growth but not survival of cultured sympathetic neurons; the magnitude of this growth effect is similar to that observed with exogenous NGF. Conversely, HGF antibodies that inhibit endogenous HGF decrease sympathetic neuron growth but have no effect on survival. This autocrine HGF is required locally by sympathetic axons for optimal growth, as demonstrated using compartmented cultures. Thus, autocrine HGF provides a local, intrinsic mechanism for promoting neuronal growth without affecting survival, a role that may be essential during developmental axogenesis or after neuronal injury.
Collapse
|
21
|
Chen W, Martindale JL, Holbrook NJ, Liu Y. Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc. Mol Cell Biol 1998; 18:5178-88. [PMID: 9710602 PMCID: PMC109103 DOI: 10.1128/mcb.18.9.5178] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although arsenite is an established carcinogen, the mechanisms underlying its tumor-promoting properties are poorly understood. Previously, we reported that arsenite treatment leads to the activation of the extracellular signal-regulated kinase (ERK) in rat PC12 cells through a Ras-dependent pathway. To identify potential mediators of the upstream signaling cascade, we examined the tyrosine phosphorylation profile in cells exposed to arsenite. Arsenite treatment rapidly stimulated tyrosine phosphorylation of several proteins in a Ras-independent manner, with a pattern similar to that seen in response to epidermal growth factor (EGF) treatment. Among these phosphorylated proteins were three isoforms of the proto-oncoprotein Shc as well as the EGF receptor (EGFR). Tyrosine phosphorylation of Shc allowed for enhanced interactions between Shc and Grb2 as identified by coimmunoprecipitation experiments. The arsenite-induced tyrosine phosphorylation of Shc, enhancement of Shc and Grb2 interactions, and activation of ERK were all drastically reduced by treatment of cells with either the general growth factor receptor poison suramin or the EGFR-selective inhibitor tyrphostin AG1478. Down-regulation of EGFR expression through pretreatment of cells with EGF also attenuated ERK activation and Shc tyrosine phosphorylation in response to arsenite treatment. These results demonstrate that the EGFR and Shc are critical mediators in the activation of the Ras/ERK signaling cascade by arsenite and suggest that arsenite acts as a tumor promoter largely by usurping this growth factor signaling pathway.
Collapse
Affiliation(s)
- W Chen
- Gene Expression and Aging Section, Laboratory of Biological Chemistry, National Institute on Aging, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
22
|
Pap M, Szeberényi J. Differential Ras-dependence of gene induction by nerve growth factor and second messenger analogs in PC12 cells. Neurochem Res 1998; 23:969-75. [PMID: 9690739 DOI: 10.1023/a:1021032405390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Induction of neurite formation by nerve growth factor (NGF) in PC12 pheochromocytoma cells can be efficiently inhibited by expressing a dominant negative mutant form of the small guanine nucleotide binding Ha-Ras protein in these cells. The block in NGF-induced neuritogenesis caused by inhibition of endogenous Ras proteins was found to be partially relieved by simultaneous stimulation of cAMP- or Ca++-dependent signaling pathways. Since expression of certain genes is believed to be involved in NGF-signaling leading to morphological differentiation, we decided to study the combined effects of NGF and second messenger analogs on gene expression in PC12 cell lines expressing different levels of the interfering Ras protein. We found NGF-second messenger combinations that induced normal c-fos, zif268 and nur77 early-response gene expression without neuritogenesis, and, conversely, cell lines in which certain combination treatments caused partial neuronal differentiation in the absence of substantial activation of these genes. Similarly, neurite outgrowth induced by combination treatments does not seem to require the activation of the late-response transin gene. Our results thus suggest a lack of strong correlation between NGF-stimulated early- and secondary-response gene induction and morphological differentiation.
Collapse
Affiliation(s)
- M Pap
- Department of Biology, University Medical School of Pécs, Hungary
| | | |
Collapse
|
23
|
Abstract
We have shown that N-acetylcysteine (NAC) promotes survival of sympathetic neurons and pheochromocytoma (PC12) cells in the absence of trophic factors. This action of NAC was not related to its antioxidant properties or ability to increase intracellular glutathione levels but was instead dependent on ongoing transcription and seemed attributable to the action of NAC as a reducing agent. Here, we investigate the mechanism by which NAC promotes neuronal survival. We show that NAC activates the Ras-extracellular signal-regulated kinase (ERK) pathway in PC12 cells. Ras activation by NAC seems necessary for survival in that it is unable to sustain serum-deprived PC12 MM17-26 cells constitutively expressing a dominant-negative form of Ras. Promotion of PC12 cell survival by NAC is totally blocked by PD98059, an inhibitor of the ERK-activating MAP kinase/ERK kinase, suggesting a required role for ERK activation in the NAC mechanism. In contrast, LY294002 and wortmannin, inhibitors of phosphatidylinositol 3-kinase (PI3K) that partially block NGF-promoted PC12 cell survival, have no effect on prevention of death by NAC. We hypothesized previously that the ability of NAC to promote survival correlates with its antiproliferative properties. However, although NAC does not protect PC12 MM17-26 cells from loss of trophic support, it does inhibit their capacity to synthesize DNA. Thus, the antiproliferative effect of NAC does not require Ras activation, and inhibition of DNA synthesis is insufficient to mediate NAC-promoted survival. These findings highlight the role of Ras-ERK activation in the mechanism by which NAC prevents neuronal death after loss of trophic support.
