1
|
Pham T, Li Y, Watford W, Lin X. Vaccination with a ZNF2oe Strain of Cryptococcus Provides Long-Lasting Protection against Cryptococcosis and Is Effective in Immunocompromised Hosts. Infect Immun 2023:e0019823. [PMID: 37338404 DOI: 10.1128/iai.00198-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Systemic cryptococcosis is fatal without treatment. Even with the current antifungal therapies, this disease kills 180,000 of 225,000 infected people annually. Exposure to the causative environmental fungus Cryptococcus neoformans is universal. Either reactivation of a latent infection or an acute infection after high exposure to cryptococcal cells can result in cryptococcosis. Currently, there is no vaccine to prevent cryptococcosis. Previously, we discovered that Znf2, a transcription factor that directs Cryptococcus yeast-to-hypha transition, profoundly affects cryptococcal interaction with the host. Overexpression of ZNF2 drives filamentous growth, attenuates cryptococcal virulence, and elicits protective host immune responses. Importantly, immunization with cryptococcal cells overexpressing ZNF2, in either live or heat-inactivated form, offers significant protection to the host from a subsequent challenge by the otherwise lethal clinical isolate H99. In this study, we found that the heat-inactivated ZNF2oe vaccine offered long-lasting protection with no relapse upon challenge with the wild-type H99. Vaccination with heat-inactivated ZNF2oe cells provides partial protection in hosts with preexisting asymptomatic cryptococcal infection. Importantly, once animals have been vaccinated with heat-inactivated or live short-lived ZNF2oe cells, they are protected against cryptococcosis even when their CD4+ T cells are depleted at the time of fungal challenge. Remarkably, vaccination with live, short-lived ZNF2oe cells in CD4-depleted hosts still provides strong protection to these hosts with preexisting immunodeficiency at the time of vaccination. This work raises hope for developing effective vaccines with long-lasting protection for individuals who are immunocompromised or could become immunocompromised later in life.
Collapse
Affiliation(s)
- Tuyetnhu Pham
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Yeqi Li
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Wendy Watford
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Xiaorong Lin
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Jung EH, Park YD, Dragotakes Q, Ramirez LS, Smith DQ, Reis FCG, Dziedzic A, Rodrigues ML, Baker RP, Williamson PR, Jedlicka A, Casadevall A, Coelho C. Cryptococcus neoformans releases proteins during intracellular residence that affect the outcome of the fungal-macrophage interaction. MICROLIFE 2022; 3:uqac015. [PMID: 36247839 PMCID: PMC9552768 DOI: 10.1093/femsml/uqac015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 05/26/2023]
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen that can replicate and disseminate in mammalian macrophages. In this study, we analyzed fungal proteins identified in murine macrophage-like cells after infection with C. neoformans. To accomplish this, we developed a protocol to identify proteins released from cryptococcal cells inside macrophage-like cells; we identified 127 proteins of fungal origin in infected macrophage-like cells. Among the proteins identified was urease, a known virulence factor, and others such as transaldolase and phospholipase D, which have catalytic activities that could contribute to virulence. This method provides a straightforward methodology to study host-pathogen interactions. We chose to study further Yeast Oligomycin Resistance (Yor1), a relatively uncharacterized protein belonging to the large family of ATP binding cassette transporter (ABC transporters). These transporters belong to a large and ancient protein family found in all extant phyla. While ABC transporters have an enormous diversity of functions across varied species, in pathogenic fungi they are better studied as drug efflux pumps. Analysis of C. neoformans yor1Δ strains revealed defects in nonlytic exocytosis, capsule size, and dimensions of extracellular vesicles, when compared to wild-type strains. We detected no difference in growth rates and cell body size. Our results indicate that C. neoformans releases a large suite of proteins during macrophage infection, some of which can modulate fungal virulence and are likely to affect the fungal-macrophage interaction.
Collapse
Affiliation(s)
- Eric H Jung
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Yoon-Dong Park
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Memorial Drive, Bethesda, MD 20814, United States
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Lia S Ramirez
- Department of Molecular and Cell Biology, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Daniel Q Smith
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Flavia C G Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Professor Algacyr Munhoz Mader, 3775, Curitiba - PR, 81310-020, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz Av. Brasil 4036. Room 814, Rio de Janeiro - RJ, 21040-361, Brazil
| | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Professor Algacyr Munhoz Mader, 3775, Curitiba - PR, 81310-020, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro Cidade Universitária da Universidade Federal do Rio de Janeiro,, Rio de Janeiro - RJ, 21941-902, Brazil
| | - Rosanna P Baker
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Memorial Drive, Bethesda, MD 20814, United States
| | - Anne Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Arturo Casadevall
- Corresponding author: Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N, Wolfe Street, Room E5132, Baltimore, MD 21205, United States. E-mail:
| | - Carolina Coelho
- Corresponding author: Medical Research Council Centre for Medical Mycology at University of Exeter, College of Health and Medicine, Geoffrey Pope Building, Room 325, University of Exeter, Stocker Road, Exeter EX4 4QD, Devon, United Kingdom. E-mail:
| |
Collapse
|
3
|
Cryptococcus neoformans Database in Synthetic Biology Open Language. Microbiol Resour Announc 2022; 11:e0019822. [PMID: 36000855 PMCID: PMC9476951 DOI: 10.1128/mra.00198-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cryptococcus neoformans is the etiologic agent of cryptococcosis, a lethal worldwide disease. Synthetic biology could contribute to its better understanding through engineering genetic networks. However, its major challenge is the requirement of accessible genetic parts. The database presented here provides 23 biological parts for this organism in Synthetic Biology Open Language.
Collapse
|
4
|
Wang P. Genetic Transformation in Cryptococcus Species. J Fungi (Basel) 2021; 7:56. [PMID: 33467426 PMCID: PMC7829943 DOI: 10.3390/jof7010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Genetic transformation plays an imperative role in our understanding of the biology in unicellular yeasts and filamentous fungi, such as Saccharomyces cerevisiae, Aspergillus nidulans, Cryphonectria parasitica, and Magnaporthe oryzae. It also helps to understand the virulence and drug resistance mechanisms of the pathogenic fungus Cryptococcus that causes cryptococcosis in health and immunocompromised individuals. Since the first attempt at DNA transformation in this fungus by Edman in 1992, various methods and techniques have been developed to introduce DNA into this organism and improve the efficiency of homology-mediated gene disruption. There have been many excellent summaries or reviews covering the subject. Here we highlight some of the significant achievements and additional refinements in the genetic transformation of Cryptococcus species.
Collapse
Affiliation(s)
- Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Fan Y, Lin X. An intergenic "safe haven" region in Cryptococcus neoformans serotype D genomes. Fungal Genet Biol 2020; 144:103464. [PMID: 32947034 PMCID: PMC7726056 DOI: 10.1016/j.fgb.2020.103464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
Cryptococcus neoformans is an opportunistic human fungal pathogen and serves as a model organism for studies of eukaryotic microbiology and microbial pathogenesis. C. neoformans species complex is classified into serotype A, serotype D, and AD hybrids, which are currently considered different subspecies. Different serotype strains display varied phenotypes, virulence, and gene regulation. Genetic investigation of important pathways is often performed in both serotype A and D reference strains in order to identify diversification or conservation of the interrogated signaling network. Many genetic tools have been developed for C. neoformans serotype A reference strain H99, including the gene free "safe haven" (SH) regions for DNA integration identified based on genomic features. However, no such a genomic safe haven region has been identified in serotype D strains. Here, capitalizing on the available genomic, transcriptomic, and chromatin data, we identified an intergenic region named as SH3 for the serotype D reference strains JEC21 and XL280. We also designed a sgRNA and a vector facilitating any alien gene integration into SH3 through a CRISPR-Cas9 system. We found that gene inserted in this region complemented the corresponding gene deletion mutant. Fluorescent reporter gene inserted in SH3 can also be expressed efficiently. Insertion in SH3 itself did not alter the expression of adjacent genes and did not affect the growth or mating of C. neoformans. Thus, SH3 provides a resource for genetic manipulations in serotype D strains and will facilitate comparative analyses of gene functions in this species complex. In addition, the incorporation of the multi-omic data in our selection of the safe haven region could help similar studies in other organisms.
