1
|
Singh AK, Tamrakar A, Jaiswal A, Kanayama N, Kodgire P. SRSF1-3, a splicing and somatic hypermutation regulator, controls transcription of IgV genes via chromatin regulators SATB2, UBN1 and histone variant H3.3. Mol Immunol 2020; 119:69-82. [DOI: 10.1016/j.molimm.2020.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/01/2020] [Accepted: 01/11/2020] [Indexed: 12/21/2022]
|
2
|
Zanotti KJ, Maul RW, Yang W, Gearhart PJ. DNA Breaks in Ig V Regions Are Predominantly Single Stranded and Are Generated by UNG and MSH6 DNA Repair Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1573-1581. [PMID: 30665938 PMCID: PMC6382588 DOI: 10.4049/jimmunol.1801183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
Antibody diversity is initiated by activation-induced deaminase (AID), which deaminates cytosine to uracil in DNA. Uracils in the Ig gene loci can be recognized by uracil DNA glycosylase (UNG) or mutS homologs 2 and 6 (MSH2-MSH6) proteins, and then processed into DNA breaks. Breaks in switch regions of the H chain locus cause isotype switching and have been extensively characterized as staggered and blunt double-strand breaks. However, breaks in V regions that arise during somatic hypermutation are poorly understood. In this study, we characterize AID-dependent break formation in JH introns from mouse germinal center B cells. We used a ligation-mediated PCR assay to detect single-strand breaks and double-strand breaks that were either staggered or blunt. In contrast to switch regions, V regions contained predominantly single-strand breaks, which peaked 10 d after immunization. We then examined the pathways used to generate these breaks in UNG- and MSH6-deficient mice. Surprisingly, both DNA repair pathways contributed substantially to break formation, and in the absence of both UNG and MSH6, the frequency of breaks was severely reduced. When the breaks were sequenced and mapped, they were widely distributed over a 1000-bp intron region downstream of JH3 and JH4 exons and were unexpectedly located at all 4 nt. These data suggest that during DNA repair, nicks are generated at distal sites from the original deaminated cytosine, and these repair intermediates could generate both faithful and mutagenic repair. During mutagenesis, single-strand breaks would allow entry for low-fidelity DNA polymerases to generate somatic hypermutation.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
3
|
Feng XL, Zheng Y, Hao SS, Zhou GF, Chen PY. The Inducing Role and Molecular Basis of Bursal Hexapeptide (BHP) on Avian Immature B Cell. Protein Pept Lett 2019; 26:348-356. [PMID: 30816077 DOI: 10.2174/0929866526666190228141650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Bursa of Fabricius is an acknowledged central humoral immune organ unique to birds, which provides an ideal research model on the immature B cell development. OBJECTIVE In this article, our motivation is to study the role on sIgM and establish the molecular basis and functional processes of Bursal Hexapeptide (BHP) in avian immature B cells DT40 cell lines. METHODS In this article, we detected the expressions of sIgM mRNA with qPCR in DT40 cells with BHP treatment, and investigated the gene expression profiles of BHP-treated DT40 cells, employing microarray analyses. Also, to validate the differentially expressed genes, we performed KEGG pathway and Gene Ontology analysis in the BHP-treated DT40 cells. Finally, we comparatively analyzed the similar regulated genes and their involved immune functional processes between DT40 cell and mouse immature B cell line WEHI231 cell with BHP treatment. RESULTS Following the proposed framework, we proved that the BHP enhanced the mRNA expression levels of IgM in DT40 cells, and induced 460 upregulated genes and 460 downregulated genes in BHP-treated DT40 cells. The pathway analysis showed that the differentially regulated genes in DT40 cell line with BHP treatment were involved in 12 enrichment pathways, in which Toll-like receptor signaling pathway was the vital pathways, and cytokine-cytokine receptor interaction and Jak-STAT signaling pathway were another two important pathways in BHP-treated DT40 cells. Moreover, BHP induced the immune related biological processes in BHP-treated DT40 cells, including T cell related, cytokine related, lymphocyte related, and innate immune response GO terms. Finally, the comparatively analysis showed that there were two downregulated genes GATA3 and IFNG to be found co-existed among the differentially expressed genes in BHP-treated DT40 cell and WEHI231 cells, which shared some same immune related functional processes in both cell lines. CONCLUSION After the applying the framework, we proved the inducing roles and the gene expression profiles of BHP on avian immature B cells, and verified some molecular basis from the KEGG and GO analysis. These results provided the insight for mechanism on immature B cell differentiation, and offer the essential direction for the vaccine improvement.
Collapse
Affiliation(s)
- Xiu Li Feng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Zheng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Shan Hao
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guang Fang Zhou
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Pu Yan Chen
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Sid H, Schusser B. Applications of Gene Editing in Chickens: A New Era Is on the Horizon. Front Genet 2018; 9:456. [PMID: 30356667 PMCID: PMC6189320 DOI: 10.3389/fgene.2018.00456] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023] Open
Abstract
The chicken represents a valuable model for research in the area of immunology, infectious diseases as well as developmental biology. Although it was the first livestock species to have its genome sequenced, there was no reverse genetic technology available to help understanding specific gene functions. Recently, homologous recombination was used to knockout the chicken immunoglobulin genes. Subsequent studies using immunoglobulin knockout birds helped to understand different aspects related to B cell development and antibody production. Furthermore, the latest advances in the field of genome editing including the CRISPR/Cas9 system allowed the introduction of site specific gene modifications in various animal species. Thus, it may provide a powerful tool for the generation of genetically modified chickens carrying resistance for certain pathogens. This was previously demonstrated by targeting the Trp38 region which was shown to be effective in the control of avian leukosis virus in chicken DF-1 cells. Herein we review the current and future prospects of gene editing and how it possibly contributes to the development of resistant chickens against infectious diseases.
Collapse
Affiliation(s)
| | - Benjamin Schusser
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| |
Collapse
|
5
|
Romanello M, Schiavone D, Frey A, Sale JE. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA. EMBO J 2016; 35:1452-64. [PMID: 27220848 PMCID: PMC4883027 DOI: 10.15252/embj.201693958] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/25/2016] [Indexed: 11/30/2022] Open
Abstract
Immunoglobulin diversification is driven by activation‐induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single‐stranded DNA (ssDNA), the enzymatic substrate of AID. Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R‐loop formation. However, reducing IgV R‐loops by RNase HI overexpression in wild‐type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID‐accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single‐stranded, thereby creating an effective AID substrate.
Collapse
Affiliation(s)
- Marina Romanello
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Davide Schiavone
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alexander Frey
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
6
|
Lanning DK, Knight KL. Diversification of the Primary Antibody Repertoire by AID-Mediated Gene Conversion. Results Probl Cell Differ 2016; 57:279-93. [PMID: 26537386 DOI: 10.1007/978-3-319-20819-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gene conversion, mediated by activation-induced cytidine deaminase (AID), has been found to contribute to generation of the primary antibody repertoire in several vertebrate species. Generation of the primary antibody repertoire by gene conversion of immunoglobulin (Ig) genes occurs primarily in gut-associated lymphoid tissues (GALT) and is best described in chicken and rabbit. Here, we discuss current knowledge of the mechanism of gene conversion as well as the contribution of the microbiota in promoting gene conversion of Ig genes. Finally, we propose that the antibody diversification strategy used in GALT species, such as chicken and rabbit, is conserved in a subset of human and mouse B cells.
