1
|
Park JS, Heo H, Kim MS, Lee SE, Park S, Kim KH, Kang YH, Kim JS, Sung YH, Shim WH, Kim DH, Song Y, Yoon SY. Amphiregulin normalizes altered circuit connectivity for social dominance of the CRTC3 knockout mouse. Mol Psychiatry 2023; 28:4655-4665. [PMID: 37730843 PMCID: PMC10914624 DOI: 10.1038/s41380-023-02258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Social hierarchy has a profound impact on social behavior, reward processing, and mental health. Moreover, lower social rank can lead to chronic stress and often more serious problems such as bullying victims of abuse, suicide, or attack to society. However, its underlying mechanisms, particularly their association with glial factors, are largely unknown. In this study, we report that astrocyte-derived amphiregulin plays a critical role in the determination of hierarchical ranks. We found that astrocytes-secreted amphiregulin is directly regulated by cAMP response element-binding (CREB)-regulated transcription coactivator 3 (CRTC3) and CREB. Mice with systemic and astrocyte-specific CRTC3 deficiency exhibited a lower social rank with reduced functional connectivity between the prefrontal cortex, a major social hierarchy center, and the parietal cortex. However, this effect was reversed by astrocyte-specific induction of amphiregulin expression, and the epidermal growth factor domain was critical for this action of amphiregulin. These results provide evidence of the involvement of novel glial factors in the regulation of social dominance and may shed light on the clinical application of amphiregulin in the treatment of various psychiatric disorders.
Collapse
Affiliation(s)
- Ji-Seon Park
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, South Korea
| | - Hwon Heo
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min-Seok Kim
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung-Eun Lee
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sukyoung Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ki-Hyun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Ho Kang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Je Seong Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Hoon Sung
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo Hyun Shim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dong-Hou Kim
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Youngsup Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Seung-Yong Yoon
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, South Korea.
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
- Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
BILGIN B, GULER M, CICEK H, URFALIOGLU S, KOKUSARI G, MARANGOZOGLU SAHIN B. Searching for Biomarkers in Proliferative Diabetic Retinopathy: Amphiregulin and Progranulin. Medeni Med J 2022; 37:327-331. [PMID: 36578150 PMCID: PMC9808851 DOI: 10.4274/mmj.galenos.2022.10270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective Diabetic retinopathy is a common diabetic microvascular problem. Its diagnosis and classification are based on visible changes in clinical fundus examination. However, the discovery of possible vitreous biomarkers in patients with proliferative and nonproliferative diabetic retinopathy may guide both the differentiation and degree of retinopathy. Biomarkers that will be accepted can be also a treatment target. Amphiregulin (AREG) promotes proliferative and regenerative activity and repairs most cell types by binding and activating epidermal growth factor receptors. Progranulin (PGRN) has complex functions in many physiological and pathological processes. Thus, this study aimed to report vitreous AREG and PGRN levels in patients with diabetes and proliferative retinopathy and compare the results with those without diabetes. Methods Thirty-three eyes of 33 patients with proliferative diabetic retinopathy and 31 eyes of 31 patients without diabetes were included in this study. Vitreous humor samples were collected from all patients at the time of pars plana vitrectomy surgery immediately before the surgical procedure. Vitreous AREG and PGRN values were determined by the ELISA method. Results The mean AREG and PGRN values were similar in the groups (p=0.427, p=0.459, respectively). Conclusions The results demonstrated that vitreous AREG and PGRN levels have no significant relationship with proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Burak BILGIN
- Kahramanmaras Sutcu Imam University Faculty of Medicine, Department of Ophthalmology, Kahramanmaras, Turkey
| | - Mete GULER
- Kahramanmaras Sutcu Imam University Faculty of Medicine, Department of Ophthalmology, Kahramanmaras, Turkey
| | - Hulya CICEK
- Gaziantep University Faculty of Medicine, Department of Medical Biochemistry, Gaziantep, Turkey,* Address for Correspondence: Gaziantep University Faculty of Medicine, Department of Medical Biochemistry, Gaziantep, Turkey E-mail:
| | - Selma URFALIOGLU
- Kahramanmaras Sutcu Imam University Faculty of Medicine, Department of Ophthalmology, Kahramanmaras, Turkey
| | - Gokhan KOKUSARI
- Kahramanmaras Sutcu Imam University Faculty of Medicine, Department of Ophthalmology, Kahramanmaras, Turkey
| | - Bedia MARANGOZOGLU SAHIN
- Kahramanmaras Sutcu Imam University Faculty of Medicine, Department of Ophthalmology, Kahramanmaras, Turkey
| |
Collapse
|
3
|
Maille E, Levallet J, Dubois F, Antoine M, Danel C, Creveuil C, Mazieres J, Margery J, Greillier L, Gounant V, Moro‐Sibilot D, Molinier O, Léna H, Monnet I, Bergot E, Langlais A, Morin F, Scherpereel A, Zalcman G, Levallet G. A Defect of Amphiregulin Release Predicted Longer Survival Independently of YAP Expression in Patients with Pleural Mesothelioma in the IFCT-0701 MAPS Phase 3 Trial. Int J Cancer 2022; 150:1889-1904. [PMID: 35262190 PMCID: PMC9545369 DOI: 10.1002/ijc.33997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 11/07/2022]
Abstract
The Hippo pathway effector YAP is dysregulated in malignant pleural mesothelioma (MPM). YAP's target genes include the secreted growth factor amphiregulin (AREG), which is overexpressed in a wide range of epithelial cancers and plays an elusive role in MPM. We assayed the expression of YAP and AREG in MPM pathology samples and that of AREG additionally in plasma samples of patients from the randomized phase 3 IFCT‐0701 Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS) using immunohistochemistry and ELISA assays, respectively. MPM patients frequently presented high levels of tumor AREG (64.3%), a high cytosolic AREG expression being predictive of a better prognosis with longer median overall and progression‐free survival. Surprisingly, tumor AREG cytosolic expression was not correlated with secreted plasma AREG. By investigating the AREG metabolism and function in MPM cell lines H2452, H2052, MSTO‐211H and H28, in comparison with the T47D ER+ breast cancer cell line used as a positive control, we confirm that AREG is important for cell invasion, growth without anchorage, proliferation and apoptosis in mesothelioma cells. Yet, most of these MPM cell lines failed to correctly execute AREG posttranslational processing by metalloprotease ADAM17/tumor necrosis factor‐alpha‐converting enzyme (TACE) and extracell secretion. The favorable prognostic value of high cytosolic AREG expression in MPM patients could therefore be sustained by default AREG posttranslational processing and release. Thus, the determination of mesothelioma cell AREG content could be further investigated as a prognostic marker for MPM patients and used as a stratification factor in future clinical trials.
Collapse
Affiliation(s)
- Elodie Maille
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
| | - Jérôme Levallet
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
| | - Fatéméh Dubois
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Department of PathologyCHU de CaenCaenFrance
| | | | - Claire Danel
- Department of PathologyHôpital Bichat‐Claude Bernard, AP‐HP, Université Paris‐DiderotParisFrance
| | - Christian Creveuil
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Biomedical Research UnitCHU de CaenCaenFrance
| | - Julien Mazieres
- Department of PulmonologyHôpital Larrey, CHU de ToulouseToulouseFrance
| | - Jacques Margery
- Department of Medical OncologyInstitut Gustave RoussyVillejuifFrance
| | - Laurent Greillier
- Department of Multidisciplinary Oncology and Therapeutic InnovationsAssistance Publique Hôpitaux de Marseille, Université Aix‐Marseille UM015MarseilleFrance
| | - Valérie Gounant
- Department of PulmonologyHôpital Tenon, AP‐HPParisFrance
- Department of Thoracic Oncology & CIC 1425University Hospital Bichat‐Claude Bernard, AP‐HP, Université de ParisParisFrance
| | - Denis Moro‐Sibilot
- Pôle Thorax et Vaisseaux, University Hospital of Grenoble‐AlpesLa TroncheFrance
| | - Olivier Molinier
- Department of PulmonologyCentre Hospitalier Le MansLe MansFrance
| | - Hervé Léna
- Department of PulmonologyUniversity Hospital PontchaillouRennesFrance
| | - Isabelle Monnet
- Department of PulmonologyCentre Hospitalier Intercommunal de CréteilCréteilFrance
| | - Emmanuel Bergot
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Department of Pulmonology and Thoracic OncologyUniversity Hospital of CaenCaenFrance
| | | | - Franck Morin
- Intergroupe Francophone de Cancérologie Thoracique (IFCT)ParisFrance
| | - Arnaud Scherpereel
- Department of Pulmonary and Thoracic OncologyCentre Hospitalier Universitaire Lille, University of Lille, U1019 INSERM, Center of Infection and Immunity of LilleLilleFrance
| | - Gérard Zalcman
- Department of Thoracic Oncology & CIC 1425University Hospital Bichat‐Claude Bernard, AP‐HP, Université de ParisParisFrance
- U830 INSERM, “Cancer, Hétérogénéité, Instabilité et Plasticité” Centre de Recherche, Institut CurieParisFrance
| | - Guénaëlle Levallet
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Department of PathologyCHU de CaenCaenFrance
| |
Collapse
|
4
|
Rodríguez OL, Lugo DA, Cabrera M, Sánchez MA, Zerpa O, Tapia FJ. Innate lymphoid cells in peripheral blood of patients with American Cutaneous Leishmaniasis. Exp Dermatol 2021; 30:982-987. [PMID: 33847401 DOI: 10.1111/exd.14351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/01/2023]
Abstract
Innate lymphoid cells (ILCs) are classified by the expression of specific transcription factors: ILC1 depending on T-bet for IFN-γ production; ILC2 depending on GATA3 for IL-5 and IL-13; and ILC3 depending on ROR-γτ and AHR for IL-17 and IL-22. This study aimed to determine circulating ILCs in 23 patients with localized (LCL) = 7, mucocutaneous (MCL) = 10, intermediate (ICL) = 3 and diffuse (DCL) = 3 cutaneous leishmaniasis and 17 healthy controls from endemic area (EC) = 9 and non-endemic area (HC) = 8. Results evidenced a higher proportion of ILC1 in LCL than controls and MCL. ILC2 was higher in DCL compared with controls. ILC3 s were abundant in MCL and DCL concerning controls. A prevalence ratio was calculated to approach cell plasticity: in LCL, the ratio showed a prevalence of ILC1/ILC3 (plasticity 1), in contrast to DCL, and controls, where ILC2/ILC3 (plasticity 3) is prevalent. Also, MCL and ICL showed higher ILC1/ILC2 (plasticity 2). These results suggest that ILC1 and ILC3 in LCL are associated with disease control and regulation of inflammation, while MCL and ICL are related to immunopathology and uncontrolled inflammation. In DCL, ILC2 is associated with the tolerogenic state of these patients.