Collapse
|
24
|
Yun HY, Gonzalez-Zulueta M, Dawson VL, Dawson TM. Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. Proc Natl Acad Sci U S A 1998; 95:5773-8. [PMID: 9576960 PMCID: PMC20455 DOI: 10.1073/pnas.95.10.5773] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) glutamate receptor-mediated increases in intracellular calcium are thought to play a critical role in synaptic plasticity. The mechanisms by which changes in cytoplasmic calcium transmit the glutamate signal to the nucleus, which is ultimately important for long-lasting neuronal responses, are poorly understood. We show that NMDA receptor stimulation leads to activation of p21(ras) (Ras) through generation of nitric oxide (NO) via neuronal NO synthase. The competitive NO synthase inhibitor, L-nitroarginine methyl ester, prevents Ras activation elicited by NMDA and this effect is competitively reversed by the NO synthase substrate, L-arginine. NMDA receptor stimulation fails to activate Ras in neuronal cultures from mice lacking neuronal NO synthase. NMDA-induced Ras activation occurs through a cGMP-independent pathway as 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), a potent and selective inhibitor of guanylyl cyclase, has no effect on NMDA receptor-induced activation of Ras, and the cell-permeable cGMP analog, 8Br-cGMP, does not activate Ras. Furthermore, NO directly activates immunoprecipitated Ras from neurons. NMDA also elicits tyrosine phosphorylation of extracellular signal-regulated kinases, a downstream effector pathway of Ras, through a NO/non-cGMP dependent mechanism, thus supporting the physiologic relevance of endogenous NO regulation of Ras. These results suggest that Ras is a physiologic target of endogenously produced NO and indicates a signaling pathway for NMDA receptor activation that may be important for long-lasting neuronal responses.
Collapse
Affiliation(s)
- H Y Yun
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
25
|
Sylvester AM, Chen D, Krasinski K, Andrés V. Role of c-fos and E2F in the induction of cyclin A transcription and vascular smooth muscle cell proliferation. J Clin Invest 1998; 101:940-8. [PMID: 9486962 PMCID: PMC508643 DOI: 10.1172/jci1630] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Excessive proliferation of vascular smooth muscle cells (VSMCs) contributes to vessel renarrowing after angioplasty. Here we investigated the transcriptional regulation of the cyclin A gene, a key positive regulator of S phase that is induced after angioplasty. We show that Ras-dependent mitogenic signaling is essential for the normal stimulation of cyclin A promoter activity and DNA synthesis in VSMCs. Overexpression of the AP-1 transcription factor c-fos can circumvent this requirement via interaction with the cAMP-responsive element (CRE) in the cyclin A promoter. Moreover, c-fos overexpression in serum-starved VSMCs results in the induction of cyclin A promoter activity in a CRE-dependent manner, and increased binding of endogenous c-fos protein to the cyclin A CRE precedes the onset of DNA replication in VSMCs induced by serum in vitro and by angioplasty in vivo. We also show that E2F function is essential for both serum- and c-fos-dependent induction of cyclin A expression. Taken together, these findings suggest that c-fos and E2F are important components of the signaling cascade that link Ras activity to cyclin A transcription in VSMCs. These studies illustrate a novel link between the transcriptional and cell cycle machinery that may be relevant to the pathogenesis of vascular proliferative disorders.
Collapse
Affiliation(s)
- A M Sylvester
- Department of Medicine (Cardiology), St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | |
Collapse
|
26
|
Growth factor receptor tyrosine kinases acutely regulate neuronal sodium channels through the src signaling pathway. J Neurosci 1998. [PMID: 9425001 DOI: 10.1523/jneurosci.18-02-00590.1998] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growth factor receptor tyrosine kinase (RTK)-activated signaling pathways are well established regulators of neuronal growth and development, but whether these signals provide mechanisms for acute modulation of neuronal activity is just beginning to be addressed. We show in pheochromocytoma (PC12) cells that acute application of ligands for both endogenous RTKs [trkA, basic FGF (bFGF) receptor, and epidermal growth factor (EGF) receptor] and ectopically expressed platelet-derived growth factor (PDGF) receptors rapidly inhibits whole-cell sodium channel currents, coincident with a hyperpolarizing shift in the voltage dependence of inactivation. Sodium channel inhibition by trkA and PDGF receptors is mutually occlusive, suggestive of a common signal transduction mechanism. Furthermore, specific inhibitors for trkA and PDGF RTK activities abrogate sodium channel inhibition in response to NGF and PDGF, respectively, showing that the intrinsic RTK activity of these receptors is necessary for sodium channel inhibition. Use of PDGF receptor mutants deficient for specific signaling activities demonstrated that this inhibition is dependent on RTK interaction with Src but not with other RTK-associated signaling molecules. Inhibition was also compromised in cells expressing dominant-negative Ras. These results suggest a possible mechanism for acute physiological actions of RTKs, and they indicate regulatory functions for Ras and Src that may complement the roles of these signaling proteins in long-term neuronal regulation.
Collapse
|
27
|
Gadbut AP, Wu L, Tang D, Papageorge A, Watson JA, Galper JB. Induction of the cholesterol metabolic pathway regulates the farnesylation of RAS in embryonic chick heart cells: a new role for ras in regulating the expression of muscarinic receptors and G proteins. EMBO J 1997; 16:7250-60. [PMID: 9405354 PMCID: PMC1170325 DOI: 10.1093/emboj/16.24.7250] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We propose a novel mechanism for the regulation of the processing of Ras and demonstrate a new function for Ras in regulating the expression of cardiac autonomic receptors and their associated G proteins. We have demonstrated previously that induction of endogenous cholesterol synthesis in cultured cardiac myocytes resulted in a coordinated increase in expression of muscarinic receptors, the G protein alpha-subunit, G-alphai2, and the inward rectifying K+ channel, GIRK1. These changes in gene expression were associated with a marked increase in the response of heart cells to parasympathetic stimulation. In this study, we demonstrate that the induction of the cholesterol metabolic pathway regulates Ras processing and that Ras regulates expression of G-alphai2. We show that in primary cultured myocytes most of the RAS is localized to the cytoplasm in an unfarnesylated form. Induction of the cholesterol metabolic pathway results in increased farnesylation and membrane association of RAS. Studies of Ras mutants expressed in cultured heart cells demonstrate that activation of Ras by induction of the cholesterol metabolic pathway results in increased expression of G-alphai2 mRNA. Hence farnesylation of Ras is a regulatable process that plays a novel role in the control of second messenger pathways.