Collapse
Affiliation(s)
- Dennis K Lanning
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Katherine L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Avenue, Maywood, IL, 60153, USA.
| |
Collapse
|
7
|
Lim AWY, Williams GT, Rada C, Sale JE. Directed evolution of human scFvs in DT40 cells. Protein Eng Des Sel 2015; 29:39-48. [PMID: 26519451 PMCID: PMC4840456 DOI: 10.1093/protein/gzv058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/04/2015] [Indexed: 11/26/2022] Open
Abstract
Cells that constitutively diversify their immunoglobulin genes can be used for selection of novel antibodies and for refining existing affinities and specificities. Here, we report an adaptation of the chicken DT40 system wherein its capacity for somatic hypermutation is harnessed to evolve human antibodies expressed as single-chain variable fragments (scFvs). Expression of membrane-anchored scFvs from within the rearranged Igλ locus created self-diversifying scFv libraries from which we could both select scFvs of a desired specificity and evolve both the specificity and affinity of existing scFvs by iterative expansion and selection. From these scFvs, we were able to create fully human IgG antibodies with nanomolar affinities. We further enhanced the functionality of the system by creating a pool of DT40 scFv lines with high levels of mutation driven by the overexpression of a hyperactive variant of activation-induced deaminase. From this library, we successfully isolated scFvs that bound the spliceosome factor CWC15 and the cytokine human IFNγ. Our results demonstrate the flexibility and utility of DT40 for rapid generation of scFv repertoires and efficient selection, evolution and affinity maturation of scFv specificities.
Collapse
Affiliation(s)
- Alfred W Y Lim
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gareth T Williams
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Cristina Rada
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
8
|
Miyamoto A, Miyauchi H, Kogure T, Miyawaki A, Michikawa T, Mikoshiba K. Apoptosis induction-related cytosolic calcium responses revealed by the dual FRET imaging of calcium signals and caspase-3 activation in a single cell. Biochem Biophys Res Commun 2015; 460:82-7. [PMID: 25998736 DOI: 10.1016/j.bbrc.2015.02.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/20/2023]
Abstract
Stimulus-induced changes in the intracellular Ca(2+) concentration control cell fate decision, including apoptosis. However, the precise patterns of the cytosolic Ca(2+) signals that are associated with apoptotic induction remain unknown. We have developed a novel genetically encoded sensor of activated caspase-3 that can be applied in combination with a genetically encoded sensor of the Ca(2+) concentration and have established a dual imaging system that enables the imaging of both cytosolic Ca(2+) signals and caspase-3 activation, which is an indicator of apoptosis, in the same cell. Using this system, we identified differences in the cytosolic Ca(2+) signals of apoptotic and surviving DT40 B lymphocytes after B cell receptor (BCR) stimulation. In surviving cells, BCR stimulation evoked larger initial Ca(2+) spikes followed by a larger sustained elevation of the Ca(2+) concentration than those in apoptotic cells; BCR stimulation also resulted in repetitive transient Ca(2+) spikes, which were mediated by the influx of Ca(2+) from the extracellular space. Our results indicate that the observation of both Ca(2+) signals and cells fate in same cell is crucial to gain an accurate understanding of the function of intracellular Ca(2+) signals in apoptotic induction.
Collapse
Affiliation(s)
- Akitoshi Miyamoto
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroshi Miyauchi
- Saitama Medical University Hospital, Iruma, Saitama 350-0495, Japan
| | - Takako Kogure
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Takayuki Michikawa
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Brain Science Institute, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
9
|
Maul RW, Saribasak H, Cao Z, Gearhart PJ. Topoisomerase I deficiency causes RNA polymerase II accumulation and increases AID abundance in immunoglobulin variable genes. DNA Repair (Amst) 2015; 30:46-52. [PMID: 25869824 DOI: 10.1016/j.dnarep.2015.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Activation-induced deaminase (AID) is a DNA cytosine deaminase that diversifies immunoglobulin genes in B cells. Recent work has shown that RNA polymerase II (Pol II) accumulation correlates with AID recruitment. However, a direct link between Pol II and AID abundance has not been tested. We used the DT40 B-cell line to manipulate levels of Pol II by decreasing topoisomerase I (Top1), which relaxes DNA supercoiling in front of the transcription complex. Top1 was decreased by stable transfection of a short hairpin RNA against Top1, which produced an accumulation of Pol II in transcribed genes, compared to cells transfected with sh-control RNA. The increased Pol II density enhanced AID recruitment to variable genes in the λ light chain locus, and resulted in higher levels of somatic hypermutation and gene conversion. It has been proposed by another lab that AID itself might directly suppress Top1 to increase somatic hypermutation. However, we found that in both AID(+/+) and AID(-/-) B cells from DT40 and mice, Top1 protein levels were identical, indicating that the presence or absence of AID did not decrease Top1 expression. Rather, our results suggest that the mechanism for increased diversity when Top1 is reduced is that Pol II accumulates and recruits AID to variable genes.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Zheng Cao
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.
| |
Collapse
|
10
|
Schusser B, Yi H, Collarini EJ, Izquierdo SM, Harriman WD, Etches RJ, Leighton PA. Harnessing gene conversion in chicken B cells to create a human antibody sequence repertoire. PLoS One 2013; 8:e80108. [PMID: 24278246 PMCID: PMC3837002 DOI: 10.1371/journal.pone.0080108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022] Open
Abstract
Transgenic chickens expressing human sequence antibodies would be a powerful tool to access human targets and epitopes that have been intractable in mammalian hosts because of tolerance to conserved proteins. To foster the development of the chicken platform, it is beneficial to validate transgene constructs using a rapid, cell culture-based method prior to generating fully transgenic birds. We describe a method for the expression of human immunoglobulin variable regions in the chicken DT40 B cell line and the further diversification of these genes by gene conversion. Chicken VL and VH loci were knocked out in DT40 cells and replaced with human VK and VH genes. To achieve gene conversion of human genes in chicken B cells, synthetic human pseudogene arrays were inserted upstream of the functional human VK and VH regions. Proper expression of chimeric IgM comprised of human variable regions and chicken constant regions is shown. Most importantly, sequencing of DT40 genetic variants confirmed that the human pseudogene arrays contributed to the generation of diversity through gene conversion at both the Igl and Igh loci. These data show that engineered pseudogene arrays produce a diverse pool of human antibody sequences in chicken B cells, and suggest that these constructs will express a functional repertoire of chimeric antibodies in transgenic chickens.
