1
|
Hossain MJ, Nyame P, Monde K. Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review. Biomolecules 2024; 14:280. [PMID: 38540701 PMCID: PMC10968565 DOI: 10.3390/biom14030280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Endogenous retroviruses (ERVs) became a part of the eukaryotic genome through endogenization millions of years ago. Moreover, they have lost their innate capability of virulence or replication. Nevertheless, in eukaryotic cells, they actively engage in various activities that may be advantageous or disadvantageous to the cells. The mechanisms by which transcription is triggered and implicated in cellular processes are complex. Owing to the diversity in the expression of transcription factors (TFs) in cells and the TF-binding motifs of viruses, the comprehensibility of ERV initiation and its impact on cellular functions are unclear. Currently, several factors are known to be related to their initiation. TFs that bind to the viral long-terminal repeat (LTR) are critical initiators. This review discusses the TFs shown to actively associate with ERV stimulation across species such as humans, mice, pigs, monkeys, zebrafish, Drosophila, and yeast. A comprehensive summary of the expression of previously reported TFs may aid in identifying similarities between animal species and endogenous viruses. Moreover, an in-depth understanding of ERV expression will assist in elucidating their physiological roles in eukaryotic cell development and in clarifying their relationship with endogenous retrovirus-associated diseases.
Collapse
Affiliation(s)
| | | | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.J.H.); (P.N.)
| |
Collapse
|
2
|
Saha K, Nielsen GI, Nandani R, Kong L, Ye P, An W. YY1 is a transcriptional activator of mouse LINE-1 Tf subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573552. [PMID: 38260579 PMCID: PMC10802269 DOI: 10.1101/2024.01.03.573552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Long interspersed element type 1 (LINE-1, L1) is an active autonomous transposable element (TE) in the human genome. The first step of L1 replication is transcription, which is controlled by an internal RNA polymerase II promoter in the 5' untranslated region (UTR) of a full-length L1. It has been shown that transcription factor YY1 binds to a conserved sequence motif at the 5' end of the human L1 5'UTR and dictates where transcription initiates but not the level of transcription. Putative YY1-binding motifs have been predicted in the 5'UTRs of two distinct mouse L1 subfamilies, Tf and Gf. Using site-directed mutagenesis, in vitro binding, and gene knockdown assays, we experimentally tested the role of YY1 in mouse L1 transcription. Our results indicate that Tf, but not Gf subfamily, harbors functional YY1-binding sites in its 5'UTR monomers. In contrast to its role in human L1, YY1 functions as a transcriptional activator for the mouse Tf subfamily. Furthermore, YY1-binding motifs are solely responsible for the synergistic interaction between monomers, consistent with a model wherein distant monomers act as enhancers for mouse L1 transcription. The abundance of YY1-binding sites in Tf elements also raise important implications for gene regulation at the genomic level.
Collapse
Affiliation(s)
- Karabi Saha
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Grace I. Nielsen
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Raj Nandani
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Lingqi Kong
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Ping Ye
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
3
|
Geis FK, Goff SP. Silencing and Transcriptional Regulation of Endogenous Retroviruses: An Overview. Viruses 2020; 12:v12080884. [PMID: 32823517 PMCID: PMC7472088 DOI: 10.3390/v12080884] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Almost half of the human genome is made up of transposable elements (TEs), and about 8% consists of endogenous retroviruses (ERVs). ERVs are remnants of ancient exogenous retrovirus infections of the germ line. Most TEs are inactive and not detrimental to the host. They are tightly regulated to ensure genomic stability of the host and avoid deregulation of nearby gene loci. Histone-based posttranslational modifications such as H3K9 trimethylation are one of the main silencing mechanisms. Trim28 is one of the identified master regulators of silencing, which recruits most prominently the H3K9 methyltransferase Setdb1, among other factors. Sumoylation and ATP-dependent chromatin remodeling factors seem to contribute to proper localization of Trim28 to ERV sequences and promote Trim28 interaction with Setdb1. Additionally, DNA methylation as well as RNA-mediated targeting of TEs such as piRNA-based silencing play important roles in ERV regulation. Despite the involvement of ERV overexpression in several cancer types, autoimmune diseases, and viral pathologies, ERVs are now also appreciated for their potential positive role in evolution. ERVs can provide new regulatory gene elements or novel binding sites for transcription factors, and ERV gene products can even be repurposed for the benefit of the host.
Collapse
Affiliation(s)
- Franziska K. Geis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen P. Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
- Correspondence: ; Tel.: +1-212-305-3794
| |
Collapse
|
4
|
Materniak-Kornas M, Tan J, Heit-Mondrzyk A, Hotz-Wagenblatt A, Löchelt M. Bovine Foamy Virus: Shared and Unique Molecular Features In Vitro and In Vivo. Viruses 2019; 11:E1084. [PMID: 31766538 PMCID: PMC6950176 DOI: 10.3390/v11121084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
The retroviral subfamily of Spumaretrovirinae consists of five genera of foamy (spuma) viruses (FVs) that are endemic in some mammalian hosts [1]. Closely related species may be susceptible to the same or highly related FVs. FVs are not known to induce overt disease and thus do not pose medical problems to humans and livestock or companion animals. A robust lab animal model is not available or is a lab animal a natural host of a FV. Due to this, research is limited and often focused on the simian FVs with their well-established zoonotic potential. The authors of this review and their groups have conducted several studies on bovine FV (BFV) in the past with the intention of (i) exploring the risk of zoonotic infection via beef and raw cattle products, (ii) studying a co-factorial role of BFV in different cattle diseases with unclear etiology, (iii) exploring unique features of FV molecular biology and replication strategies in non-simian FVs, and (iv) conducting animal studies and functional virology in BFV-infected calves as a model for corresponding studies in primates or small lab animals. These studies gained new insights into FV-host interactions, mechanisms of gene expression, and transcriptional regulation, including miRNA biology, host-directed restriction of FV replication, spread and distribution in the infected animal, and at the population level. The current review attempts to summarize these findings in BFV and tries to connect them to findings from other FVs.
Collapse
Affiliation(s)
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Anke Heit-Mondrzyk
- German Cancer Research Center DKFZ, Core Facility Omics IT and Data Management, 69120 Heidelberg, Germany; (A.H.-M.); (A.H.-W.)
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center DKFZ, Core Facility Omics IT and Data Management, 69120 Heidelberg, Germany; (A.H.-M.); (A.H.-W.)
| | - Martin Löchelt
- German Cancer Research Center DKFZ, Program Infection, Inflammation and Cancer, Div. Viral Transformation Mechanisms, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Sarvagalla S, Kolapalli SP, Vallabhapurapu S. The Two Sides of YY1 in Cancer: A Friend and a Foe. Front Oncol 2019; 9:1230. [PMID: 31824839 PMCID: PMC6879672 DOI: 10.3389/fonc.2019.01230] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1), a dual function transcription factor, is known to regulate transcriptional activation and repression of many genes associated with multiple cellular processes including cellular differentiation, DNA repair, autophagy, cell survival vs. apoptosis, and cell division. Owing to its role in processes that upon deregulation are linked to malignant transformation, YY1 has been implicated as a major driver of many cancers. While a large body of evidence supports the role of YY1 as a tumor promoter, recent reports indicated that YY1 also functions as a tumor suppressor. The mechanism by which YY1 brings out opposing outcome in tumor growth vs. suppression is not completely clear and some of the recent reports have provided significant insight into this. Likewise, the mechanism by which YY1 functions both as a transcriptional activator and repressor is not completely clear. It is likely that the proteins with which YY1 interacts might determine its function as an activator or repressor of transcription as well as its role as a tumor suppressor or promoter. Hence, a collection of YY1-protein interactions in the context of different cancers would help us gain an insight into how YY1 promotes or suppresses cancers. This review focuses on the YY1 interacting partners and its target genes in different cancer models. Finally, we discuss the possibility of therapeutically targeting the YY1 in cancers where it functions as a tumor promoter.
Collapse
Affiliation(s)
| | | | - Sivakumar Vallabhapurapu
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| |
Collapse
|
6
|
Chen K, Lu Y, Shi K, Stovall DB, Li D, Sui G. Functional analysis of YY1 zinc fingers through cysteine mutagenesis. FEBS Lett 2019; 593:1392-1402. [PMID: 31127623 DOI: 10.1002/1873-3468.13431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 11/08/2022]
Abstract
As a transcription factor, Yin Yang 1 (YY1) either activates or represses gene expression depending on its recruited cofactors. The YY1 C-terminal consists of four zinc fingers (ZF) that are responsible for its DNA binding. However, the contribution of each YY1 ZF to its functions have not been fully elucidated. In this study, we used alanines to replace YY1 cysteines that are crucial to ZFs in binding to DNA. We characterized these YY1 mutants for their DNA binding, transcriptional activity, and functional role in maintaining MDA-MB-231 cell proliferation. We demonstrated that ZFs 2 and 3 are essential to the general biological activity of YY1. ZF 1 showed relatively low importance, while ZF 4 is virtually dispensable for YY1 function.
Collapse
Affiliation(s)
- Kuida Chen
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yao Lu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ke Shi
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Daniel B Stovall
- School of Math and Science, North Carolina Wesleyan College, Rocky Mount, NC, USA
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
7
|
Li J, Song J, Guo F. miR-186 reverses cisplatin resistance and inhibits the formation of the glioblastoma-initiating cell phenotype by degrading Yin Yang 1 in glioblastoma. Int J Mol Med 2018; 43:517-524. [PMID: 30365062 DOI: 10.3892/ijmm.2018.3940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/08/2018] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is among the most devastating types of cancer, with a median survival of <1 year. Despite the development of new surgical and radiation techniques, and the use of multiple anti‑neoplastic drugs, effective treatment strategies for malignant gliomas have not yet been developed. The limited efficacy of current treatments reflects the resistance of glioblastoma cells to cytotoxic agents. In this study, using western blot analysis, we found that Yin Yang 1 (YY1) expression was increased in cisplatin‑resistant glioblastoma U87MG cells (U87MG‑CR). We observed that the silencing of YY1 sensitized the U87MG‑CR cells to cisplatin and that the overexpression of YY1 promoted the resistance of LN‑229 glioblastoma cells to cisplatin, as shown by MTT assay. Using sphere formation assay, we also found that the silencing of YY1 inhibited the formation of the glioblastoma‑initiating cell (GIC) phenotype in the U87MG‑CR cells. In addition, the results of RT‑qPCR revealed that miR‑186 expression was decreased in U87MG‑CR cells. Using RT‑PCR and western blot analysis, we observed that overexpression of miR‑186 inhibited YY1 expression in U87MG‑CR cells. The overexpression of miR‑186 also reversed cisplatin resistance and the formation of the GIC phenotype in glioblastoma cells. On the whole, the findings of this study demonstrate that miR‑186 reverses cisplatin resistance and inhibits the formation of the GIC phenotype by degrading YY1 in glioblastoma.