Collapse
Affiliation(s)
- A P Gadbut
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Iritani BM, Forbush KA, Farrar MA, Perlmutter RM. Control of B cell development by Ras-mediated activation of Raf. EMBO J 1997; 16:7019-31. [PMID: 9384581 PMCID: PMC1170305 DOI: 10.1093/emboj/16.23.7019] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cell fate commitment in a variety of lineages requires signals conveyed via p21ras. To examine the role of p21ras in the development of B lymphocytes, we generated transgenic mice expressing a dominant-negative form of Ras in B lymphocyte progenitors, using a novel transcriptional element consisting of the Emu enhancer and the lck proximal promoter. Expression of dominant-negative Ras arrests B cell development at a very early stage, prior to formation of the pre-B cell receptor. Furthermore, an activated form of Raf expressed in the same experimental system could both drive the maturation of normal pro-B cells and rescue development of progenitors expressing dominant-negative Ras. Hence p21ras normally regulates early development of B lymphocytes by a mechanism that involves activation of the serine/threonine kinase Raf.
Collapse
Affiliation(s)
- B M Iritani
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
29
|
Takuwa N, Takuwa Y. Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts. Mol Cell Biol 1997; 17:5348-58. [PMID: 9271412 PMCID: PMC232385 DOI: 10.1128/mcb.17.9.5348] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is well documented that Ras functions as a molecular switch for reentry into the cell cycle at the border between G0 and G1 by transducing extracellular growth stimuli into early G1 mitogenic signals. In the present study, we investigated the role of Ras during the late stage of the G1 phase by using NIH 3T3 (M17) fibroblasts in which the expression of a dominant negative Ras mutant, p21(Ha-Ras[Asn17]), is induced in response to dexamethasone treatment. We found that delaying the expression of Ras(Asn17) until late in the G1 phase by introducing dexamethasone 3 h after the addition of epidermal growth factor (EGF) abolished the downregulation of the p27kip1 cyclin-dependent kinase (CDK) inhibitor which normally occurred during this period, with resultant suppression of cyclin Ds/CDK4 and cyclin E/CDK2 and G1 arrest. The immunodepletion of p27kip1 completely eliminated the CDK inhibitor activity from EGF-stimulated, dexamethasone-treated cell lysate. The failure of p27kip1 downregulation and G1 arrest was also observed in cells in which Ras(Asn17) was induced after growth stimulation with a phorbol ester or alpha-thrombin and was mimicked by the addition late in the G1 phase of inhibitors for phosphatidylinositol-3-kinase. Ras-mediated downregulation of p27kip1 involved both the suppression of synthesis and the stimulation of the degradation of the protein. Unlike the earlier expression of Ras(Asn17) at the border between G0 and G1, its delayed expression did not compromise the EGF-stimulated transient activation of extracellular signal-regulated kinases or inhibit the stimulated expression of a principal D-type cyclin, cyclin D1, until close to the border between G1 and S. We conclude that Ras plays temporally distinct, phase-specific roles throughout the G1 phase and that Ras function late in G1 is required for p27kip1 downregulation and passage through the restriction point, a prerequisite for entry into the S phase.
Collapse
Affiliation(s)
- N Takuwa
- Department of Physiology, Faculty of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
30
|
Cutler RE, Morrison DK. Mammalian Raf-1 is activated by mutations that restore Raf signaling in Drosophila. EMBO J 1997; 16:1953-60. [PMID: 9155021 PMCID: PMC1169798 DOI: 10.1093/emboj/16.8.1953] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An interaction with the Ras proto-oncogene product is a requirement for Raf-1 activation in many signaling cascades. The significance of this interaction is demonstrated by the fact that a mutation preventing the Ras-Raf interaction severely impairs the function of both mammalian (Raf-1) and Drosophila (D-Raf) Raf proteins. In D-Raf, however, dominant intragenic mutations have been identified that suppress the effect of the Ras-binding site (RBS) mutation. To address the mechanism by which these mutations restore Raf signaling, we have introduced the suppressor mutations into the analogous residues of mammalian Raf-1. Here, we show that rather than compensating for the RBS mutation by restoring the Ras-Raf-1 interaction, the suppressor mutations increase the enzymatic and biological activity of Raf-1, allowing Raf-1 to signal in the absence of Ras binding. Surprisingly, we find that while one of the suppressor mutations (P181L) increases the basal kinase activity of Raf-1, it also abolishes the ability of wild-type Raf-1 to become activated by Ras. This mutation occurs in the cysteine-rich domain (CRD) of Raf-1 and demonstrates the importance of this region for a productive Ras-Raf interaction. Finally, we present evidence that the most activating suppressor mutation (G498S) increases Raf-1 activity by introducing a novel phosphorylation site into the L12 activation loop of the Raf-1 kinase domain.
Collapse
Affiliation(s)
- R E Cutler
- Molecular Basis of Carcinogenesis Laboratory, ABL-Basic Research Program, National Cancer Institute, Frederick Cancer Research and Development Center, MD 21702, USA
| | | |
Collapse
|
31
|
Yee WM, Worley PF. Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Mol Cell Biol 1997; 17:921-33. [PMID: 9001246 PMCID: PMC231818 DOI: 10.1128/mcb.17.2.921] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rheb is a recently described member of the Ras family that was originally identified as an immediate-early gene in brain but is also widely expressed in other tissues. Here we demonstrate that Rheb interacts with and appears to regulate Raf-1 kinase, an essential component of the H-Ras signaling pathway. In direct contrast to H-Ras, however, the interaction of Rheb with Raf-1 is potentiated by growth factors in combination with agents that increase cyclic AMP (cAMP) levels. Protein kinase A-dependent phosphorylation of serine 43 within the regulatory domain of Raf-1 reciprocally potentiates its interaction with Rheb and decreases its interaction with H-Ras. A single amino acid in the G2 effector domain is critical for the differential properties of Rheb. Since Rheb is an immediate-early gene, our studies suggest that Rheb functions in concert with H-Ras to dynamically integrate cAMP and growth factor signaling.