Collapse
Affiliation(s)
- Benjamin Schusser
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Henry Yi
- Crystal Bioscience Inc., Emeryville, California, United States of America
| | - Ellen J. Collarini
- Crystal Bioscience Inc., Emeryville, California, United States of America
| | | | | | - Robert J. Etches
- Crystal Bioscience Inc., Emeryville, California, United States of America
| | - Philip A. Leighton
- Crystal Bioscience Inc., Emeryville, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Miyamoto A, Bannai H, Michikawa T, Mikoshiba K. Optimal microscopic systems for long-term imaging of intracellular calcium using a ratiometric genetically-encoded calcium indicator. Biochem Biophys Res Commun 2013; 434:252-7. [DOI: 10.1016/j.bbrc.2013.02.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 01/11/2023]
|
12
|
Campo VA, Patenaude AM, Kaden S, Horb L, Firka D, Jiricny J, Di Noia JM. MSH6- or PMS2-deficiency causes re-replication in DT40 B cells, but it has little effect on immunoglobulin gene conversion or on repair of AID-generated uracils. Nucleic Acids Res 2013; 41:3032-46. [PMID: 23314153 PMCID: PMC3597665 DOI: 10.1093/nar/gks1470] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian antibody repertoire is shaped by somatic hypermutation (SHM) and class switch recombination (CSR) of the immunoglobulin (Ig) loci of B lymphocytes. SHM and CSR are triggered by non-canonical, error-prone processing of G/U mismatches generated by activation-induced deaminase (AID). In birds, AID does not trigger SHM, but it triggers Ig gene conversion (GC), a ‘homeologous’ recombination process involving the Ig variable region and proximal pseudogenes. Because recombination fidelity is controlled by the mismatch repair (MMR) system, we investigated whether MMR affects GC in the chicken B cell line DT40. We show here that Msh6−/− and Pms2−/− DT40 cells display cell cycle defects, including genomic re-replication. However, although IgVλ GC tracts in MMR-deficient cells were slightly longer than in normal cells, Ig GC frequency, donor choice or the number of mutations per sequence remained unaltered. The finding that the avian MMR system, unlike that of mammals, does not seem to contribute towards the processing of G/U mismatches in vitro could explain why MMR is unable to initiate Ig GC in this species, despite initiating SHM and CSR in mammalian cells. Moreover, as MMR does not counteract or govern Ig GC, we report a rare example of ‘homeologous’ recombination insensitive to MMR.
Collapse
Affiliation(s)
- Vanina A Campo
- Institut de Recherches Cliniques de Montréal, Division of Immunity and Viral Infections, Montréal, H2W 1R7 Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Sale JE. Measurement of diversification in the immunoglobulin light chain gene of DT40 cells. Methods Mol Biol 2012; 920:417-32. [PMID: 22941620 DOI: 10.1007/978-1-61779-998-3_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunoglobulin loci of the genetically tractable chicken B cell line DT40 provide a unique opportunity to study the cellular response to endogenously generated DNA damage in a chromosomal context. Abasic sites generated by the concerted action of Activation-Induced Deaminase (AID) and Uracil DNA Glycosylase result in both homologous recombination-dependent gene conversion and translesion synthesis-dependent point mutations. The system has provided important insights into both the early stages of AID-dependent immunoglobulin gene diversification and into the relationship between pathways of DNA damage bypass. Here we describe the assays that can be employed to monitor the rate and pattern of immunoglobulin gene diversification at the light chain locus of DT40.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
14
|
Maul RW, Saribasak H, Martomo SA, McClure RL, Yang W, Vaisman A, Gramlich HS, Schatz DG, Woodgate R, Wilson DM, Gearhart PJ. Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nat Immunol 2011; 12:70-6. [PMID: 21151102 PMCID: PMC3653439 DOI: 10.1038/ni.1970] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/12/2010] [Indexed: 11/09/2022]
Abstract
Activation-induced deaminase (AID) initiates diversity of immunoglobulin genes through deamination of cytosine to uracil. Two opposing models have been proposed for the deamination of DNA or RNA by AID. Although most data support DNA deamination, there is no physical evidence of uracil residues in immunoglobulin genes. Here we demonstrate their presence by determining the sensitivity of DNA to digestion with uracil DNA glycosylase (UNG) and abasic endonuclease. Using several methods of detection, we identified uracil residues in the variable and switch regions. Uracil residues were generated within 24 h of B cell stimulation, were present on both DNA strands and were found to replace mainly cytosine bases. Our data provide direct evidence for the model that AID functions by deaminating cytosine residues in DNA.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kajita M, Okazawa T, Ikeda M, Todo K, Magari M, Kanayama N, Ohmori H. Efficient affinity maturation of antibodies in an engineered chicken B cell line DT40-SW by increasing point mutation. J Biosci Bioeng 2010; 110:351-8. [DOI: 10.1016/j.jbiosc.2010.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/02/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
16
|
A. Higgins D, Ko OKH, Chan SWS. Duck antibody responses to keyhole limpet haemocyanin, human immunoglobulin G and the trinitrophenyl hapten. Evidence of affinity maturation. Avian Pathol 2010; 30:381-90. [DOI: 10.1080/03079450120066386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Magari M, Kanehiro Y, Todo K, Ikeda M, Kanayama N, Ohmori H. Enhancement of hypermutation frequency in the chicken B cell line DT40 for efficient diversification of the antibody repertoire. Biochem Biophys Res Commun 2010; 396:353-8. [PMID: 20416279 DOI: 10.1016/j.bbrc.2010.04.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Chicken B cell line DT40 continuously accumulates mutations in the immunoglobulin variable region (IgV) gene by gene conversion and point mutation, both of which are mediated by activation-induced cytidine deaminase (AID), thereby producing an antibody (Ab) library that is useful for screening monoclonal Abs (mAbs) in vitro. We previously generated an engineered DT40 line named DT40-SW, whose AID expression can be reversibly switched on or off, and developed an in vitro Ab generation system using DT40-SW cells. To efficiently create an Ab library with sufficient diversity, higher hypermutation frequency is advantageous. To this end, we generated a novel cell line DT40-SWDeltaC, which conditionally expresses a C-terminus-truncated AID mutant lacking the nuclear export signal. The transcription level of the mutant AID gene in DT40-SWDeltaC cells was similar to that of the wild-type gene in DT40-SW cells. However, the protein level of the truncated AID mutant was less than that of the wild type. The mutant protein was enriched in the nuclei of DT40-SWDeltaC cells, although the protein might be highly susceptible to degradation. In DT40-SWDeltaC cells, both gene conversion and point mutation occurred in the IgV gene with over threefold higher frequency than in DT40-SW cells, suggesting that a lower level of the mutant AID protein was sufficient to increase mutation frequency. Thus, DT40-SWDeltaC cells may be useful for constructing Ab libraries for efficient screening of mAbs in vitro.
Collapse
Affiliation(s)
- Masaki Magari
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Conditional transformation of immunoglobulin mutation pattern from gene conversion into point mutation by controlling XRCC3 expression in the DT40 B cell line. J Biosci Bioeng 2009; 109:407-10. [PMID: 20226386 DOI: 10.1016/j.jbiosc.2009.09.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 09/29/2009] [Indexed: 12/12/2022]
Abstract
A hypermutating B cell line DT40 is useful for screening antibodies and improving affinity of the selected antibodies in vitro. To perform affinity maturation efficiently, we generated an engineered DT40 line whose immunoglobulin mutation pattern can be transformed from gene conversion into point mutation by conditional suppression of XRCC3 expression.