Collapse
Affiliation(s)
- Orquídea L Rodríguez
- Instituto de Biomedicina, Ministerio para la Salud, Universidad Central de Venezuela, Caracas, Venezuela
| | - Dennis A Lugo
- Instituto de Biomedicina, Ministerio para la Salud, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maira Cabrera
- Instituto de Biomedicina, Ministerio para la Salud, Universidad Central de Venezuela, Caracas, Venezuela
| | - Martín A Sánchez
- Instituto de Biomedicina, Ministerio para la Salud, Universidad Central de Venezuela, Caracas, Venezuela
| | - Olga Zerpa
- Instituto de Biomedicina, Ministerio para la Salud, Universidad Central de Venezuela, Caracas, Venezuela
| | - Felix J Tapia
- Instituto de Biomedicina, Ministerio para la Salud, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
5
|
Banerji R, Saroj SD. Early growth response 1 (EGR1) activation in initial stages of host-pathogen interactions. Mol Biol Rep 2021; 48:2935-2943. [PMID: 33783681 DOI: 10.1007/s11033-021-06305-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
The factors that determine the outcomes of host-pathogen interactions, such as host specificity, tissue specificity, and transition from asymptomatic to symptomatic behavior of a pathogen, are yet to be deciphered. The initial interaction of a pathogen with host and host-associated factors play a crucial role in deciding such outcomes. One of the several host-factors that contribute to bacterial adhesion and the outcome of an infection is the activation of early growth response 1 (EGR1). EGR1 is an initial response transcriptional regulator that plays a vital role in regulating cell growth, differentiation, and survival. EGR1 expression is seen in most of the mammalian tissues. Multiple post-translational modifications occur, which modulate the EGR1 transcriptional activity. Upon activation, EGR1 can transactivate several genes with diverse cellular functions, including transcriptional regulatory proteins and cell proliferation. EGR1 has also been identified as a potential mediator of inflammatory gene expression. Recent studies have highlighted the role of EGR1 as a potent signaling molecule that facilitates bacterial adhesion to host epithelial cells, thus modulating colonization pathways. The pathways for the regulation of EGR1 during host-pathogen interaction remain yet unidentified. The review focuses on the role and regulation of EGR1 during host-pathogen interaction.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, Maharashtra, 412115, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, Maharashtra, 412115, India.
| |
Collapse
|
6
|
Poole JA, Nordgren TM, Heires AJ, Nelson AJ, Katafiasz D, Bailey KL, Romberger DJ. Amphiregulin modulates murine lung recovery and fibroblast function following exposure to agriculture organic dust. Am J Physiol Lung Cell Mol Physiol 2020; 318:L180-L191. [PMID: 31693392 PMCID: PMC6985879 DOI: 10.1152/ajplung.00039.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 01/10/2023] Open
Abstract
Exposure to agricultural bioaerosols can lead to chronic inflammatory lung diseases. Amphiregulin (AREG) can promote the lung repair process but can also lead to fibrotic remodeling. The objective of this study was to determine the role of AREG in altering recovery from environmental dust exposure in a murine in vivo model and in vitro using cultured human and murine lung fibroblasts. C57BL/6 mice were intranasally exposed to swine confinement facility dust extract (DE) or saline daily for 1 wk or allowed to recover for 3-7 days while being treated with an AREG-neutralizing antibody or recombinant AREG. Treatment with the anti-AREG antibody prevented resolution of DE exposure-induced airway influx of total cells, neutrophils, and macrophages and increased levels of TNF-α, IL-6, and CXCL1. Neutrophils and activated macrophages (CD11c+CD11bhi) persisted after recovery in lung tissues of anti-AREG-treated mice. In murine and human lung fibroblasts, DE induced the release of AREG and inflammatory cytokines. Fibroblast recellularization of primary human lung mesenchymal matrix scaffolds and wound closure was inhibited by DE and enhanced with recombinant AREG alone. AREG treatment rescued the DE-induced inhibitory fibroblast effects. AREG intranasal treatment for 3 days during recovery phase reduced repetitive DE-induced airway inflammatory cell influx and cytokine release. Collectively, these studies demonstrate that inhibition of AREG reduced, whereas AREG supplementation promoted, the airway inflammatory recovery response following environmental bioaerosol exposure, and AREG enhanced fibroblast function, suggesting that AREG could be targeted in agricultural workers repetitively exposed to organic dust environments to potentially prevent and/or reduce disease.
Collapse
Affiliation(s)
- Jill A Poole
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Art J Heires
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Amy J Nelson
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dawn Katafiasz
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kristina L Bailey
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Debra J Romberger
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
7
|
Amphiregulin Regulates Phagocytosis-Induced Cell Death in Monocytes via EGFR and the Bcl-2 Protein Family. Mediators Inflamm 2019; 2019:1603131. [PMID: 32082070 PMCID: PMC7012211 DOI: 10.1155/2019/1603131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 01/24/2023] Open
Abstract
Neonates are extremely susceptible to bacterial infections, and evidences suggest that phagocytosis-induced cell death (PICD) is less frequently triggered in neonatal monocytes than in monocytes from adult donors. An insufficient termination of the inflammatory response, leading to a prolonged survival of neonatal monocytes with ongoing proinflammatory cytokine release, could be associated with the progression of various inflammatory diseases in neonates. Our previous data indicate that amphiregulin (AREG) is increasingly expressed on the cell surface of neonatal monocytes, resulting in remarkably higher soluble AREG levels after proteolytic shedding. In this study, we found that E. coli-infected neonatal monocytes show an increased phosphorylation of ERK, increased expression of Bcl-2 and Bcl-XL, and reduced levels of cleaved caspase-3 and caspase-9 compared to adult monocytes. In both cell types, additional stimulation with soluble AREG further increased ERK activation and expression of Bcl-2 and Bcl-XL and reduced levels of cleaved caspase-3 and caspase-9 in an EGFR-dependent manner. These data suggest that reduced PICD of neonatal monocytes could be due to reduced intrinsic apoptosis and that AREG can promote protection against PICD. This reduction of the intrinsic apoptosis pathway in neonatal monocytes could be relevant for severely prolonged inflammatory responses of neonates.
Collapse
|
8
|
Moustafa S, Joseph DN, Taylor RN, Whirledge S. New models of lipopolysaccharide-induced implantation loss reveal insights into the inflammatory response. Am J Reprod Immunol 2019; 81:e13082. [PMID: 30604526 DOI: 10.1111/aji.13082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Chronic endometritis, inflammation of the uterizzvvne lining caused by common gram-negative bacterial strains or mycoplasma, has been associated with unexplained implantation failure and infertility. However, limited models of bacteria-induced implantation loss exist to study the molecular changes that occur in vivo. The goal of this study was to provide a new resource to study the process of bacteria-induced inflammation and implantation loss utilizing common experimental models: C57Bl/6 mice and primary human endometrial stromal cells. METHOD OF STUDY Prior to implantation, mated C57Bl/6 females were administered vehicle (saline) or gram-negative bacterial lipopolysaccharide (LPS) at a range of concentrations by intraperitoneal injection. Implantation sites were counted, and uteri were harvested to evaluate the molecular changes that accompany LPS-mediated implantation loss. Primary human endometrial stromal cells were decidualized in vitro in the presence and absence of LPS. Total RNA and conditioned media were harvested to evaluate the expression of known decidualization-associated genes and various cytokines and chemokines. RESULTS Lipopolysaccharide treatment resulted in fewer implantation sites in mice, decreased expression of decidualization-associated genes, and altered expression and release of cytokines and chemokines. Immunohistological analysis of the uterus from LPS-exposed mice demonstrated increased apoptosis and decreased proliferation during decidualization. CONCLUSION Lipopolysaccharide exposure disrupted implantation and decidualization in mice and human endometrial stromal cells. This model could be used to study the pathophysiology of implantation failure in patients with chronic endometritis or to test potential therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Moustafa
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Dana N Joseph
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Robert N Taylor
- Utah Center for Reproductive Health, University of Utah Health, Salt Lake City, Utah
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Hussain S, Saxena S, Shrivastava S, Mohanty AK, Kumar S, Singh RJ, Kumar A, Wani SA, Gandham RK, Kumar N, Sharma AK, Tiwari AK, Singh RK. Gene expression profiling of spontaneously occurring canine mammary tumours: Insight into gene networks and pathways linked to cancer pathogenesis. PLoS One 2018; 13:e0208656. [PMID: 30517191 PMCID: PMC6281268 DOI: 10.1371/journal.pone.0208656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/20/2018] [Indexed: 11/24/2022] Open
Abstract
Spontaneously occurring canine mammary tumours (CMTs) are the most common neoplasms of unspayed female dogs leading to thrice higher mortality rates than human breast cancer. These are also attractive models for human breast cancer studies owing to clinical and molecular similarities. Thus, they are important candidates for biomarker studies and understanding cancer pathobiology. The study was designed to explore underlying molecular networks and pathways in CMTs for deciphering new prognostic factors and therapeutic targets. To gain an insight into various pathways and networks associated with the development and pathogenesis of CMTs, comparative cDNA microarray expression profiling was performed using CMT tissues and healthy mammary gland tissues. Upon analysis, 1700 and 1287 differentially expressed genes (DEGs, P ≤ 0.05) were identified in malignant and benign tissues, respectively. DEGs identified from microarray analysis were further annotated using the Ingenuity Systems Pathway Analysis (IPA) tool for detection of deregulated canonical pathways, upstream regulators, and networks associated with malignant, as well as, benign disease. Top scoring key networks in benign and malignant mammary tumours were having central nodes of VEGF and BUB1B, respectively. Cyclins & cell cycle regulation and TREM1 signalling were amongst the top activated canonical pathways in CMTs. Other cancer related significant pathways like apoptosis signalling, dendritic cell maturation, DNA recombination and repair, Wnt/β-catenin signalling, etc. were also found to be altered. Furthermore, seven proteins (ANXA2, APOCII, CDK6, GATC, GDI2, GNAQ and MYH9) highly up-regulated in malignant tissues were identified by two-dimensional gel electrophoresis (2DE) and MALDI-TOF PMF studies which were in concordance with microarray data. Thus, the study has uncovered ample number of candidate genes associated with CMTs which need to be further validated as therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Shahid Hussain
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Sonal Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| | - Ashok Kumar Mohanty
- Animal Biotechnology Division, ICAR-National Dairy Research Institute [Deemed University], Karnal, Haryana, India
| | - Sudarshan Kumar
- Animal Biotechnology Division, ICAR-National Dairy Research Institute [Deemed University], Karnal, Haryana, India
| | - Rajkumar James Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Abhinav Kumar
- Department of Computer Science and Engineering, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | | | - Ravi Kumar Gandham
- National Institute of Animal Biotechnology, Miyapur, Hyderabad, Telangana, India
| | - Naveen Kumar
- Division of Veterinary Surgery, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Anil Kumar Sharma
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Ashok Kumar Tiwari
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| |
Collapse
|
10
|
Amphiregulin Regulates Phagocytosis-Induced Cell Death in Monocytes via EGFR and Matrix Metalloproteinases. Mediators Inflamm 2018; 2018:4310419. [PMID: 30524196 PMCID: PMC6247478 DOI: 10.1155/2018/4310419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/26/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Neonates are highly susceptible to microbial infections which is partially attributable to fundamental phenotypic and functional differences between effector cells of the adult and neonatal immune system. The resolution of the inflammation is essential to return to tissue homeostasis, but given that various neonatal diseases, such as periventricular leukomalacia, necrotizing enterocolitis, or bronchopulmonary dysplasia, are characterized by sustained inflammation, newborns seem predisposed to a dysregulation of the inflammatory response. Targeted apoptosis of effector cells is generally known to control the length and extent of the inflammation, and previous studies have demonstrated that phagocytosis-induced cell death (PICD), a special type of apoptosis in phagocytic immune cells, is less frequently triggered in neonatal monocytes than in adult monocytes. We concluded that a rescue of monocyte PICD could be a potential therapeutic approach to target sustained inflammation in neonates. The EGFR ligand amphiregulin (AREG) is shed in response to bacterial infection and was shown to mediate cellular apoptosis resistance. We hypothesized that AREG might contribute to the reduced PICD of neonatal monocytes by affecting apoptosis signaling. In this study, we have examined a cascade of signaling events involved in extrinsic apoptosis by using a well-established in vitro E. coli infection model in monocytes from human peripheral blood (PBMO) and cord blood (CBMO). We found that CBMO shows remarkably higher pro-AREG surface expression as well as soluble AREG levels in response to infection as compared to PBMO. AREG increases intracellular MMP-2 and MMP-9 levels and induces cleavage of membrane-bound FasL through engagement with the EGF receptor. Our results demonstrate that loss of AREG rescues PICD in CBMO to the level comparable to adult monocytes. These findings identify AREG as a potential target for the prevention of prolonged inflammation in neonates.