Collapse
Affiliation(s)
- W M Yee
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
32
|
Fanger GR, Vaillancourt RR, Heasley LE, Montmayeur JP, Johnson GL, Maue RA. Analysis of mutant platelet-derived growth factor receptors expressed in PC12 cells identifies signals governing sodium channel induction during neuronal differentiation. Mol Cell Biol 1997; 17:89-99. [PMID: 8972189 PMCID: PMC231733 DOI: 10.1128/mcb.17.1.89] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mechanisms governing neuronal differentiation, including the signals underlying the induction of voltage-dependent sodium (Na+) channel expression by neurotrophic factors, which occurs independent of Ras activity, are not well understood. Therefore, Na+ channel induction was analyzed in sublines of PC12 cells stably expressing platelet-derived growth factor (PDGF) beta receptors with mutations that eliminate activation of specific signalling molecules. Mutations eliminating activation of phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein (GAP), and Syp phosphatase failed to diminish the induction of type II Na+ channel alpha-subunit mRNA and functional Na+ channel expression by PDGF, as determined by RNase protection assays and whole-cell patch clamp recording. However, mutation of juxtamembrane tyrosines that bind members of the Src family of kinases upon receptor activation inhibited the induction of functional Na+ channels while leaving the induction of type II alpha-subunit mRNA intact. Mutation of juxtamembrane tyrosines in combination with mutations eliminating activation of PI3K, PLC gamma, GAP, and Syp abolished the induction of type II alpha-subunit mRNA, suggesting that at least partially redundant signaling mechanisms mediate this induction. The differential effects of the receptor mutations on Na+ channel expression did not reflect global changes in receptor signaling capabilities, as in all of the mutant receptors analyzed, the induction of c-fos and transin mRNAs still occurred. The results reveal an important role for the Src family in the induction of Na+ channel expression and highlight the multiplicity and combinatorial nature of the signaling mechanisms governing neuronal differentiation.
Collapse
Affiliation(s)
- G R Fanger
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
33
|
Joe AK, Ferrari G, Jiang HH, Liang XH, Levine B. Dominant inhibitory Ras delays Sindbis virus-induced apoptosis in neuronal cells. J Virol 1996; 70:7744-51. [PMID: 8892895 PMCID: PMC190844 DOI: 10.1128/jvi.70.11.7744-7751.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mature neurons are more resistant than dividing cells or differentiating neurons to Sindbis virus-induced apoptotic death. Therefore, we hypothesized that mitogenic signal transduction pathways may influence susceptibility to Sindbis virus-induced apoptosis. Since Ras, a 21-kDa GTP-binding protein, plays an important role in cellular proliferation and neuronal differentiation, we investigated the effect of an inducible dominant inhibitory Ras on Sindbis virus-induced death of a rat pheochromocytoma cell line, PC12 cells. Dexamethasone induction of dominant inhibitory Ras (Ha Ras(Asn17)) expression in transfected PC12 cell lines (MMTV-M17-21 and GSrasDN6 cells) resulted in a marked delay in Sindbis virus-induced apoptosis, compared with infected, uninduced cells. The delay in death after Sindbis virus infection in induced versus uninduced PC12 cells was not associated with differences in viral titers or viral infectivity. No delay in Sindbis virus-induced apoptosis was observed in Ha Ras(Asn17)-transfected PC12 cells if dexamethasone induction was initiated less than 12 h before Sindbis virus infection or in wild-type PC12 cells infected with a chimeric Sindbis virus construct that expresses Ha Ras(Asn17). The delay in Sindbis virus-induced apoptosis in induced Ha Ras(Asn17)-transfected PC12 cells was associated with a decrease in cellular DNA synthesis as measured by 5'-bromo-2'-deoxyuridine incorporation. Thus, in PC12 cells, inducible dominant inhibitory Ras inhibits cellular proliferation and delays Sindbis virus-induced apoptosis. These findings suggest that a Ras-dependent signaling pathway is a determinant of neuronal susceptibility to Sindbis virus-induced apoptosis.
Collapse
Affiliation(s)
- A K Joe
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
34
|
D'Arcangelo G, Habas R, Wang S, Halegoua S, Salton SR. Activation of codependent transcription factors is required for transcriptional induction of the vgf gene by nerve growth factor and Ras. Mol Cell Biol 1996; 16:4621-31. [PMID: 8756618 PMCID: PMC231461 DOI: 10.1128/mcb.16.9.4621] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nerve growth factor (NGF) treatment of PC12 cells leads to the elaboration of a neuronal phenotype, including the induction of neuronally expressed genes such as vgf. To study vgf transcription, we have created chimeric vgf/beta-globin genes in which vgf promoter sequences drive the expression of the beta-globin reporter gene or of a chimeric beta-globin gene fused to 3' untranslated vgf gene sequences. We have found that the level of inducibility of the latter construct by NGF resembles that of the endogenous vgf gene. Using transient transfection of the chimeric reporter genes into PC12 cells, into PC12 subclones expressing activated or dominantly interfering mutant Ras proteins, and into PC12 variants expressing specific NGF receptor/Trk mutants, we show that transcriptional regulation of the vgf promoter by NGF is mediated through a Ras-dependent signaling pathway. By mutational analysis of the vgf promoter, we have identified three promoter elements involved in mediating transcriptional induction by NGF and Ras. In addition to the cyclic AMP-responsive element (CRE), which binds to ATF-1, ATF-2, and CRE-binding protein in PC12 nuclear extracts, a novel CCAAT element and its binding proteins were identified, which, like the CRE, is necessary but not sufficient for the Ras-dependent induction of the vgf gene by NGF. We also identify a G(S)G element unusually located between the TATA box and transcriptional start site, which binds the NGF- and Ras-induced transcription factor, NGFI-A, and amplifies the transcriptional response. Integrating data from studies of vgf promoter regulation and NGF signal transduction, we present a model for vgf gene induction in which transcriptional activation is achieved through the persistent, direct activation of multiple interacting transcription factors binding to CRE and CCAAT elements, coordinated with the delayed transcription factor action at a G(S)G element resulting from the induced expression of NGFI-A.