Collapse
Affiliation(s)
- Jian Li
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Jie Song
- Department of Neurosurgery, Yishui Central Hospital, Yishui, Shandong 276400, P.R. China
| | - Feng Guo
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
8
|
Lee A, CingÖz O, Sabo Y, Goff SP. Characterization of interaction between Trim28 and YY1 in silencing proviral DNA of Moloney murine leukemia virus. Virology 2018; 516:165-175. [PMID: 29407374 DOI: 10.1016/j.virol.2018.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Moloney Murine Leukemia Virus (M-MLV) proviral DNA is transcriptionally silenced in embryonic cells by a large repressor complex tethered to the provirus by two sequence-specific DNA binding proteins, ZFP809 and YY1. A central component of the complex is Trim28, a scaffold protein that regulates many target genes involved in cell cycle progression, DNA damage responses, and viral gene expression. The silencing activity of Trim28, and its interactions with corepressors are often regulated by post-translational modifications such as sumoylation and phosphorylation. We defined the interaction domains of Trim28 and YY1, and investigated the role of sumoylation and phosphorylation of Trim28 in mediating M-MLV silencing. The RBCC domain of Trim28 was sufficient for interaction with YY1, and acidic region 1 and zinc fingers of YY1 were necessary and sufficient for its interaction with Trim28. Additionally, we found that residue K779 was critical for Trim28-mediated silencing of M-MLV in embryonic cells.
Collapse
Affiliation(s)
- Andreia Lee
- Department of Biological Sciences, United States
| | - Oya CingÖz
- Department of Biochemistry and Molecular Biophysics and Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, United States
| | - Yosef Sabo
- Department of Biochemistry and Molecular Biophysics and Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, United States
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics and Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
9
|
Yang X, Jing X, Song Y, Zhang C, Liu D. Molecular identification and transcriptional regulation of porcine IFIT2 gene. Mol Biol Rep 2018; 45:433-443. [PMID: 29623507 PMCID: PMC7088635 DOI: 10.1007/s11033-018-4179-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/02/2018] [Indexed: 11/26/2022]
Abstract
IFN-induced protein with tetratricopeptide repeats 2 (IFIT2) plays important roles in host defense against viral infection as revealed by studies in humans and mice. However, little is known on porcine IFIT2 (pIFIT2). Here, we performed molecular cloning, expression profile, and transcriptional regulation analysis of pIFIT2. pIFIT2 gene, located on chromosome 14, is composed of two exons and have a complete coding sequence of 1407 bp. The encoded polypeptide, 468 aa in length, has three tetratricopeptide repeat motifs. pIFIT2 gene was unevenly distributed in all eleven tissues studied with the most abundance in spleen. Poly(I:C) treatment notably strongly upregulated the mRNA level and promoter activity of pIFIT2 gene. Upstream sequence of 1759 bp from the start codon which was assigned +1 here has promoter activity, and deltaEF1 acts as transcription repressor through binding to sequences at position - 1774 to - 1764. Minimal promoter region exists within nucleotide position - 162 and - 126. Two adjacent interferon-stimulated response elements (ISREs) and two nuclear factor (NF)-κB binding sites were identified within position - 310 and - 126. The ISRE elements act alone and in synergy with the one closer to start codon having more strength, so do the NF-κB binding sites. Synergistic effect was also found between the ISRE and NF-κB binding sites. Additionally, a third ISRE element was identified within position - 1661 to - 1579. These findings will contribute to clarifying the antiviral effect and underlying mechanisms of pIFIT2.
Collapse
Affiliation(s)
- Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 China
| | - Xiaoyan Jing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 China
| | - Yanfang Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 China
| | - Caixia Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 China
| | - Di Liu
- Agricultural Academy of Heilongjiang Province, Harbin, 150086 China
| |
Collapse
|
10
|
Transcription factor YY1 is essential for iNKT cell development. Cell Mol Immunol 2018; 16:547-556. [PMID: 29500401 DOI: 10.1038/s41423-018-0002-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Invariant natural killer T (iNKT) cells develop from CD4+CD8+ double-positive (DP) thymocytes and express an invariant Vα14-Jα18 T-cell receptor (TCR) α-chain. Generation of these cells requires the prolonged survival of DP thymocytes to allow for Vα14-Jα18 gene rearrangements and strong TCR signaling to induce the expression of the iNKT lineage-specific transcription factor PLZF. Here, we report that the transcription factor Yin Yang 1 (YY1) is essential for iNKT cell formation. Thymocytes lacking YY1 displayed a block in iNKT cell development at the earliest progenitor stage. YY1-deficient thymocytes underwent normal Vα14-Jα18 gene rearrangements, but exhibited impaired cell survival. Deletion of the apoptotic protein BIM failed to rescue the defect in iNKT cell generation. Chromatin immunoprecipitation and deep-sequencing experiments demonstrated that YY1 directly binds and activates the promoter of the Plzf gene. Thus, YY1 plays essential roles in iNKT cell development by coordinately regulating cell survival and PLZF expression.
Collapse
|
11
|
Khachigian LM. The Yin and Yang of YY1 in tumor growth and suppression. Int J Cancer 2018; 143:460-465. [PMID: 29322514 DOI: 10.1002/ijc.31255] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022]
Abstract
Yin Yang-1 (YY1) is a zinc finger protein and member of the GLI-Kruppel family that can activate or inactivate gene expression depending on interacting partners, promoter context and chromatin structure, and may be involved in the transcriptional control of ∼10% of the total mammalian gene set. A growing body of literature indicates that YY1 is overexpressed in multiple cancer types and that increased YY1 levels correlate with poor clinical outcomes in many cancers. However, the role of YY1 in the promotion or suppression of tumor growth remains controversial and its regulatory effects may be tumor cell type dependent at least in experimental systems. The molecular mechanisms responsible for the apparently conflicting roles of YY1 are not yet fully elucidated. This review highlights recent advances in our understanding of regulatory insights involving YY1 function in a range of cancer types. For example, YY1's roles in tumor growth involve stabilization of hypoxia-inducible factor HIF-1α in a p53 independent manner, negative regulation of miR-9 transcription, control of MYCT1 transcription, a novel miR-193a-5p-YY1-APC axis, intracellular ROS and mitochondrial superoxide generation, p53 reduction and EGFR activation, control of genes associated with mitochondrial energy metabolism and miRNA regulatory networks involving miR-7, miR-9, miR-34a, miR-186, miR-381, miR-584-3p and miR-635. On the other hand, tumor suppressor roles of YY1 appear to involve YY1 stimulation of tumor suppressor BRCA1, increased Bax transcription and apoptosis involving cytochrome c release and caspase-3/-7 cleavage, induction of heme oxygenase-1, inhibition of pRb phosphorylation and p21 binding to cyclin D1 and cdk4, reduced expression of long noncoding RNA of SOX2 overlapping transcript, and MUC4/ErbB2/p38/MEF2C-dependent downregulation of MMP-10. YY1 expression is associated with that of cancer stem cell markers SOX2, BMI1 and OCT4 across many cancers suggesting multidynamic regulatory control and groups of cancers with distinct molecular signatures. Greater understanding of the mechanistic roles of YY1 will in turn lead to the development of more specific approaches to modulate YY1 expression and activity with therapeutic potential.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
12
|
Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:84. [PMID: 27225481 PMCID: PMC4881184 DOI: 10.1186/s13046-016-0359-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/09/2016] [Indexed: 01/11/2023]
Abstract
The transcription factor Yin Yang 1 (YY1) is frequently overexpressed in cancerous tissues compared to normal tissues and has regulatory roles in cell proliferation, cell viability, epithelial-mesenchymal transition, metastasis and drug/immune resistance. YY1 shares many properties with cancer stem cells (CSCs) that drive tumorigenesis, metastasis and drug resistance and are regulated by overexpression of certain transcription factors, including SOX2, OCT4 (POU5F1), BMI1 and NANOG. Based on these similarities, it was expected that YY1 expression would be associated with SOX2, OCT4, BMI1, and NANOG’s expressions and activities. Data mining from the proteomic tissue-based datasets from the Human Protein Atlas were used for protein expression patterns of YY1 and the four CSC markers in 17 types of cancer, including both solid and hematological malignancies. A close association was revealed between the frequency of expressions of YY1 and SOX2 as well as SOX2 and OCT4 in all cancers analyzed. Two types of dynamics were identified based on the nature of their association, namely, inverse or direct, between YY1 and SOX2. These two dynamics define distinctive patterns of BMI1 and OCT4 expressions. The relationship between YY1 and SOX2 expressions as well as the expressions of BMI1 and OCT4 resulted in the classification of four groups of cancers with distinct molecular signatures: 1) Prostate, lung, cervical, endometrial, ovarian and glioma cancers (YY1loSOX2hiBMI1hiOCT4hi) 2) Skin, testis and breast cancers (YY1hiSOX2loBMI1hiOCT4hi) 3) Liver, stomach, renal, pancreatic and urothelial cancers (YY1loSOX2loBMI1hiOCT4hi) and 4) Colorectal cancer, lymphoma and melanoma (YY1hiSOX2hiBMI1loOCT4hi). A regulatory loop is proposed consisting of the cross-talk between the NF-kB/PI3K/AKT pathways and the downstream inter-regulation of target gene products YY1, OCT4, SOX2 and BMI1.
Collapse
|
13
|
Gerdes P, Richardson SR, Mager DL, Faulkner GJ. Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biol 2016; 17:100. [PMID: 27161170 PMCID: PMC4862087 DOI: 10.1186/s13059-016-0965-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Transposable elements (TEs) are notable drivers of genetic innovation. Over evolutionary time, TE insertions can supply new promoter, enhancer, and insulator elements to protein-coding genes and establish novel, species-specific gene regulatory networks. Conversely, ongoing TE-driven insertional mutagenesis, nonhomologous recombination, and other potentially deleterious processes can cause sporadic disease by disrupting genome integrity or inducing abrupt gene expression changes. Here, we discuss recent evidence suggesting that TEs may contribute regulatory innovation to mammalian embryonic and pluripotent states as a means to ward off complete repression by their host genome.
