1
|
Saba JA, Huang Z, Schole KL, Ye X, Bhatt SD, Li Y, Timp W, Cheng J, Green R. LARP1 senses free ribosomes to coordinate supply and demand of ribosomal proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565189. [PMID: 37961604 PMCID: PMC10635049 DOI: 10.1101/2023.11.01.565189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Terminal oligopyrimidine motif-containing mRNAs (TOPs) encode all ribosomal proteins in mammals and are regulated to tune ribosome synthesis to cell state. Previous studies implicate LARP1 in 40S- or 80S-ribosome complexes that repress and stabilize TOPs. However, a mechanistic understanding of how LARP1 and TOPs interact with these complexes to coordinate TOP outcomes is lacking. Here, we show that LARP1 senses the cellular supply of ribosomes by directly binding non-translating ribosomal subunits. Cryo-EM structures reveal a previously uncharacterized domain of LARP1 bound to and occluding the 40S mRNA channel. Free cytosolic ribosomes induce sequestration of TOPs in repressed 80S-LARP1-TOP complexes independent of alterations in mTOR signaling. Together, this work demonstrates a general ribosome-sensing function of LARP1 that allows it to tune ribosome protein synthesis to cellular demand.
Collapse
Affiliation(s)
- James A. Saba
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally
| | - Zixuan Huang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, 200032, Shanghai, China
- These authors contributed equally
| | - Kate L. Schole
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xianwen Ye
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, 200032, Shanghai, China
| | - Shrey D. Bhatt
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, 200032, Shanghai, China
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, 200032, Shanghai, China
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Miura A, Hosono T, Seki T. Macrophage potentiates the recovery of liver zonation and metabolic function after acute liver injury. Sci Rep 2021; 11:9730. [PMID: 33958644 PMCID: PMC8102573 DOI: 10.1038/s41598-021-88989-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is an exclusive organ with tremendous regenerative capacity. Liver metabolic functions exhibit spatial heterogeneity, reflecting liver zonation. The mechanisms controlling the proliferation of hepatocytes and the accompanying matrix reconstruction during regeneration have been well explored, but the recovery potential of differentiated metabolic functions and zonation after liver injury remains unclear. We employed a mouse model of carbon tetrachloride (CCl4) induced-acute liver injury with clodronate-induced macrophage depletion to clarify the impact of liver injury on liver metabolism and recovery dynamics of metabolic function and liver zonation during regeneration. Depleting macrophages suppressed tissue remodelling and partially delayed cell proliferation during regeneration after liver injury. In addition, recovery of metabolic functions was delayed by suppressing the tissue remodelling caused by the depleted macrophages. The model revealed that drug metabolic function was resilient against the dysfunction caused by liver injury, but glutamine synthesis was not. Metabolomic analysis revealed that liver branched-chain amino acid (BCAA) and carbohydrate metabolism were suppressed by injury. The plasma BCAA concentration reflected recovery of hepatic function during regeneration. Our study reveals one aspect of the regenerative machinery for hepatic metabolism following acute liver injury.