Collapse
|
11
|
Vizziano-Cantonnet D, Lasalle A, Di Landro S, Klopp C, Genthon C. De novo transcriptome analysis to search for sex-differentiation genes in the Siberian sturgeon. Gen Comp Endocrinol 2018; 268:96-109. [PMID: 30081002 DOI: 10.1016/j.ygcen.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/08/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023]
Abstract
The sturgeon family includes many species that are lucrative for commercial caviar production, some of which face critical conservation problems. The purpose of this study was to identify genes involved in gonadal sex differentiation in sturgeons, contributing to our understanding of the biological cycle of this valuable species. A high-quality de novo Siberian sturgeon gonadal transcriptome was built for this study using gonadal samples from undifferentiated fish at 3, 5, and 6 months of age; recently sex-differentiated fish at 9 months of age; and immature males and females at 14-17 months of age. Undifferentiated fish were sexed after validation of forkhead box L2 (foxl2) and cytochrome P450, family 19, subfamily A, and polypeptide 1a (cyp19a1a) as sex markers, and the transcriptomes of the 3-month-old undifferentiated fish, 5-6-month-old future females, and 5-6-month-old putative males were compared. The ovarian program was associated with strong activation of genes involved in estrogen synthesis (cyp19a1, foxl2, and estradiol 17-beta-dehydrogenase 1), stem-cell niche building and regulation, and sex-specific nerve cell development. The genes related to the stem-cell niche were: (1) the family of iroquois-class homeodomain proteins 3, 4, and 5 (irx3, irx4, irx5-1, irx5-2, and irx5-3), which are essential for somatic-germ cell interaction; (2) extracellular matrix remodeling genes, such as collagen type XXVIII alpha 1 chain and collagen type II alpha 1 chain, matrix metalloproteinases 24-1 and 24-2, and NADPH oxidase organizer 1, which, along with the somatic cells, provide architectural support for the stem-cell niche; and (3) mitogenic factors, such as lim homeobox 2, amphiregulin, G2/M phase-specific E3 ubiquitin-protein ligase, and connector enhancer of kinase suppressor of ras 2, which are up regulated in conjunction with the anti-apoptotic gene G2/M phase-specific E3 ubiquitin-protein ligase suggesting a potential involvement in regulating the number of germ cells. Genes related to sex-specific nerve cell developments were: the neurofilament medium polypeptides, the gene coding for serotonin receptor 7, 5-hydroxytryptamine receptor 7; neurotensin, isoform CRA-a, the neuron-specific transmembrane protein Delta/Notch-like epidermal growth factor-related receptor; and insulinoma-associated protein 1. The putative testicular program was poorly characterized by elements of the immune response. The classic markers of maleness were not specifically activated, indicating that testicular differentiation occurs at a later stage. In sum, the ovarian program, but not the testicular program, is in place by 5-6 months of age in the Siberian sturgeon. The female program is characterized by estrogen-related genes with well-established roles in gonadal differentiation, but also by several genes with no previously-described function in the ovarian development of fish. These newly-reported genes are involved in stem-cell niche building and regulation as well as sex-specific nerve development.
Collapse
Affiliation(s)
- Denise Vizziano-Cantonnet
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo 11400, Uruguay.
| | - André Lasalle
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo 11400, Uruguay
| | - Santiago Di Landro
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo 11400, Uruguay
| | - Christophe Klopp
- INRA, SIGENAE, MIAT UR875, Chemin de Borde-Rouge - Auzeville, BP 52627, 31326 Castanet-Tolosan Cedex, France
| | - Clémence Genthon
- Plateforme Génomique, INRA Auzeville, Chemin de Borde Rouge-CS 52627, 31326 Castanet-Tolosan Cédex, France
| |
Collapse
|
12
|
Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken. BMC Genomics 2018; 19:594. [PMID: 30086717 PMCID: PMC6081845 DOI: 10.1186/s12864-018-4972-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Background The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues. Results Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development. Conclusion Expression profiles obtained from public RNA-seq datasets – despite being generated by different laboratories using different methodologies – can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4972-7) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Wang Y, Hao X, Yang J, Li J, Zhang M. CREB activity is required for luteinizing hormone-induced the expression of EGF-like factors. Mol Reprod Dev 2016; 83:1116-1127. [PMID: 27770611 DOI: 10.1002/mrd.22753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Yakun Wang
- State Key Laboratory for Agrobiotechnology; College of Biological Sciences, China Agricultural University; Beijing People's Republic of China
| | - Xiaoqiong Hao
- State Key Laboratory for Agrobiotechnology; College of Biological Sciences, China Agricultural University; Beijing People's Republic of China
| | - Jing Yang
- State Key Laboratory for Agrobiotechnology; College of Biological Sciences, China Agricultural University; Beijing People's Republic of China
| | - Jia Li
- State Key Laboratory for Agrobiotechnology; College of Biological Sciences, China Agricultural University; Beijing People's Republic of China
| | - Meijia Zhang
- State Key Laboratory for Agrobiotechnology; College of Biological Sciences, China Agricultural University; Beijing People's Republic of China
| |
Collapse
|
15
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Stoll SW, Stuart PE, Lambert S, Gandarillas A, Rittié L, Johnston A, Elder JT. Membrane-Tethered Intracellular Domain of Amphiregulin Promotes Keratinocyte Proliferation. J Invest Dermatol 2016; 136:444-452. [PMID: 26802239 DOI: 10.1016/j.jid.2015.10.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 09/16/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022]
Abstract
The epidermal growth factor receptor (EGFR) and its ligands are essential regulators of epithelial biology, which are often amplified in cancer cells. We have previously shown that shRNA-mediated silencing of one of these ligands, amphiregulin (AREG), results in keratinocyte growth arrest that cannot be rescued by soluble extracellular EGFR ligands. To further explore the functional importance of specific AREG domains, we stably transduced keratinocytes expressing tetracycline-inducible AREG-targeted shRNA with lentiviruses expressing silencing-proof, membrane-tethered AREG cytoplasmic and extracellular domains (AREG-CTD and AREG-ECD), as well as full-length AREG precursor (proAREG). Here we show that growth arrest of AREG-silenced keratinocytes occurs in G2/M and is significantly restored by proAREG and AREG-CTD but not by AREG-ECD. Moreover, the AREG-CTD was sufficient to normalize cell cycle distribution profiles and expression of mitosis-related genes. Our findings uncover an important role of the AREG-CTD in regulating cell division, which may be relevant to tumor resistance to EGFR-directed therapies.
Collapse
Affiliation(s)
- Stefan W Stoll
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.
| | - Philip E Stuart
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sylviane Lambert
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alberto Gandarillas
- Cell Cycle, Stem Cells and Cancer Lab, Instituto de Investigación Marques de Valdecilla (IDIVAL), Santander, Spain
| | - Laure Rittié
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew Johnston
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Ceafalan LC, Manole E, Tanase CP, Codrici E, Mihai S, Gonzalez A, Popescu BO. Interstitial Outburst of Angiogenic Factors During Skeletal Muscle Regeneration After Acute Mechanical Trauma. Anat Rec (Hoboken) 2015; 298:1864-79. [PMID: 26260512 DOI: 10.1002/ar.23254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/01/2015] [Accepted: 06/12/2015] [Indexed: 11/09/2022]
Abstract
Angiogenesis is a key event during tissue regeneration, but the intimate mechanisms controlling this process are still largely unclear. Therefore, the cellular and molecular interplay along normal tissue regeneration should be carefully unveiled. To this matter, we investigated by xMAP assay the dynamics of some angiogenic factors known to be involved in tissue repair, such as follistatin (FST), Placental Growth Factor-2 (PLGF-2), epidermal growth factor (EGF), betacellulin (BTC), and amphiregulin (AREG) using an animal model that mimics acute muscle contusion injuries. In situ immunofluorescence was used for the evaluation and tissue distribution of their cellular sources. Tissue levels of explored factors increased significantly during degeneration and inflammatory stage of regeneration, peaking first week postinjury. However, except for PLGF-2 and EGF, their levels remained significantly elevated after the inflammatory process started to fade. Serum levels were significantly increased only after 24 h for AREG and EGF. Though, for all factors except FST, the levels in injured samples did not correlate with serum or contralateral tissue levels, excluding the systemic influence. We found significant correlations between the levels of EGF and AREG, BTC, FST and FST and AREG in injured samples. Interstitial cells expressing these factors were highlighted by in situ immunolabeling and their number correlated with measured levels dynamics. Our study provides evidence of a dynamic level variation along the regeneration process and a potential interplay between selected angiogenic factors. They are synthesized, at least partially, by cell populations residing in skeletal muscle interstitium during regeneration after acute muscle trauma.