Collapse
Affiliation(s)
- Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Dixie L Mager
- Department of Medical Genetics, Terry Fox Laboratory, British Columbia Cancer Agency, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia. .,School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
14
|
Shiu WL, Huang KR, Hung JC, Wu JL, Hong JR. Knockdown of zebrafish YY1a can downregulate the phosphatidylserine (PS) receptor expression, leading to induce the abnormal brain and heart development. J Biomed Sci 2016; 23:31. [PMID: 26924789 PMCID: PMC4770675 DOI: 10.1186/s12929-016-0248-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/16/2016] [Indexed: 01/08/2023] Open
Abstract
Background Yin Yang 1 (YY1) is a ubiquitously expressed GLI-Kruppel zinc finger-containing transcriptional regulator. YY1 plays a fundamental role in normal biologic processes such as embryogenesis, differentiation, and cellular proliferation. YY1 effects on the genes involved in these processes are mediated via initiation, activation, or repression of transcription depending upon the context in which it binds. The role of the multifunctional transcription factor Yin Yang 1 (YY1) in tissue development is poorly understood. In the present, we investigated YY1a role in developing zebrafish on PSR-mediated apoptotic cell engulfment during organic morphogenesis. Results YY1a is first expressed 0.5 h post-fertilization (hpf), in the whole embryo 12 hpf, and in brain, eyes, and heart 72 hpf by in situ hybridization assay. The nucleotide sequence of zebrafish YY1a transcription factor (clone zfYY1a; HQ 166834) was found to be similar to that of zebrafish YY1a (99 % sequence identity; NM 212617). With the loss-of-function assay, YY1a knockdown by a morpholino oligonucleotide led to downregulation of the phosphatidylserine engulfing receptor zfPSR during embryonic segmentation and to the accumulation of a large number of dead apoptotic cells throughout the entire early embryo, especially in the posterior area. Up to 24 hpf, these cells interfered with embryonic cell migration and cell-cell interactions that normally occur in the brain, heart, eye, and notochord. Finally, with gain-of-function assay, defective morphants could be rescued by injecting both YY1a mRNA and PSR mRNA and trigger resumption of normal development. Conclusions Taken together, our results suggest that YY1a regulates PS receptor expression that linked to function of PSR-phagocyte mediated apoptotic cell engulfment during development, especially the development of organs such as the brain and heart. YY1a/PSR-mediated engulfing system may involve in diseases.
Collapse
Affiliation(s)
- Wei-Lun Shiu
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Kuan-Rong Huang
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Jo-Chi Hung
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Jen-Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
15
|
Abstract
Yin Yang 1 (YY1) is a member of the GLI-Krüppel class of DNA and RNA binding transcription factors that can either activate or repress gene expression during cell growth, differentiation, and embryogenesis. Although much is known about YY1 interacting proteins and the target promoters regulated by YY1, much less is known about YY1 regulation through post-translational modifications. In this study we show that YY1 is tyrosine-phosphorylated in multiple cell types. Using a combination of pharmacological inhibition, kinase overexpression, and kinase knock-out studies, we demonstrate that YY1 is a target of multiple Src family kinases in vitro and in vivo. Moreover, we have identified multiple sites of YY1 phosphorylation and analyzed the effect of phosphorylation on the activity of YY1-responsive retroviral and cellular promoters. Phosphorylation of tyrosine 383 interferes with DNA and RNA binding, leading to the down-regulation of YY1 activity. Finally, we provide the first evidence that YY1 is a downstream target of epidermal growth factor receptor signaling in vivo. Taken together, the identification of YY1 as a target of Src family kinases provide key insights into the inhibitory role of tyrosine kinases in modulating YY1 activity.
Collapse
Affiliation(s)
- Gary Z Wang
- From the Integrated Program in Cellular, Molecular, and Biophysical Studies, Medical Scientist Training Program, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, Columbia University, New York, New York 10032 and
| |
Collapse
|
16
|
Bonavida B, Kaufhold S. Prognostic significance of YY1 protein expression and mRNA levels by bioinformatics analysis in human cancers: a therapeutic target. Pharmacol Ther 2015; 150:149-68. [PMID: 25619146 DOI: 10.1016/j.pharmthera.2015.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/15/2015] [Indexed: 01/22/2023]
Abstract
Conventional therapeutic treatments for various cancers include chemotherapy, radiotherapy, hormonal therapy and immunotherapy. While such therapies have resulted in clinical responses, they were coupled with non-tumor specificity, toxicity and resistance in a large subset of the treated patients. During the last decade, novel approaches based on scientific knowledge on the biology of cancer were exploited and led to the development of novel targeted therapies, such as specific chemical inhibitors and immune-based therapies. Although these targeted therapies resulted in better responses and less toxicity, there still remains the problem of the inherent or acquired resistance. Hence, current studies are seeking additional novel therapeutic targets that can overcome several mechanisms of resistance. The transcription factor Yin Yang 1 (YY1) is a ubiquitous protein expressed in normal and cancer tissues, though the expression level is much higher in a large number of cancers; hence, YY1 has been considered as a potential novel prognostic biomarker and therapeutic target. YY1 has been reported to be involved in the regulation of drug/immune resistance and also in the regulation of EMT. Several excellent reviews have been published on YY1 and cancer (see below), and, thus, this review will update recently published reports as well as report on the analysis of bioinformatics datasets for YY1 in various cancers and the relationship between reported protein expression and mRNA levels. The potential clinical significance of YY1 is discussed.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, United States.
| | - Samantha Kaufhold
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
17
|
Smurf2 regulates the degradation of YY1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2005-11. [PMID: 24803334 DOI: 10.1016/j.bbamcr.2014.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 11/24/2022]
Abstract
Transcription factor YY1 plays important roles in cell proliferation and differentiation. For example, YY1 represses the expression of muscle-specific genes and the degradation of YY1 is required for myocyte differentiation. The activity of YY1 can be regulated by various post-translational modifications; however, little is known about the regulatory mechanisms for YY1 degradation. In this report, we attempted to identify potential E3 ubiquitin ligases for YY1, and found that Smurf2 E3 ubiquitin ligase can negatively regulate YY1 protein level, but not mRNA level. Smurf2 interacted with YY1, induced the poly-ubiquitination of YY1 and shortened the half-life of YY1 protein. Conversely, an E3 ubiquitin ligase-defective mutant form of Smurf2 or knockdown of Smurf2 increased YY1 protein level. PPxY motif is a typical target recognition site for Smurf2, and the PPxY motif in YY1 was important for Smurf2 interaction and Smurf2-induced degradation of YY1 protein. In addition, Smurf2 reduced the YY1-mediated activation of a YY1-responsive reporter whereas Smurf2 knockdown increased it. Finally, Smurf2 relieved the suppression of p53 activity by YY1. Taken together, our results suggest a novel regulatory mechanism for YY1 function by Smurf2 in which the protein stability and transcriptional activity of YY1 are regulated by Smurf2 through the ubiquitin-proteasome-mediated degradation of YY1.
Collapse
|
18
|
Schlesinger S, Lee AH, Wang GZ, Green L, Goff SP. Proviral silencing in embryonic cells is regulated by Yin Yang 1. Cell Rep 2013; 4:50-8. [PMID: 23810560 DOI: 10.1016/j.celrep.2013.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/20/2013] [Accepted: 06/03/2013] [Indexed: 12/25/2022] Open
Abstract
Embryonic cells transcriptionally repress the expression of endogenous and exogenous retroelements. Trim28, a key player in this silencing, is known to act in a large DNA-bound complex, but the other components of the complex are not fully characterized. Here, we show that the zinc finger protein Yin Yang 1 (YY1) is one such component. YY1 binds to the long terminal repeat (LTR) region of both exogenous and endogenous retroviruses (ERVs). Deletion of the YY1-binding site from the retroviral genome leads to a major loss of silencing in embryonic cells and a coordinated loss of repressive histone marks from the proviral chromatin. Depletion of YY1 protein results in marked upregulation of expression of exogenous viruses and of selected ERVs. Finally, we report an embryonic cell-specific interaction between YY1 and Trim28. Our results suggest a major role for YY1 in the silencing of both exogenous retroviruses and ERVs in embryonic cells.
Collapse
Affiliation(s)
- Sharon Schlesinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
19
|
Kihara M, Leroy V, Baudino L, Evans LH, Izui S. Sgp3 and Sgp4 control expression of distinct and restricted sets of xenotropic retroviruses encoding serum gp70 implicated in murine lupus nephritis. J Autoimmun 2011; 37:311-8. [PMID: 21982749 DOI: 10.1016/j.jaut.2011.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 12/23/2022]
Abstract
The envelope glycoprotein gp70 of endogenous retroviruses implicated in murine lupus nephritis is secreted by hepatocytes and its expression is controlled by Sgp3 (serum gp70 production 3) and Sgp4 loci derived from lupus-prone mice. Among three different endogenous retroviruses (ecotropic, xenotropic and polytropic), xenotropic viruses are considered to be the major source of serum gp70. Although the abundance of xenotropic viral gp70 RNA in livers was up-regulated by the presence of these two Sgp loci, it has not yet been clear whether Sgp3 and Sgp4 regulate the expression of a fraction or multiple xenotropic viruses present in mouse genome. To address this question, we determined the genetic origin of xenotropic viral sequences expressed in wild-type and two different Sgp congenic C57BL/6 mice. Among 14 xenotropic proviruses present in the C57BL/6 genome, only two proviruses (Xmv10 and Xmv14) were actively transcribed in wild-type C57BL/6 mice. In contrast, Sgp3 enhanced the transcription of Xmv10 and induced the transcription of three additional xenotropic viruses (Xmv15, Xmv17 and Xmv18), while Sgp4 induced the expression of a different xenotropic virus (Xmv13). Notably, stimulation of TLR7 in Sgp3 congenic C57BL/6 mice led to a highly enhanced expression of potentially replication-competent Xmv18. These results indicated that Sgp3 and Sgp4 independently regulated the transcription of distinct and restricted sets of xenotropic viruses in trans, thereby promoting the production of nephritogenic gp70 autoantigens. Furthermore, the induced expression of potentially replication-competent xenotropic viruses by Sgp3 may contribute to the development of autoimmune responses against gp70 through the activation of TLR7.