Collapse
Affiliation(s)
- Atsushi Miura
- General Research Institute, Nihon University Collage of Bioresource Sciences, Fujisawa, Kanagawa 252-0880 Japan
| | - Takashi Hosono
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa 252-0880 Japan ,Department of Chemistry and Life Science, Nihon University Collage of Bioresource Sciences, Fujisawa, Kanagawa 252-0880 Japan
| | - Taiichiro Seki
- General Research Institute, Nihon University Collage of Bioresource Sciences, Fujisawa, Kanagawa 252-0880 Japan ,Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa 252-0880 Japan ,Department of Chemistry and Life Science, Nihon University Collage of Bioresource Sciences, Fujisawa, Kanagawa 252-0880 Japan
| |
Collapse
|
3
|
Haneke K, Schott J, Lindner D, Hollensen AK, Damgaard CK, Mongis C, Knop M, Palm W, Ruggieri A, Stoecklin G. CDK1 couples proliferation with protein synthesis. J Cell Biol 2020; 219:e201906147. [PMID: 32040547 PMCID: PMC7054999 DOI: 10.1083/jcb.201906147] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Cell proliferation exerts a high demand on protein synthesis, yet the mechanisms coupling the two processes are not fully understood. A kinase and phosphatase screen for activators of translation, based on the formation of stress granules in human cells, revealed cell cycle-associated kinases as major candidates. CDK1 was identified as a positive regulator of global translation, and cell synchronization experiments showed that this is an extramitotic function of CDK1. Different pathways including eIF2α, 4EBP, and S6K1 signaling contribute to controlling global translation downstream of CDK1. Moreover, Ribo-Seq analysis uncovered that CDK1 exerts a particularly strong effect on the translation of 5'TOP mRNAs, which includes mRNAs encoding ribosomal proteins and several translation factors. This effect requires the 5'TOP mRNA-binding protein LARP1, concurrent to our finding that LARP1 phosphorylation is strongly dependent on CDK1. Thus, CDK1 provides a direct means to couple cell proliferation with biosynthesis of the translation machinery and the rate of protein synthesis.
Collapse
Affiliation(s)
- Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Anne Kruse Hollensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Cyril Mongis
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
- Cell Morphogenesis and Signal Transduction, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Wilhelm Palm
- Cell Signaling and Metabolism, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, University of Heidelberg, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
4
|
Fonseca BD, Lahr RM, Damgaard CK, Alain T, Berman AJ. LARP1 on TOP of ribosome production. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1480. [PMID: 29722158 PMCID: PMC6214789 DOI: 10.1002/wrna.1480] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/27/2022]
Abstract
The ribosome is an essential unit of all living organisms that commands protein synthesis, ultimately fuelling cell growth (accumulation of cell mass) and cell proliferation (increase in cell number). The eukaryotic ribosome consists of 4 ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs). Despite its fundamental role in every living organism, our present understanding of how higher eukaryotes produce the various ribosome components is incomplete. Uncovering the mechanisms utilized by human cells to generate functional ribosomes will likely have far-reaching implications in human disease. Recent biochemical and structural studies revealed La-related protein 1 (LARP1) as a key new player in RP production. LARP1 is an RNA-binding protein that belongs to the LARP superfamily; it controls the translation and stability of the mRNAs that encode RPs and translation factors, which are characterized by a 5' terminal oligopyrimidine (5'TOP) motif and are thus known as TOP mRNAs. The activity of LARP1 is regulated by the mammalian target of rapamycin complex 1 (mTORC1): a eukaryotic protein kinase complex that integrates nutrient sensing with mRNA translation, particularly that of TOP mRNAs. In this review, we provide an overview of the role of LARP1 in the control of ribosome production in multicellular eukaryotes. This article is categorized under: Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
| | | | | | - Tommy Alain
- Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | |
Collapse
|
5
|
Chernoff N, Hill DJ, Chorus I, Diggs DL, Huang H, King D, Lang JR, Le TT, Schmid JE, Travlos GS, Whitley EM, Wilson RE, Wood CR. Cylindrospermopsin toxicity in mice following a 90-d oral exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:549-566. [PMID: 29693504 PMCID: PMC6764423 DOI: 10.1080/15287394.2018.1460787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/26/2018] [Indexed: 05/19/2023]
Abstract