Collapse
|
19
|
Kim Y, Tian M. NF-kappaB family of transcription factor facilitates gene conversion in chicken B cells. Mol Immunol 2009; 46:3283-91. [PMID: 19699530 DOI: 10.1016/j.molimm.2009.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/26/2009] [Indexed: 12/21/2022]
Abstract
Activation-induced cytidine deaminase (AID) is critical for immunoglobulin (Ig) diversification in B cells. The majority of evidence supports the model that AID modifies Ig genes at the DNA level by deaminating cytosines into uracils. The mutagenic activity is largely restricted to Ig genes to avoid genomic damage in general, but the underlying mechanism is not understood. We addressed this question in chicken B cell line DT40. We characterized a regulatory region within the Iglambda locus. This regulatory region is important for AID-mediated gene conversion at the Iglambda locus, and is capable of targeting AID activity to ectopic loci. This regulatory region contains binding sites for transcription factors NF-kappaB, Mef2 and octamer binding proteins. Mutation of these binding sites or ablation of NF-kappaB family member, p50 or c-Rel, impairs the AID targeting function of this regulatory region. These results suggest that NF-kappaB family of transcription factors contribute to AID-mediated gene conversion.
Collapse
Affiliation(s)
- Yonghwan Kim
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University Station, Austin, TX 78712, USA
| | | |
Collapse
|
20
|
Enhancement of antibody production from a chicken B cell line DT40 by reducing Pax5 expression. J Biosci Bioeng 2009; 107:206-9. [PMID: 19217561 DOI: 10.1016/j.jbiosc.2008.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 09/16/2008] [Indexed: 11/22/2022]
Abstract
We developed a novel in vitro antibody (Ab) generation system using a hypermutating chicken B cell line (DT40-SW). We suppressed the expression of the Pax5 transcription factor by targeted disruption of the gene to increase Ab production in isolated clones and produce the desired Abs. This single genetic manipulation resulted in a significant enhancement of Ab production without significantly affecting maximum cell density.
Collapse
|
21
|
Arakawa H, Buerstedde JM. Activation-induced cytidine deaminase-mediated hypermutation in the DT40 cell line. Philos Trans R Soc Lond B Biol Sci 2009; 364:639-44. [PMID: 19008193 DOI: 10.1098/rstb.2008.0202] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Depending on the species and the developmental stage of B cells, activation-induced cytidine deaminase (AID) triggers immunoglobulin (Ig) gene diversification by gene conversion, hypermutation or switch recombination. The bursal B cell line DT40 usually diversifies its rearranged Ig light chain (IgL) gene by gene conversion, but disruption of the RAD51 gene paralogues or deletion of the psiV conversion donors induces hypermutation. Although not all aspects of somatic hypermutation can be studied in DT40, the compact size of the chicken IgL locus and the ability to modify the genome by targeted integration are powerful experimental advantages. We review here how the studies in DT40 contributed to understanding how AID initiates Ig gene diversification and how AID-induced uracils are subsequently processed by uracil DNA glycosylase, proliferating cell nuclear antigens and error-prone polymerases. We also discuss the on-going research on the Ig locus specificity of hypermutation and the possibility of using hypermutation for the artificial evolution of proteins and regulatory sequences in DT40.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Molecular Radiobiology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | | |
Collapse
|
22
|
Yabuki M, Ordinario EC, Cummings WJ, Fujii MM, Maizels N. E2A acts in cis in G1 phase of cell cycle to promote Ig gene diversification. THE JOURNAL OF IMMUNOLOGY 2009; 182:408-15. [PMID: 19109172 DOI: 10.4049/jimmunol.182.1.408] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rearranged Ig genes undergo diversification in sequence and structure initiated by the DNA deaminase, activation-induced deaminase. Ig genes must be transcribed for diversification to occur, but whether there are additional requirements for cis activation has not been established. Here we show, by chromatin immunoprecipitation, that the regulatory factor E2A associates with the rearranged Ig lambda(R) gene in the chicken DT40 B cell line, which performs constitutive Ig gene diversification. By analysis of a DT40 derivative in which polymerized lactose operator tags the rearranged lambda(R) gene, we show that E2A must function in cis to promote diversification and that stimulation of diversification in cis depends on the E2A activation domains. By direct imaging, we show that lambda(R)/E2A colocalizations are most prominent in G(1). We further show that expression of the E2A antagonist Id1 prevents lambda(R)/E2A colocalizations in G(1) and impairs diversification but not transcription of lambda(R). Thus, E2A acts in cis to promote Ig gene diversification, and G(1) phase is the critical window for E2A action.
Collapse
Affiliation(s)
- Munehisa Yabuki
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
23
|
Kanayama N, Todo K, Magari M, Ohmori H. [Creation of valuable antibodies by an in vitro antibody generation system using a hypermutating B cell line]. YAKUGAKU ZASSHI 2009; 129:11-7. [PMID: 19122431 DOI: 10.1248/yakushi.129.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monoclonal antibodies (mAb) have recently proven to be excellent biopharmaceutical agents. The generation of hybridomas from antigen-stimulated B cells has been a key technology for obtaining mAbs; however, it is a laborious and time-consuming process, and sometimes mAbs for molecules conserved between species are difficult to obtain because of immunological tolerance. Thus, it is of great importance to develop in vitro technologies for generating useful Abs as drug candidates. We have been attempting to develop a novel in vitro antibody generation system using a chicken B cell line DT40, which displays Abs and mutates Ig genes during culture, thereby generating a useful Ab library for screening mAbs. First, we generated an engineered cell line DT40-SW whose mutation machinery can be reversibly switched on and off. The Ab generation system using DT40-SW is useful in the following ways: (1) mAbs for various model antigens including antoantigens can be obtained from the DT40-SW Ab library that is free from immunological tolerance; (2) the switching device of the mutation machinery enables fixing desirable Ig mutants by stopping mutation; (3) by repeated culture and sorting of clones bearing higher affinity for target antigens, affinity maturation can be mimicked in vitro. We have also genetically improved DT40-SW cells for mutation efficiency and Ab production. The Ab generation system will be applicable for obtaining valuable Abs such as antitumor Abs.
Collapse
Affiliation(s)
- Naoki Kanayama
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka Okayama 700-8530, Japan.
| | | | | | | |
Collapse
|
24
|
Abstract
To cope with an unpredictable variety of potential pathogenic insults, the immune system must generate an enormous diversity of recognition structures, and it does so by making stepwise modifications at key genetic loci in each lymphoid cell. These modifications proceed through the action of lymphoid-specific proteins acting together with the general DNA-repair machinery of the cell. Strikingly, these general mechanisms are usually diverted from their normal functions, being used in rather atypical ways in order to privilege diversity over accuracy. In this Review, we focus on the contribution of a set of DNA polymerases discovered in the past decade to these unique DNA transactions.