Collapse
Affiliation(s)
- Masao Kihara
- Department of Pathology and Immunology, University of Geneva, 1211 Geneve 4, Switzerland
| | | | | | | | | |
Collapse
|
20
|
He G, Wang Q, Zhou Y, Wu X, Wang L, Duru N, Kong X, Zhang P, Wan B, Sui L, Guo Q, Li JJ, Yu L. YY1 is a novel potential therapeutic target for the treatment of HPV infection-induced cervical cancer by arsenic trioxide. Int J Gynecol Cancer 2011; 21:1097-104. [PMID: 21792014 PMCID: PMC3478771 DOI: 10.1097/igc.0b013e31821d2525] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE YY1 is a zinc finger transcription factor involved in the regulation of cell growth, development, and differentiation. Although YY1 can regulate human papillomavirus-type (HPV) viral oncogenes E6 and E7, it remains unknown if YY1 plays a key role in carcinoma progression of HPV-infected cells. Here we sought to determine whether YY1 is upregulated in the cervical cancer tissues and YY1 inhibition contributes to apoptosis of cervical cancer cells, which is at least partly p53 dependent. Therefore, YY1 can be a potential therapeutic target for cervical cancer treatment by arsenic trioxide (As2O3). MATERIALS AND METHODS The expression level of YY1 was examined and analyzed by Western blot in pathologically confirmed primary cervical cancer samples, in the adjacent normal samples, as well as in normal cervix samples. The effects of YY1 inhibition by specific small interfering RNA in HeLa cells were determined by Western blot analysis of p53 level, cell growth curve, colony formation assay, and apoptosis. The contribution of YY1 to As2O3-induced p53 activation and apoptosis was also examined by Western blot and cell cycle analysis. RESULTS Here we report that the expression level of YY1 is significantly elevated in the primary cancer tissues. In HPV-positive HeLa cells, small interfering RNA-mediated YY1 inhibition induced apoptosis and increased the expression of p53. Treatment of HeLa cells with As2O3, a known anti-cervical cancer agent, reduced both protein and mRNA levels of YY1 in HeLa cells. YY1 knockdown significantly further enhanced As2O3-induced apoptosis. CONCLUSIONS These results demonstrated that the expression of YY1 is upregulated in cervical carcinomas and that YY1 plays a critical role in the progression of HPV-positive cervical cancer. In addition, YY1 inhibition induces p53 activation and apoptosis in HPV-infected HeLa cells. Thus, YY1 is an As2O3 target and could serve as a potential drug sensitizer for anti-cervical cancer therapy.
Collapse
Affiliation(s)
- Guifen He
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Qian Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Yuqi Zhou
- Department of Gynecologic Oncology, Fudan University Cancer Hospital, Shanghai 200032, P. R. China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Cancer Hospital, Shanghai 200032, P. R. China
| | - Lan Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Nadire Duru
- Department of Radiation Oncology, University of California Davis, 2700 Stockton Blvd, Sacramento, California 95817, USA
| | - Xiangtao Kong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Pingzhao Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Bo Wan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Long Sui
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Qisang Guo
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Jian-Jian Li
- Department of Radiation Oncology, University of California Davis, 2700 Stockton Blvd, Sacramento, California 95817, USA
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| |
Collapse
|
21
|
Trask MC, Mager J. Complexity of polycomb group function: diverse mechanisms of target specificity. J Cell Physiol 2011; 226:1719-21. [PMID: 20799281 DOI: 10.1002/jcp.22395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetic regulation of gene expression has become relevant to nearly all areas of biomedical research. The emergence of technologies that allow for examination of the epigenome combined with identification of key protein complexes that mediate the myriad chromatin modifications that occur have greatly enhanced the versatility and efficacy of tools with which to study normal development and disease states. The evolutionarily conserved polycomb group genes (PcG) have been identified as a predominant mechanism by which gene silencing occurs during development, differentiation, and disease. While molecular events that target PcG complexes have been well defined in some non-vertebrate models, the details of locus specificity and functional diversity of mammalian PcG proteins have not yet unresolved. Here we discuss recent findings that offer novel mechanistic events and add complexity to our understanding of PcG function in vertebrates.
Collapse
Affiliation(s)
- Mary C Trask
- Department of Veterinary and Animal Science, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
22
|
Atchison M, Basu A, Zaprazna K, Papasani M. Mechanisms of Yin Yang 1 in oncogenesis: the importance of indirect effects. Crit Rev Oncog 2011; 16:143-61. [PMID: 22248052 PMCID: PMC3417111 DOI: 10.1615/critrevoncog.v16.i3-4.20] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Yin Yang 1 (YY1) is a ubiquitously expressed transcription factor that performs numerous functions including transcriptional regulation, cell growth control, apoptosis, large-scale chromosomal dynamics, and X-chromosome inactivation. YY1 clearly is able to control cell functions, including proliferation, by acting as a transcription factor either to activate or repress specific genes. Based on its ability to regulate cell growth control genes, it has been argued that YY1 can function as an oncogene that initiates oncogenesis. Although this is an attractive hypothesis, no reports indicate that YY1 can acutely transform cells in culture or form tumors within animals when overexpressed. Thus, it remains unclear whether YY1 is a "classic" oncogene. However, YY1 controls many diverse cell functions, and these functions may provide clues to its role in oncogenesis. We propose that in many cases YY1 may function in oncogenesis and disease progression through "indirect" effects by virtue of its role in either recruiting Polycomb group proteins to DNA, regulating mutator protein accumulation, controlling large-scale chromosomal dynamics or genomic integrity. Disruption of these functions may causally initiate cancer or may contribute to disease progression. Targeting YY1 functions provides possible avenues for clinical intervention.
Collapse
Affiliation(s)
- Michael Atchison
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
23
|
Baudino L, Yoshinobu K, Morito N, Santiago-Raber ML, Izui S. Role of endogenous retroviruses in murine SLE. Autoimmun Rev 2010; 10:27-34. [PMID: 20659589 DOI: 10.1016/j.autrev.2010.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 07/21/2010] [Indexed: 11/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by B cell hyperactivity leading to the production of various autoantibodies and subsequent development of glomerulonephritis, i.e. lupus nephritis. Among the principal targets of the autoantibodies produced in murine SLE are nucleic acid-protein complexes and the envelope glycoprotein gp70 of endogenous retroviruses. Recent studies have revealed that the innate receptor TLR7 plays a pivotal role in the development of a wide variety of autoimmune responses against DNA- and RNA-containing nuclear antigens, while TLR9 rather plays a protective role. In addition, the regulation of autoimmune responses against endogenous retroviral gp70 by TLR7 suggests the implication of endogenous retroviruses in this autoimmune response. Moreover, the demonstration that TLR7 is involved in the acute phase expression of serum gp70 uncovers an additional pathogenic role of TLR7 in murine lupus nephritis by promoting the expression of nephritogenic gp70 autoantigen. Clearly, the eventual identification of endogenous retroviruses implicated in murine SLE and of mouse genes regulating their production could provide a clue for the potential role of endogenous retroviruses in human SLE.
Collapse
Affiliation(s)
- Lucie Baudino
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Baudino L, Yoshinobu K, Dunand-Sauthier I, Evans LH, Izui S. TLR-mediated up-regulation of serum retroviral gp70 is controlled by the Sgp loci of lupus-prone mice. J Autoimmun 2010; 35:153-9. [PMID: 20619604 DOI: 10.1016/j.jaut.2010.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/08/2010] [Accepted: 06/13/2010] [Indexed: 12/29/2022]
Abstract
The endogenous retroviral envelope glycoprotein, gp70, implicated in murine systemic lupus erythematosus (SLE), has been considered to be a product of xenotropic, polytropic (PT) and modified PT (mPT) endogenous retroviruses. It is secreted by hepatocytes like an acute phase protein, but its response is under a genetic control. Given critical roles of TLR7 and TLR9 in the pathogenesis of SLE, we assessed their contribution to the acute phase expression of serum gp70, and defined a pivotal role of the Sgp3 (serum gp70 production 3) and Sgp4 loci in this response. Our results demonstrated that serum levels of gp70 were up-regulated in lupus-prone NZB mice injected with TLR7 or TLR9 agonist at levels comparable to those induced by injection of IL-1, IL-6 or TNF. In addition, studies of C57BL/6 Sgp3 and/or Sgp4 congenic mice defined the major roles of these two loci in up-regulated production of serum gp70 during acute phase responses. Finally, the analysis of Sgp3 congenic mice strongly suggests the presence of at least two distinct genetic factors in the Sgp3 interval, one of which controlled the basal-level expression of xenotropic, PT and mPT gp70 and the other which controlled the up-regulated production of xenotropic and mPT gp70 during acute phase responses. Our results uncovered an additional pathogenic role of TLR7 and TLR9 in murine lupus nephritis by promoting the expression of nephritogenic gp70 autoantigen. Furthermore, they revealed the involvement of multiple regulatory genes for the expression of gp70 autoantigen under steady-state and inflammatory conditions in lupus-prone mice.
Collapse
Affiliation(s)
- Lucie Baudino
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Lace MJ, Yamakawa Y, Ushikai M, Anson JR, Haugen TH, Turek LP. Cellular factor YY1 downregulates the human papillomavirus 16 E6/E7 promoter, P97, in vivo and in vitro from a negative element overlapping the transcription-initiation site. J Gen Virol 2009; 90:2402-2412. [PMID: 19553391 DOI: 10.1099/vir.0.012708-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cellular factors that bind to cis sequences in the human papillomavirus 16 (HPV-16) upstream regulatory region (URR) positively and negatively regulate the viral E6 and E7 oncogene promoter, P97. DNase I footprinting has revealed the binding of cellular proteins to two previously undetected cis elements overlapping and 3′ of the transcription-initiation site of the P97 promoter. Mutations within homologous motifs found in both of these cis elements abolished their negative function in vivo and the binding of the same cellular complex in vitro. This factor was identified as YY1 by complex mobility and binding specificity in comparison with vaccinia virus-expressed, purified recombinant YY1 protein and by antigenic reactivity with YY1 antisera. Cis mutations in the ‘initiator’ YY1 site activated the P97 promoter in vivo and in vitro. P97 was also activated threefold in vitro by depletion of endogenous YY1 with wild-type, but not mutant, YY1 oligonucleotides from the IgH kappa E3′ enhancer. Furthermore, increasing concentrations of exogenous, purified recombinant YY1 repressed wild-type P97 transcript levels by up to threefold, but did not influence the P97 promoter mutated in the ‘initiator’ YY1 site. Thus, the promoter-proximal YY1 site was not necessary for correct transcription initiation at the P97 promoter, but was found to be required for downregulation of P97 transcription in vivo and in vitro. In contrast to other viral and cellular promoters, where YY1 is thought to function as a positive transcription-‘initiator’ factor, HPV-16 P97 transcription is downregulated by YY1 from a critical motif overlapping the transcription start site.