Collapse
Affiliation(s)
- Yumeng Fan
- Department of Microbiology, University of Georgia, Athens 30602, GA, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens 30602, GA, USA.
| |
Collapse
|
6
|
Lin J, Fan Y, Lin X. Transformation of Cryptococcus neoformans by electroporation using a transient CRISPR-Cas9 expression (TRACE) system. Fungal Genet Biol 2020; 138:103364. [PMID: 32142753 DOI: 10.1016/j.fgb.2020.103364] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 12/26/2022]
Abstract
The basidiomycete Cryptococcus neoformans is not only a clinically important pathogen, but also a model organism for studying microbial pathogenesis and eukaryotic biology. One key factor behind its rise as a model organism is its genetic amenability. The widely used methods for transforming the C. neoformans species complex are Agrobacterium-mediated transformation (AMT) for random insertional mutagenesis and biolistic transformation for targeted mutagenesis. Electroporation was introduced to C. neoformans in early 1990s. Although electroporation is economic and yields a large number of transformants, introduced DNA rarely integrates into cryptococcal genome, which limits its use. Biolistic transformation, although costly and inefficient, has been the only method used in targeted mutagenesis in the past two decades. Several modifications, including the use of a donor DNA with split markers, a drug-resistant selection marker, and a recipient strain deficient in non-homologous end joining (NHEJ), have since modestly increased the frequency of genome integration and the rate of homologous replacement of the DNA introduced by electroporation. However, electroporation was not the method of choice for transformation until the recent adoption of CRISPR-Cas9 systems. We have developed a Transient CRISPR-Cas9 coupled with Electroporation System (TRACE), which dramatically facilitates targeted mutagenesis in the Cryptococcus species complex. TRACE combines the high transformation efficiency of electroporation with the high rates of DNA integration due to the transiently expressed CRISPR-Cas9. Here, we briefly discussed the history of electroporation for Cryptococcus transformation and provided detailed procedures for electroporation and the cassettes construction of the TRACE system for various genetic manipulations.
Collapse
Affiliation(s)
- Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
amdS as a dominant recyclable marker in Cryptococcus neoformans. Fungal Genet Biol 2019; 131:103241. [PMID: 31220607 DOI: 10.1016/j.fgb.2019.103241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 02/04/2023]
Abstract
While the fungal pathogen Cryptoccocus neoformans is a leading cause of death in immunocompromised individuals, the molecular toolkit currently available to study this important pathogen is extremely limited. To enable an unprecedented level of control over manipulation of the genome, we have developed a dominant recyclable marker by expanding on the classic studies of the amdS gene by Michael J. Hynes and John Pateman. The ascomycete Aspergillus nidulans employs the acetamidase AmdS to hydrolyse acetamide to ammonium and acetate, which serve as a nitrogen and carbon source, respectively. Acetamidase activity has never been reported in the Basidiomycota. Here we have successfully demonstrated that acetamide can be utilized as a good nitrogen source in C. neoformans heterologously expressing amdS and that this activity does not influence virulence, enabling it to be used as a basic dominant selectable marker. The expression of this gene in C. neoformans also causes sensitivity to fluoroacetamide, permitting counterselection. Taking advantage of this toxicity we have modified our basic marker to create a comprehensive series of powerful and reliable tools to successfully delete multiple genes in the one strain, generate markerless strains with modifications such as fluorescent protein fusions at native genomic loci, and establish whether a gene is essential in C. neoformans.
Collapse
|
8
|
du Plooy LM, Sebolai OM, Pohl CH, Albertyn J. Functional Characterization of Cryptococcal Genes: Then and Now. Front Microbiol 2018; 9:2263. [PMID: 30294320 PMCID: PMC6158324 DOI: 10.3389/fmicb.2018.02263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/05/2018] [Indexed: 02/03/2023] Open
Abstract
Site-directed mutagenesis enables researchers to switch a gene of interest off for functional characterization of the gene. In the pathogenic yeasts, Cryptococcus neoformans and sister species C. deneoformans, this is almost exclusively achieved by introducing DNA into cells through either biolistic transformation or electroporation. The targeted gene is then disrupted by homologous recombination (HR) between the gene and the transforming DNA. Both techniques have downsides; biolistic transformation equipment is very expensive, limiting the use thereof to well-resourced laboratories, and HR occurs at extremely low frequencies in electroporated cryptococcal cells, making this method unappealing for gene targeting when not making use of additional modifications or methods to enhance HR in these cells. One approach to increase the frequency of HR in electroporated cryptococcal cells have recently been described. In this approach, CRISPR-Cas9 technology is utilized to form a double strand break in the targeted gene where after the occurrence of HR seems to be higher. The less expensive electroporation technique can therefore be used to deliver the CRISPR-Cas9 components into cells to disrupt a gene of interest, but only if the CRISPR components can be maintained for long enough in cells to enable their expression. Maintenance of episomal DNA occurs readily in C. deneoformans, but only under certain conditions in C. neoformans. In addition, CRISPR-Cas9 allows for gene complementation in order to fulfill Falkow’s molecular Koch’s postulates and adds other novel methods for studying genes as well, such as the addition of a fluorophore to an inactive Cas9 enzyme to highlight the location of a gene in a chromosome. These developments add less expensive alternatives to current methods, which could lead to more research on this yeast in developing countries where cryptococcal infections are more prevalent and researchers have access to more clinical isolates.
Collapse
Affiliation(s)
- Lukas M du Plooy
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Olihile M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
9
|
Jung KW, Lee KT, So YS, Bahn YS. Genetic Manipulation of Cryptococcus neoformans. ACTA ACUST UNITED AC 2018; 50:e59. [PMID: 30016567 DOI: 10.1002/cpmc.59] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen, which causes life-threatening meningoencephalitis in immunocompromised individuals and is responsible for more than 1,000,000 infections and 600,000 deaths annually worldwide. Nevertheless, anti-cryptococcal therapeutic options are limited, mainly because of the similarity between fungal and human cellular structures. Owing to advances in genetic and molecular techniques and bioinformatics in the past decade, C. neoformans, belonging to the phylum basidiomycota, is now a major pathogenic fungal model system. In particular, genetic manipulation is the first step in the identification and characterization of the function of genes for understanding the mechanisms underlying the pathogenicity of C. neoformans. This unit describes protocols for constructing target gene deletion mutants using double-joint (DJ) PCR, constitutive overexpression strains using the histone H3 gene promoter, and epitope/fluorescence protein-tagged strains in C. neoformans. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Kyung-Tae Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yee-Seul So
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Poyedinok NL, Blume YB. Advances, Problems, and Prospects of Genetic Transformation of Fungi. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271802007x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Fan Y, Lin X. Multiple Applications of a Transient CRISPR-Cas9 Coupled with Electroporation (TRACE) System in the Cryptococcus neoformans Species Complex. Genetics 2018; 208:1357-1372. [PMID: 29444806 PMCID: PMC5887135 DOI: 10.1534/genetics.117.300656] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/07/2018] [Indexed: 12/30/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that claims hundreds of thousands of lives annually. Targeted genetic manipulation through biolistic transformation in C. neoformans drove the investigation of this clinically important pathogen at the molecular level. Although costly and inefficient, biolistic transformation remains the major method for editing the Cryptococcus genome as foreign DNAs introduced by other methods such as electroporation are predominantly not integrated into the genome. Although the majority of DNAs introduced by biolistic transformation are stably inherited, the transformation efficiency and the homologous integration rate (∼1-10%) are low. Here, we developed a Transient CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 coupled with Electroporation (TRACE) system for targeted genetic manipulations in the C. neoformans species complex. This method took advantages of efficient genome integration due to double-strand breaks created at specific sites by the transient CRISPR-Cas9 system and the high transformation efficiency of electroporation. We demonstrated that TRACE can efficiently generate precise single-gene deletion mutants using the ADE2 locus as an example. This system can also effectively delete multiple genes in a single transformation, as evident by the successful generation of quadruple mfα1Δ2Δ3Δ4Δ mutants. In addition to generating gene deletion mutants, we complemented the ade2Δ mutant by integrating a wild-type ADE2 allele at the "safe haven" region (SH2) via homologous recombination using TRACE. Interestingly, introduced DNAs can be inserted at a designated genetic site without any homologous sequences, opening up numerous other applications. We expect that TRACE, an efficient, versatile, and cost-effective gene editing approach, will greatly accelerate research in this field.
Collapse
Affiliation(s)
- Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
12
|
Abstract
In Cryptococcus neoformans, nearly all genes are interrupted by small introns. In recent years, genome annotation and genetic analysis have illuminated the major roles these introns play in the biology of this pathogenic yeast. Introns are necessary for gene expression and alternative splicing can regulate gene expression in response to environmental cues. In addition, recent studies have revealed that C. neoformans introns help to prevent transposon dissemination and protect genome integrity. These characteristics of cryptococcal introns are probably not unique to Cryptococcus, and this yeast likely can be considered as a model for intron-related studies in fungi.