Collapse
Affiliation(s)
- G D'Arcangelo
- Department of Neurobiology and Behavior and Institute for Cell and Developmental Biology, State University of New York at Stony Brook, 11794-5230, USA
| | | | | | | | | |
Collapse
|
35
|
Parker F, Maurier F, Delumeau I, Duchesne M, Faucher D, Debussche L, Dugue A, Schweighoffer F, Tocque B. A Ras-GTPase-activating protein SH3-domain-binding protein. Mol Cell Biol 1996; 16:2561-9. [PMID: 8649363 PMCID: PMC231246 DOI: 10.1128/mcb.16.6.2561] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We report the purification of a Ras-GTPase-activating protein (GAP)-binding protein, G3BP, a ubiquitously expressed cytosolic 68-kDa protein that coimmunoprecipitates with GAP. G3BP physically associates with the SH3 domain of GAP, which previously had been shown to be essential for Ras signaling. The G3BP cDNA revealed that G3BP is a novel 466-amino-acid protein that shares several features with heterogeneous nuclear RNA-binding proteins, including ribonucleoprotein (RNP) motifs RNP1 and RNP2, an RG-rich domain, and acidic sequences. Recombinant G3BP binds effectively to the GAP SH3 domain G3BP coimmunoprecipitates with GAP only when cells are in a proliferating state, suggesting a recruitment of a GAP-G3BP complex when Ras is in its activated conformation.
Collapse
Affiliation(s)
- F Parker
- Gene Medicine Department, Rhône-Poulenc Rorer, Centre de Recherche de Vitry-Alfortville, Vitry Sur Seine, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Todaka M, Hayashi H, Imanaka T, Mitani Y, Kamohara S, Kishi K, Tamaoka K, Kanai F, Shichiri M, Morii N, Narumiya S, Ebina Y. Roles of insulin, guanosine 5'-[gamma-thio]triphosphate and phorbol 12-myristate 13-acetate in signalling pathways of GLUT4 translocation. Biochem J 1996; 315 ( Pt 3):875-82. [PMID: 8645171 PMCID: PMC1217288 DOI: 10.1042/bj3150875] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Insulin, guanosine 5'-[gamma-thio]triphosphate (GTP[S] and phorbol 12-myristate 13-acetate (PMA) trigger the translocation of Gl UT4 (type 4 glucose transporter; insulin-sensitive glucose transporter) from an intracellular pool to the cell surface. We have developed a highly sensitive and quantitative method to detect GLUT4 immunologically on the surface of intact 3T3-L1 adipocytes and Chinese hamster ovary (CHO) cells, using c-myc epitope-tagged GLUT4 (GLUT4myc). We examined the roles of insulin, GTP[S] and PMA in the signalling pathways of GLUT4 translocation in the CHO cell system. Among small molecular GTP-binding proteins, ras, rab3D, rad and rho seem to be candidates as signal transmitters of insulin-stimulated GLUT4 translocation. Overexpression of wild-type H-ras and the dominant negative mutant H-rass17N in our cell system respectively enhanced and blocked insulin-stimulated activation of mitogen-activated protein kinase, but did not affect insulin-stimulated GLUT4 translocation. Overexpression of rab3D or rad in the cells did not affect GLUT4 translocation triggered by insulin, GTP[S] or PMA. Treatment with Botulinum C3 exoenzyme, a specific inhibitor of rho, had no effect on GLUT4 translocation induced by insulin, GTP[S] or PMA. Therefore these small molecular GTP-binding proteins are not likely to be involved in GLUT4 translocation. In addition, insulin, GTP[S] and PMA apparently stimulate GLUT4 translocation through independent pathways.
Collapse
Affiliation(s)
- M Todaka
- Department of Enzyme Genetics, University of Tokushima, Kuramoto-cho, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Erhardt P, Troppmair J, Rapp UR, Cooper GM. Differential regulation of Raf-1 and B-Raf and Ras-dependent activation of mitogen-activated protein kinase by cyclic AMP in PC12 cells. Mol Cell Biol 1995; 15:5524-30. [PMID: 7565704 PMCID: PMC230803 DOI: 10.1128/mcb.15.10.5524] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Growth factor stimulation of the mitogen-activated protein (MAP) kinase pathway in fibroblasts is inhibited by cyclic AMP (cAMP) as a result of inhibition of Raf-1. In contrast, cAMP inhibits neither nerve growth factor-induced MAP kinase activation nor differentiation in PC12 pheochromocytoma cells. Instead, in PC12 cells cAMP activates MAP kinase. Since one of the major differences between the Ras/Raf/MAP kinase cascades of these cell types is the expression of B-Raf in PC12 cells, we compared the effects of cAMP on Raf-1 and B-Raf. In PC12 cells maintained in serum-containing medium, B-Raf was refractory to inhibition by cAMP, whereas Raf-1 was effectively inhibited. In contrast, both B-Raf and Raf-1 were inhibited by cAMP in serum-starved PC12 cells. The effect of cAMP is thus dependent upon growth conditions, with B-Raf being resistant to cAMP inhibition in the presence of serum. These results were extended by studies of Rat-1 fibroblasts into which B-Raf had been introduced by transfection. As in PC12 cells, B-Raf was resistant to inhibition by cAMP in the presence of serum, whereas Raf-1 was effectively inhibited. In addition, the expression of B-Raf rendered Rat-1 cells resistant to the inhibitory effects of cAMP on both growth factor-induced activation of MAP kinase and mitogenesis. These results indicate that Raf-1 and B-Raf are differentially sensitive to inhibition by cAMP and that B-Raf expression can contribute to cell type-specific differences in the regulation of the MAP kinase pathway. In contrast to the situation in PC12 cells, cAMP by itself did not stimulate MAP kinase in B-Raf-expressing Rat-1 cells. The activation of MAP kinase by cAMP in PC12 cells was inhibited by the expression of a dominant negative Ras mutant, indicating that cAMP acts on a target upstream of Ras. Thus, it appears that a signaling component upstream of Ras is also require for cAMP stimulation of MAP kinase in PC12 cells.