Collapse
Affiliation(s)
- Michael J. Lace
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Yasushi Yamakawa
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Masato Ushikai
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - James R. Anson
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Thomas H. Haugen
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Lubomir P. Turek
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| |
Collapse
|
26
|
Yoshinobu K, Baudino L, Santiago-Raber ML, Morito N, Dunand-Sauthier I, Morley BJ, Evans LH, Izui S. Selective up-regulation of intact, but not defective env RNAs of endogenous modified polytropic retrovirus by the Sgp3 locus of lupus-prone mice. THE JOURNAL OF IMMUNOLOGY 2009; 182:8094-103. [PMID: 19494335 DOI: 10.4049/jimmunol.0900263] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endogenous retroviruses are implicated in the pathogenesis of systemic lupus erythematosus (SLE). Because four different classes of endogenous retroviruses, i.e., ecotropic, xenotropic, polytropic, or modified polytropic (mPT), are expressed in mice, we investigated the possibility that a particular class of endogenous retroviruses is associated with the development of murine SLE. We observed >15-fold increased expression of mPT env (envelope) RNA in livers of all four lupus-prone mice, as compared with those of nine nonautoimmune strains of mice. This was not the case for the three other classes of retroviruses. Furthermore, we found that in addition to intact mPT transcripts, many strains of mice expressed two defective mPT env transcripts which carry a deletion in the env sequence of the 3' portion of the gp70 surface protein and the 5' portion of the p15E transmembrane protein, respectively. Remarkably, in contrast to nonautoimmune strains of mice, all four lupus-prone mice expressed abundant levels of intact mPT env transcripts, but only low or nondetectable levels of the mutant env transcripts. The Sgp3 (serum gp70 production 3) locus derived from lupus-prone mice was responsible for the selective up-regulation of the intact mPT env RNA. Finally, we observed that single-stranded RNA-specific TLR7 played a critical role in the production of anti-gp70 autoantibodies. These data suggest that lupus-prone mice may possess a unique genetic mechanism responsible for the expression of mPT retroviruses, which could act as a triggering factor through activating TLR7 for the development of autoimmune responses in mice predisposed to SLE.
Collapse
Affiliation(s)
- Kumiko Yoshinobu
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Matsumura N, Huang Z, Baba T, Lee PS, Barnett JC, Mori S, Chang JT, Kuo WL, Gusberg AH, Whitaker RS, Gray JW, Fujii S, Berchuck A, Murphy SK. Yin yang 1 modulates taxane response in epithelial ovarian cancer. Mol Cancer Res 2009; 7:210-20. [PMID: 19208743 DOI: 10.1158/1541-7786.mcr-08-0255] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Survival of ovarian cancer patients is largely dictated by their response to chemotherapy, which depends on underlying molecular features of the malignancy. We previously identified YIN YANG 1 (YY1) as a gene whose expression is positively correlated with ovarian cancer survival. Herein, we investigated the mechanistic basis of this association. Epigenetic and genetic characteristics of YY1 in serous epithelial ovarian cancer were analyzed along with YY1 mRNA and protein. Patterns of gene expression in primary serous epithelial ovarian cancer and in the NCI60 database were investigated using computational methods. YY1 function and modulation of chemotherapeutic response in vitro was studied using small interfering RNA knockdown. Microarray analysis showed strong positive correlation between expression of YY1 and genes with YY1 and transcription factor E2F binding motifs in ovarian cancer and in the NCI60 cancer cell lines. Clustering of microarray data for these genes revealed that high YY1/E2F3 activity positively correlates with survival of patients treated with the microtubule-stabilizing drug paclitaxel. Increased sensitivity to taxanes, but not to DNA cross-linking platinum agents, was also characteristic of NCI60 cancer cell lines with a high YY1/E2F signature. YY1 knockdown in ovarian cancer cell lines results in inhibition of anchorage-independent growth, motility, and proliferation but also increases resistance to taxanes, with no effect on cisplatin sensitivity. These results, together with the prior demonstration of augmentation of microtubule-related genes by E2F3, suggest that enhanced taxane sensitivity in tumors with high YY1/E2F activity may be mediated by modulation of putative target genes with microtubule function.
Collapse
Affiliation(s)
- Noriomi Matsumura
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27708, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Santiago FS, Ishii H, Shafi S, Khurana R, Kanellakis P, Bhindi R, Ramirez MJ, Bobik A, Martin JF, Chesterman CN, Zachary IC, Khachigian LM. Yin Yang-1 inhibits vascular smooth muscle cell growth and intimal thickening by repressing p21WAF1/Cip1 transcription and p21WAF1/Cip1-Cdk4-cyclin D1 assembly. Circ Res 2007; 101:146-55. [PMID: 17556661 DOI: 10.1161/circresaha.106.145235] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular injury initiates a cascade of phenotype-altering molecular events. Transcription factor function in this process, particularly that of negative regulators, is poorly understood. We demonstrate here that the forced expression of the injury-inducible GLI-Krüppel zinc finger protein Yin Yang-1 (YY1) inhibits neointima formation in human, rabbit and rat blood vessels. YY1 inhibits p21(WAF1/Cip1) transcription, prevents assembly of a p21(WAF1/Cip1)-cdk4-cyclin D1 complex, and blocks downstream pRb(Ser249/Thr252) phosphorylation and expression of PCNA and TK-1. Conversely, suppression of endogenous YY1 elevates levels of p21(WAF1/Cip1), PCNA, pRb(Ser249/Thr252) and TK-1, and increases intimal thickening. YY1 binds Sp1 and prevents its occupancy of a distinct element in the p21(WAF1/Cip1) promoter without YY1 itself binding the promoter. Additionally, YY1 induces ubiquitination and proteasome-dependent degradation of p53, decreasing p53 immunoreactivity in the artery wall. These findings define a new role for YY1 as both an inducer of p53 instability in smooth muscle cells, and an indirect repressor of p21(WAF1/Cip1) transcription, p21(WAF1/Cip1)-cdk4-cyclin D1 assembly and intimal thickening.
Collapse
Affiliation(s)
- Fernando S Santiago
- Centre for Vascular Research, Department of Pathology, University of New South Wales, and Department of Haematology, The Prince of Wales Hospital, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lindsley A, Snider P, Zhou H, Rogers R, Wang J, Olaopa M, Kruzynska-Frejtag A, Koushik SV, Lilly B, Burch JB, Firulli AB, Conway. SJ. Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer. Dev Biol 2007; 307:340-55. [PMID: 17540359 PMCID: PMC1995123 DOI: 10.1016/j.ydbio.2007.04.041] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/17/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
Periostin is a fasciclin-containing adhesive glycoprotein that facilitates the migration and differentiation of cells that have undergone epithelial-mesenchymal transformation during embryogenesis and in pathological conditions. Despite the importance of post-transformational differentiation as a general developmental mechanism, little is known how periostin's embryonic expression is regulated. To help resolve this deficiency, a 3.9-kb periostin proximal promoter was isolated and shown to drive tissue-specific expression in the neural crest-derived Schwann cell lineage and in a subpopulation of periostin-expressing cells in the cardiac outflow tract endocardial cushions. In order to identify the enhancer and associated DNA binding factor(s) responsible, in vitro promoter dissection was undertaken in a Schwannoma line. Ultimately a 304-bp(peri) enhancer was identified and shown to be capable of recapitulating 3.9 kb(peri-lacZ)in vivo spatiotemporal patterns. Further mutational and EMSA analysis helped identify a minimal 37-bp region that is bound by the YY1 transcription factor. The 37-bp enhancer was subsequently shown to be essential for in vivo 3.9 kb(peri-lacZ) promoter activity. Taken together, these studies identify an evolutionary-conserved YY1-binding 37-bp region within a 304-bp periostin core enhancer that is capable of regulating simultaneous novel tissue-specific periostin expression in the cardiac outflow-tract cushion mesenchyme and Schwann cell lineages.
Collapse
Affiliation(s)
- Andrew Lindsley
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Paige Snider
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Hongming Zhou
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Rhonda Rogers
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jian Wang
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Michael Olaopa
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | | | - Brenda Lilly
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, GA 30912
| | - John B.E. Burch
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anthony B. Firulli
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Simon J. Conway.
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Address correspondence to: Simon J. Conway, Riley Hospital for Children, 1044 West Walnut Street, Room R4 W379, Indiana University School of Medicine, Indianapolis, IN 46202, USA. phone: (317) 278-8780; fax: (317) 278-5413; e-mail:
| |
Collapse
|
30
|
Márquez-Marín R, Sánchez Arellano B, González-Bonilla C, Solís Vallejo E, Luis Matamoros-Tapia J, Huerta-Yepez S. [Ying-Yang (YY-1) expression and Fas in biopsies of children with type IV lupus nephritis correlates with the clinical condition]. ACTA ACUST UNITED AC 2007; 3:117-25. [PMID: 21794413 DOI: 10.1016/s1699-258x(07)73678-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 03/20/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND It has been demonstrated that Fasmediated apoptosis participates in the physiopathology of lupus nephritis, although it is not clear whether it contributes to the development of the tissue damage.Since YY-1 down regulates Fas in cancer cell lines, it is reasonable to consider that this transcription factor may control Fas expression in lupus nephritis. The objective was to determine the correlation between YY-1 and Fas expression in renal biopsies from children with type IV lupus nephritis, and their association with the clinical condition of the patients. MATERIAL AND METHODS Eighteen biopsies from children with type IV lupus nephritis and 5 controls were studied. Fas and YY-1 expression were determined by immunochemistry and quantified by densytometric analysis. The clinical conditions at the moment the biopsy were obtained from the clinical records and the results were analyzed through a one-way ANOVA with p<0.005. RESULTS The results of the densytometric analysis showed an inverse relationship between YY-1 and Fas expression. YY-1 was grouped according to the intensity of expression in low, moderate and high and compared with the expression of Fas. The lupus nephritis biopsies, which revealed high expression of YY-1, corresponded to patients with less number of clinical complications,better outcome and fewer alterations on renal function.In contrast, low expression of YY-1 correlated with high Fas expression and worst clinical conditions. CONCLUSIONS The present study suggests that YY-1regulates Fas expression in lupus nephritis and that it is associated with the clinical outcome of the patients,although further studies are necessary to determine weather it factor may serve as a prognosis factor. This is the first evidence of YY-1 participation in the physiopathology of lupus nephritis.
Collapse
Affiliation(s)
- Rubén Márquez-Marín
- Servicio de Reumatología Pediátrica. Centro Médico Nacional Dr. Gaudencio González Garza La Raza. UMAE. México DF. México
| | | | | | | | | | | |
Collapse
|
31
|
Takasaki N, Kurokawa D, Nakayama R, Nakayama JI, Aizawa S. Acetylated YY1 regulates Otx2 expression in anterior neuroectoderm at two cis-sites 90 kb apart. EMBO J 2007; 26:1649-59. [PMID: 17332747 PMCID: PMC1829384 DOI: 10.1038/sj.emboj.7601619] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 01/23/2007] [Indexed: 11/09/2022] Open
Abstract
The mouse homeobox gene Otx2 plays essential roles at each step and in every tissue during head development. We have previously identified a series of enhancers that are responsible for driving the Otx2 expression in these contexts. Among them the AN enhancer, existing 92 kb 5' upstream, directs Otx2 expression in anterior neuroectoderm (AN) at the headfold stage. Analysis of the enhancer mutant Otx2(DeltaAN/-) indicated that Otx2 expression under the control of this enhancer is essential to the development of AN. This study demonstrates that the AN enhancer is promoter-dependent and regulated by acetylated YY1. YY1 binds to both the AN enhancer and promoter region. YY1 is acetylated in the anterior head, and only acetylated YY1 can bind to the sequence in the enhancer. Moreover, YY1 binding to both of these two sites is essential to Otx2 expression in AN. These YY1 binding sites are highly conserved in AN enhancers in tetrapods, coelacanth and skate, suggesting that establishment of the YY1 regulation coincides with that of OTX2 function in AN development in an ancestral gnathostome.