Cylindrospermopsin (CYN) is a toxin associated with numerous species of freshwater cyanobacteria throughout the world. It is postulated to have caused an episode of serious illnesses in Australia through treated drinking water, as well as lethal effects in livestock exposed to water from farm ponds. Toxicity included effects indicative of both hepatic and renal dysfunction. In humans, symptoms progressed from initial hepatomegaly, vomiting, and malaise to acidosis and hypokalemia, bloody diarrhea, and hyperemia in mucous membranes. Laboratory animal studies predominantly involved the intraperitoneal (i.p.) route of administration and confirmed this pattern of toxicity with changes in liver enzyme activities and histopathology consistent with hepatic injury and adverse renal effects. The aim of this study was designed to assess subchronic oral exposure (90 d) of purified CYN from 75 to 300 µg/kg/d in mouse. At the end of the dosing period, examinations of animals noted (1) elevated organ to body weight ratios of liver and kidney at all dose levels, (2) treatment-related increases in serum alanine aminotransferase (ALT) activity, (3) decreased blood urea nitrogen (BUN) and cholesterol concentrations in males, and (4) elevated monocyte counts in both genders. Histopathological alterations included hepatocellular hypertrophy and cord disruption in the liver, as well as renal cellular hypertrophy, tubule dilation, and cortical tubule lesions that were more prominent in males. A series of genes were differentially expressed including Bax (apoptosis), Rpl6 (tissue regeneration), Fabp4 (fatty acid metabolism), and Proc (blood coagulation). Males were more sensitive to many renal end points suggestive of toxicity. At the end of exposure, toxicity was noted at all dose levels, and the 75 µg/kg group exhibited significant effects in liver and kidney/body weight ratios, reduced BUN, increased serum monocytes, and multiple signs of histopathology indicating that a no-observed-adverse-effect level could not be determined for any dose level.
Collapse
Affiliation(s)
- N Chernoff
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| | - D J Hill
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| | - I Chorus
- b Division of Drinking-Water and Swimming-Pool Hygiene , Umweltbundesamt , Berlin , Germany
| | - D L Diggs
- c NHEERL , Oak Ridge Institute for Science and Education Internship/Research Participation Program at the US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - H Huang
- d North Carolina State University , Raleigh , NC , USA
| | - D King
- e Cellular and Molecular Pathology Branch , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - J R Lang
- c NHEERL , Oak Ridge Institute for Science and Education Internship/Research Participation Program at the US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - T-T Le
- c NHEERL , Oak Ridge Institute for Science and Education Internship/Research Participation Program at the US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - J E Schmid
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| | - G S Travlos
- e Cellular and Molecular Pathology Branch , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - E M Whitley
- f Pathogenesis , LLC , Gainesville , FL , USA
| | - R E Wilson
- e Cellular and Molecular Pathology Branch , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - C R Wood
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| |
Collapse
|
6
|
Malavaki CJ, Sakkas GK, Mitrou GI, Kalyva A, Stefanidis I, Myburgh KH, Karatzaferi C. Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy. J Muscle Res Cell Motil 2016; 36:405-21. [DOI: 10.1007/s10974-015-9439-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/08/2015] [Indexed: 01/07/2023]
|
7
|
Meyuhas O, Kahan T. The race to decipher the top secrets of TOP mRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:801-11. [PMID: 25234618 DOI: 10.1016/j.bbagrm.2014.08.015] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 12/20/2022]
Abstract
Cells encountering hostile growth conditions, like those residing in the middle of a newly developing solid tumor, conserve resources and energy by downregulating protein synthesis. One mechanism in this response is the translational repression of multiple mRNAs that encode components of the translational apparatus. This coordinated translational control is carried through a common cis-regulatory element, the 5' Terminal OligoPyrimidine motif (5'TOP), after which these mRNAs are referred to as TOP mRNAs. Subsequent to the initial structural and functional characterization of members of this family, the research of TOP mRNAs has progressed in three major directions: a) delineating the landscape of the family; b) establishing the pathways that transduce stress cues into selective translational repression; and c) attempting to decipher the most proximal trans-acting factor(s) and defining its mode of action--a repressor or activator. The present chapter critically reviews the development in these three avenues of research with a special emphasis on the two "top secrets" of the TOP mRNA family: the scope of its members and the identity of the proximal cellular regulator(s). This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Tamar Kahan