Collapse
Affiliation(s)
- P Erhardt
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
38
|
Kranenburg O, Scharnhorst V, Van der Eb AJ, Zantema A. Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells. J Cell Biol 1995; 131:227-34. [PMID: 7559779 PMCID: PMC2120591 DOI: 10.1083/jcb.131.1.227] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation of the retinoblastoma gene product (pRb) is lost, leading to the appearance of a pRb-containing E2F DNA-binding complex. The loss of cdk2 activity is due to a decrease in cdk2 abundance whereas loss of cdk4 activity is caused by strong association with the cdk inhibitor (CKI) p27KIP1 and concurrent loss of cdk4 phosphorylation. Moreover, neuronal differentiation can be induced by overexpression of p27KIP1 or pRb, suggesting that inhibition of cdk activity leading to loss of pRb phosphorylation, is the major determinant for neuronal differentiation.
Collapse
Affiliation(s)
- O Kranenburg
- Sylvius Laboratory, Department of Molecular Carcinogenesis, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
39
|
Kundra V, Anand-Apte B, Feig LA, Zetter BR. The chemotactic response to PDGF-BB: evidence of a role for Ras. J Cell Biol 1995; 130:725-31. [PMID: 7622571 PMCID: PMC2120528 DOI: 10.1083/jcb.130.3.725] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The PDGF receptor-beta mediates both mitogenic and chemotactic responses to PDGF-BB. Although the role of Ras in tyrosine kinase-mediated mitogenesis has been characterized extensively, its role in PDGF-stimulated chemotaxis has not been defined. Using cells expressing a dominant-negative ras, we find that Ras inhibition suppresses migration toward PDGF-BB. Overexpression of either Ras-GTPase activating protein (Ras-GAP) or a Ras guanine releasing factor (GRF) also inhibited PDGF-stimulated chemotaxis. In addition, cells producing excess constitutively active Ras failed to migrate toward PDGF-BB, consistent with the observation that either excess ligand or excess signaling intermediate can suppress the chemotactic response. These results suggest that Ras can function in normal cells to support chemotaxis toward PDGF-BB and that either too little or too much Ras activity can abrogate the chemotactic response. In contrast to Ras overexpression, cells producing excess constitutively active Raf, a downstream effector of Ras, did migrate toward PDGF-BB. Cells expressing dominant-negative Ras were able to migrate toward soluble fibronectin demonstrating that these cells retained the ability to migrate. These results suggest that Ras is an intermediate in PDGF-stimulated chemotaxis but may not be required for fibronectin-stimulated cell motility.
Collapse
Affiliation(s)
- V Kundra
- Department of Cell Biology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
40
|
Evers BM, Zhou Z, Celano P, Li J. The neurotensin gene is a downstream target for Ras activation. J Clin Invest 1995; 95:2822-30. [PMID: 7769122 PMCID: PMC295968 DOI: 10.1172/jci117987] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ras regulates novel patterns of gene expression and the differentiation of various eukaryotic cell types. Stable transfection of Ha-ras into the human colon cancer line CaCo2 results in the morphologic differentiation to a small bowel phenotype. The purpose of our study was to determine whether the Ras regulatory pathway plays a role in the expression of the neurotensin gene (NT/N), a terminally differentiated endocrine product specifically localized in the gastrointestinal tract to the adult small bowel. We found that CaCo2-ras cells, but not parental CaCo2, express high levels of the human NT/N gene and, moreover, that this increase in gene expression is regulated at the level of transcription. Transfection experiments using NT/N-CAT mutation constructs identify the proximal 200 bp of NT/N flanking sequence as sufficient for maximal Ras-mediated NT/N reporter gene induction. Furthermore, a proximal AP-1/CRE motif is crucial for this Ras-mediated NT/N activation. Wild-type Ha-ras induces NT/N gene expression, albeit at lower levels than activated Ras; a dominant-negative Raf blocks this NT/N induction, suggesting that Raf lies down-stream of Ras in this pathway. In addition, postconfluent cultures of CaCo2 cells, which are differentiated to a small bowel phenotype, express the NT/N gene by 6 d after reaching confluency; this increase of NT/N expression is associated with concomitant increases of cellular p21ras protein. We conclude that Ras (both wild-type and activated) enhances expression of the NT/N gene in the gut-derived CaCo2 cell line, suggesting an important role for the Ras signaling pathway in NT/N gene transcription. Our results underscore the possibility that tissue-specific genes (such as NT/N) expressed in distinct subpopulations of the gut may be subject to Ras regulation. Finally, we speculate that the NT/N gene and the CaCo2 and CaCo2-ras cell systems will provide unique models to further define the cellular mechanisms leading to mammalian intestinal differentiation.
Collapse
Affiliation(s)
- B M Evers
- Department of Surgery, University of Texas Medical Branch, Galveston 77555, USA
| | | | | | | |
Collapse
|
41
|
Tang SJ, Huang YM, Wang FF. Analysis of c-fos expression in the butyrate-induced F-98 glioma cell differentiation. Biochem J 1995; 306 ( Pt 1):47-56. [PMID: 7864828 PMCID: PMC1136480 DOI: 10.1042/bj3060047] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The functional induction of c-fos in the sodium butyrate-induced differentiation of F-98 glioma cells was studied. Fos protein level was increased by butyrate. In contrast, c-Jun protein was constitutively expressed and was not affected by butyrate. Gel-retardation assay indicates Fos as a component of the complex formed between the consensus oligonucleotide of the TPA (PMA, phorbol 12-myristate 13-acetate) response element (TRE) and nuclear extract prepared from butyrate-treated cells. Transfection studies showed that butyrate increased transcription from a multimeric TRE-driven reporter construct, and the effect was mimicked by transfecting cells with fos-expression plasmid. Furthermore, under conditions of c-fos over-expression, transactivation by butyrate was essentially abolished. These data suggest that Fos induction had a functional role in gene activation. Characterization of stable c-fos transfectants demonstrated that these cells displayed alterations in morphology, showed serum-dependent growth, had slower growth rates and grew to lower saturation densities than did untransfected F-98 cells or transfected cells that did not express c-fos. Immunofluorescent staining indicated that fos transfectants also had elevated glial fibrillary acidic protein ('GFAP') expression. Transfection of the c-fos promoter-chloramphenicol acetyltransferase fusion gene into F-98 cells revealed that activation of c-fos by butyrate was exerted at the promoter level, and sequences located within nucleotides -757 to -402 of the c-fos promoter were responsible for butyrate induction. Our data indicate that transcriptional activation of c-fos through its promoter by butyrate resulted in increased Fos protein expression. Transfection studies show that both c-fos and butyrate activate TRE-containing genes, and fos may be a downstream mediator of butyrate. Furthermore, expression of c-fos plays a major role in modulating the growth properties of F-98 cells.