Collapse
Affiliation(s)
- Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| |
Collapse
|
13
|
Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 2017; 4:6. [PMID: 28955474 PMCID: PMC5615635 DOI: 10.1186/s40694-017-0035-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Timothy C. Cairns
- Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Candace E. Elliott
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Junhyun Jeon
- College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
14
|
Liu H, Jiao X, Wang Y, Yang X, Sun W, Wang J, Zhang S, Zhao ZK. Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation. FEMS Yeast Res 2017; 17:3089757. [PMID: 28369336 DOI: 10.1093/femsyr/fox017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Metabolic engineering of Rhodosporidium toruloides, a robust lipid and caroteinoid producer, is of great importance for oleochemicals and carotenoids production. However, the Agrobacterium-mediated gene transformation is tedious and time consuming. Here, we described a fast and efficient genetic transformation of R. toruloides using electroporation with linear DNA fragments, and the process was optimized. The results showed that 2 × 103 transformants can be obtained at 0.7 kV/μg linear DNA by using hygromycin and bleomycin as selection markers after the competent cells pretreated with 25 mM DTT and 100 mM LiAc. Our results would facilitate mutant library construction and metabolic engineering of R. toruloides for production of oleochemicals and carotenoids. We further demonstrated that all transformants arose due to illegitimate integration of transforming DNA fragments by colony PCR.
Collapse
Affiliation(s)
- Hongdi Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.,Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xiang Jiao
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Yanan Wang
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xiaobing Yang
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Wenyi Sun
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Jihui Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Sufang Zhang
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Zongbao Kent Zhao
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
15
|
Chen J, Lai Y, Wang L, Zhai S, Zou G, Zhou Z, Cui C, Wang S. CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana. Sci Rep 2017; 8:45763. [PMID: 28368054 PMCID: PMC5377935 DOI: 10.1038/srep45763] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/02/2017] [Indexed: 02/08/2023] Open
Abstract
Beauveria bassiana is an environmentally friendly alternative to chemical insecticides against various agricultural insect pests and vectors of human diseases. However, its application has been limited due to slow kill and sensitivity to abiotic stresses. Understanding of the molecular pathogenesis and physiological characteristics would facilitate improvement of the fungal performance. Loss-of-function mutagenesis is the most powerful tool to characterize gene functions, but it is hampered by the low rate of homologous recombination and the limited availability of selectable markers. Here, by combining the use of uridine auxotrophy as recipient and donor DNAs harboring auxotrophic complementation gene ura5 as a selectable marker with the blastospore-based transformation system, we established a highly efficient, low false-positive background and cost-effective CRISPR/Cas9-mediated gene editing system in B. bassiana. This system has been demonstrated as a simple and powerful tool for targeted gene knock-out and/or knock-in in B. bassiana in a single gene disruption. We further demonstrated that our system allows simultaneous disruption of multiple genes via homology-directed repair in a single transformation. This technology will allow us to study functionally redundant genes and holds significant potential to greatly accelerate functional genomics studies of B. bassiana.
Collapse
Affiliation(s)
- Jingjing Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiling Lai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suzhen Zhai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Gen Zou
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhihua Zhou
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunlai Cui
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Banerjee D, Umland TC, Panepinto JC. De Novo Pyrimidine Biosynthesis Connects Cell Integrity to Amphotericin B Susceptibility in Cryptococcus neoformans. mSphere 2016; 1:e00191-16. [PMID: 27904878 PMCID: PMC5112334 DOI: 10.1128/msphere.00191-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/24/2016] [Indexed: 11/20/2022] Open
Abstract
The use of amphotericin B (AmB) in conjunction with 5-fluorocytosine (5-FC) is known to be the optimal therapy for treating cryptococcosis, but the mechanism by which 5-FC synergizes with AmB is unknown. In this study, we generated a Cryptococcus neoformans ura1Δ mutant lacking dihydroorotate dehydrogenase (DHODH), which demonstrated temperature-sensitive growth due to a defect in cell integrity and sensitivity to cell wall-damaging agents. In addition, sensitivity to AmB was greatly increased. Inclusion of uracil or uridine in the medium did not suppress the cell wall or AmB phenotype, whereas complementation with the wild-type URA1 gene complemented the mutant phenotype. As a measure of membrane accessibility, we assayed the rate of association of the lipid-binding dye 3,3'-dihexyloxacarbocyanine iodide (DiOC6) and saw more rapid association in the ura1Δ mutant. We likewise saw an increased rate of DiOC6 association in other AmB-sensitive mutants, including a ura- spontaneous URA5 mutant made by 5-fluoroorotic acid (5-FOA) selection and a bck1Δ mutant defective in cell integrity signaling. Similar results were also obtained by using a specific plasma membrane-binding CellMask live stain, with cell integrity mutants that exhibited increased and faster association of the dye with the membrane. Chitin synthase mutants (chs5Δ and chs6Δ) that lack any reported cell wall defects, in turn, demonstrate neither any increased susceptibility to AmB nor a greater accessibility to either of the dyes. Finally, perturbation of the cell wall of the wild type by treatment with the β-1,6-glucan synthase inhibitor caspofungin was synergistic with AmB in vitro. IMPORTANCE Synergy between AmB and nucleotide biosynthetic pathways has been documented, but the mechanism of this interaction has not been delineated. Results from this study suggest a correlation between uridine nucleotide biosynthesis and cell integrity likely mediated through the pool of nucleotide-sugar conjugates, which are precursor molecules for both capsule and cell wall of C. neoformans. Thus, we propose a mechanism by which structural defects in the cell wall resulting from perturbation of pyrimidine biosynthesis allow faster and increased penetration of AmB molecules into the cell membrane. Overall, our work demonstrates that impairment of pyrimidine biosynthesis in C. neoformans could be a potential target for antifungal therapy, either alone or in combination with AmB.
Collapse
Affiliation(s)
- Dithi Banerjee
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Timothy C. Umland
- Department of Structural Biology, Hauptman Woodward Medical Research Institute, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
17
|
Arras SDM, Chua SMH, Wizrah MSI, Faint JA, Yap AS, Fraser JA. Targeted Genome Editing via CRISPR in the Pathogen Cryptococcus neoformans. PLoS One 2016; 11:e0164322. [PMID: 27711143 PMCID: PMC5053423 DOI: 10.1371/journal.pone.0164322] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
Low rates of homologous integration have hindered molecular genetic studies in Cryptococcus neoformans over the past 20 years, and new tools that facilitate genome manipulation in this important pathogen are greatly needed. To this end, we have investigated the use of a Class 2 CRISPR system in C. neoformans (formerly C. neoformans var. grubii). We first expressed a derivative of the Streptococcus pyogenes Cas9 nuclease in C. neoformans, and showed that it has no effect on growth, production of virulence factors in vitro, or virulence in a murine inhalation model. In proof of principle experiments, we tested the CAS9 construct in combination with multiple self-cleaving guide RNAs targeting the well-characterized phosphoribosylaminoamidazole carboxylase-encoding ADE2 gene. Utilizing combinations of transient and stable expression of our constructs, we revealed that functionality of our CRISPR constructs in C. neoformans is dependent upon the CAS9 construct being stably integrated into the genome, whilst transient expression of the guide RNA is sufficient to enhance rates of homologous recombination in the CAS9 genetic background. Given that the presence of the CRISPR nuclease does not influence virulence in a murine inhalation model, we have successfully demonstrated that this system is compatible with studies of C. neoformans pathogenesis and represents a powerful tool that can be exploited by researchers in the field.
Collapse
Affiliation(s)
- Samantha D. M. Arras
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Sheena M. H. Chua
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Maha S. I. Wizrah
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Joshua A. Faint
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Amy S. Yap
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
18
|
Arras SDM, Fraser JA. Chemical Inhibitors of Non-Homologous End Joining Increase Targeted Construct Integration in Cryptococcus neoformans. PLoS One 2016; 11:e0163049. [PMID: 27643854 PMCID: PMC5028063 DOI: 10.1371/journal.pone.0163049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
The development of a biolistic transformation protocol for Cryptococcus neoformans over 25 years ago ushered in a new era of molecular characterization of virulence in this previously intractable fungal pathogen. However, due to the low rate of homologous recombination in this species, the process of creating targeted gene deletions using biolistic transformation remains inefficient. To overcome the corresponding difficulty achieving molecular genetic modifications, members of the Cryptococcus community have investigated the use of specific genetic backgrounds or construct design strategies aimed at reducing ectopic construct integration via non-homologous end joining (NHEJ). One such approach involves deletion of components of the NHEJ-associated Ku heterodimer. While this strategy increases homologous recombination to nearly 100%, it also restricts strain generation to a ku80Δ genetic background and requires subsequent complex mating procedures to reestablish wild-type DNA repair. In this study, we have investigated the ability of known inhibitors of mammalian NHEJ to transiently phenocopy the C. neoformans Ku deletion strains. Testing of eight candidate inhibitors revealed a range of efficacies in C. neoformans, with the most promising compound (W7) routinely increasing the rate of gene deletion to over 50%. We have successfully employed multiple inhibitors to reproducibly enhance the deletion rate at multiple loci, demonstrating a new, easily applied methodology to expedite acquisition of precise genetic alterations in C. neoformans. Based on this success, we anticipate that the use of these inhibitors will not only become widespread in the Cryptococcus community, but may also find use in other fungal species as well.