Collapse
Affiliation(s)
- Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Molecular Medicine and Neuroscience, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Emilia Manole
- Department of Molecular Medicine and Neuroscience, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Cristiana Pistol Tanase
- Biochemistry/Proteomics Department, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Elena Codrici
- Biochemistry/Proteomics Department, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Simona Mihai
- Biochemistry/Proteomics Department, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Aldebarani Gonzalez
- Department of Cellular and Molecular Biology and Histology, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Molecular Medicine and Neuroscience, "Victor Babes" Institute of Pathology, Bucharest, Romania.,Department of Neurology, Colentina Clinical Hospital-Colentina Research Center, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
18
|
Keenan MJ, Zhou J, Hegsted M, Pelkman C, Durham HA, Coulon DB, Martin RJ. Role of resistant starch in improving gut health, adiposity, and insulin resistance. Adv Nutr 2015; 6:198-205. [PMID: 25770258 PMCID: PMC4352178 DOI: 10.3945/an.114.007419] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The realization that low-glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable.
Collapse
Affiliation(s)
| | - June Zhou
- Geriatric Endocrinology and Metabolism Laboratory, Veterans Affairs Medical Center, Washington, DC
| | - Maren Hegsted
- Department of Food and Nutrition, University of Wisconsin-Stout, Menomonie, WI
| | | | | | - Diana B Coulon
- Bioassay Core Laboratory, Louisiana State University Agricultural Center, Baton Rouge, LA
| | | |
Collapse
|
19
|
Keenan MJ, Zhou J, Hegsted M, Pelkman C, Durham HA, Coulon DB, Martin RJ. Role of resistant starch in improving gut health, adiposity, and insulin resistance. Adv Nutr 2015. [PMID: 25770258 DOI: 10.3945/an.114.007419.which] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
The realization that low-glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable.
Collapse
Affiliation(s)
| | - June Zhou
- Geriatric Endocrinology and Metabolism Laboratory, Veterans Affairs Medical Center, Washington, DC
| | - Maren Hegsted
- Department of Food and Nutrition, University of Wisconsin-Stout, Menomonie, WI
| | | | | | - Diana B Coulon
- Bioassay Core Laboratory, Louisiana State University Agricultural Center, Baton Rouge, LA
| | | |
Collapse
|
20
|
Lankford L, Selby T, Becker J, Ryzhuk V, Long C, Farmer D, Wang A. Early gestation chorionic villi-derived stromal cells for fetal tissue engineering. World J Stem Cells 2015; 7:195-207. [PMID: 25621120 PMCID: PMC4300931 DOI: 10.4252/wjsc.v7.i1.195] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the potential for early gestation placenta-derived mesenchymal stromal cells (PMSCs) for fetal tissue engineering. METHODS PMSCs were isolated from early gestation chorionic villus tissue by explant culture. Chorionic villus sampling (CVS)-size tissue samples (mean = 35.93 mg) were used to test the feasibility of obtaining large cell numbers from CVS within a clinically relevant timeframe. We characterized PMSCs isolated from 6 donor placentas by flow cytometry immunophenotyping, multipotency assays, and through immunofluorescent staining. Protein secretion from PMSCs was examined using two cytokine array assays capable of probing for over 70 factors in total. Delivery vehicle compatibility of PMSCs was determined using three common scaffold systems: fibrin glue, collagen hydrogel, and biodegradable nanofibrous scaffolds made from a combination of polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA). Viral transduction of PMSCs was performed using a Luciferase-GFP-containing lentiviral vector and efficiency of transduction was tested by fluorescent microscopy and flow cytometry analysis. RESULTS We determined that an average of 2.09 × 10(6) (SD ± 8.59 × 10(5)) PMSCs could be obtained from CVS-size tissue samples within 30 d (mean = 27 d, SD ± 2.28), indicating that therapeutic numbers of cells can be rapidly expanded from very limited masses of tissue. Immunophenotyping by flow cytometry demonstrated that PMSCs were positive for MSC markers CD105, CD90, CD73, CD44, and CD29, and were negative for hematopoietic and endothelial markers CD45, CD34, and CD31. PMSCs displayed trilineage differentiation capability, and were found to express developmental transcription factors Sox10 and Sox17 as well as neural-related structural proteins NFM, Nestin, and S100β. Cytokine arrays revealed a robust and extensive profile of PMSC-secreted cytokines and growth factors, and detected 34 factors with spot density values exceeding 10(3). Detected factors had widely diverse functions that include modulation of angiogenesis and immune response, cell chemotaxis, cell proliferation, blood vessel maturation and homeostasis, modulation of insulin-like growth factor activity, neuroprotection, extracellular matrix degradation and even blood coagulation. Importantly, PMSCs were also determined to be compatible with both biological and synthetic material-based delivery vehicles such as collagen and fibrin hydrogels, and biodegradable nanofiber scaffolds made from a combination of PLA and PLGA. Finally, we demonstrated that PMSCs can be efficiently transduced (> 95%) with a Luciferase-GFP-containing lentiviral vector for future in vivo cell tracking after transplantation. CONCLUSION Our findings indicate that PMSCs represent a unique source of cells that can be effectively utilized for in utero cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Lee Lankford
- Lee Lankford, Taryn Selby, James Becker, Volodymyr Ryzhuk, Connor Long, Diana Farmer, Aijun Wang, Department of Surgery, University of California, Davis Health System, Sacramento, CA 95817, United States
| | - Taryn Selby
- Lee Lankford, Taryn Selby, James Becker, Volodymyr Ryzhuk, Connor Long, Diana Farmer, Aijun Wang, Department of Surgery, University of California, Davis Health System, Sacramento, CA 95817, United States
| | - James Becker
- Lee Lankford, Taryn Selby, James Becker, Volodymyr Ryzhuk, Connor Long, Diana Farmer, Aijun Wang, Department of Surgery, University of California, Davis Health System, Sacramento, CA 95817, United States
| | - Volodymyr Ryzhuk
- Lee Lankford, Taryn Selby, James Becker, Volodymyr Ryzhuk, Connor Long, Diana Farmer, Aijun Wang, Department of Surgery, University of California, Davis Health System, Sacramento, CA 95817, United States
| | - Connor Long
- Lee Lankford, Taryn Selby, James Becker, Volodymyr Ryzhuk, Connor Long, Diana Farmer, Aijun Wang, Department of Surgery, University of California, Davis Health System, Sacramento, CA 95817, United States
| | - Diana Farmer
- Lee Lankford, Taryn Selby, James Becker, Volodymyr Ryzhuk, Connor Long, Diana Farmer, Aijun Wang, Department of Surgery, University of California, Davis Health System, Sacramento, CA 95817, United States
| | - Aijun Wang
- Lee Lankford, Taryn Selby, James Becker, Volodymyr Ryzhuk, Connor Long, Diana Farmer, Aijun Wang, Department of Surgery, University of California, Davis Health System, Sacramento, CA 95817, United States
| |
Collapse
|
21
|
Reiss LK, Fragoulis A, Siegl S, Platen C, Kan YW, Nautiyal J, Parker M, Pufe T, Uhlig U, Martin C, Uhlig S, Wruck CJ. Interplay between nuclear factor erythroid 2-related factor 2 and amphiregulin during mechanical ventilation. Am J Respir Cell Mol Biol 2015; 51:668-77. [PMID: 24921206 DOI: 10.1165/rcmb.2013-0279oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mechanical ventilation (MV) elicits complex and clinically relevant cellular responses in the lungs. The current study was designed to define the role of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), a major regulator of the cellular antioxidant defense system, in the pulmonary response to MV. Nrf2 activity was quantified in ventilated isolated perfused mouse lungs (IPL). Regulation of amphiregulin (AREG) was investigated in BEAS-2B cells with inactivated Nrf2 or Keap1, the inhibitor of Nrf2, using a luciferase vector with AREG promoter. AREG-dependent Nrf2 activity was examined in BEAS-2B cells, murine precision-cut lung slices (PCLS), and IPL. Finally, Nrf2 knockout and wild-type mice were ventilated to investigate the interplay between Nrf2 and AREG during MV in vivo. Lung functions and inflammatory parameters were measured. Nrf2 was activated in a ventilation-dependent manner. The knockdown of Nrf2 and Keap1 via short hairpin RNA in BEAS-2B cells and an EMSA with lung tissue revealed that AREG is regulated by Nrf2. Conversely, AREG application induced a significant Nrf2 activation in BEAS-2B cells, PCLS, and IPL. The signal transduction of ventilation-induced Nrf2 activation was shown to be p38 MAP kinase-dependent. In vivo ventilation experiments indicated that AREG is regulated by Nrf2 during MV. We conclude that Areg expression is regulated by Nrf2. During high-pressure ventilation, Nrf2 becomes activated and induces AREG, leading to a positive feedback loop between Nrf2 and AREG, which involves the p38 MAPK and results in the expression of cytoprotective genes.
Collapse
|
22
|
Kelly FL, Sun J, Fischer BM, Voynow JA, Kummarapurugu AB, Zhang HL, Nugent JL, Beasley RF, Martinu T, Gwinn WM, Morgan DL, Palmer SM. Diacetyl induces amphiregulin shedding in pulmonary epithelial cells and in experimental bronchiolitis obliterans. Am J Respir Cell Mol Biol 2014; 51:568-74. [PMID: 24816162 DOI: 10.1165/rcmb.2013-0339oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Diacetyl (DA), a component of artificial butter flavoring, has been linked to the development of bronchiolitis obliterans (BO), a disease of airway epithelial injury and airway fibrosis. The epidermal growth factor receptor ligand, amphiregulin (AREG), has been implicated in other types of epithelial injury and lung fibrosis. We investigated the effects of DA directly on the pulmonary epithelium, and we hypothesized that DA exposure would result in epithelial cell shedding of AREG. Consistent with this hypothesis, we demonstrate that DA increases AREG by the pulmonary epithelial cell line NCI-H292 and by multiple independent primary human airway epithelial donors grown under physiologically relevant conditions at the air-liquid interface. Furthermore, we demonstrate that AREG shedding occurs through a TNF-α-converting enzyme (TACE)-dependent mechanism via inhibition of TACE activity in epithelial cells using the small molecule inhibitor, TNF-α protease inhibitor-1, as well as TACE-specific small inhibitor RNA. Finally, we demonstrate supportive in vivo results showing increased AREG transcript and protein levels in the lungs of rodents with DA-induced BO. In summary, our novel in vitro and in vivo observations suggest that further study of AREG is warranted in the pathogenesis of DA-induced BO.