Collapse
|
25
|
Tang ES, Martin A. Immunoglobulin gene conversion: Synthesizing antibody diversification and DNA repair. DNA Repair (Amst) 2007; 6:1557-71. [PMID: 17600774 DOI: 10.1016/j.dnarep.2007.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
Recent developments in the field of antibody (Ab) diversification have rapidly advanced our understanding of the molecular mechanism underlying these events. Key to these developments was the identification of activation-induced cytidine deaminase (AID) as the central regulator of secondary Ab diversification, and the elucidation of its primary function as a DNA deaminase. Incredibly, current literature suggests the existence of a shared pathway, common to all secondary diversification processes, from which the separate outcomes branch outwards at various points. Immunoglobulin gene conversion (IGC) is one of these mechanisms and is used by a number of vertebrate species in both the development of the pre-immune repertoire and in affinity maturation. In a manner similar to other Ab diversification mechanisms, IGC has managed to co-opt a normal DNA repair pathway for the generation of receptor diversity. In the case of IGC specifically, that pathway is homologous recombination (HR). A burgeoning wealth of genetic, biochemical and structural data has clarified the roles of many key HR factors, allowing new insight into its molecular mechanism. These insights, combined with those from the common mechanism of AID action, synergize to develop an emerging picture of the mechanism underlying IGC.
Collapse
Affiliation(s)
- Ephraim S Tang
- Department of Immunology, University of Toronto, Medical Sciences Bldg. 5265, Toronto, Canada M5S 1A8
| | | |
Collapse
|
26
|
Narvi E, Nera KP, Terho P, Mustonen L, Granberg J, Lassila O. Aiolos controls gene conversion and cell death in DT40 B cells. Scand J Immunol 2007; 65:503-13. [PMID: 17523942 DOI: 10.1111/j.1365-3083.2007.01929.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Ikaros family transcription factor Aiolos is important for B cell function, since B cells of Aiolos-null mutant mice exhibit an activated phenotype, enhanced B-cell receptor (BCR) signalling response and develop a systemic lupus erythematosus (SLE) type autoimmune disease. Aiolos has also been reported to interact with anti-apoptotic Bcl-2 and Bcl-x(L) in T cells, but whether Aiolos regulates cell death has not been studied in B cells. Here we show that the disruption of Aiolos in the DT40 B cell line induces a cell death sensitive phenotype, as the Aiolos(-/-) cells are more prone to apoptosis by nutritional stress, BCR cross-linking, UV- or gamma-irradiation. Furthermore, the Aiolos(-/-) cells have defective Ig gene conversion providing evidence that Aiolos is needed for the somatic diversification of the BCR repertoire. The re-expression of DNA-binding isoform Aio-1 was able to restore the gene conversion defect of the Aiolos-deficient cells, whereas the introduction of dominant negative isofom Aio-2 had no effect on gene conversion, thus demonstrating the functional importance of alternative splicing within Ikaros family. Although the Aiolos(-/-) cells exhibit reduced expression of activation-induced cytidine deaminase (AID), ectopic AID overexpression did not restore the gene conversion defect in the Aiolos(-/-) cells. Our findings indicate that Aiolos may regulate gene conversion in an AID independent manner.
Collapse
Affiliation(s)
- E Narvi
- Turku Graduate School of Biomedical Sciences, University of Turku, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
27
|
Yang SY, Fugmann SD, Schatz DG. Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences. ACTA ACUST UNITED AC 2006; 203:2919-28. [PMID: 17178919 PMCID: PMC2118177 DOI: 10.1084/jem.20061835] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is thought that gene conversion (GCV) and somatic hypermutation (SHM) of immunoglobulin (Ig) genes occur in two steps: the generation of uracils in DNA by activation-induced cytidine deaminase, followed by their subsequent repair by various DNA repair pathways to generate sequence-diversified products. It is not known how either of the two steps is targeted specifically to Ig loci. Because of the tight link between transcription and SHM, we have investigated the role of endogenous Ig light chain (IgL) transcriptional control elements in GCV/SHM in the chicken B cell line DT40. Promoter substitution experiments led to identification of a strong RNA polymerase II promoter incapable of supporting efficient GCV/SHM. This surprising finding indicates that high levels of transcription are not sufficient for robust GCV/SHM in Ig loci. Deletion of the IgL enhancer in a context in which high-level transcription was not compromised showed that the enhancer is not necessary for GCV/SHM. Our results indicate that cis-acting elements are important for Ig gene diversification, and we propose that targeting specificity is achieved through the combined action of several Ig locus elements that include the promoter.
Collapse
Affiliation(s)
- Shu Yuan Yang
- Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
28
|
Todo K, Miyake K, Magari M, Kanayama N, Ohmori H. Novel in vitro screening system for monoclonal antibodies using hypermutating chicken B cell library. J Biosci Bioeng 2006; 102:478-81. [PMID: 17189180 DOI: 10.1263/jbb.102.478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 08/17/2006] [Indexed: 11/17/2022]
Abstract
Here, we report an in vitro screening system for monoclonal antibodies using a hypermutating chicken B cell line, DT40-SW. When switching on hypermutation, cultured DT40-SW cells constituted an antibody library, from which clones secreting antibodies to a test antigen were successfully isolated, and genetically stabilized by switching off the mutation machinery.
Collapse
Affiliation(s)
- Kagefumi Todo
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
29
|
Abstract
Paired box protein 5 (Pax5) is essential for early B cell commitment as well as for B cell development, and continuous expression of Pax5 is required throughout the B cell lineage to maintain the functional identity of B cells. During B cell activation, Pax5 is downregulated before terminal differentiation into antibody-secreting plasma cells, and enforced expression of Pax5 prevents plasmacytic development. Recently, loss of Pax5 was shown to result in the substantial transition to a plasma cell state, demonstrating a functionally significant role for Pax5 in the regulation of terminal B cell differentiation. Here we elucidate the current understanding about the function of Pax5 as a key inhibitor of plasma cell differentiation.
Collapse
Affiliation(s)
- K-P Nera
- Turku Graduate School of Biomedical Sciences, Department of Medical Microbiology, University of Turku, Kiinamyllynkatu 13, 20500 Turku, Finland.
| | | |
Collapse
|
30
|
Conlon TM, Meyer KB. The chicken Ig light chain 3′-enhancer is essential for gene expression and regulates gene conversionvia the transcription factor E2A. Eur J Immunol 2006; 36:139-48. [PMID: 16342328 DOI: 10.1002/eji.200535219] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of the rearranged chicken immunoglobulin light chain (IgL) gene is regulated by a V gene promoter, a matrix attachment region (MAR) in the J-C intron and an enhancer downstream of the Ig constant region. Using knockout analysis, we demonstrate that the 3'-enhancer is not only required for gene activation but is also essential for the maintenance of gene expression. Deletion of the MAR on the other hand increases IgL transcription, indicating that the MAR acts as negative regulator. We demonstrate that Id1 and Id3, dominant-negative regulators of basic-region helix-loop-helix (bHLH) transcription factors, are able to reduce chicken IgL 3'-enhancer activity in transient assays and strongly reduce the rate of gene conversion (GC) in DT40 clone 18 cells. Conversely, overexpression of avian E47, a bHLH transcription factor, leads to a dramatic increase in GC rates independent of IgL or activation-induced cytidine deaminase RNA levels. Thus, E47 is the first transcription factor to activate GC without an apparent increase in transcription.