Collapse
Affiliation(s)
- Nobuyoshi Takasaki
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Daisuke Kurokawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Rika Nakayama
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Jun-ichi Nakayama
- Laboratory for Chromatin Dynamics, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Shinichi Aizawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
- Laboratory for Vertebrate Body Plan, RIKEN Kobe, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan. Tel.: +81783063149; Fax: +81783063148; E-mail:
| |
Collapse
|
32
|
Donohoe ME, Zhang LF, Xu N, Shi Y, Lee JT. Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch. Mol Cell 2007; 25:43-56. [PMID: 17218270 DOI: 10.1016/j.molcel.2006.11.017] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/13/2006] [Accepted: 11/16/2006] [Indexed: 11/27/2022]
Abstract
In mammals, inactivation of one X chromosome in the female equalizes gene dosages between XX females and XY males. Two noncoding loci, Tsix and Xite, together regulate X chromosome fate by controlling homologous chromosome pairing, counting, and mutually exclusive choice. Following choice, the asymmetry of Xite and Tsix expression drives divergent chromosome fates, but how this pattern becomes established is currently unknown. Although no proven trans-acting factors have been identified, a likely candidate is Ctcf, a chromatin insulator with essential function in autosomal imprinting. Here, we search for trans-factors and identify Yy1 as a required cofactor for Ctcf. Paired Ctcf-Yy1 elements are highly clustered within the counting/choice and imprinting domain of Tsix. A deficiency of Yy1 leads to aberrant Tsix and Xist expression, resulting in a deficit of male and female embryos. Yy1 and Ctcf associate through specific protein-protein interactions and together transactivate Tsix. We propose that the Ctcf-Yy1-Tsix complex functions as a key component of the X chromosome binary switch.
Collapse
|
33
|
Wang CC, Chen JJW, Yang PC. Multifunctional transcription factor YY1: a therapeutic target in human cancer? Expert Opin Ther Targets 2006; 10:253-66. [PMID: 16548774 DOI: 10.1517/14728222.10.2.253] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The multifunctional transcription factor Yin Yang 1 (YY1) is a complex protein that has been shown to play pivotal roles in development, differentiation, cellular proliferation and apoptosis. It can act as a transcriptional repressor, an activator, or an initiator element binding protein that directs and initiates transcription of numerous cellular and viral genes. Because the expression and function of YY1 are known to be intimately associated with cell-cycle progression, the physiological significance of YY1 activity has recently been applied to models of cancer biology. Several lines of evidence imply that YY1 expression and/or activation is associated with tumourigenesis, in addition to its regulatory roles in normal biological processes. However, controversial results also raised and indicated that further studies are still needed to piece all of the seemingly contradictory data into a complete picture. On the basis of YY1 regulations and functions, novel drugs and specific treatment strategies may be developed with new therapeutic applications for tumour patients in the future.
Collapse
Affiliation(s)
- Chi-Chung Wang
- National Taiwan University College of Medicine, NTU Center for Genomic Medicine, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
34
|
Emran F, Florens L, Ma B, Swanson SK, Washburn MP, Hernandez N. A role for Yin Yang-1 (YY1) in the assembly of snRNA transcription complexes. Gene 2006; 377:96-108. [PMID: 16769183 DOI: 10.1016/j.gene.2006.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 03/17/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
The RNA polymerase (pol) II and III human small nuclear RNA (snRNA) genes have very similar promoters and recruit a number of common factors. In particular, both types of promoters utilize the small nuclear RNA activating protein complex (SNAP(c)) and the TATA box binding protein (TBP) for basal transcription, and are activated by Oct-1. We find that SNAP(c) purified from cell lines expressing tagged SNAP(c) subunits is associated with Yin Yang-1 (YY1), a factor implicated in both activation and repression of transcription. Recombinant YY1 accelerates the binding of SNAP(c) to the proximal sequence element, its target within snRNA promoters. Moreover, it enhances the formation of a complex on the pol III U6 snRNA promoter containing all the factors (SNAP(c), TBP, TFIIB-related factor 2 (Brf2), and B double prime 1 (Bdp1)) that are sufficient to direct in vitro U6 transcription when complemented with purified pol III, as well as that of a subcomplex containing TBP, Brf2, and Bdp1. YY1 is found on both the RNA polymerase II U1 and the RNA polymerase III U6 promoters as determined by chromatin immunoprecipitations. Thus, YY1 represents a new factor that participates in transcription complexes formed on both pol II and III promoters.
Collapse
Affiliation(s)
- Farida Emran
- Stony Brook University, Graduate Program in Molecular and Cellular Pharmacology, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
35
|
de Nigris F, Botti C, Rossiello R, Crimi E, Sica V, Napoli C. Cooperation between Myc and YY1 provides novel silencing transcriptional targets of alpha3beta1-integrin in tumour cells. Oncogene 2006; 26:382-94. [PMID: 16878156 DOI: 10.1038/sj.onc.1209804] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We show that human osteosarcoma cells (Saos-2) have downregulation of alpha3beta1-integrin compared to normal bone cells; this was further described in human osteosarcomas and in a primary murine sarcoma. The alpha3 gene was silenced in Saos-2 cells causing a low expression of alpha3beta1-integrin and reduction in collagen attachment with increasing migratory capacity. Chromatin immunoprecipitation assay performed on alpha3 promoter established that Myc and Yin Yang protein (YY1) cooperate in tandem to downregulate the alpha3 gene. This silencing mechanism involves the binding of Myc and YY1 to DNA and formation of complexes among Myc/Max, YY1, CREB-binding protein and deacetylation activity. The promoter containing deletions of E-boxes or YY1 cassettes failed to downregulate the transcription of a reporter gene as well as the inhibition of deacetylation activity. Overexpression of both Myc and YY1 was necessary to determine the alpha3-integrin promoter downregulation in normal osteoblasts. This downregulation of alpha3beta1-integrin can contribute to the acquisition of a more aggressive phenotype. YY1 regulated negatively the Myc activity through a direct interaction with the Myc/Max and deacetylase complexes. This represents a novel silencing mechanism with broad implications in the transcription machinery of tumours.
Collapse
Affiliation(s)
- F de Nigris
- Department of General Pathology, Division of Clinical Pathology, 1st School of Medicine, II University of Naples, Naples, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Gordon S, Akopyan G, Garban H, Bonavida B. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 2006; 25:1125-42. [PMID: 16314846 DOI: 10.1038/sj.onc.1209080] [Citation(s) in RCA: 575] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ubiquitous transcription factor Yin Yang 1 (YY1) is known to have a fundamental role in normal biologic processes such as embryogenesis, differentiation, replication, and cellular proliferation. YY1 exerts its effects on genes involved in these processes via its ability to initiate, activate, or repress transcription depending upon the context in which it binds. Mechanisms of action include direct activation or repression, indirect activation or repression via cofactor recruitment, or activation or repression by disruption of binding sites or conformational DNA changes. YY1 activity is regulated by transcription factors and cytoplasmic proteins that have been shown to abrogate or completely inhibit YY1-mediated activation or repression; however, these mechanisms have not yet been fully elucidated. Since expression and function of YY1 are known to be intimately associated with progression through phases of the cell cycle, the physiologic significance of YY1 activity has recently been applied to models of tumor biology. The majority of the data are consistent with the hypothesis that YY1 overexpression and/or activation is associated with unchecked cellular proliferation, resistance to apoptotic stimuli, tumorigenesis and metastatic potential. Studies involving hematopoetic tumors, epithelial-based tumors, endocrine organ malignancies, hepatocellular carcinoma, and retinoblastoma support this hypothesis. Molecular mechanisms that have been investigated include YY1-mediated downregulation of p53 activity, interference with poly-ADP-ribose polymerase, alteration in c-myc and nuclear factor-kappa B (NF-kappaB) expression, regulation of death genes and gene products, and differential YY1 binding in the presence of inflammatory mediators. Further, recent findings implicate YY1 in the regulation of tumor cell resistance to chemotherapeutics and immune-mediated apoptotic stimuli. Taken together, these findings provide strong support of the hypothesis that YY1, in addition to its regulatory roles in normal biologic processes, may possess the potential to act as an initiator of tumorigenesis and may thus serve as both a diagnostic and prognostic tumor marker; furthermore, it may provide an effective target for antitumor chemotherapy and/or immunotherapy.
Collapse
Affiliation(s)
- S Gordon
- Department of Surgery Division of Transplantation, Dumont-UCLA Transplant Center, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
37
|
Zhang Z, Li M, Rayburn ER, Hill DL, Zhang R, Wang H. Oncogenes as novel targets for cancer therapy (part III): transcription factors. ACTA ACUST UNITED AC 2005; 5:327-38. [PMID: 16196502 DOI: 10.2165/00129785-200505050-00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This is the third paper in a four-part serial review on potential therapeutic targeting of oncogenes. The previous parts described the involvement of oncogenes in different aspects of cancer growth and development, and considered the new technologies responsible for the advancement of oncogene identification, target validation, and drug design. Because of such advances, new specific and more efficient therapeutic agents can be developed for cancer. This part of the review continues the exploration of various oncogenes that we have grouped within seven categories: growth factors, tyrosine kinases, intermediate signaling molecules, transcription factors, cell cycle regulators, DNA damage repair genes, and genes involved in apoptosis. Part one discussed growth factors and tyrosine kinases and part two discussed intermediate signaling molecules. This portion of the review covers transcription factors and the various strategies being used to inhibit their expression or decrease their activities.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pharmacology and Toxicology and Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
38
|
Dar A, Munir S, Vishwanathan S, Manuja A, Griebel P, Tikoo S, Townsend H, Potter A, Kapur V, Babiuk LA. Transcriptional analysis of avian embryonic tissues following infection with avian infectious bronchitis virus. Virus Res 2005; 110:41-55. [PMID: 15845254 PMCID: PMC7114260 DOI: 10.1016/j.virusres.2005.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/27/2004] [Accepted: 01/03/2005] [Indexed: 12/21/2022]
Abstract
Avian infectious bronchitis virus (IBV) infection is one of the major viral respiratory diseases of chickens. Better understanding of the molecular basis of viral pathogenesis should contribute significantly towards the development of improved prophylactic, therapeutic and diagnostic reagents to control infections. In the present investigation, transcriptional profiles were analyzed by using RNA recovered from the lung tissue of IBV infected 18-day-old chicken embryos at 6, 24, 48 and 72 h post IBV infection. This microarray analysis was completed using avian cDNA arrays comprised of fragments of 1191 unique chicken and turkey gene transcripts. These arrays were generated from normalized cDNA subtraction libraries that were derived from avian pneumovirus (APV) infected chicken embryo fibroblast (CEF) cultures and tissues obtained from APV infected turkeys subtracted with their respective uninfected cultures and tissues. Of the 1191 unique genes represented on the array, the expression of a total of 327 genes (27% of total) were altered by two-fold or more from 6 through 72 h post-infection. A comparative analysis of IBV regulated genes with genes previously reported to change in expression following infection with other avian respiratory viruses revealed both conserved and unique changes. Real-time qRT-PCR was used to confirm the regulated expression of genes related to several functional classes including kinases, interferon induced genes, chemokines and adhesion molecules, vesicular trafficking and fusion protein genes, extracellular matrix protein genes, cell cycle, metabolism, cell physiology and development, translation, RNA binding, lysosomal, protein degradation and ubiquitination related genes. Microarray analysis served as an efficient tool in facilitating a comparative analysis of avian respiratory viral infections and provided insight into host transcriptional changes that were conserved as well as those which were unique to individual pathogens.