Collapse
Affiliation(s)
- Francine L Kelly
- Divisions of 1 Pulmonary, Allergy, and Critical Care Medicine, and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Induction of apoptosis through ER stress and TP53 in MCF-7 cells by the nanoparticle [Gd@C82(OH)22]n: A systems biology study. Methods 2014; 67:394-406. [DOI: 10.1016/j.ymeth.2014.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/10/2013] [Accepted: 01/05/2014] [Indexed: 01/20/2023] Open
|
24
|
Taylor S, Markesbery M, Harding P. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) and proteolytic processing by a disintegrin and metalloproteinases (ADAM): A regulator of several pathways. Semin Cell Dev Biol 2014; 28:22-30. [DOI: 10.1016/j.semcdb.2014.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 03/03/2014] [Indexed: 12/11/2022]
|
25
|
Berasain C, Avila MA. Amphiregulin. Semin Cell Dev Biol 2014; 28:31-41. [PMID: 24463227 DOI: 10.1016/j.semcdb.2014.01.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR), a widely expressed transmembrane tyrosine kinase. AREG is synthesized as a membrane-anchored precursor protein that can engage in juxtacrine signaling on adjacent cells. Alternatively, after proteolytic processing by cell membrane proteases, mainly TACE/ADAM17, AREG is secreted and behaves as an autocrine or paracrine factor. AREG gene expression and release is induced by a plethora of stimuli including inflammatory lipids, cytokines, hormones, growth factors and xenobiotics. Through EGFR binding AREG activates major intracellular signaling cascades governing cell survival, proliferation and motility. Physiologically, AREG plays an important role in the development and maturation of mammary glands, bone tissue and oocytes. Chronic elevation of AREG expression is increasingly associated with different pathological conditions, mostly of inflammatory and/or neoplastic nature. Here we review the essential aspects of AREG structure, function and regulation, discuss the basis for its differential role within the EGFR family of ligands, and identify emerging aspects in AREG research with translational potential.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| |
Collapse
|
26
|
Singh B, Coffey RJ. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells. Annu Rev Physiol 2013; 76:275-300. [PMID: 24215440 DOI: 10.1146/annurev-physiol-021113-170406] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A largely unilamellar epithelial layer lines body cavities and organ ducts such as the digestive tract and kidney tubules. This polarized epithelium is composed of biochemically and functionally separate apical and basolateral surfaces. The epidermal growth factor receptor (EGFR) signaling pathway is a critical regulator of epithelial homeostasis and is perturbed in a number of epithelial disorders. It is underappreciated that in vivo EGFR signaling is most often initiated by cell-surface delivery and processing of one of seven transmembrane ligands, resulting in release of the soluble form that binds EGFR. In polarized epithelial cells, EGFR is restricted largely to the basolateral surface, and apical or basolateral ligand delivery therefore has important biological consequences. In vitro approaches have been used to study the biosynthesis, cell-surface delivery, proteolytic processing, and release of soluble EGFR ligands in polarized epithelial cells. We review these results, discuss their relevance to normal physiology, and demonstrate the pathophysiological consequences of aberrant trafficking. These studies have uncovered a rich diversity of apico-basolateral trafficking mechanisms among the EGFR ligands, provided insights into the pathogenesis of an inherited magnesium-wasting disorder of the kidney (isolated renal hypomagnesemia), and identified a new mode of EGFR ligand signaling via exosomes.
Collapse
Affiliation(s)
- Bhuminder Singh
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232; ,
| | | |
Collapse
|
27
|
Liu FL, Wu CC, Chang DM. TACE-dependent amphiregulin release is induced by IL-1β and promotes cell invasion in fibroblast-like synoviocytes in rheumatoid arthritis. Rheumatology (Oxford) 2013; 53:260-9. [PMID: 24196392 DOI: 10.1093/rheumatology/ket350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The aims of this study were to investigate the expression of amphiregulin (AREG) and TNF-α-converting enzyme (TACE) in fibroblast-like synoviocytes from humans with RA (FLS-RA) when stimulated with proinflammatory cytokines and to explore whether AREG plays a role in RA. METHODS The effects of cytokines on the expression of AREG and TACE in FLS-RA were measured by quantitative RT-PCR and western blotting. Blockade of IL-1β-mediated pathways was used to verify the involvement of intracellular signal pathways in the induction of AREG and TACE. TAPI-1 and TACE short hairpin RNA (shRNA) infection were used to identify the role of TACE in IL-1β-induced AREG secretion and shedding. AREG-induced production of MMP-1 and cadherin-11 in FLS-RA were measured by ELISA or western blotting. The effect of AREG on FLS-RA invasion was examined using a Transwell invasion assay. RESULTS IL-1β, but not other tested cytokines, increased the expressions of AREG mRNA and protein in a dose-responsive and time-dependent manner in FLS-RA. IL-1β induced AREG expression via p38 MAPK, NF-κB, JNK and ERK1/2 signalling pathways and induced TACE expression via PI3K, p38MAPK and NF-κB signalling pathways in FLS-RA. TACE mediated AREG secretion and shedding. EGFR (ErbB1) and Her-2 (ErbB2) were expressed in FLS-RA, and AREG increased MMP-1 and cadherin-11 expression in FLS-RA. AREG promoted the FLS-RA invasion ability. CONCLUSION AREG and TACE expression were up-regulated by IL-1β and their activations on FLS-RA lead to the matrix degradation by inducing MMP-1 and cadherin-11 production. TACE activity is necessary for IL-1β-induced AREG release. Our results demonstrate that IL-1β-induced AREG release may be involved in the pathogenesis of RA.
Collapse
Affiliation(s)
- Fei-Lan Liu
- Rheumatology/Immunology/Allergy, Tri-Service General Hospital, 325 Cheng-Kung Road, Section 2, Neihu 114, Taipei, Taiwan, Republic of China.
| | | | | |
Collapse
|
28
|
Wang Q, Hou Y, Yi D, Wang L, Ding B, Chen X, Long M, Liu Y, Wu G. Protective effects of N-acetylcysteine on acetic acid-induced colitis in a porcine model. BMC Gastroenterol 2013; 13:133. [PMID: 24001404 PMCID: PMC3844587 DOI: 10.1186/1471-230x-13-133] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 08/24/2013] [Indexed: 12/12/2022] Open
Abstract
Background Ulcerative colitis is a chronic inflammatory disease and involves multiple etiological factors. Acetic acid (AA)-induced colitis is a reproducible and simple model, sharing many characteristics with human colitis. N-acetylcysteine (NAC) has been widely used as an antioxidant in vivo and in vitro. NAC can affect several signaling pathways involving in apoptosis, angiogenesis, cell growth and arrest, redox-regulated gene expression, and inflammatory response. Therefore, NAC may not only protect against the direct injurious effects of oxidants, but also beneficially alter inflammatory events in colitis. This study was conducted to investigate whether NAC could alleviate the AA-induced colitis in a porcine model. Methods Weaned piglets were used to investigate the effects of NAC on AA-induced colitis. Severity of colitis was evaluated by colon histomorphology measurements, histopathology scores, tissue myeloperoxidase activity, as well as concentrations of malondialdehyde and pro-inflammatory mediators in the plasma and colon. The protective role of NAC was assessed by measurements of antioxidant status, growth modulator, cell apoptosis, and tight junction proteins. Abundances of caspase-3 and claudin-1 proteins in colonic mucosae were determined by the Western blot method. Epidermal growth factor receptor, amphiregulin, tumor necrosis factor-alpha (TNF-α), and toll-like receptor 4 (TLR4) mRNA levels in colonic mucosae were quantified using the real-time fluorescent quantitative PCR. Results Compared with the control group, AA treatment increased (P < 0.05) the histopathology scores, intraepithelial lymphocyte (IEL) numbers and density in the colon, myeloperoxidase activity, the concentrations of malondialdehyde and pro-inflammatory mediators in the plasma and colon, while reducing (P < 0.05) goblet cell numbers and the protein/DNA ratio in the colonic mucosa. These adverse effects of AA were partially ameliorated (P < 0.05) by dietary supplementation with NAC. In addition, NAC prevented the AA-induced increase in caspase-3 protein, while stimulating claudin-1 protein expression in the colonic mucosa. Moreover, NAC enhanced mRNA levels for epidermal growth factor and amphiregulin in the colonic mucosa. Conclusion Dietary supplementation with NAC can alleviate AA-induced colitis in a porcine model through regulating anti-oxidative responses, cell apoptosis, and EGF gene expression.
Collapse
Affiliation(s)
- Qingjing Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Saeki M, Egusa H, Kamano Y, Kakihara Y, Houry WA, Yatani H, Noguchi S, Kamisaki Y. Exosome-bound WD repeat protein Monad inhibits breast cancer cell invasion by degrading amphiregulin mRNA. PLoS One 2013; 8:e67326. [PMID: 23844004 PMCID: PMC3701000 DOI: 10.1371/journal.pone.0067326] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
Increased stabilization of mRNA coding for key cancer genes can contribute to invasiveness. This is achieved by down-regulation of exosome cofactors, which bind to 3'-UTR in cancer-related genes. Here, we identified amphiregulin, an EGFR ligand, as a target of WD repeat protein Monad, a component of R2TP/prefoldin-like complex, in MDA-MB-231 breast cancer cells. Monad specifically interacted with both the 3'-UTR of amphiregulin mRNA and the RNA degrading exosome, and enhanced decay of amphiregulin transcripts. Knockdown of Monad increased invasion and this effect was abolished with anti-amphiregulin neutralizing antibody. These results suggest that Monad could prevent amphiregulin-mediated invasion by degrading amphiregulin mRNA.