Collapse
Affiliation(s)
- S J Tang
- Institute of Marine Biotechnology, National Ocean University, Keelong, Taiwan
| | | | | |
Collapse
|
42
|
Interferons block protein kinase C-dependent but not-independent activation of Raf-1 and mitogen-activated protein kinases and mitogenesis in NIH 3T3 cells. Mol Cell Biol 1994. [PMID: 7526152 DOI: 10.1128/mcb.14.12.8018] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interferons (IFNs) exert antiproliferative effects on many types of cells. The underlying molecular mechanism, however, is unclear. One possibility is that IFNs block growth factor-induced mitogenic signaling, which involves activation of Ras/Raf-1/MEK/mitogen-activated protein kinase. We have tested this hypothesis by using HER14 cells (NIH 3T3 cell expressing both platelet-derived growth factor [PDGF] and epidermal growth factor [EGF] receptors) as a model system. Our studies showed that IFNs (alpha/beta and gamma) blocked PDGF-and phorbol ester- but not EGF-stimulated DNA synthesis and cell proliferation. While the ligand-stimulated receptor tyrosine phosphorylation and interaction with downstream signaling molecules, such as GRB2, were not affected, IFNs specifically blocked PDGF- and phorbol ester- but not EGF-stimulated activation of Raf-1, mitogen-activated protein kinases, and tyrosine phosphorylation of an unidentified 34-kDa protein. This inhibition could be detected as early as 5 min after IFN treatments and was insensitive to cycloheximide, indicating that de novo protein synthesis is not required. The IFN-induced inhibition acted upstream of Raf-1 kinase and downstream of diacyl glycerol/phorbol ester, suggesting that protein kinase C (PKC) is the potential primary target. Consistently, downregulation of PKC by chronic phorbol myristate acetate treatment or inhibition of PKC by H7 and staurosporine blocked PDGF- and phorbol myristate acetate- but not EGF-induced signaling and DNA synthesis. Moreover, incubating cells with antisense oligodeoxyribonucleotides of PKC delta eliminated production of PKC delta protein and specifically blocked PDGF- but not EGF-stimulated mitogenesis in these cells. Thus, these studies have elucidated a major difference in the early events of EGF-and PDGF-stimulated signal transduction and, more importantly, revealed a novel mechanism by which IFNs may execute their antiproliferative function.
Collapse
|
43
|
Xu J, Rockow S, Kim S, Xiong W, Li W. Interferons block protein kinase C-dependent but not-independent activation of Raf-1 and mitogen-activated protein kinases and mitogenesis in NIH 3T3 cells. Mol Cell Biol 1994; 14:8018-27. [PMID: 7526152 PMCID: PMC359340 DOI: 10.1128/mcb.14.12.8018-8027.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Interferons (IFNs) exert antiproliferative effects on many types of cells. The underlying molecular mechanism, however, is unclear. One possibility is that IFNs block growth factor-induced mitogenic signaling, which involves activation of Ras/Raf-1/MEK/mitogen-activated protein kinase. We have tested this hypothesis by using HER14 cells (NIH 3T3 cell expressing both platelet-derived growth factor [PDGF] and epidermal growth factor [EGF] receptors) as a model system. Our studies showed that IFNs (alpha/beta and gamma) blocked PDGF-and phorbol ester- but not EGF-stimulated DNA synthesis and cell proliferation. While the ligand-stimulated receptor tyrosine phosphorylation and interaction with downstream signaling molecules, such as GRB2, were not affected, IFNs specifically blocked PDGF- and phorbol ester- but not EGF-stimulated activation of Raf-1, mitogen-activated protein kinases, and tyrosine phosphorylation of an unidentified 34-kDa protein. This inhibition could be detected as early as 5 min after IFN treatments and was insensitive to cycloheximide, indicating that de novo protein synthesis is not required. The IFN-induced inhibition acted upstream of Raf-1 kinase and downstream of diacyl glycerol/phorbol ester, suggesting that protein kinase C (PKC) is the potential primary target. Consistently, downregulation of PKC by chronic phorbol myristate acetate treatment or inhibition of PKC by H7 and staurosporine blocked PDGF- and phorbol myristate acetate- but not EGF-induced signaling and DNA synthesis. Moreover, incubating cells with antisense oligodeoxyribonucleotides of PKC delta eliminated production of PKC delta protein and specifically blocked PDGF- but not EGF-stimulated mitogenesis in these cells. Thus, these studies have elucidated a major difference in the early events of EGF-and PDGF-stimulated signal transduction and, more importantly, revealed a novel mechanism by which IFNs may execute their antiproliferative function.
Collapse
Affiliation(s)
- J Xu
- Ben May Institute, University of Chicago, Illinois 60637
| | | | | | | | | |
Collapse
|
44
|
Abstract
We have previously reported that immobilized p21ras forms a GMPPNP-dependent complex with a MEK activity. Furthermore, the association of the MEK activity was found to be independent of the presence of Raf-1. We have extended those observations to show that MEK1 is the MEK activity previously described to associate with immobilized p21ras.GMPPNP. The association between MEK1 and immobilized p21ras.GMPPNP increased its specific activity towards p42MAPK. We detected the specific association of B-Raf with immobilized p21ras.GMPPNP. In contrast to Raf-1-immunodepleted lysates, preclearance of the cytosolic B-Raf significantly reduced, by 96%, the amount of MEK1 activity associated with immobilized p21ras.GMPPNP. The decrease in MEK1 activity correlated with complete loss in the binding of both B-Raf and MEK1 proteins with immobilized p21ras.GMPPNP. These data suggest that the p21ras.GMPPNP-dependent activation of MEK1 in brain extracts is dependent on the presence of the B-Raf protein kinase.