Collapse
Affiliation(s)
- Thomas M Conlon
- Cambridge Institute for Medical Research and Department of Pathology, Cambridge University, Cambridge, UK
| | | |
Collapse
|
31
|
Ross AL, Sale JE. The catalytic activity of REV1 is employed during immunoglobulin gene diversification in DT40. Mol Immunol 2005; 43:1587-94. [PMID: 16263170 DOI: 10.1016/j.molimm.2005.09.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/24/2005] [Indexed: 11/29/2022]
Abstract
REV1 plays a key role in vertebrate translesion synthesis. Although its deoxycytidyl transferase activity is dispensable for tolerance of DNA damage caused by a number of mutagens, its extreme C terminus, which interacts with other translesion polymerases and PCNA, is essential. By examining immunoglobulin diversification in the genetically tractable chicken cell line DT40 we show that the generation of non-templated point mutations from C/G to G/C does require the catalytic activity of REV1. This provides the first clear evidence that the catalytic activity of REV1 is utilised in vivo in higher eukaryotes and is involved in immunoglobulin diversification. Although rev1 DT40 cells incorporate few point mutations, a mutant lacking the C terminus of REV1 exhibits a similar level to that seen in wild-type cells. Thus, the polymerase selection or stabilisation role of REV1 does not appear to play a major role in the bypass of AID-dependent abasic sites.
Collapse
Affiliation(s)
- Anna-Laura Ross
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge, CB2 2QH, UK
| | | |
Collapse
|
32
|
Swanberg SE, Delany ME. Differential expression of genes associated with telomere length homeostasis and oncogenesis in an avian model. Mech Ageing Dev 2005; 126:1060-70. [PMID: 15922407 DOI: 10.1016/j.mad.2005.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 03/26/2005] [Accepted: 03/28/2005] [Indexed: 11/28/2022]
Abstract
Telomere-binding proteins, their interaction partners and transcription factors play a prominent role in telomere maintenance and telomerase activation. We examined mRNA expression levels of tankyrase 1 and 2, TRF1 and 2, c-myc, TERT and TR in Gallus domesticus, the domestic chicken, by quantitative real-time PCR, establishing expression profiles for three contrasting cell systems: the pluripotent gastrula, differentiated embryo fibroblasts and transformed DT40 cells. All seven genes were up-regulated in DT40 cells compared to telomerase-negative CEFs and a majority of the genes were also up-regulated in the gastrula relative to CEFs. Surprisingly, we found TERT and TR transcripts in CEFs, albeit at low levels. TRF1 was down-regulated in the six CEF cultures by the time of culture growth arrest. A marked increase in the TRF2:TRF1 ratio occurred at or near senescence in all of the CEF cultures studied, with the most elevated ratio found in a short-lived culture in which TRF1 mRNA levels decreased two-fold and TRF2 levels increased 21-fold. This culture also showed highly reduced, degraded telomeres by Southern blot analysis. These data suggest that genes involved in telomere maintenance and telomerase induction are expressed differentially in pluripotent, differentiated and transformed cell systems.
Collapse
Affiliation(s)
- Susan E Swanberg
- Department of Animal Science, Meyer Hall, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
33
|
Kanayama N, Todo K, Reth M, Ohmori H. Reversible switching of immunoglobulin hypermutation machinery in a chicken B cell line. Biochem Biophys Res Commun 2005; 327:70-5. [PMID: 15629431 DOI: 10.1016/j.bbrc.2004.11.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Indexed: 10/26/2022]
Abstract
A chicken B lymphoma line, DT40, hypermutates immunoglobulin (Ig) genes spontaneously during culture. Thus, cultured DT 40 cells constitute a useful Ig library for screening antibodies (Abs) in vitro. To fix desirable Ig mutants by stopping hypermutation or to resume mutation for further improvement of Ab affinity, activation-induced cytidine deaminase (AID), a key enzyme responsible for the Ig mutation machinery, must be switched on or off. To this end, we generated a DT40 line whose one AID allele was disrupted, and the other allele was replaced by the loxP-flanked AID construct. In this engineered cell line designated as DT40-SW, AID expression could be switched reversibly by tamoxifen-regulated Cre recombinase. Devices were also introduced to discriminate between the "AID-ON" and the "AID-OFF" cells by GFP expression and puromycin resistance, respectively. Starting from a single DT40-SW cell, Ig gene repertoire was efficiently diversified during culture only when AID expression was on.
Collapse
Affiliation(s)
- Naoki Kanayama
- Department of Biotechnology, Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
34
|
Sale JE. Immunoglobulin diversification in DT40: a model for vertebrate DNA damage tolerance. DNA Repair (Amst) 2004; 3:693-702. [PMID: 15177178 DOI: 10.1016/j.dnarep.2004.03.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2004] [Indexed: 12/23/2022]
Abstract
Studies of recombination in vertebrates have rather lagged behind those in yeast and bacteria in large part due to the relative genetic intractability of vertebrate model systems. Immunoglobulin diversification in the chicken cell line DT40 provides a powerful combination of a physiological recombination process coupled with facile genetic modification. The immunoglobulin variable regions of DT40 constitutively diversify by a combination of gene conversion, in which sequence changes are templated from one of a number of upstream pseudogenes or by non-templated point mutation. Both of these events are initiated by abasic sites in the variable region DNA generated following the targeted deamination of cytidine by activation induced deaminase. Recent work has shown that the two outcomes, gene conversion and somatic mutation, are likely to reflect alternate pathways for the processing of these abasic sites. In this review I will discuss the current data on avian Ig gene diversification and examine how the immunoglobulin loci of DT40 may provide a useful model system for studying the mechanisms and interactions of vertebrate recombination and pathways of DNA damage tolerance.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
35
|
Arakawa H, Buerstedde JM. Immunoglobulin gene conversion: Insights from bursal B cells and the DT40 cell line. Dev Dyn 2004; 229:458-64. [PMID: 14991701 DOI: 10.1002/dvdy.10495] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chicken B cells diversify their immunoglobulin (Ig) light and heavy chain genes by pseudogene templated gene conversion within the bursa of Fabricius. Although Ig gene conversion was initially believed to occur only in birds, it is now clear that most farm animals also use this elegant mechanism to develop an immunoglobulin gene repertoire. The best model to study Ig gene conversion remains the chicken Ig light chain locus due to its compact size and the fact that all the pseudogene donors are sequenced. Furthermore, gene conversion continues in the bursa-derived DT40 cell line whose genome can be easily modified by targeted integration of transfected constructs. Disruption of the AID gene, which had been shown to control somatic hypermutation and switch recombination in mammals leads to a complete block of gene conversion in DT40 indicating that all B-cell specific repertoire formation is controlled by the same gene. Here, we review the genetics and the molecular mechanism of Ig gene conversion based on sequence analysis of bursal B cells and gene disruption studies in the DT40 cell line.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- GSF, Institute for Molecular Radiobiology, Neuherberg-Munich, Germany
| | | |
Collapse
|
36
|
Abstract
The study of immunoglobulin genes in non-mouse and non-human models has shown that different vertebrate groups have evolved distinct methods of generating antibody diversity. By contrast, the development of T cells in the thymus is quite similar in all of the species that have been examined. The three mechanisms by which B cells uniquely modify their immunoglobulin genes -- somatic hypermutation, gene conversion and class switching -- are increasingly believed to share some fundamental mechanisms, which studies in different vertebrate groups have helped (and will continue to help) to resolve. When these mechanisms are better understood, we should be able to look to the constitutive pathways from which they have evolved and perhaps determine whether the rearrangement of variable, diversity and joining antibody gene segments -- V(D)J recombination -- was superimposed on an existing adaptive immune system.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland 21201, USA.