Collapse
Affiliation(s)
- Makio Saeki
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Identification of the cancer cell proliferation and survival functions of proHB-EGF by using an anti-HB-EGF antibody. PLoS One 2013; 8:e54509. [PMID: 23349913 PMCID: PMC3549951 DOI: 10.1371/journal.pone.0054509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family. The membrane-bound proHB-EGF is known to be a precursor of the soluble form of HB-EGF (sHB-EGF), which promotes cell proliferation and survival. While the functions of sHB-EGF have been extensively studied, it is not yet fully understood if proHB-EGF is also involved in cellular signaling events. In this study, we utilized the anti-HB-EGF monoclonal antibodies Y-142 and Y-073, which have differential specificities toward proHB-EGF, in order to elucidate proHB-EGF functions in cancer cells. EXPERIMENTAL DESIGN The biological activities of proHB-EGF were assessed in cell proliferation, caspase activation, and juxtacrine activity assays by using a 3D spheroid culture of NUGC-3 cells. RESULTS Y-142 and Y-073 exhibited similar binding and neutralizing activities for sHB-EGF. However, only Y-142 bound to proHB-EGF. We could detect the function of endogenously expressed proHB-EGF in a 3D spheroid culture. Blocking proHB-EGF with Y-142 reduced spheroid formation, suppressed cell proliferation, and increased caspase activation in the 3D spheroid culture of NUGC-3 cells. CONCLUSIONS Our results show that proHB-EGF acts as a cell proliferation and cell survival factor in cancer cells. The results suggest that proHB-EGF may play an important role in tumor progression.
Collapse
|
31
|
Latasa MU, Salis F, Urtasun R, Garcia-Irigoyen O, Elizalde M, Uriarte I, Santamaria M, Feo F, Pascale RM, Prieto J, Berasain C, Avila MA. Regulation of amphiregulin gene expression by β-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system. PLoS One 2012; 7:e52711. [PMID: 23285165 PMCID: PMC3527604 DOI: 10.1371/journal.pone.0052711] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/20/2012] [Indexed: 01/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent liver tumor and a deadly disease with limited therapeutic options. Dysregulation of cell signaling pathways is a common denominator in tumorigenesis, including hepatocarcinogenesis. The epidermal growth factor receptor (EGFR) signaling system is commonly activated in HCC, and is currently being evaluated as a therapeutic target in combination therapies. We and others have identified a central role for the EGFR ligand amphiregulin (AR) in the proliferation, survival and drug resistance of HCC cells. AR expression is frequently up-regulated in HCC tissues and cells through mechanisms not completely known. Here we identify the β-catenin signaling pathway as a novel mechanism leading to transcriptional activation of the AR gene in human HCC cells. Activation of β-catenin signaling, or expression of the T41A β-catenin active mutant, led to the induction of AR expression involving three specific β-catenin-Tcf responsive elements in its proximal promoter. We demonstrate that HCC cells expressing the T41A β-catenin active mutant show enhanced proliferation that is dependent in part on AR expression and EGFR signaling. We also demonstrate here a novel cross-talk of the EGFR system with fibroblast growth factor 19 (FGF19). FGF19 is a recently identified driver gene in hepatocarcinogenesis and an activator of β-catenin signaling in HCC and colon cancer cells. We show that FGF19 induced AR gene expression through the β-catenin pathway in human HCC cells. Importantly, AR up-regulation and EGFR signaling participated in the induction of cyclin D1 and cell proliferation elicited by FGF19. Finally, we demonstrate a positive correlation between FGF19 and AR expression in human HCC tissues, therefore supporting in clinical samples our experimental observations. These findings identify the AR/EGFR system as a key mediator of FGF19 responses in HCC cells involving β-catenin signaling, and suggest that combined targeting of FGF19 and AR/EGFR may enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Maria U. Latasa
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Fabiana Salis
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine & Oncology, University of Sassari, Sassari, Italy
| | - Raquel Urtasun
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Oihane Garcia-Irigoyen
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Maria Elizalde
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
| | - Monica Santamaria
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Francesco Feo
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine & Oncology, University of Sassari, Sassari, Italy
| | - Rosa M. Pascale
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine & Oncology, University of Sassari, Sassari, Italy
| | - Jesús Prieto
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
- * E-mail: (CB); (MAA)
| | - Matías A. Avila
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
- * E-mail: (CB); (MAA)
| |
Collapse
|
32
|
Tanos T, Rojo L, Echeverria P, Brisken C. ER and PR signaling nodes during mammary gland development. Breast Cancer Res 2012; 14:210. [PMID: 22809143 PMCID: PMC3680919 DOI: 10.1186/bcr3166] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The ovarian hormones estrogen and progesterone orchestrate postnatal mammary gland development and are implicated in breast cancer. Most of our understanding of the molecular mechanisms of estrogen receptor (ER) and progesterone receptor (PR) signaling stems from in vitro studies with hormone receptor-positive cell lines. They have shown that ER and PR regulate gene transcription either by binding to DNA response elements directly or via other transcription factors and recruiting co-regulators. In addition they cross-talk with other signaling pathways through nongenomic mechanisms. Mouse genetics combined with tissue recombination techniques have provided insights about the action of these two hormones in vivo. It has emerged that hormones act on a subset of mammary epithelial cells and relegate biological functions to paracrine factors. With regards to hormonal signaling in breast carcinomas, global gene expression analyses have led to the identification of gene expression signatures that are characteristic of ERα-positive tumors that have stipulated functional studies of hitherto poorly understood transcription factors. Here, we highlight what has been learned about ER and PR signaling nodes in these different systems and attempt to lay out in which way the insights may converge.
Collapse
|
33
|
Tanaka H, Nishioka Y, Yokoyama Y, Higashiyama S, Matsuura N, Matsuura S, Hieda M. Nuclear envelope-localized EGF family protein amphiregulin activates breast cancer cell migration in an EGF-like domain independent manner. Biochem Biophys Res Commun 2012; 420:721-6. [PMID: 22445895 DOI: 10.1016/j.bbrc.2012.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Amphiregulin (AREG), an EGF family protein, is synthesized as a type I transmembrane precursor (proAREG) and expressed on the cell surface with an extracellular EGF-like domain and an intracellular short cytoplasmic tail. The ectodomain shedding yields a soluble EGF receptor ligand (soluble AREG) which binds to EGF receptor (EGFR) and concomitantly induces migration of unshed proAREG from the plasma membrane to the nuclear envelope (NE). AREG is known to play a potential role in breast cancer and has been intensively investigated as an EGF receptor ligand, while the function of the NE-localized proAREG remains unknown. In this study we used a truncated mutant that mimics NE-localized proAREG without shedding stimuli to discriminate between the functions of NE-localized and plasma membrane-localized proAREG and demonstrate that NE-localized proAREG activates breast cancer cell migration, but suppresses cell growth. Moreover, the present study shows that induction of cell migration by NE-localized proAREG does not require the extracellular growth factor domain or EGF receptor function. Collectively these data demonstrate a novel function mediated by the intracellular domain of proAREG and suggest a significant role for NE-localized proAREG in driving human breast cancer progression.
Collapse
Affiliation(s)
- Hisae Tanaka
- Osaka University Graduate School of Medicine and Health Science, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Peterson EA, Shabbeer S, Kenny PA. Normal range of serum Amphiregulin in healthy adult human females. Clin Biochem 2012; 45:460-3. [PMID: 22306169 DOI: 10.1016/j.clinbiochem.2011.12.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/09/2011] [Accepted: 12/27/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Prior to large studies in breast cancer patients, we have sought to establish the normal range of a potential serum biomarker, Amphiregulin, in healthy women and to determine whether sampling during the menstrual cycle influences the detected Amphiregulin levels. DESIGN AND METHODS Serum Amphiregulin levels were quantified using a commercially available ELISA in 85 normal female donors. RESULTS The range of circulating Amphiregulin was 0-4467 pg/mL. The majority of women had no detectable circulating Amphiregulin (n=54), and only five women had levels exceeding 500 pg/mL. Serum Amphiregulin levels did not vary significantly during the menstrual cycle (n=7 women). CONCLUSIONS Detection of circulating Amphiregulin in a significant minority of healthy women suggests that it may not have the specificity necessary for a population screening tool; however its potential utility for monitoring response to treatment or disease progression should be examined in breast cancer cases.
Collapse
Affiliation(s)
- Esther A Peterson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
35
|
Crawford JM, Burt AD. Anatomy, pathophysiology and basic mechanisms of disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2012:1-77. [DOI: 10.1016/b978-0-7020-3398-8.00001-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Baillo A, Giroux C, Ethier SP. Knock-down of amphiregulin inhibits cellular invasion in inflammatory breast cancer. J Cell Physiol 2011; 226:2691-701. [PMID: 21302279 DOI: 10.1002/jcp.22620] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have previously shown that SUM-149 human breast cancer cells require an amphiregulin (AREG) autocrine loop for cell proliferation. We also demonstrated that AREG can increase epidermal growth factor receptor (EGFR) stability and promote EGFR localization to the plasma membrane. In the present studies we successfully knocked-down AREG expression in SUM-149 cells by lentiviral infection of AREG shRNA. In the absence of AREG expression, SUM-149 cell growth was slowed, but not completely inhibited. Furthermore, cells infected with AREG shRNA constructs showed an increase in EGFR protein expression by Western blot. Immunofluorescence and confocal microscopy showed that following AREG knock-down, EGFR continued to localize to the cell surface. Soft agar assays demonstrated that AREG knock-down cells retain anchorage-independent growth capacity. Additionally mammosphere forming assays and Adefluor staining analysis showed that knock-down of AREG expression did not affect the expression of stem cell phenotypes. However, following AREG knock-down, SUM-149 cells demonstrated a dramatic decrease in their ability to invade a Matrigel matrix. Consistent with this observation, microarray analysis comparing cells infected with a non-silencing vector to the AREG knock-down cells, identified genes associated with the invasive phenotype such as RHOB and DKK1, and networks associated with cell motility such as integrin-linked kinase signaling, and focal adhesion kinase signaling. AREG was also found to modulate WNT and Notch signaling in these cells. Thus, AREG functions in regulating the invasive phenotype, and we propose that this regulation may be through altered signaling that occurs when AREG activates plasma membrane localized EGFR.