Collapse
|
45
|
Fibroblast growth factor and cyclic AMP (cAMP) synergistically activate gene expression at a cAMP response element. Mol Cell Biol 1994. [PMID: 7935470 DOI: 10.1128/mcb.14.11.7546] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways.
Collapse
|
46
|
Buchkovich KJ, Ziff EB. Nerve growth factor regulates the expression and activity of p33cdk2 and p34cdc2 kinases in PC12 pheochromocytoma cells. Mol Biol Cell 1994; 5:1225-41. [PMID: 7865886 PMCID: PMC301148 DOI: 10.1091/mbc.5.11.1225] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the absence of serum, nerve growth factor (NGF) promotes the survival and differentiation of the PC12 pheochromocytoma cell line. In the presence of serum, NGF acts primarily as a differentiation factor and negative regulator of cell cycling. To investigate NGF control of cell cycling, we have analyzed the regulation of cyclin dependent kinases during PC12 cell differentiation. NGF treatment leads to a reduction in the steady-state protein levels of p33cdk2 and p34cdc2, two key regulators of cell cycle progression. The decrease in p33cdk2 and p34cdc2 coincides with a decrease in the enzymatic activity of cyclinA-p34cdc2, cyclinB-p34cdc2, cyclinE-p33cdk2, and cyclinA-p33cdk2 kinases. The decline in p33cdk2 and p34cdc2 kinase activity in response to NGF is accelerated in cells that over-express the p140trk NGF receptor, suggesting that the timing of the down- regulation is dependent on the level of p140trk and the strength of the NGF signal. The level of cyclin A, a regulatory subunit of p33cdk2 and p34cdc2, is relatively constant during PC12 differentiation. Nevertheless, the DNA binding activity of the cyclinA-associated transcription factor E2F/DP decreases. Thus, NGF down-regulates the activity of cyclin dependent kinases and cyclin-transcription factor complexes during PC12 differentiation.
Collapse
Affiliation(s)
- K J Buchkovich
- Howard Hughes Medical Institute, Department of Biochemistry, New York University Medical Center, New York 10016
| | | |
Collapse
|
47
|
Moodie SA, Paris MJ, Kolch W, Wolfman A. Association of MEK1 with p21ras.GMPPNP is dependent on B-Raf. Mol Cell Biol 1994; 14:7153-62. [PMID: 7935430 PMCID: PMC359249 DOI: 10.1128/mcb.14.11.7153-7162.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously reported that immobilized p21ras forms a GMPPNP-dependent complex with a MEK activity. Furthermore, the association of the MEK activity was found to be independent of the presence of Raf-1. We have extended those observations to show that MEK1 is the MEK activity previously described to associate with immobilized p21ras.GMPPNP. The association between MEK1 and immobilized p21ras.GMPPNP increased its specific activity towards p42MAPK. We detected the specific association of B-Raf with immobilized p21ras.GMPPNP. In contrast to Raf-1-immunodepleted lysates, preclearance of the cytosolic B-Raf significantly reduced, by 96%, the amount of MEK1 activity associated with immobilized p21ras.GMPPNP. The decrease in MEK1 activity correlated with complete loss in the binding of both B-Raf and MEK1 proteins with immobilized p21ras.GMPPNP. These data suggest that the p21ras.GMPPNP-dependent activation of MEK1 in brain extracts is dependent on the presence of the B-Raf protein kinase.
Collapse
Affiliation(s)
- S A Moodie
- Department of Cell Biology, Cleveland Clinic Foundation, Ohio 44195
| | | | | | | |
Collapse
|
48
|
Tan Y, Low KG, Boccia C, Grossman J, Comb MJ. Fibroblast growth factor and cyclic AMP (cAMP) synergistically activate gene expression at a cAMP response element. Mol Cell Biol 1994; 14:7546-56. [PMID: 7935470 PMCID: PMC359291 DOI: 10.1128/mcb.14.11.7546-7556.1994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways.
Collapse
Affiliation(s)
- Y Tan
- Laboratory of Molecular Neurobiology, Massachusetts General Hospital, Charlestown 02129
| | | | | | | | | |
Collapse
|
49
|
The Ras/Raf signaling pathway is required for progression of mouse embryos through the two-cell stage. Mol Cell Biol 1994. [PMID: 7935384 DOI: 10.1128/mcb.14.10.6655] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used microinjection of antisense oligonucleotides, monoclonal antibody, and the dominant negative Ras N-17 mutant to interfere with Ras expression and function in mouse oocytes and early embryos. Microinjection of either ras antisense oligonucleotides or anti-Ras monoclonal antibody Y13-259 did not affect normal progression of oocytes through meiosis and arrest at metaphase II. However, microinjection of fertilized eggs with constructs expressing Ras N-17 inhibited subsequent development through the two-cell stage. The inhibitory effect of Ras N-17 was overcome by simultaneous injection of a plasmid expressing an active raf oncogene, indicating that it resulted from interference with the Ras/Raf signaling pathway. In contrast to the inhibition of two-cell embryo development resulting from microinjection of pronuclear stage eggs, microinjection of late two-cell embryos with Ras N-17 expression constructs did not affect subsequent cleavages and development to morulae and blastocysts. It thus appears that the Ras/Raf signaling pathway, presumably activated by autocrine growth factor stimulation, is specifically required at the two-cell stage, which is the time of transition between maternal and embryonic gene expression in mouse embryos.
Collapse
|
50
|
The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras. Mol Cell Biol 1994. [PMID: 7935411 DOI: 10.1128/mcb.14.10.6944] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway.
Collapse
|