Collapse
Affiliation(s)
- Arshud Dar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shi Z, Silveira A, Patel P, Feng X. YY1 is involved in RANKL-induced transcription of the tartrate-resistant acid phosphatase gene in osteoclast differentiation. Gene 2005; 343:117-26. [PMID: 15563837 DOI: 10.1016/j.gene.2004.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 07/30/2004] [Accepted: 08/12/2004] [Indexed: 11/16/2022]
Abstract
Receptor activator of nuclear factor kappa B (NF-kappaB) ligand (RANKL), a critical activator of osteoclast differentiation, plays a pivotal role in tartrate-resistant acid phosphatase (TRAP) gene expression. Previously, we showed that upstream stimulatory factors (USF) 1 and 2 are implicated in the RANKL-induced TRAP transcriptional activation via a 12-bp USF binding site in the TRAP promoter. In that study, we also demonstrated that a RANKL-induced nuclear protein binds to a 50-bp oligonucleotide (Oligo IV) corresponding to a distinct TRAP promoter region. Here we report the identification and functional characterization of the nuclear protein binding to Oligo IV. We identified a 21-bp sequence CTGTTTATGATGGCGAGGGGG in Oligo IV that specifically binds the RANKL-induced nuclear protein from RAW264.7 cells by performing a series of competition assays. Computer analysis of the 21-bp sequence revealed that the sequence contains a putative Yin Yang 1 (YY1) binding site overlapped with a putative activator protein-2 (AP-2) binding site. Competition and supershift assays indicated that the nuclear protein binding to the 21-bp sequence is YY1, not AP-2. Functionally, mutation of the YY1-binding site resulted in a reduction in the RANKL-induced TRAP transcription in RAW264.7 cells, demonstrating that YY1 positively regulates RANKL-induced TRAP transcriptional activation. In conclusion, our data demonstrated that YY1 plays a functional role in RANKL-mediated TRAP gene expression during osteoclast differentiation.
Collapse
Affiliation(s)
- Zhenqi Shi
- Department of Pathology, University of Alabama at Birmingham, 1670 University BLVD, VH G046B, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
40
|
Mohamedali A, Moreau-Gaudry F, Richard E, Xia P, Nolta J, Malik P. Self-inactivating lentiviral vectors resist proviral methylation but do not confer position-independent expression in hematopoietic stem cells. Mol Ther 2005; 10:249-59. [PMID: 15294172 DOI: 10.1016/j.ymthe.2004.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Accepted: 05/02/2004] [Indexed: 11/18/2022] Open
Abstract
Oncoretroviral expression is transcriptionally silenced in embryonic and hematopoietic stem cells (HSCs). This is associated with methylation of viral and internal promoters. We determined whether self-inactivating (SIN) lentiviral vectors (LV) would circumvent proviral silencing in HSCs. We studied long-term expression, methylation, and position effects (PE) from two GFP-encoding SIN-LV containing erythroid enhancers and the human ankyrin-1 promoter (h-Ank-P) using the murine secondary bone marrow (BM) transplant assay. Proviral expression was detected in RBC 6-11 months following transplant only in 28 of 49 secondary mice, with 0.9 +/- 0.2 copy/cell and oligoclonally integrated provirus in BM, spleen, and thymus. Twenty-one of 49 secondary mice lacked integrated provirus. Secondary mice containing provirus also had GFP-expressing RBCs, although proviral copy number did not always correlate with expression, suggesting either proviral methylation or chromatin PE. The endogenous h-Ank-P was partially methylated in nonerythroid cell lines and unmethylated in erythroid cell lines. However, h-Ank-P in the provirus was unmethylated in erythroid and nonerythroid cells within secondary murine BM. Despite lack of methylation, GFP expression was variable in secondary BFU-e and in single-copy mouse erythroleukemia cell clones. Taken together, these data show that erythroid-specific SIN-LV express long term and resist methylation-associated proviral silencing, but may require additional elements to confer position-independent expression.
Collapse
Affiliation(s)
- Azim Mohamedali
- Division of Hematology-Oncology, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, 90027, USA
| | | | | | | | | | | |
Collapse
|
41
|
Davies N, Freebody J, Murray V. Chromatin structure at the flanking regions of the human beta-globin locus control region DNase I hypersensitive site-2: proposed nucleosome positioning by DNA-binding proteins including GATA-1. ACTA ACUST UNITED AC 2004; 1679:201-13. [PMID: 15358512 DOI: 10.1016/j.bbaexp.2004.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 04/06/2004] [Accepted: 04/08/2004] [Indexed: 11/27/2022]
Abstract
The human beta-globin locus control region DNase I hypersensitive site-2 (LCR HS-2) is erythroid-specific and is located 10.9 kb upstream of the epsilon-globin gene. Most studies have only examined the core region of HS-2. However, previous studies in this laboratory indicate that positioned nucleosomes are present at the 5'- and 3'-flanking regions of HS-2. In addition, footprints were observed that indicated the involvement of DNA-binding proteins in positioning the nucleosome cores. A consensus GATA-1 site exists in the region of the 3'-footprint. In this study, using an electrophoretic mobility shift assay (EMSA) and DNase I footprinting, we confirmed that GATA-1 binds in vitro at the 3'-end of HS-2. An additional GATA-1 site was found to bind GATA-1 in vitro at a site positioned 40 bp upstream. At the 5'-end of HS-2, DNase I footprinting revealed a series of footprints showing a marked correlation with the in vivo footprints. EMSA indicated the presence of several erythroid-specific complexes in this region including GATA-1 binding. Sequence alignment for 12 mammalian species in HS-2 confirmed that the highest conservation to be in the HS-2 core. However, a second level of conservation extends from the core to the sites of the proposed positioning proteins at the HS-2 flanking regions, before declining rapidly. This indicates the importance of the HS-2 flanking regions and supports the proposal of nucleosome positioning proteins in these regions.
Collapse
Affiliation(s)
- Neil Davies
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | | | |
Collapse
|
42
|
Nguyen N, Zhang X, Olashaw N, Seto E. Molecular Cloning and Functional Characterization of the Transcription Factor YY2. J Biol Chem 2004; 279:25927-34. [PMID: 15087442 DOI: 10.1074/jbc.m402525200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
YY1 is a ubiquitous zinc finger transcription factor that binds to and regulates promoters and enhancers of many cellular and viral genes. Here we report the isolation of a human cDNA encoding a DNA sequence-specific binding protein with significant homology to the transcription factor YY1. A sequence analysis of this novel protein, YY2, revealed an overall 65% identity in the DNA sequence and a 56% identity in protein sequence compared with human YY1. The most pronounced similarity between YY1 and YY2 exists within the zinc finger regions of the two proteins, and consistent with this observation, YY2 can bind to and regulate some promoters known to be controlled by YY1. Similar to YY1, YY2 contains both transcriptional activation and repression functions. The finding of a protein with structure and function similar to YY1 provides a new opportunity to explore additional mechanisms by which YY1-responsive genes can be regulated and suggests that gene regulation by YY1 is far more complicated than previously assumed.
Collapse
Affiliation(s)
- Nang Nguyen
- Department of Medical Microbiology and Immunology, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
43
|
Xu L, Tsuji K, Mostowski H, Candotti F, Rosenberg A. Evidence that the mouse 3' kappa light chain enhancer confers position-independent transgene expression in T- and B-lineage cells. Hum Gene Ther 2003; 14:1753-64. [PMID: 14670126 DOI: 10.1089/104303403322611764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the major obstacles for successful application of murine leukemia virus (MLV) vectors to genetic therapy of lymphocyte disorders is low levels of transgene expression or the eventual loss of expression. To overcome this problem, an improved retroviral vector was constructed utilizing the myeloproliferative sarcoma virus (MPSV) long terminal repeat (LTR), which provided a significantly higher level of transgene expression in human lymphoid cells than did MLV vectors. Nevertheless, transgene expression remained low in a large percentage of transduced cells. To address whether lymphocyte enhancer elements might improve transgene expression mediated by retroviral vectors in lymphocytes, we cloned the mouse immunoglobulin 3' kappa light chain enhancer gene (mE3') into the MPSV vector. We found that the mE3' conferred a higher, more uniform and sustained level of expression in transduced T- and B-cell lines, and in primary T cells, than did the control vector lacking this element. Integration sites were diverse and a single copy of the proviral genome was present in all examined transduced cells. The mE3' failed to enhance transgene expression in most nonlymphoid cells, indicating it is relatively lineage-specific. Taken together, these results provide strong evidence that the mE3' functions as a locus control region (LCR) in conferring enhanced integration-site-independent expression of a retroviral transgene.