| |
Collapse
|
37
|
Harris RS, Sale JE, Petersen-Mahrt SK, Neuberger MS. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr Biol 2002; 12:435-8. [PMID: 11882297 DOI: 10.1016/s0960-9822(02)00717-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Following productive V gene rearrangement, the functional immunoglobulin genes in the B lymphocytes of man and mouse are subjected to two further types of genetic modification. Class-switch recombination, a region-specific but largely nonhomologous recombination process, leads to a change in constant region of the expressed antibody. Somatic hypermutation introduces multiple single nucleotide substitutions in and around the rearranged V gene segments and underpins affinity maturation. However, in chicken and rabbits (but not man or mouse), an additional mechanism, gene conversion, is a major contributor to V gene diversification. It has been demonstrated recently that both switch recombination and hypermutation are ablated in mice and humans lacking AID, a B cell-specific protein of unknown molecular activity. Here we show that disruption of AID in the DT40 chicken B cell lymphoma leads to a failure to perform immunoglobulin V gene conversion. Thus, AID is required for all three immunoglobulin gene modification programs (gene conversion, hypermutation, and switch recombination) and acts in the initiation or execution of these processes rather than in bringing the B cell to an appropriate stage of differentiation.
Collapse
Affiliation(s)
- Reuben S Harris
- Medical Research Council Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
38
|
|
39
|
Sale JE, Calandrini DM, Takata M, Takeda S, Neuberger MS. Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Nature 2001; 412:921-6. [PMID: 11528482 DOI: 10.1038/35091100] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After gene rearrangement, immunoglobulin V genes are further diversified by either somatic hypermutation or gene conversion. Hypermutation (in man and mouse) occurs by the fixation of individual, non-templated nucleotide substitutions. Gene conversion (in chicken) is templated by a set of upstream V pseudogenes. Here we show that if the RAD51 paralogues XRCC2, XRCC3 or RAD51B are ablated the pattern of diversification of the immunoglobulin V gene in the chicken DT40 B-cell lymphoma line exhibits a marked shift from one of gene conversion to one of somatic hypermutation. Non-templated, single-nucleotide substitutions are incorporated at high frequency specifically into the V domain, largely at G/C and with a marked hotspot preference. These mutant DT40 cell lines provide a tractable model for the genetic dissection of immunoglobulin hypermutation and the results support the idea that gene conversion and somatic hypermutation constitute distinct pathways for processing a common lesion in the immunoglobulin V gene. The marked induction of somatic hypermutation that is achieved by ablating the RAD51 paralogues is probably a consequence of modifying the recombination-mediated repair of such initiating lesions.
Collapse
Affiliation(s)
- J E Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | | | |
Collapse
|
40
|
Goitsuka R, Mamada H, Kitamura D, Cooper MD, Chen CL. Genomic structure and transcriptional regulation of the early B cell gene chB1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1454-60. [PMID: 11466365 DOI: 10.4049/jimmunol.167.3.1454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The avian B cell differentiation Ag chB1 is a membrane glycoprotein relative of the mammalian B cell differentiation Ag CD72. Unlike CD72, this C-type lectin is expressed in relatively high levels on immature B cells in the bursa of Fabricius and is down-regulated on mature B cells in the periphery. An immunoreceptor tyrosine-based inhibitory motif in the chB1 cytoplasmic tail suggests a potential regulatory role in intrabursal B cell development. To gain further insight into the selective expression and function of chB1, we determined the genomic organization of chB1 and examined the mechanism of its transcriptional regulation. The 8-exon chB1 gene proved to have very similar organization to that of mouse CD72, further supporting the idea that chB1 is a CD72 relative. As for mouse CD72, the chB1 promoter region lacks a TATA box but contains a conserved initiator element. The 131-bp region (-161 to -30) proximal to the transcriptional start site, which contains a potential early B cell factor binding site, is essential for the B lineage stage-specific transcription of chB1, whereas PU.1 and B cell-specific activator protein/Pax5 have been shown to play important roles in CD72 promoter activity and cell-type specificity. This analysis suggests that differences in transcriptional regulation of these phylogenetically related genes may determine the differences in expression pattern and, therefore, the function of avian chB1 and mammalian CD72 during B cell development.
Collapse
MESH Headings
- 5' Untranslated Regions/metabolism
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- Base Sequence
- Binding Sites/genetics
- Binding Sites/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Line, Transformed
- Chickens
- Exons
- Gene Expression Regulation/immunology
- Introns
- Lectins/chemistry
- Lectins/genetics
- Lectins, C-Type
- Molecular Sequence Data
- Promoter Regions, Genetic/immunology
- Sequence Analysis, DNA
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- R Goitsuka
- Division of Molecular Biology, Institute for Biological Sciences, Science University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
41
|
Morimura T, Miyatani S, Kitamura D, Goitsuka R. Notch signaling suppresses IgH gene expression in chicken B cells: implication in spatially restricted expression of Serrate2/Notch1 in the bursa of Fabricius. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3277-83. [PMID: 11207282 DOI: 10.4049/jimmunol.166.5.3277] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The bursa of Fabricius is a central organ for chicken B cell development and provides an essential microenvironment for expansion of the B cell pool and for generation of a diversified B cell repertoire. We report here that genes encoding the Notch family of transmembrane proteins, key regulators of cell fate determination in development, are differentially expressed in the bursa of Fabricius: Notch1 is expressed in medullary B cells located close to the basement membrane-associated epithelium (BMAE). In contrast, a Notch ligand, Serrate2, is expressed exclusively in the BMAE, which surrounds bursal medulla. A basic helix-loop-helix-type transcription factor, Hairy1, a downstream target of Notch signaling, is expressed in the bursa coordinately with Notch1 and Serrate2 and an immature B cell line, TLT1, which expresses both Notch1 and Serrate2. Furthermore, stable expression of a constitutively active form of chicken Notch1 or Notch2 in a B cell line results in a down-regulation of surface IgM expression, which is accompanied by the reduction of IgH gene transcripts. Transient reporter assay with the human IgH gene intronic enhancer reveals that an active form of Notch1 inhibits the IgH enhancer activity in chicken B cells, suggesting that Notch-mediated signals suppress the IgH gene expression via influencing the IgH intronic enhancer. These findings raise the possibility that the local activation of Notch1 in a subset of B cells by Serrate2 expressed in BMAE may influence the cell fate decision that is involved in B cell differentiation and selection inside the bursa.