- Bioinformatics Unit, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
8
|
Espeillac C, Mitchell C, Celton-Morizur S, Chauvin C, Koka V, Gillet C, Albrecht JH, Desdouets C, Pende M. S6 kinase 1 is required for rapamycin-sensitive liver proliferation after mouse hepatectomy. J Clin Invest 2011; 121:2821-32. [PMID: 21633171 PMCID: PMC3223822 DOI: 10.1172/jci44203] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 04/13/2011] [Indexed: 01/23/2023] Open
Abstract
Rapamycin is an antibiotic inhibiting eukaryotic cell growth and proliferation by acting on target of rapamycin (TOR) kinase. Mammalian TOR (mTOR) is thought to work through 2 independent complexes to regulate cell size and cell replication, and these 2 complexes show differential sensitivity to rapamycin. Here we combine functional genetics and pharmacological treatments to analyze rapamycin-sensitive mTOR substrates that are involved in cell proliferation and tissue regeneration after partial hepatectomy in mice. After hepatectomy, hepatocytes proliferated rapidly, correlating with increased S6 kinase phosphorylation, while treatment with rapamycin derivatives impaired regeneration and blocked S6 kinase activation. In addition, genetic deletion of S6 kinase 1 (S6K1) caused a delay in S phase entry in hepatocytes after hepatectomy. The proliferative defect of S6K1-deficient hepatocytes was cell autonomous, as it was also observed in primary cultures and hepatic overexpression of S6K1-rescued proliferation. We found that S6K1 controlled steady-state levels of cyclin D1 (Ccnd1) mRNA in liver, and cyclin D1 expression was required to promote hepatocyte cell cycle. Notably, in vivo overexpression of cyclin D1 was sufficient to restore the proliferative capacity of S6K-null livers. The identification of an S6K1-dependent mechanism participating in cell proliferation in vivo may be relevant for cancer cells displaying high mTOR complex 1 activity and cyclin D1 accumulation.
Collapse
Affiliation(s)
- Catherine Espeillac
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Claudia Mitchell
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Séverine Celton-Morizur
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Céline Chauvin
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Vonda Koka
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Cynthia Gillet
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Jeffrey H. Albrecht
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Chantal Desdouets
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Mario Pende
- Inserm, U845, Paris, France.
Université Paris Descartes, Faculté de Médecine, UMRS-845, Paris, France.
Inserm, U1016, Paris, France.
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Meyuhas O, Dreazen A. Ribosomal protein S6 kinase from TOP mRNAs to cell size. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:109-53. [PMID: 20374740 DOI: 10.1016/s1877-1173(09)90003-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ribosomal protein S6 kinase (S6K) has been implicated in the phosphorylation of multiple substrates and is subject to activation by a wide variety of signals that converge at mammalian target of rapamycin (mTOR). In the course of the search for its physiological role, it was proposed that S6K activation and ribosomal protein S6 (rpS6) phosphorylation account for the translational activation of a subgroup of transcripts, the TOP mRNAs. The structural hallmark of these mRNAs is an oligopyrimidine tract at their 5'-terminus, known as the 5'-TOP motif. TOP mRNAs consists of about 90 members that encode multiple components of the translational machinery, such as ribosomal proteins and translation factors. The translation efficiency of TOP mRNAs indeed correlates with S6K activation and rpS6 phosphorylation, yet recent biochemical and genetic studies have established that, although S6K and TOP mRNAs respond to similar signals and are regulated by mTOR, they maintain no cause and effect relationship. Instead, S6K is primarily involved in regulation of cell size, and affects glucose homeostasis, but is dispensable for global protein synthesis, whereas translational efficiency of TOP mRNAs is a determinant of the cellular protein synthesis capacity. Despite extensive studies of their function and mode of regulation, the mechanism underlying the effect of S6K on the cell size, as well as the trans-acting factor that mediates the translational control of TOP mRNAs, still await their identification.