Collapse
Affiliation(s)
- Andrea Baillo
- Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | | | | |
Collapse
|
37
|
Gephart JD, Singh B, Higginbotham JN, Franklin JL, Gonzalez A, Fölsch H, Coffey RJ. Identification of a novel mono-leucine basolateral sorting motif within the cytoplasmic domain of amphiregulin. Traffic 2011; 12:1793-804. [PMID: 21917092 DOI: 10.1111/j.1600-0854.2011.01282.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epithelial cells establish apical and basolateral (BL) membranes with distinct protein and lipid compositions. To achieve this spatial asymmetry, the cell utilizes a variety of mechanisms for differential sorting, delivery and retention of cell surface proteins. The EGF receptor (EGFR) and its ligand, amphiregulin (AREG), are transmembrane proteins delivered to the BL membrane in polarized epithelial cells. Herein, we show that the cytoplasmic domain of AREG (ACD) contains dominant BL sorting information; replacement of the cytoplasmic domain of apically targeted nerve growth factor receptor with the ACD redirects the chimera to the BL surface. Using sequential truncations and site-directed mutagenesis of the ACD, we identify a novel BL sorting motif consisting of a single leucine C-terminal to an acidic cluster (EEXXXL). In adaptor protein (AP)-1B-deficient cells, newly synthesized AREG is initially delivered to the BL surface as in AP-1B-expressing cells. However, in these AP-1B-deficient cells, recycling of AREG back to the BL surface is compromised, leading to its appearance at the apical surface. These results show that recycling, but not delivery, of AREG to the BL surface is AP-1B dependent.
Collapse
Affiliation(s)
- Jonathan D Gephart
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Bchetnia M, Tremblay ML, Leclerc G, Dupérée A, Powell J, McCuaig C, Morin C, Legendre-Guillemin V, Laprise C. Expression signature of epidermolysis bullosa simplex. Hum Genet 2011; 131:393-406. [DOI: 10.1007/s00439-011-1077-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/29/2011] [Indexed: 01/24/2023]
|
39
|
Bade LK, Goldberg JE, Dehut HA, Hall MK, Schwertfeger KL. Mammary tumorigenesis induced by fibroblast growth factor receptor 1 requires activation of the epidermal growth factor receptor. J Cell Sci 2011; 124:3106-17. [PMID: 21868365 DOI: 10.1242/jcs.082651] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is an oncoprotein with known involvement in mammary tumorigenesis. To understand how FGFR1 signaling promotes mammary tumorigenesis, an inducible FGFR1 (iFGFR1) system was created previously. Previous studies have demonstrated that upon iFGFR1 activation in vivo, the epidermal growth factor (EGF) ligands amphiregulin (AREG) and epiregulin (EREG) are upregulated. Both AREG and EREG interact with the EGF receptor (EGFR). Here, we investigated whether the FGFR1-induced increase in AREG and EREG expression might coordinately increase EGFR signaling to promote mammary tumorigenesis. Treatment of mouse mammary epithelial cells with either AREG or EREG conferred a greater migratory potential, increased cellular proliferation and increased extracellular regulated kinase 1/2 (ERK1/2) activation. These effects could be blocked with the EGFR-specific inhibitor erlotinib, suggesting that they are EGFR-dependent. In transgenic mice with iFGFR1 under the control of the mouse mammary tumor virus (MMTV) promoter, iFGFR1 activation also led to increased mammary epithelial cell proliferation that was inhibited with erlotinib. Taken together, these data suggest that AREG and EREG mediate tumorigenic phenotypes by activating EGFR signaling, and that the oncogenic potential of FGFR1 requires EGFR activation to promote mammary tumorigenesis.
Collapse
Affiliation(s)
- Lindsey K Bade
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
40
|
Pei R, Chen H, Lu L, Zhu W, Beckebaum S, Cicinnati V, Lu M, Chen X. Hepatitis C virus infection induces the expression of amphiregulin, a factor related to the activation of cellular survival pathways and required for efficient viral assembly. J Gen Virol 2011; 92:2237-2248. [PMID: 21653755 DOI: 10.1099/vir.0.032581-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amphiregulin (AREG) is a ligand of the epidermal growth factor (EGF) receptor and may play a role in the development of cirrhosis and hepatocellular carcinoma in patients infected with hepatitis C virus (HCV). AREG showed an enhanced expression in HCV-infected human hepatoma cells according to gene array analysis. Therefore, we addressed the question about the role of AREG in HCV infection. AREG expression level was elevated in hepatoma cells containing a subgenomic HCV replicon or infected by HCV. Using a reporter assay, AREG promoter activity was found to be upregulated upon HCV infection. The enhanced AREG expression in hepatoma cells was partly caused by dsRNAs, HCV NS3 protein and autocrine stimulation. AREG was able to activate cellular signalling pathways including ERK, Akt and p38, promote cell proliferation, and protect cells from HCV-induced cell death. Further, knockdown of AREG expression increased the efficiency of HCV entry, as proven by HCV pseudoparticles reporter assay. However, the formation and release of infectious HCV particles were reduced by AREG silencing with a concomitant accumulation of intracellular HCV RNA pool, indicating that the assembly and release of HCV progeny may require AREG expression. Blocking the MAPK-ERK pathway by U0126 in Huh7.5.1 cells had a similar effect on HCV replication. In conclusion, HCV infection leads to an increase in AREG expression in hepatocytes. AREG expression is essential for efficient HCV assembly and virion release. Due to the activation of the cellular survival pathways, AREG may counteract HCV-induced apoptosis of infected hepatocytes and facilitate the development of liver cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rongjuan Pei
- Graduate University of Chinese Academy of Sciences, Beijing, PR China.,Institute of Virology, University Hospital of Essen, Essen, Germany.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Honghe Chen
- Graduate University of Chinese Academy of Sciences, Beijing, PR China.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Lu Lu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Wandi Zhu
- Graduate University of Chinese Academy of Sciences, Beijing, PR China.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Susanne Beckebaum
- Department of Gastroenterology and Hepatology, University Hospital of Essen, Essen, Germany
| | - Vito Cicinnati
- Department of Gastroenterology and Hepatology, University Hospital of Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Xinwen Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
41
|
Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A. The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:119-31. [PMID: 21658434 DOI: 10.1016/j.bbcan.2011.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 12/21/2022]
Abstract
Amphiregulin (AREG) is one of the ligands of the epidermal growth factor receptor (EGFR). AREG plays a central role in mammary gland development and branching morphogenesis in organs and is expressed both in physiological and in cancerous tissues. Various studies have highlighted the functional role of AREG in several aspects of tumorigenesis, including self-sufficiency in generating growth signals, limitless replicative potential, tissue invasion and metastasis, angiogenesis, and resistance to apoptosis. The oncogenic activity of AREG has already been described in the most common human epithelial malignancies, such as lung, breast, colorectal, ovary and prostate carcinomas, as well as in some hematological and mesenchymal cancers. Furthermore, AREG is also involved in resistance to several cancer treatments. In this review, we describe the various roles of AREG in oncogenesis and discuss its translational potential, such as the development of anti-AREG treatments, based on AREG activity. In the last decade, independent groups have reported successful but sometimes contradictory results in relation to the potential of AREG to serve as a prognostic and/or predictive marker for oncology, especially with regard to anti-EGFR therapies. Thus, we also discuss the potential usefulness of using AREG as a therapeutic target and validated biomarker for predicting cancer outcomes or treatment efficacy.
Collapse
Affiliation(s)
- Benoit Busser
- INSERM, U823, Institut Albert Bonniot, Grenoble, France, Université Joseph Fourier, Grenoble, France.
| | | | | | | | | |
Collapse
|
42
|
Jia S, Yu J, Zhang D, Zheng P, Zhang S, Ma L, Liu G, Li S. Expression and regulation of amphiregulin in Gsα-mutated human bone marrow stromal cells of fibrous dysplasia of mandible. ACTA ACUST UNITED AC 2011; 111:618-26. [PMID: 21439861 DOI: 10.1016/j.tripleo.2010.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/04/2010] [Accepted: 12/20/2010] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Fibrous dysplasia (FD) is a focal bone lesion composed primarily of immature bone marrow stromal cells along with spicules of immature woven bone. However, cellular differentiation and proliferation in mutant human bone marrow stromal cells (hBMSCs) of FD have not been fully elucidated. Therefore, the aim of this study was to investigate the occurrence of G(s)α mutation at the Arg(201) codon in hBMSCs and human trabecular bone cells (hTBCs, osteoblast-like cells). In addition, we evaluated the gene expression and protein secretion of amphiregulin from hBMSCs and hTBCs and assessed the biologic activity and possible mechanism of amphiregulin in our system. STUDY DESIGN Mutant hBMSCs from FD patients and hTBCs from disease-free bone specimens of the same patient were successfully cultured. We studied the G(s)α mutations at the Arg(201) codon by means of polymerase chain reaction (PCR)-restriction fragment length polymorphism. Gene expression and protein secretion of amphiregulin in hBMSCs and hTBCs was confirmed by reverse-transcription (RT) PCR and Western blotting analysis. The modulation proliferation and possible mechanism of the exogenous addition of amphiregulin and epidermal growth factor receptor tyrosine kinase inhibitor (AG-1478) were assessed by using Wst-1 assays. RESULTS The G(s)α mutations in clonal adherent mutant hBMSCs and hTBCs were successfully identified. We identified amphiregulin to be highly expressed in hBMSCs compared with hTBCs. The growth of hBMSCs was stimulated by the exogenous addition of amphiregulin and inhibited by AG-1478. CONCLUSIONS The G(s)α-mutant hBMSCs were successfully identified, and amphiregulin may play a significant role in the proliferation of hBMSCs.
Collapse
Affiliation(s)
- Shanshan Jia
- Department of Orthodontics, Provincial Hospital, Affiliated to Shandong University, Ji'nan, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Löfmark S, de Klerk N, Aro H. Neisseria gonorrhoeae infection induces altered amphiregulin processing and release. PLoS One 2011; 6:e16369. [PMID: 21298020 PMCID: PMC3029346 DOI: 10.1371/journal.pone.0016369] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/25/2010] [Indexed: 11/18/2022] Open
Abstract
Adhesion of the human pathogen Neisseria gonorrhoeae has established effects on the host cell and evokes a variety of cellular events including growth factor activation. In the present study we report that infection with N. gonorrhoeae causes altered amphiregulin processing and release in human epithelial cells. Amphiregulin is a well-studied growth factor with functions in various cell processes and is upregulated in different forms cancer and proliferative diseases. The protein is prototypically cleaved on the cell surface in response to external stimuli. We demonstrate that upon infection, a massive upregulation of amphiregulin mRNA is seen. The protein changes its subcellular distribution and is also alternatively cleaved at the plasma membrane, which results in augmented release of an infection-specific 36 kDa amphiregulin product from the surface of human cervical epithelial cells. Further, using antibodies directed against different domains of the protein we could determine the impact of infection on pro-peptide processing. In summary, we present data showing that the infection of N. gonorrhoeae causes an alternative amphiregulin processing, subcellular distribution and release in human epithelial cervical cells that likely contribute to the predisposition cellular abnormalities and anti-apoptotic features of N. gonorrhoeae infections.