Collapse
Affiliation(s)
- Samantha D. M. Arras
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072 Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072 Australia
- * E-mail:
| |
Collapse
|
19
|
Zhang N, Park YD, Williamson PR. New technology and resources for cryptococcal research. Fungal Genet Biol 2015; 78:99-107. [PMID: 25460849 PMCID: PMC4433448 DOI: 10.1016/j.fgb.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/02/2014] [Accepted: 11/06/2014] [Indexed: 11/26/2022]
Abstract
Rapid advances in molecular biology and genome sequencing have enabled the generation of new technology and resources for cryptococcal research. RNAi-mediated specific gene knock down has become routine and more efficient by utilizing modified shRNA plasmids and convergent promoter RNAi constructs. This system was recently applied in a high-throughput screen to identify genes involved in host-pathogen interactions. Gene deletion efficiencies have also been improved by increasing rates of homologous recombination through a number of approaches, including a combination of double-joint PCR with split-marker transformation, the use of dominant selectable markers and the introduction of Cre-Loxp systems into Cryptococcus. Moreover, visualization of cryptococcal proteins has become more facile using fusions with codon-optimized fluorescent tags, such as green or red fluorescent proteins or, mCherry. Using recent genome-wide analytical tools, new transcriptional factors and regulatory proteins have been identified in novel virulence-related signaling pathways by employing microarray analysis, RNA-sequencing and proteomic analysis.
Collapse
Affiliation(s)
- Nannan Zhang
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States
| | - Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States.
| |
Collapse
|
20
|
Lin X, Chacko N, Wang L, Pavuluri Y. Generation of stable mutants and targeted gene deletion strains in Cryptococcus neoformans through electroporation. Med Mycol 2014; 53:225-34. [PMID: 25541555 DOI: 10.1093/mmy/myu083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cryptococcus neoformans is the etiologic agent of cryptococcal meningitis that causes more than half a million deaths worldwide each year. This capsulated basidiomycetous yeast also serves as a model for micropathogenic studies. The ability to make stable mutants, either via ectopic integration or homologous recombination, has been accomplished using biolistic transformation. This technical advance has greatly facilitated the research on the basic biology and pathogenic mechanisms of this pathogen in the past two decades. However, biolistic transformation is costly, and its reproducibility varies widely. Here we found that stable ectopic integration or targeted gene deletion via homologous replacement could be accomplished through electroporative transformation. The stability of the transformants obtained through electroporation and the frequency of homologous replacement is highly dependent on the selective marker. A frequency of homologous recombination among the stable transformants obtained by electroporation is comparable to those obtained by biolistic transformation (∼10%) when dominant drug selection markers are used, which is much higher than what has been previously reported for electroporation when auxotrophic markers were used (0.001% to 0.1%). Furthermore, disruption of the KU80 gene or generation of gene deletion constructs using the split marker strategy, two approaches known to increase homologous replacement among transformants obtained through biolistic transformation, also increase the frequency of homologous replacement among transformants obtained through electroporation. Therefore, electroporation provides a low cost alternative for mutagenesis in Cryptococcus.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Nadia Chacko
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Linqi Wang
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Yashwant Pavuluri
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
21
|
Takahashi S, Okada H, Abe K, Kera Y. Genetic transformation of the yeast Rhodotorula gracilis ATCC 26217 by electroporation. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814110040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
The role of the de novo pyrimidine biosynthetic pathway in Cryptococcus neoformans high temperature growth and virulence. Fungal Genet Biol 2014; 70:12-23. [PMID: 25011011 DOI: 10.1016/j.fgb.2014.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/09/2014] [Accepted: 06/14/2014] [Indexed: 11/21/2022]
Abstract
Fungal infections are often difficult to treat due to the inherent similarities between fungal and animal cells and the resulting host toxicity from many antifungal compounds. Cryptococcus neoformans is an opportunistic fungal pathogen of humans that causes life-threatening disease, primarily in immunocompromised patients. Since antifungal therapy for this microorganism is limited, many investigators have explored novel drug targets aim at virulence factors, such as the ability to grow at mammalian physiological temperature (37°C). To address this issue, we used the Agrobacterium tumefaciens gene delivery system to create a random insertion mutagenesis library that was screened for altered growth at elevated temperatures. Among several mutants unable to grow at 37°C, we explored one bearing an interruption in the URA4 gene. This gene encodes dihydroorotase (DHOase) that is involved in the de novo synthesis of pyrimidine ribonucleotides. Loss of the C. neoformans Ura4 protein, by targeted gene interruption, resulted in an expected uracil/uridine auxotrophy and an unexpected high temperature growth defect. In addition, the ura4 mutant displayed phenotypic defects in other prominent virulence factors (melanin, capsule and phospholipase) and reduced stress response compared to wild type and reconstituted strains. Accordingly, this mutant had a decreased survival rate in macrophages and attenuated virulence in a murine model of cryptococcal infection. Quantitative PCR analysis suggests that this biosynthetic pathway is induced during the transition from 30°C to 37°C, and that transcriptional regulation of de novo and salvage pyrimidine pathway are under the control of the Ura4 protein.
Collapse
|
23
|
Romanelli AM, Fu J, Herrera ML, Wickes BL. A universal DNA extraction and PCR amplification method for fungal rDNA sequence-based identification. Mycoses 2014; 57:612-22. [PMID: 24865530 DOI: 10.1111/myc.12208] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/01/2014] [Accepted: 05/03/2014] [Indexed: 11/28/2022]
Abstract
Accurate identification of fungal pathogens using a sequence-based approach requires an extraction method that yields template DNA pure enough for polymerase chain reaction (PCR) or other types of amplification. Therefore, the objective of this study was to develop and standardise a rapid, inexpensive DNA extraction protocol applicable to the major fungal phyla, which would yield sufficient template DNA pure enough for PCR and sequencing. A total of 519 clinical and culture collection strains, comprised of both yeast and filamentous fungi, were prepared using our extraction method to determine its applicability for PCR, which targeted the ITS and D1/D2 regions in a single PCR amplicon. All templates were successfully amplified and found to yield the correct strain identification when sequenced. This protocol could be completed in approximately 30 min and utilised a combination of physical and chemical extraction methods but did not require organic solvents nor ethanol precipitation. The method reduces the number of tube manipulations and yielded suitable template DNA for PCR amplification from all phyla that were tested.
Collapse
Affiliation(s)
- A M Romanelli
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | | | | | | |
Collapse
|
24
|
Pbx proteins in Cryptococcus neoformans cell wall remodeling and capsule assembly. EUKARYOTIC CELL 2014; 13:560-71. [PMID: 24585882 DOI: 10.1128/ec.00290-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cryptococcal capsule is a critical virulence factor of an important pathogen, but little is known about how it is associated with the cell or released into the environment. Two mutants lacking PBX1 and PBX2 were found to shed reduced amounts of the capsule polysaccharide glucuronoxylomannan (GXM). Nuclear magnetic resonance, composition, and physical analyses showed that the shed material was of normal mass but was slightly enriched in xylose. In contrast to previous reports, this material contained no glucose. Notably, the capsule fibers of pbxΔ mutant cells grown under capsule-inducing conditions were present at a lower than usual density and were loosely attached to the cell wall. Mutant cell walls were also defective, as indicated by phenotypes including abnormal cell morphology, reduced mating filamentation, and altered cell integrity. All observed phenotypes were shared between the two mutants and exacerbated in a double mutant. Consistent with a role in surface glycan synthesis, the Pbx proteins localized to detergent-resistant membrane domains. These results, together with the sequence motifs in the Pbx proteins, suggest that Pbx1 and Pbx2 are redundant proteins that act in remodeling the cell wall to maintain normal cell morphology and precursor availability for other glycan synthetic processes. Their absence results in aberrant cell wall growth and metabolic imbalance, which together impact cell wall and capsule synthesis, cell morphology, and capsule association. The surface changes also lead to increased engulfment by host phagocytes, consistent with the lack of virulence of pbx mutants in animal models.