Collapse
Affiliation(s)
- T Morimura
- Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba, Japan
| | | | | | | |
Collapse
|
42
|
Winding P, Berchtold MW. The chicken B cell line DT40: a novel tool for gene disruption experiments. J Immunol Methods 2001; 249:1-16. [PMID: 11226459 DOI: 10.1016/s0022-1759(00)00333-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The use of the chicken DT40 B cell line is increasing in popularity due to the ease with which it can be manipulated genetically. It offers a targeted to random DNA integration ratio of more than 1:2, by far exceeding that of any mammalian cell line. The facility with which knockout cell lines can be generated, combined with a short generation time, makes the DT40 cell line attractive for phenotype analysis of single and multiple gene disruptions. Advantage has been taken of this to investigate such diverse fields as B cell antigen receptor (BCR) signaling, cell cycle regulation, gene conversion and apoptosis. In this review, we give a historical introduction and a practical guide to the use of the DT40 cell line, along with an overview of the main topics being researched using the DT40 cell line as a model system. These topics include B cell-specific subjects such as B cell signaling and Ig rearrangement, and subjects common to all cell types such as apoptosis, histones, mRNA modification, chromosomal maintenance and DNA repair. Attention is in each case brought to peculiarities of the DT40 cell line that are of relevance for the subject. Novel applications of the cell line, e.g., as a vector for gene targeting of human chromosomes, are also discussed in this review.
Collapse
Affiliation(s)
- P Winding
- Institute of Molecular Biology, Oster Farimagsgade 2A, DK-1353, K, Copenhagen, Denmark
| | | |
Collapse
|
43
|
Abstract
Development of B cells in chickens proceeds via a series of discrete developmental stages that includes the maturation of committed B cell progenitors in the specialized microenvironment of the bursa of Fabricius. The bursa has been shown to be required for the amplification of the B cell pool and selects for cells with productive immunoglobulin rearrangement events. Other events regulating chicken B cell development such as lymphocyte trafficking and apoptosis are just beginning to be elucidated. Within the bursa, the variable regions of immunoglobulin genes of B cell progenitors are diversified by a process of intrachromosomal gene conversion, where blocks of sequence information are transferred from pseudo-V regions to the recombined variable regions of the immunoglobulin genes. Recently gene conversion has been determined to play a role in the diversification of the immune repertoire in other species. In this review we focus on the current understanding and recent advances of B cell development in the chicken.
Collapse
Affiliation(s)
- E L Masteller
- Department of Medicine, Howard Hughes Medical Institute, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, IL 60637-5420, USA
| | | | | | | |
Collapse
|
44
|
McNagny KM, Graf T. Acute avian leukemia viruses as tools to study hematopoietic cell differentiation. Curr Top Microbiol Immunol 1996; 212:143-62. [PMID: 8934817 DOI: 10.1007/978-3-642-80057-3_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- K M McNagny
- Differentiation Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
45
|
Abstract
The chicken bursa provides a revealing experimental model system which has helped unravel some of the mysteries surrounding induction of neoplasia by retroviruses lacking dominant viral oncogenes. Analysis of this system continues to provide opportunities for further insight into mechanisms underlying some of the essential characteristics of neoplastic change including maturation arrest, prolonged cell survival, and genetic instability. The deregulation of c-myc expression induced by nearby proviral integration appears to initiate preneoplastic change in a specific window of development, i.e., the bursal stem cell. The generation of large numbers of these preneoplastic stem cells, and the ability for further amplification by transplantation technology, may provide an opportunity to address questions such as how and why myc oncogenes produce preneoplastic maturation arrest or why stem cells are selective targets for these effects. Among the unexplained consequences of this preneoplastic state appears to be genetic instability which leads, inevitably, to formation of invasive bursal neoplasms. It is at least conceivable that the observed myc-induced enhancement of the remarkable capacity for apoptotic cell death present in bursal cells plays a role in this instability. DNA strand breakage is a very early feature of bursal cell apoptosis. If such breakage could occur in sublethal form it might provide a mechanism for increased frequency of genetic change (deletions, rearrangement, and recombination). Among the changes that seem required for successful tumor cell growth outside of follicles is the suppression of cell death induced by loss of cell-cell contact which is characteristic of normal and preneoplastic bursal cells. Several genes in the bcl-2 family are potentially important in the modulation of cell death events central to the evolution of these neoplasms. Their role, if any, remains to be established.
Collapse
Affiliation(s)
- P E Neiman
- Fred Hutchinson Cancer Research Center, University of Washington 98104
| |
Collapse
|
46
|
Reynaud CA, Bertocci B, Dahan A, Weill JC. Formation of the chicken B-cell repertoire: ontogenesis, regulation of Ig gene rearrangement, and diversification by gene conversion. Adv Immunol 1994; 57:353-78. [PMID: 7872160 DOI: 10.1016/s0065-2776(08)60676-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
47
|
McCormack WT, Thompson CB. Special features of the development of the chicken humoral immune system. RESEARCH IN IMMUNOLOGY 1993; 144:467-75; discussion 475-6. [PMID: 8303068 DOI: 10.1016/0923-2494(93)80141-k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- W T McCormack
- Department of Pathology, University of Florida College of Medicine, Gainesville 32610-0275
| | | |
Collapse
|
48
|
McCormack WT, Tjoelker LW, Thompson CB. Immunoglobulin gene diversification by gene conversion. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 45:27-45. [PMID: 8341802 DOI: 10.1016/s0079-6603(08)60865-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- W T McCormack
- Department of Pathology, University of Florida College of Medicine, Gainesville 32610
| | | | | |
Collapse
|
49
|
Abstract
Not all vertebrates create an immunoglobulin repertoire through the recombination of individual members of variable (V), diversity (D) and joining (J) gene segment families. In chickens, for example, a diverse set of immunoglobulins is created by intrachromosomal gene conversion of the single variable gene segments of the immunoglobulin heavy and light chain genes. Recent evidence from other species such as the rabbit suggests that gene conversion may be a more widespread mechanism for the creation of immunologic diversity than previously supposed.
Collapse
Affiliation(s)
- C B Thompson
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor 48109
| |
Collapse
|
50
|
Suter M. The potential of molecular biology for the production of monoclonal antibodies derived from outbred veterinary animals. Vet Immunol Immunopathol 1992; 33:285-300. [PMID: 1441216 DOI: 10.1016/0165-2427(92)90001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The protein structure of immunoglobulins and the genetics on the regulation of immunoglobulin expression are reviewed. This basic knowledge has led to the development of systems to produce monoclonal antibodies in eukaryotic or prokaryotic cells. The potential and limitations of molecular biology for the understanding of immunoglobulin regulation and for the production of monoclonal antibodies derived from animals of veterinary importance are discussed.
Collapse
Affiliation(s)
- M Suter
- Schweizerisches Institut für Allergie- und Asthmaforschung (SIAF), Davos-Platz, Switzerland
| |
Collapse
|