Collapse
Affiliation(s)
- Sonja Löfmark
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, Stockholm, Sweden
| | - Nele de Klerk
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, Stockholm, Sweden
| | - Helena Aro
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
44
|
Human basophils express amphiregulin in response to T cell-derived IL-3. J Allergy Clin Immunol 2010; 126:1260-6.e4. [PMID: 21036386 DOI: 10.1016/j.jaci.2010.08.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 07/23/2010] [Accepted: 08/12/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND Amphiregulin, a member of the epidermal growth factor family, is expressed by activated mouse T(H)2 cells. Amphiregulin produced by mouse hematopoietic cells contributes to the elimination of a nematode infection by a type 2 effector response. OBJECTIVE To identify the human peripheral blood cell population expressing amphiregulin. METHODS Amphiregulin-expressing cells were identified by flow cytometry of cell surface markers and histologic staining. Histamine and amphiregulin in supernatants were measured by enzyme immunoassay. Quantitative real-time PCR was used to measure mRNA expression. RESULTS Stimulation of human PBMCs by anti-CD3 + anti-CD28 antibodies induced expression of amphiregulin mRNA and protein by a non-T-cell population. The amphiregulin-producing cells were basophils, as judged by morphology and expression of CD203c and CD123 (IL-3 receptor α chain). Activated mouse basophils also produced amphiregulin. Amphiregulin expression by basophils in response to anti-TCR stimulation required IL-3 produced by T cells, and IL-3 alone induced high levels of amphiregulin expression by purified basophils. Amphiregulin was expressed at much higher levels when human basophils were stimulated by IL-3 than by IgE cross-linking, whereas the opposite was true for IL-4 expression and histamine release. Heparin-binding epidermal growth factor-like growth factor was also expressed by IL-3-stimulated human basophils. PBMCs from human subjects with asthma contained significantly higher numbers of basophils able to produce amphiregulin compared with controls with or without allergy. CONCLUSION IL-3 can induce basophils to express high levels of amphiregulin, which may contribute to tissue remodeling during type 2 immune responses such as asthma.
Collapse
|
45
|
Macias MP, Gerkin RD, Macias JD. Increased amphiregulin expression as a biomarker of cholesteatoma activity. Laryngoscope 2010; 120:2258-63. [DOI: 10.1002/lary.21142] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Prolyl-4-hydroxylase PHD2- and hypoxia-inducible factor 2-dependent regulation of amphiregulin contributes to breast tumorigenesis. Oncogene 2010; 30:548-60. [PMID: 20856199 DOI: 10.1038/onc.2010.433] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia-elicited adaptations of tumor cells are essential for tumor growth and cancer progression. Although ample evidence exists for a positive correlation between hypoxia-inducible factors (HIFs) and tumor formation, metastasis and bad prognosis, the function of the HIF-α protein stability regulating prolyl-4-hydroxylase domain enzyme PHD2 in carcinogenesis is less well understood. In this study, we demonstrate that downregulation of PHD2 leads to increased tumor growth in a hormone-dependent mammary carcinoma mouse model. Tissue microarray analysis of PHD2 protein expression in 281 clinical samples of human breast cancer showed significantly shorter survival times of patients with low-level PHD2 tumors over a period of 10 years. An angiogenesis-related antibody array identified, amongst others, amphiregulin to be increased in the absence of PHD2 and normalized after PHD2 reconstitution. Cultivation of endothelial cells in conditioned media derived from PHD2-downregulated cells resulted in enhanced tube formation that was blocked by the addition of neutralizing anti-amphiregulin antibodies. Functionally, amphiregulin was regulated on the transcriptional level specifically by HIF-2 but not HIF-1. Our data suggest that PHD2/HIF-2/amphiregulin signaling has a critical role in the regulation of breast tumor progression and propose PHD2 as a potential tumor suppressor in breast cancer.
Collapse
|
47
|
Shigeishi H, Yamaguchi S, Mizuta K, Nakakuki K, Fujimoto S, Amagasa T, Kamata N. Amphiregulin induces proliferative activities in osseous dysplasia. J Dent Res 2009; 88:563-8. [PMID: 19587163 DOI: 10.1177/0022034509338253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human osseous dysplasia (OD) is a benign fibro-osseous neoplasm of periodontal ligament origin in which normal bone is replaced with fibrous connective tissue containing abnormal bone or cementum. However, cellular differentiation and proliferation in OD have not been fully elucidated. In vitro culture systems have distinct advantages for analytical studies. Therefore, we established immortalized cell lines (OD-1) from OD lesions of the jaw from an individual with gnathodiaphyseal dysplasia (GDD). We hypothesized that OD-1 had a characteristic growth mechanism different from that of mineralized-associated cells such as osteoblasts. To clarify the difference of gene expression patterns between OD-1 and osteoblasts, we compared the profiles of genes expressed in the 2 cell types by microarray analysis. We identified amphiregulin to be highly expressed in OD-1 compared with osteoblasts and gingival fibroblasts. OD-1 showed proliferative activities regulated in an autocrine manner by amphiregulin, and amphiregulin may play a significant role in the proliferation of OD.
Collapse
Affiliation(s)
- H Shigeishi
- Department of Oral and Maxillofacial Surgery, Division of Cervico-Gnathostomatology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Nakagawa M, Nabeshima K, Asano S, Hamasaki M, Uesugi N, Tani H, Yamashita Y, Iwasaki H. Up-regulated expression of ADAM17 in gastrointestinal stromal tumors: coexpression with EGFR and EGFR ligands. Cancer Sci 2009; 100:654-62. [PMID: 19298600 PMCID: PMC11158838 DOI: 10.1111/j.1349-7006.2009.01089.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 12/17/2022] Open
Abstract
Metalloproteinase activities of a disintegrin and metalloproteinases (ADAMs), matrix metalloproteinases (MMPs), and membrane type (MT-)MMPs are involved in many aspects of tumor biology. ADAMs are transmembrane proteins that cleave membrane-anchored proteins to release soluble factors, and thereby mediate important biological phenomena in tumors. The aim of this study was to analyze histopathology, expression and roles of metalloproteinases, especially ADAMs, in gastric gastrointestinal stromal tumor (GIST). Histopathology and immunohistochemical expression of ADAMs were examined in 89 gastric GISTs. In 11 GISTs, ADAM expression was examined at mRNA and protein levels by reverse transcription-polymerase chain reaction (RT-PCR) and immunoblotting, respectively. RT-PCR analysis showed frequent expression of ADAM9 (91%), ADAM10 (64%), ADAM17 (82%), MMP-2 (82%), and MT1-MMP (73%). However, ADAM17 and MMP-2 were the only metalloproteinases that were up-regulated in GISTs at the protein level compared with non-neoplastic gastric tissues. ADAM17 was immunohistochemically expressed in 93% of GIST versus 16% of normal gastric tissues. Furthermore, CD117-positive interstitial cells of Cajal in normal gastric tissues were all negative for ADAM17 with double immunostaining. Expressions of epidermal growth factor receptor (EGFR) and several EGFR ligands such as amphiregulin, heparin-binding epidermal growth factor (HB-EGF), betacellulin, and epiregulin were also demonstrated in GIST by RT-PCR. Protein expression of EGFR, phosphorylated EGFR, amphiregulin, and HB-EGF, both of which can be shed by ADAM17, was confirmed in tumors coexpressing ADAM17 by immunoblotting. Moreover, proteolytically cleaved soluble forms of amphiregulin were identified in tumor extracts. Considered together, the results suggest that ADAM17 may contribute to the progression and growth of GIST through shedding of EGFR ligands and consequent EGFR stimulation. ADAM17, as a major sheddase in GIST, could be potentially a suitable target in anticancer treatment of imatinib-resistant GISTs.
Collapse
Affiliation(s)
- Motomichi Nakagawa
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Isokane M, Hieda M, Hirakawa S, Shudou M, Nakashiro K, Hashimoto K, Hamakawa H, Higashiyama S. Plasma-membrane-anchored growth factor pro-amphiregulin binds A-type lamin and regulates global transcription. J Cell Sci 2009; 121:3608-18. [PMID: 18946024 DOI: 10.1242/jcs.031443] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Amphiregulin (AR), a member of the EGF family, is synthesized as a type I transmembrane protein precursor (proAR) and expressed on the cell surface. Shedding of proAR yields a transmembrane-cytoplasmic fragment (AR-CTF), as well as a soluble AR. Here we demonstrate that the proAR-shedding stimuli trigger endocytosis of both AR-CTF and un-shed proAR. ProAR translocates from the plasma membrane to the inner nuclear membrane, whereas AR-CTF is translocated to the lysosome via retrograde membrane trafficking. Nuclear envelope localization of proAR involves truncation of the C-terminus, which subsequently activates the ER-retrieval signal. The truncated form of proAR interacts with A-type lamin and is retained at the inner nuclear membrane. Heterochromatin formation is then induced and global transcription is transiently suppressed. This study gives new insight into epigenetic chromatin organization in mammalian cells: a plasma-membrane-anchored growth factor is targeted to the inner nuclear membrane where it participates in dynamic chromatin organization and control of transcription.
Collapse
Affiliation(s)
- Mayumi Isokane
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Willmarth NE, Ethier SP. Amphiregulin as a novel target for breast cancer therapy. J Mammary Gland Biol Neoplasia 2008; 13:171-9. [PMID: 18437539 DOI: 10.1007/s10911-008-9081-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022] Open
Abstract
Amphiregulin, an EGF family growth factor, binds and activates the epidermal growth factor receptor (EGFR or ErbB1). Activation of the EGFR by amphiregulin can occur through autocrine, paracrine and juxtacrine mechanisms. Amphiregulin plays a role in several biological processes including nerve regeneration, blastocyst implantation, and bone formation. Amphiregulin also plays an important role in mammary duct formation as well as the outgrowth and branching of several other human tissues such as the lung, kidney and prostate. This effect is most likely due to the induction of genes involved in invasion and migration such as cytokines and matrix metalloproteases. Clinical studies have suggested that amphiregulin also plays a role in human breast cancer progression and its expression has been associated with aggressive disease. Therefore, amphiregulin may be a novel and effective target for the treatment of breast cancer and could represent an alternative to targeting the EGFR.
Collapse
Affiliation(s)
- Nicole E Willmarth
- Cancer Biology, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA, USA
| | | |
Collapse
|