Collapse
|
25
|
Srikanta D, Santiago-Tirado FH, Doering TL. Cryptococcus neoformans: historical curiosity to modern pathogen. Yeast 2014; 31:47-60. [PMID: 24375706 PMCID: PMC3938112 DOI: 10.1002/yea.2997] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/22/2022] Open
Abstract
The importance of the Basidiomycete Cryptococcus neoformans to human health has stimulated its development as an experimental model for both basic physiology and pathogenesis. We briefly review the history of this fascinating and versatile fungus, some notable aspects of its biology that contribute to virulence, and current tools available for its study.
Collapse
Affiliation(s)
- Deepa. Srikanta
- Department of Molecular Microbiology, Washington University School of Medicine
| | | | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine
| |
Collapse
|
26
|
Banerjee D, Burkard L, Panepinto JC. Inhibition of nucleotide biosynthesis potentiates the antifungal activity of amphotericin B. PLoS One 2014; 9:e87246. [PMID: 24498052 PMCID: PMC3907572 DOI: 10.1371/journal.pone.0087246] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/20/2013] [Indexed: 01/01/2023] Open
Abstract
The polyene antifungal agent Amphotericin B exhibits potent and broad spectrum fungicidal activity. However, high nephrotoxicity can hinder its administration in resource poor settings. Quantification of early fungicidal activity in studies of HIV patients with cryptococcosis demonstrate that 5-Fluorocytosine therapy in combination with Amphotericin B results in faster clearance than with Amphotericin B alone. In vitro synergy between the two drugs has also been reported but the mechanism by which 5-Fluorocytosine synergizes with Amphotericin B has not been delineated. In this study we set out to investigate the effect of genetic mutation or pharmacologic repression of de novo pyrimidine and purine biosynthesis pathways on the Amphotericin B susceptibility of Cryptococcus neoformans. We demonstrate that a ura- derivative of wild type Cryptococcus neoformans strain H99 is hypersensitive to Amphotericin B. This sensitivity is remediated by re-introduction of a wild type URA5 gene, but not by addition of exogenous uracil to supplement the auxotrophy. Repression of guanine biosynthesis by treatment with the inosine monophosphate dehydrogenase inhibitor, mycophenolic acid, was synergistic with Amphotericin B as determined by checkerboard analysis. As in Cryptococcus neoformans, a ura− derivative of Candida albicans was also hypersensitive to Amphotericin B, and treatment of Candida albicans with mycophenolic acid was likewise synergistic with Amphotericin B. In contrast, neither mycophenolic acid nor 5-FC had an effect on the Amphotericin B susceptibility of Aspergillus fumigatus. These studies suggest that pharmacological targeting of nucleotide biosynthesis pathways has potential to lower the effective dose of Amphotericin B for both C. neoformans and C. albicans. Given the requirement of nucleotide and nucleotide sugars for growth and pathogenesis of Cryptococcus neoformans, disrupting nucleotide metabolic pathways might thus be an effective mechanism for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- Dithi Banerjee
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Lauren Burkard
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Jiang N, Yang Y, Janbon G, Pan J, Zhu X. Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans. PLoS One 2012; 7:e52734. [PMID: 23300755 PMCID: PMC3530498 DOI: 10.1371/journal.pone.0052734] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/21/2012] [Indexed: 11/30/2022] Open
Abstract
microRNAs (miRNAs), endogenous posttranscriptional repressors by base-pairing of their cognate mRNAs in plants and animals, have mostly been thought lost in the kingdom of fungi. Here, we report the identification of miRNAs from the fungus Cryptococcus neoformans. With bioinformatics and Northern blotting approaches, we found that these miRNAs and their hairpin precursors were present in this fungus. The size of miR1 and miR2 is 22 nt and 18 nt, respectively. The precursors are about ∼70 nt in length that is close to mammalian pre-miRNAs. Characteristic features of miRNAs are also found in miR1/2. We demonstrated that the identified miRNAs, miR1 and miR2, caused transgene silencing via the canonical RNAi pathway. Bioinformantics analysis helps to reveal a number of identical sequences of the miR1/2 in transposable elements (TEs) and pseudogenes, prompting us to think that fungal miRNAs might be involved in the regulation of the activity of transposons and the expression of pseudogenes. This study identified functional miRNAs in C. neoformans, and sheds light on the diversity and evolutionary origin of eukaryotic miRNAs.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yaping Yang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guilhem Janbon
- Department of Molecular Mycology, Institute Pasteur, Paris, France
| | - Jiao Pan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xudong Zhu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
28
|
Abstract
RNA interference (RNAi) is an experimental technique used to suppress individual gene expression in eukaryotic cells in a sequence-dependent manner. The process relies on double-stranded RNA (dsRNA) to target complementary messenger RNA for degradation. Here, we describe two plasmid-based strategies we have developed for RNAi in Cryptococcus neoformans. The pFrame vector utilizes the ACT1 promoter to enable the constitutive synthesis of hairpin RNA (hpRNA), the stem of which constitutes the dsRNA trigger. The pIBB103 vector relies on convergent, inducible GAL7 promoters to independently drive the synthesis of the sense and antisense strands of the interfering sequence; these strands anneal to form the initiating dsRNA molecule. Both vectors are designed to co-silence a "sentinel" gene with an easily scored phenotype to help identify clones in which RNAi is most effective. We provide guidelines for selecting a suitable interfering sequence to trigger RNAi in C. neoformans and describe the steps for subcloning into either vector, transforming C. neoformans by electroporation, screening clones for RNAi-related phenotypes, and evaluating the efficacy and specificity of gene silencing by RNAi.
Collapse
|
29
|
Construction of a new recombinant protein expression system in the basidiomycetous yeast Cryptococcus sp. strain S-2 and enhancement of the production of a cutinase-like enzyme. Appl Microbiol Biotechnol 2011; 93:1627-36. [DOI: 10.1007/s00253-011-3680-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/30/2011] [Accepted: 10/27/2011] [Indexed: 11/26/2022]
|
30
|
Bose I, Doering TL. Efficient implementation of RNA interference in the pathogenic yeast Cryptococcus neoformans. J Microbiol Methods 2011; 86:156-9. [PMID: 21554906 PMCID: PMC3163904 DOI: 10.1016/j.mimet.2011.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/15/2011] [Accepted: 04/20/2011] [Indexed: 12/25/2022]
Abstract
An improved method has been developed for RNA interference in Cryptococcus neoformans, using opposing promoters to facilitate cloning and RNA interference targeting URA5 to allow selection of cells in which silencing is most effective. These advances significantly reduce the variability of silencing and the effort required for interference plasmid construction.
Collapse
Affiliation(s)
| | - Tamara L. Doering
- Corresponding author: Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 South Euclid Avenue, St. Louis, MO 63110, 314-747-5597, fax 314-362-1232,
| |
Collapse
|
31
|
Barnett JA. A history of research on yeasts 14: medical yeasts part 2, Cryptococcus neoformans. Yeast 2011; 27:875-904. [PMID: 20641025 DOI: 10.1002/yea.1786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- James A Barnett
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
32
|
Liu KH, Shen WC. Mating differentiation in Cryptococcus neoformans is negatively regulated by the Crk1 protein kinase. Fungal Genet Biol 2010; 48:225-40. [PMID: 21111055 DOI: 10.1016/j.fgb.2010.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 11/12/2010] [Accepted: 11/13/2010] [Indexed: 01/27/2023]
Abstract
Cryptococcus neoformans is a heterothallic basidiomycete that grows vegetatively as yeast and filamentous hyphae are produced in the sexual state. Previous studies have shown that C. neoformans Cwc1 and Cwc2 are two central photoregulators which form a complex to inhibit the production of sexual filaments upon light treatment. To reveal the detailed regulatory mechanisms, a genome wide mutagenesis screen was conducted and components in the Cwc1/Cwc2 complex mediated pathway have been identified. In this study, one suppressor mutant, DJ22, is characterized and T-DNA is found to disrupt the C. neoformans CRK1 gene, a homologue of Saccharomyces cerevisiae IME2 and Ustilago maydis crk1. Ime2 is a meiosis-specific gene with the conserved Ser/Thr kinase domain and TXY dual phosphorylation site. Consistent with the findings of other suppressors in our screen, C. neoformans Crk1 plays a negative role in the mating process. Dikaryotic filaments, basidia, and basidiospores are produced earlier in the crk1 mutant crosses and mating efficiency is also increased. Artificial elevation of the CRK1 mRNA level inhibits mating. Interestingly, monokaryotic fruiting is defective both in the MATα crk1 mutant and CRK1 overexpression strains. Our studies demonstrate that C. neoformans CRK1 gene functions as a negative regulator in the mating differentiation.