Collapse
Affiliation(s)
- Lai Xu
- Division of Therapeutic Proteins, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
44
|
Yeh TS, Lin YM, Hsieh RH, Tseng MJ. Association of transcription factor YY1 with the high molecular weight Notch complex suppresses the transactivation activity of Notch. J Biol Chem 2003; 278:41963-9. [PMID: 12913000 DOI: 10.1074/jbc.m304353200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch receptors are evolutionarily conserved from Drosophila to human and play important roles in cell fate decisions. After ligand binding, Notch receptors are cleaved to release their intracellular domains. The intracellular domains, the activated form of Notch receptors, are then translocated into the nucleus where they interact with other transcriptional machinery to regulate the expression of cellular genes. To dissect the molecular mechanisms of Notch signaling, the cellular targets that interact with Notch1 receptor intracellular domain (N1IC) were screened. In this study, we found that endogenous transcription factor Ying Yang 1 (YY1) was associated with exogenous N1IC in human K562 erythroleukemic cells. The ankyrin (ANK) domain of N1IC and zinc finger domains of YY1 were essential for the association of N1IC and YY1 according to the pull-down assay of glutathione S-transferase fusion proteins. Furthermore, both YY1 and N1IC were present in a large complex of the nucleus to suppress the luciferase reporter activity transactivated by Notch signaling. The transcription factor YY1 indirectly regulated the transcriptional activity of the wild-type CBF1-response elements via the direct interaction of N1IC and CBF1. We also demonstrated the association between endogenous N1IC and intrinsic YY1 in human acute T-cell lymphoblastic leukemia cell lines. Taken together, these results indicate that transcription factor YY1 may modulate Notch signaling via association with the high molecular weight Notch complex.
Collapse
Affiliation(s)
- Tien-Shun Yeh
- Graduate Institute of Cell and Molecular Biology, Center for Stem Cells Research at Wan-Fang Hospital, Taipei Medical University, Taipei 110, Taiwan.
| | | | | | | |
Collapse
|
45
|
Ma SL, Lovmand J, Sørensen AB, Luz A, Schmidt J, Pedersen FS. Triple basepair changes within and adjacent to the conserved YY1 motif upstream of the U3 enhancer repeats of SL3-3 murine leukemia virus cause a small but significant shortening of latency of T-lymphoma induction. Virology 2003; 313:638-44. [PMID: 12954229 DOI: 10.1016/s0042-6822(03)00379-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly conserved sequence upstream of the transcriptional enhancer in the U3 of murine leukemia viruses (MLVs) was reported to mediate negative regulation of their expression. In transient expression studies, negative regulation was reported to be conferred by coexpression of the transcription factor YY1, which binds to a motif in the upstream conserved region (UCR). To address the function of the UCR and its YY1-motif in an in vivo model of MLV-host interactions we introduced six consecutive triple basepair mutations into this region of the potent T-lymphomagenic SL3-3 MLV. We report that all mutants have retained their replication competence and that they all, like the SL3-3 wild type (wt), induce T-cell lymphomas when injected into newborn mice of the SWR strain. However, all mutants induced disease with slightly shorter latency periods than the wt SL3-3, suggesting that the YY1 motif as well as its immediate context in the UCR have a negative effect on the pathogenicity of the virus. This result may have implications for the design of retroviral vectors.
Collapse
Affiliation(s)
- Shi Liang Ma
- Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Dendritic cells (DCs) are described as professional antigen-presenting cells because of their superior T-cell stimulatory capacity. For this reason, attention is being focused on using DCs for clinical applications to treat cancer patients. Although preclinical studies are promising, the majority of clinical studies with DCs have not fulfilled the expectations, yet. The field of DC biology has progressed rapidly over the past years, leading to several options for the improvement of vaccination. Among the different parameters to investigate, this review focuses on the efficiency and biological and functional consequences of different gene transfer methods into different subsets of human DCs. Another important consideration for DC-based vaccination is the elucidation of the role of maturation and apoptosis during DC differentiation.
Collapse
Affiliation(s)
- Andreas Lundqvist
- Cancer Center Karolinska, Immune and Gene Therapy, Department of Oncology and Pathology, Radiumhemmet, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
47
|
Kohler JJ, Tuttle DL, Coberley CR, Sleasman JW, Goodenow MM. Human immunodeficiency virus type 1 (HIV-1) induces activation of multiple STATs in CD4+ cells of lymphocyte or monocyte/macrophage lineages. J Leukoc Biol 2003; 73:407-16. [PMID: 12629155 DOI: 10.1189/jlb.0702358] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) impacts the activation state of multiple lineages of hematopoietic cells. Chronic HIV-1 infection among individuals with progressive disease can be associated with increased levels of activated signal transducers and activators of transcription (STATs) in peripheral blood mononuclear cells. To investigate interactions between HIV-1 and CD4(+) cells, activated, phosphorylated STAT proteins in nuclear extracts from lymphocytic and promonocytic cell lines as well as primary monocyte-derived macrophages were measured. Levels of activated STATs increased six- to tenfold in HUT78 and U937 cells within 2 h following exposure to virions. The response to virus was dose-dependent, but kinetics of activation was delayed relative to interleukin-2 or interferon-gamma. Activation of STAT1, STAT3, and STAT5 occurred with diverse viral envelope proteins, independent of coreceptor use or viral replication. Envelope-deficient virions had no effect on STAT activation. Monoclonal antibody engagement of CD4 identified a novel role for CD4 as a mediator in the activation of multiple STATs. Results provide a model for HIV-1 pathogenesis in infected and noninfected hematopoietic cells.
Collapse
Affiliation(s)
- James J Kohler
- Department of Pathology, Immunology, and Laboratory Medicine, Division of Immunology and Infectious Diseases, College of Medicine, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
48
|
Iba H, Mizutani T, Ito T. SWI/SNF chromatin remodelling complex and retroviral gene silencing. Rev Med Virol 2003; 13:99-110. [PMID: 12627393 DOI: 10.1002/rmv.378] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Because of the unique infectious cycle of retroviruses which involves the integration of the retroviral genome into the host chromosome, many cellular chromosomal proteins are used by the virus to maintain its gene expression. At the same time, cellular mechanisms for the surveillance and exclusion of non-self expression by such intragenomic parasites operate as an important host defence system in the cellular nuclei. Retroviruses have strategies for escaping from host defence systems, such as by maintaining or reactivating viral expression in specific host cell types. Understanding such epigenetical regulation would be essential for progress in retroviral virology. In this review, we emphasise the importance of the chromatin remodelling factor SWI/SNF complex as one of the key players in epigenetic regulation of host and viral gene expression. An understanding of these mechanisms will surely lead to new ideas on the pathogenicity of this virus, on the latent infection observed in many other viruses, and further forward the design of unique retroviral vectors for long-term transgene expression, providing strong tools for human gene therapy and regenerative medicine.
Collapse
Affiliation(s)
- Hideo Iba
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | |
Collapse
|
49
|
Shou Z, Yamada K, Inazu T, Kawata H, Hirano S, Mizutani T, Yazawa T, Sekiguchi T, Yoshino M, Kajitani T, Okada KI, Miyamoto K. Genomic structure and analysis of transcriptional regulation of the mouse zinc-fingers and homeoboxes 1 (ZHX1) gene. Gene 2003; 302:83-94. [PMID: 12527199 DOI: 10.1016/s0378-1119(02)01093-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mouse zinc-fingers and homeoboxes 1 (ZHX1) gene was cloned and its transcriptional regulatory mechanism analysed. The mouse ZHX1 gene spans approximately 29 kb and consists of five exons. Exons 1-3 contain the nucleotide sequence of the 5'-noncoding region of mouse ZHX1 cDNA, exon 4 contains a part of the 5'-noncoding region, an entire coding sequence, and a part of the 3'-noncoding sequence, and exon 5 contains the resulting 3'-noncoding sequence. The ZHX1 gene exists as one copy in the haploid mouse genome. Two species of ZHX1 mRNA with or without the nucleotide sequence of the third exon are produced by an alternative splicing. To investigate the regulatory elements involved in the transcription of the ZHX1 gene, transient DNA transfection experiments with ZHX1/firefly luciferase reporter genes were performed using a lipofection method. Functional analyses of a series of 5'- and 3'-deletion constructs of the reporter genes revealed that the nucleotide sequence between -59 and +50 is required for full promoter activity in mouse embryonal carcinoma F9 cells. Two positive regulatory cis-acting elements in the region were identified. These elements, designated as Box A and Box B, are located between nucleotides -47 and -42 and +22 and +27, respectively, and synergistically stimulate transcription of the mouse ZHX1 gene. Electrophoretic mobility shift assays with specific competitors and antibodies show that PEA3 and Yin and Yang 1 (YY1) bind to Box A and Box B, respectively. Thus, we conclude that PEA3 and YY1 synergistically stimulate the transcription of the ZHX1 gene.
Collapse
Affiliation(s)
- Zhangfei Shou
- Department of Biochemistry, Fukui Medical University, 910-1193, Fukui, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Van Damme A, Chuah MKL, Dell'accio F, De Bari C, Luyten F, Collen D, VandenDriessche T. Bone marrow mesenchymal cells for haemophilia A gene therapy using retroviral vectors with modified long-terminal repeats. Haemophilia 2003; 9:94-103. [PMID: 12558785 DOI: 10.1046/j.1365-2516.2003.00709.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone marrow (BM) cells are attractive target cells for ex vivo gene therapy of genetic diseases, including haemophilia A. However, BM-derived haematopoietic stem/progenitor cells (HSCs) transduced with factor VIII (FVIII) retroviral vectors, failed to express FVIII in vivo. To overcome the limitations of HSCs for haemophilia gene therapy, BM-derived mesenchymal cells were explored as alternative target cells. The BM mesenchymal cell population contains self-renewing mesenchymal stem/progenitor cells that give rise to different mesenchymal lineages and have been used safely in phase I gene-marking trials. Human BM mesenchymal cells were transduced in vitro with an improved retroviral vector encoding a human B-domain deleted FVIII (hFVIIIdeltaB) cDNA (MND-MFG-hFVIIIdeltaB). This vector contains multiple modifications in the cis-acting elements within the MoMLV long-terminal repeats (LTR) that prevent the binding of repressive transcription factors. These modifications were previously shown to increase and prolong gene expression in embryonic stem (ES) cells and HSCs. Transduction of BM mesenchymal cells with the MND-MFG-hFVIIIdeltaB retroviral vector resulted in high levels of functional human FVIII in vitro, ranging between 300 +/- 50 SD and 700 +/- 100 SD mU per 106 cells per 24 h. Following xenografting of the transduced human BM cells into immunodeficient NOD-SCID mice, therapeutic hFVIII levels of 12 +/- 10 ng mL-1 were detected in the plasma. Polymerase chain reaction analysis demonstrated long-term engraftment (>3 months) of the human BM mesenchymal cells. The long-term persistence of BM mesenchymal cells in the absence of myelo-ablative conditioning and the therapeutic FVIII levels in vivo underscore the potential usefulness of BM-derived mesenchymal cells for haemophilia gene therapy, as opposed to BM-derived HSCs. Despite the modifications of the MoMLV LTR, FVIII expression declined, which coincided with a decrease in FVIII mRNA transcription levels, indicating that the salutary effect of the LTR modification on transgene expression is not universally applicable to all cell types.
Collapse
Affiliation(s)
- A Van Damme
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Capus UZ Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|