Collapse
Affiliation(s)
- Kuang-Hung Liu
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1 Roosevelt Road, Taipei, Taiwan
| | | |
Collapse
|
33
|
Kroll J, Klinter S, Schneider C, Voss I, Steinbüchel A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 2010; 3:634-57. [PMID: 21255361 PMCID: PMC3815339 DOI: 10.1111/j.1751-7915.2010.00170.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/17/2010] [Indexed: 11/26/2022] Open
Abstract
Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications.
Collapse
Affiliation(s)
- Jens Kroll
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
34
|
Virtudazo EV, Kawamoto S, Ohkusu M, Aoki S, Sipiczki M, Takeo K. The single Cdk1-G1 cyclin of Cryptococcus neoformans is not essential for cell cycle progression, but plays important roles in the proper commitment to DNA synthesis and bud emergence in this yeast. FEMS Yeast Res 2010; 10:605-18. [PMID: 20528951 DOI: 10.1111/j.1567-1364.2010.00633.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The cell cycle pattern of the pathogenic basidiomycetous yeast Cryptococcus neoformans differs from that of the ascomycetous budding yeast Saccharomyces cerevisiae. To clarify the cell cycle control mechanisms at the molecular level, homologues of cell cycle control genes in C. neoformans were cloned and analyzed. Here, we report on the cloning and characterization of genes coding for CDK1 cyclin homologues, in particular, the C. neoformans G1 cyclin. We have identified three putative CDK1 cyclin homologues and two putative CDK5 (PHO85) cyclin homologues from the genome. Complementation tests in an S. cerevisiae G1 cyclin triple mutant confirmed that C. neoformans CLN1 is able to complement S. cerevisiae G1 cyclin deficiency, demonstrating that it is a G1 cyclin homologue. Interestingly, cells deleted of the single Cdk1-G1 cyclin were viable, demonstrating that this gene is not essential. However, it exhibited aberrant budding and cell division and a clear delay in the initiation of DNA synthesis as well as an extensive delay in budding. The fact that the mutant managed to traverse the G1 to M phase may be due to the activities of Pho85-related G1 cyclins. Also, that C. neoformans had only a single Cdk1-G1 cyclin highlighted the importance of keeping in order the commitment to the initiation of DNA synthesis first and then that of budding, as discussed.
Collapse
Affiliation(s)
- Eric V Virtudazo
- Medical Mycology Research Center, Division of Molecular Biology, Chiba University, Chuo-ku, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Chun CD, Madhani HD. Applying genetics and molecular biology to the study of the human pathogen Cryptococcus neoformans. Methods Enzymol 2010; 470:797-831. [PMID: 20946836 DOI: 10.1016/s0076-6879(10)70033-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The basidiomycete yeast Crytococcus neoformans is a prominent human pathogen. It primarily infects immunocompromised individuals producing a meningoencephalitis that is lethal if untreated. Recent advances in its genetics and molecular biology have made it a model system for understanding both the Basidiomycota phylum and mechanisms of fungal pathogenesis. The relative ease of experimental manipulation coupled with the development of murine models for human disease allow for powerful studies in the mechanisms of virulence and host responses. This chapter introduces the organism and its life cycle and then provides detailed step-by-step protocols for culture, manipulation of the genome, analysis of nucleic acids and proteins, and assessment of virulence and expression of virulence factors.
Collapse
Affiliation(s)
- Cheryl D Chun
- University of California, San Francisco, California, USA
| | | |
Collapse
|
36
|
Bien CM, Chang YC, Nes WD, Kwon-Chung KJ, Espenshade PJ. Cryptococcus neoformans Site-2 protease is required for virulence and survival in the presence of azole drugs. Mol Microbiol 2009; 74:672-90. [PMID: 19818023 DOI: 10.1111/j.1365-2958.2009.06895.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the human fungal pathogen Cryptococcus neoformans, the SREBP orthologue Sre1 is important for adaptation and growth in nutrient-limiting host tissues. In this study, we characterize the C. neoformans serotype A Sre1 and its activating protease, Stp1. We demonstrate that Stp1 is a functionally conserved orthologue of the mammalian Site-2 protease and that Stp1 cleaves Sre1 within its predicted first transmembrane segment. Gene expression analysis revealed that Stp1 is required for both Sre1-dependent and Sre1-independent gene transcription, indicating that other substrates of Stp1 may exist. Using gas chromatography, we showed that Sre1 and Stp1 are required for both normoxic and hypoxic ergosterol biosynthesis, and therefore cells lacking SRE1 or STP1 are defective for growth in the presence of low levels of the ergosterol biosynthesis inhibitors, itraconazole and 25-thialanosterol. Importantly, our studies demonstrated fungicidal effects of itraconazole and 25-thialanosterol towards sre1Delta and stp1Delta cells, demonstrating that the Sre1 pathway is required for both growth and survival in the presence of sterol biosynthesis-inhibiting antifungal drugs. Given the need for fungicidal drugs, we propose that inhibitors of Stp1, Sre1, or other regulators of Sre1 function administered in combination with a sterol synthesis inhibitor could prove an effective anticryptococcal therapy.
Collapse
Affiliation(s)
- Clara M Bien
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the cause of life-threatening meningoencephalitis in immunocompromised and immunocompetent individuals respectively. The increasing incidence of cryptococcal infection as a result of the AIDS epidemic, the recent emergence of a hypervirulent cryptococcal strain in Canada and the fact that mortality from cryptococcal disease remains high have stimulated intensive research into this organism. Here we outline recent advances in our understanding of C. neoformans and C. gattii, including intraspecific complexity, virulence factors, and key signaling pathways. We discuss the molecular basis of cryptococcal virulence and the interaction between these pathogens and the host immune system. Finally, we discuss future challenges in the study and treatment of cryptococcosis.
Collapse
Affiliation(s)
- Hansong Ma
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
38
|
Lee H, Bien CM, Hughes AL, Espenshade PJ, Kwon-Chung KJ, Chang YC. Cobalt chloride, a hypoxia-mimicking agent, targets sterol synthesis in the pathogenic fungus Cryptococcus neoformans. Mol Microbiol 2007; 65:1018-33. [PMID: 17645443 DOI: 10.1111/j.1365-2958.2007.05844.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigated the effects of the hypoxia-mimetic CoCl2 in the pathogenic fungus Cryptococcus neoformans and demonstrated that CoCl2 leads to defects in several enzymatic steps in ergosterol biosynthesis. Sterol defects were amplified in cells lacking components of the Sre1p-mediated oxygen-sensing pathway. Consequently, Sre1p and its binding partner Scp1p were essential for growth in the presence of CoCl2. Interestingly, high copies of a single gene involved in ergosterol biosynthesis, ERG25, rescued this growth defect. We show that the inhibitory effect of CoCl2 on scp1Delta and sre1Delta cells likely resulted from either an accumulation of non-viable methylated sterols or a decrease in the amount of ergosterol. Similar findings were also observed in the ascomycetous yeast, Schizosaccharomyces pombe, suggesting that the effects of CoCl2 on the Sre1p-mediated response are conserved in fungi. In addition, gene expression analysis revealed limited overlap between Sre1p-dependant gene activation in the presence of CoCl2 and low oxygen. The majority of genes similarly affected by both CoCl2 and low oxygen were involved in ergosterol synthesis and in iron/copper transport. This article identifies the Sre1p pathway as a common mechanism by which yeast cells sense and adapt to changes in both CoCl2 concentrations and oxygen levels.
Collapse
Affiliation(s)
- Hyeseung Lee
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
39
|
Varma A, Wu S, Guo N, Liao W, Lu G, Li A, Hu Y, Bulmer G, Kwon-Chung KJ. Identification of a novel gene, URE2, that functionally complements a urease-negative clinical strain of Cryptococcus neoformans. MICROBIOLOGY-SGM 2007; 152:3723-3731. [PMID: 17159224 DOI: 10.1099/mic.0.2006/000133-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A urease-negative serotype A strain of Cryptococcus neoformans (B-4587) was isolated from the cerebrospinal fluid of an immunocompetent patient with a central nervous system infection. The URE1 gene encoding urease failed to complement the mutant phenotype. Urease-positive clones of B-4587 obtained by complementing with a genomic library of strain H99 harboured an episomal plasmid containing DNA inserts with homology to the sudA gene of Aspergillus nidulans. The gene harboured by these plasmids was named URE2 since it enabled the transformants to grow on media containing urea as the sole nitrogen source while the transformants with an empty vector failed to grow. Transformation of strain B-4587 with a plasmid construct containing a truncated version of the URE2 gene failed to complement the urease-negative phenotype. Disruption of the native URE2 gene in a wild-type serotype A strain H99 and a serotype D strain LP1 of C. neoformans resulted in the inability of the strains to grow on media containing urea as the sole nitrogen source, suggesting that the URE2 gene product is involved in the utilization of urea by the organism. Virulence in mice of the urease-negative isolate B-4587, the urease-positive transformants containing the wild-type copy of the URE2 gene, and the urease-negative vector-only transformants was comparable to that of the H99 strain of C. neoformans regardless of the infection route. Virulence of the URE2 disruption stain of H99 was slightly reduced compared to the wild-type strain in the intravenous model but was significantly attenuated in the inhalation model. These results indicate that the importance of urease activity in pathogenicity varies depending on the strains of C. neoformans used and/or the route of infection. Furthermore, this study shows that complementation cloning can serve as a useful tool to functionally identify genes such as URE2 that have otherwise been annotated as hypothetical proteins in genomic databases.
Collapse
Affiliation(s)
- Ashok Varma
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Building 10, Room 11C304, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaoxi Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ningru Guo
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wanqing Liao
- Zhangzhen Hospital, Second Military Medical University 200003 Shanghai, China
| | - Guxia Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Anshen Li
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Glenn Bulmer
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Building 10, Room 11C304, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
40
|
Reese AJ, Yoneda A, Breger JA, Beauvais A, Liu H, Griffith CL, Bose I, Kim MJ, Skau C, Yang S, Sefko JA, Osumi M, Latge JP, Mylonakis E, Doering TL. Loss of cell wall alpha(1-3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol Microbiol 2007; 63:1385-98. [PMID: 17244196 PMCID: PMC1864955 DOI: 10.1111/j.1365-2958.2006.05551.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Yeast cell walls are critical for maintaining cell integrity, particularly in the face of challenges such as growth in mammalian hosts. The pathogenic fungus Cryptococcus neoformans additionally anchors its polysaccharide capsule to the cell surface via alpha(1-3) glucan in the wall. Cryptococcal cells disrupted in their alpha glucan synthase gene were sensitive to stresses, including temperature, and showed difficulty dividing. These cells lacked surface capsule, although they continued to shed capsule material into the environment. Electron microscopy showed that the alpha glucan that is usually localized to the outer portion of the cell wall was absent, the outer region of the wall was highly disorganized, and the inner region was hypertrophic. Analysis of cell wall composition demonstrated complete loss of alpha glucan accompanied by a compensatory increase in chitin/chitosan and a redistribution of beta glucan between cell wall fractions. The mutants were unable to grow ina mouse model of infection, but caused death in nematodes. These studies integrate morphological and biochemical investigations of the role of alpha glucan in the cryptococcal cell wall.
Collapse
Affiliation(s)
| | - Aki Yoneda
- Washington University School of Medicine
| | | | | | - Hong Liu
- Washington University School of Medicine
| | | | | | | | | | - Sarah Yang
- Washington University School of Medicine
| | | | | | | | | | | |
Collapse
|
41
|
Rudnick DA, McWherter CA, Gokel GW, Gordon JI. MyristoylCoA:protein N-myristoyltransferase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 67:375-430. [PMID: 8322618 DOI: 10.1002/9780470123133.ch5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D A Rudnick
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO
| | | | | | | |
Collapse
|
42
|
Soares RDBA, Velho TAF, De Moraes LMP, Azevedo MO, Soares CMDA, Felipe MSS. Hygromycin B-resistance phenotype acquired in Paracoccidioides brasiliensis via plasmid DNA integration. Med Mycol 2006; 43:719-23. [PMID: 16422302 DOI: 10.1080/13693780500159118] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Yeast cells of the human pathogenic fungus Paracoccidioides brasiliensis strain Pb01 were transformed to hygromycin B resistance using the plasmid pAN7.1. Transformation was achieved by electroporation, with intact or linearized plasmid DNA. The fungus was transformed using 200 mM manitol, 5 or 7 kV/cm field strength, 25 microF capacitance, 400 omega resistance, 5 microg plasmid DNA and 10(7) yeast cells in 400 microl, and selected in BHI medium overlaid with 30 microg/ml hygromycin B (hygB). Mitotic stability was assessed by growing transformants on non-selective BHI medium, followed by plating on hygromycin B (30 microg/ml). Transformants were analyzed by PCR and Southern blotting, confirming the hph gene integration into the transformants genome. A low level of stability of the integrated hph sequence in the transformant genomes was observed, probably because of the multinuclearity of P. brasiliensis yeast cells.
Collapse
Affiliation(s)
- Renata De B A Soares
- Departamento de Biologia Celular IB, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brasil
| | | | | | | | | | | |
Collapse
|
43
|
McClelland CM, Chang YC, Kwon-Chung KJ. High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens. Fungal Genet Biol 2006; 42:904-13. [PMID: 16260158 DOI: 10.1016/j.fgb.2005.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/19/2005] [Accepted: 07/21/2005] [Indexed: 11/29/2022]
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the caus-ative agents of cryptococcal meningoencephalitis and are amenable to genetic manipulations, making them important models of pathogenic fungi. To improve the efficiency of Agrobacterium tumefaciens mediated transformation (ATMT) in C. neoformans, we optimized various co-cultivation conditions including incubation time and temperature, and bacteria to yeast ratio. ATMT was also applied to both serotypes (B and C) of C. gattii. Transformation efficiency by ATMT in C. neoformans was comparable to either electroporation or biolistic transformation and gave superior efficiencies in serotypes B and C, but unlike Saccharomyces cerevisiae, adenine auxotrophy did not increase ATMT efficiency in C. neoformans or C. gattii. All transformants tested were stable, with a majority containing only a single T-DNA insertion; however, homologous recombination was not observed. Additionally, we isolated adenine auxotrophs containing a single T-DNA insertion in the ADE2 gene for representative serotype B and C strains.
Collapse
Affiliation(s)
- Carol M McClelland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
44
|
Hu G, Kronstad JW. Gene disruption in Cryptococcus neoformans and Cryptococcus gattii by in vitro transposition. Curr Genet 2006; 49:341-50. [PMID: 16397763 DOI: 10.1007/s00294-005-0054-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 12/07/2005] [Accepted: 12/10/2005] [Indexed: 01/19/2023]
Abstract
Cryptococcus neoformans and Cryptococcus gattii are basidiomycetous fungi that infect immunocompromised and immunocompetent people. We developed an insertional mutagenesis strategy for these species based on in vitro transposition and we tested the method by disrupting the URA5 gene in a strain of C. neoformans and the CAP10 gene in three strains of C. gattii. We targeted plasmid DNA containing the URA5 gene or plasmid DNA containing the CAP10 gene from genomic libraries from the shotgun sequencing project for the C. gatti strain WM276. In the latter case, the availability of the end sequences of the clones from the assembled genomic sequence allows rapid selection of target genes for disruption. Modified transposons containing the nourseothricin (NAT) or neomycin (Neo) resistance cassettes were randomly inserted into the target DNA by in vitro transposition. The disrupted genes were used for biolistic transformation and homologous integration was subsequently confirmed by PCR and Southern blot analysis. These results demonstrate that the emerging genomic resources, combined with in vitro transposition into plasmid DNAs from shotgun sequencing libraries or cloned PCR products, will facilitate high-throughput genetic analysis in Cryptococcus species.
Collapse
Affiliation(s)
- Guanggan Hu
- The Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4.
| | | |
Collapse
|
45
|
Takahashi S, Matsunaga R, Kera Y, Yamada RH. Isolation of the Cryptococcus humicolus URA3 gene encoding orotidine-5'-phosphate decarboxylase and its use as a selective marker for transformation. J Biosci Bioeng 2005; 96:23-31. [PMID: 16233478 DOI: 10.1016/s1389-1723(03)90092-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Accepted: 03/11/2003] [Indexed: 10/26/2022]
Abstract
A transformation system for a yeast, Cryptococcus humicolus, was constructed. As a selectable marker, the URA3 gene encoding orotidine-5'-phosphate decarboxylase (OMPdecase) was isolated from a C. humicolus genomic DNA library, and the equivalent cDNA was cloned. The coding region encompasses a polypeptide of 269 amino acids interrupted by two introns, which were located at the same positions as observed in the equivalent genes of some filamentous fungi. The deduced amino acid sequence showed significant homology to those of OMPdecases from other fungal species. Although no canonical TATA and CHAT sequences and polyadenylation sequence are in the flanking regions, two C + T-rich sequences are observed in the 5'-flanking region. The cDNA of the URA3 gene of C. humicolus was able to complement functionally the ura3 mutation of Saccharomyces cerevisiae. As a host, five uracil auxotrophic mutants were isolated by the selection of ethyl methanesulfonate mutagenized cells on 5-fluoroorotic acid. Three of them could be transformed to Ura+ phenotype with a linearized URA3-harboring vector using electroporation, and the best transformation frequency was 14 transformants per microg of DNA. Southern blot analysis of five independent transformants showed the integration of the vector into the host chromosomal DNA at the URA3 locus in one transformant, and also the integration at ectopic sites and the modified extrachromosomal forms in others.
Collapse
Affiliation(s)
- Shouji Takahashi
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | | | | | | |
Collapse
|
46
|
Perfect JR. Cryptococcus neoformans: a sugar-coated killer with designer genes. ACTA ACUST UNITED AC 2005; 45:395-404. [PMID: 16055314 DOI: 10.1016/j.femsim.2005.06.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 02/06/2023]
Abstract
Cryptococcus neoformans has become a common central nervous system pathogen as the immunocompromised populations enlarge world-wide. This encapsulated yeast has significant advantages for the study of fungal pathogenesis and these include: (1) a clinically important human pathogen; (2) a tractable genetic system; (3) advanced molecular biology foundation; (4) understanding of several virulence phenotypes; (5) well-studied pathophysiology; and (6) robust animal models. With the use of a sequenced genome and site-directed mutagenesis to produce specific null mutants, the virulence composite of C. neoformans has begun to be identified one gene at a time. Studies into capsule production, melanin synthesis, high temperature growth, metabolic pathways and a variety of signaling pathways have led to understandings of what makes this yeast a pathogen at the molecular level. Multiple principles of molecular pathogenesis have been demonstrated in virulence studies with C. neoformans. These include evolutionary differences between the varieties of C. neoformans in their genes for virulence, quantitative impact of genes on the virulence composite, species and site-specific importance of a virulence gene, gene expression correlation with its functional importance or phenotype and the impact of a pathogenesis gene on the host immune response. C. neoformans has now become a primary model to study molecular fungal pathogenesis with the goal of identifying drug targets or vaccine strategies.
Collapse
Affiliation(s)
- John R Perfect
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
47
|
Ren P, Rossettini A, Chaturvedi V, Hanes SD. The Ess1 prolyl isomerase is dispensable for growth but required for virulence in Cryptococcus neoformans. MICROBIOLOGY-SGM 2005; 151:1593-1605. [PMID: 15870468 DOI: 10.1099/mic.0.27786-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cryptococcus neoformans is an important human fungal pathogen that also serves as a model for studies of fungal pathogenesis. C. neoformans contains several genes encoding peptidyl-prolyl cis/trans isomerases (PPIases), enzymes that catalyse changes in the folding and conformation of target proteins. Three distinct classes of PPIases have been identified: cyclophilins, FK506-binding proteins (FKBPs) and parvulins. This paper reports the cloning and characterization of ESS1, which is believed to be the first (and probably only) parvulin-class PPIase in C. neoformans. It is shown that ESS1 from C. neoformans is structurally and functionally homologous to ESS1 from Saccharomyces cerevisiae, which encodes an essential PPIase that interacts with RNA polymerase II and plays a role in transcription. In C. neoformans, ESS1 was found to be dispensable for growth, haploid fruiting and capsule formation. However, ESS1 was required for virulence in a murine model of cryptococcosis. Loss of virulence might have been due to the defects in melanin and urease production observed in ess1 mutants, or to defects in transcription of as-yet-unidentified virulence genes. The fact that Ess1 is not essential in C. neoformans suggests that, in this organism, some of its functions might be subsumed by other prolyl isomerases, in particular, cyclophilins Cpa1 or Cpa2. This is supported by the finding that ess1 mutants were hypersensitive to cyclosporin A. C. neoformans might therefore be a useful organism in which to investigate crosstalk among different families of prolyl isomerases.
Collapse
Affiliation(s)
- Ping Ren
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, State University of New York, Albany, NY 12208, USA
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, State University of New York, Albany, NY 12208, USA
| | - Anne Rossettini
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, State University of New York, Albany, NY 12208, USA
| | - Vishnu Chaturvedi
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12208, USA
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, State University of New York, Albany, NY 12208, USA
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, State University of New York, Albany, NY 12208, USA
| | - Steven D Hanes
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12208, USA
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, State University of New York, Albany, NY 12208, USA
| |
Collapse
|
48
|
Lu YK, Sun KH, Shen WC. Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans. Mol Microbiol 2005; 56:480-91. [PMID: 15813738 DOI: 10.1111/j.1365-2958.2005.04549.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cryptococcus neoformans is a heterothallic basidiomycetous yeast that primarily infects immunocompromised individuals. Dikaryotic hyphae resulting from the fusion of the MATa and MATalpha mating type strains represent the filamentous stage in the sexual life cycle of C. neoformans. In this study we demonstrate that the production of dikaryotic filaments is inhibited by blue light. To study blue light photoresponse in C. neoformans, we have identified and characterized two genes, CWC1 and CWC2, which are homologous to Neurospora crassa wc-1 and wc-2 genes. Conserved domain analyses indicate that the functions of Cwc1 and Cwc2 proteins may be evolutionally conserved. To dissect their roles in the light response, the CWC1 gene deletion mutants are created in both mating type strains. Mating filamentation in the bilateral cross of cwc1 MATa and MATalpha strains is not sensitive to light. The results indicate that Cwc1 may be an essential regulator of light responses in C. neoformans. Furthermore, overexpression of the CWC1 or CWC2 gene requires light activation to inhibit sexual filamentation, suggesting both genes may function together in the early step of blue light signalling. Taken together, our findings illustrate blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in C. neoformans.
Collapse
Affiliation(s)
- Ying-Ku Lu
- Department of Plant Pathology and Microbiology, National Taiwan University, 106 Taipei, Taiwan
| | | | | |
Collapse
|
49
|
Lee H, Chang YC, Kwon-Chung KJ. TUP1 disruption reveals biological differences between MATa and MATα strains of Cryptococcus neoformans. Mol Microbiol 2004; 55:1222-32. [PMID: 15686566 DOI: 10.1111/j.1365-2958.2004.04458.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cryptococcus neoformans exists in two mating types MATa and MATalpha. Although the morphology, growth characteristics and genetic segregation patterns among MATa and MATalpha strains are indistinguishable in the laboratory, the predominance of MATalpha strains in nature suggests that MATalpha strains are better suited for survival in nature. We disrupted the TUP1 gene, a global repressor, to find the possible biological differences in congenic MATalpha and MATa cells of C. neoformans. Disruption of TUP1 affected neither the yeast nor the hyphal cell morphology but resulted in a similar reduction of mating frequencies in both MATalpha and MATa cells. Disruption of TUP1, however, functionally manifested itself in several mating type-dependent phenotypes: (i) MATalpha cells became more sensitive to 0.8 M KCl while MATa cells showed no change in sensitivity, (ii) a temperature-dependent growth reduction was exhibited at both 30 degrees C and 25 degrees C in MATa but a similar growth reduction was not observed in MATalpha cells until the temperature was lowered to 25 degrees C and (iii) the transcriptional level of genes in several different biological pathways was markedly altered in a mating type-dependent manner. This work is the first case in which non-mating-related biological differences are observed between two congenic mating partners in yeast.
Collapse
Affiliation(s)
- Hyeseung Lee
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
50
|
Abstract
As pathogenic microorganisms establish an infection, they must be able to sense host-specific signals and respond by elaborating determinants that allow for survival in these hostile conditions. Pathogen cell surface proteins detect these signals and activate signal transduction cascades that ultimately alter gene expression resulting in an adaptive cellular response. Here we review the mechanisms by which a pathogenic fungus uses the highly conserved cAMP signal transduction pathway to regulate cellular differentiation as well as its virulence potential.
Collapse
Affiliation(s)
- Read Pukkila-Worley
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|