Collapse
Affiliation(s)
- Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
10
|
Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J, Babcock GF, Bernardi R, Pandolfi PP, Thomas G. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 2009; 11:501-8. [PMID: 19287375 DOI: 10.1038/ncb1858] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/15/2008] [Indexed: 11/09/2022]
Abstract
Impaired ribosome biogenesis is attributed to nucleolar disruption and diffusion of a subset of 60S ribosomal proteins, particularly ribosomal protein (rp)L11, into the nucleoplasm, where they inhibit MDM2, leading to p53 induction and cell-cycle arrest. Previously, we demonstrated that deletion of the 40S rpS6 gene in mouse liver prevents hepatocytes from re-entering the cell cycle after partial hepatectomy. Here, we show that this response leads to an increase in p53, which is recapitulated in culture by rpS6-siRNA treatment and rescued by the simultaneous depletion of p53. However, disruption of biogenesis of 40S ribosomes had no effect on nucleolar integrity, although p53 induction was mediated by rpL11, leading to the finding that the cell selectively upregulates the translation of mRNAs with a polypyrimidine tract at their 5'-transcriptional start site (5'-TOP mRNAs), including that encoding rpL11, on impairment of 40S ribosome biogenesis. Increased 5'-TOP mRNA translation takes place despite continued 60S ribosome biogenesis and a decrease in global translation. Thus, in proliferative human disorders involving hypomorphic mutations in 40S ribosomal proteins, specific targeting of rpL11 upregulation would spare other stress pathways that mediate the potential benefits of p53 induction.
Collapse
|
11
|
Translational activation of 5′-TOP mRNA in pressure overload myocardium. Basic Res Cardiol 2007; 103:41-53. [DOI: 10.1007/s00395-007-0682-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 09/13/2007] [Indexed: 01/13/2023]
|
12
|
Sarioglu H, Brandner S, Jacobsen C, Meindl T, Schmidt A, Kellermann J, Lottspeich F, Andrae U. Quantitative analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced proteome alterations in 5L rat hepatoma cells using isotope-coded protein labels. Proteomics 2006; 6:2407-21. [PMID: 16548065 DOI: 10.1002/pmic.200500680] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In an effort to contribute to a better understanding of the hepatic toxicity of the ubiquitous environmental pollutant and hepatocarcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a comprehensive quantitative proteome analysis was performed on 5L rat hepatoma cells exposed to 1 nM TCDD for 8 h. Changes in the abundances of individual protein species in TCDD-treated cells as compared to untreated cells were analysed using the nongel-based isotope-coded protein label (ICPL) method [Schmidt, A., Kellermann, J., Lottspeich, F., Proteomics 2005, 5, 4-15]. 89 proteins were identified as up- or down-regulated by TCDD. For the majority of the altered proteins, an impact of TCDD on their abundance had not been known before. Due to the physicochemical properties or the translational regulation of a large number of the affected proteins, their alteration would have escaped detection by gel-based methods for proteome analysis and by standard mRNA expression profiling, respectively. The identified proteins with TCDD-altered abundance include several proteins implicated in cell cycle regulation, growth factor signalling and the control of apoptosis. The results thus provide new starting-points for the investigation of specific aspects of the toxicity and carcinogenicity of dioxin in liver.
Collapse
Affiliation(s)
- Hakan Sarioglu
- GSF - Forschungszentrum für Umwelt und Gesundheit, Institut für Toxikologie, Neuherberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ding Q, Dimayuga E, Markesbery WR, Keller JN. Proteasome inhibition induces reversible impairments in protein synthesis. FASEB J 2006; 20:1055-63. [PMID: 16770004 DOI: 10.1096/fj.05-5495com] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Proteasome inhibition occurs during normal aging and in a variety of age-related diseases, with inhibition of proteasome function sufficient to induce physiological and pathological alterations observed in each of these conditions. It is presumed that proteasome inhibition induces cellular alterations by promoting rapid protein accumulation, as the direct result of impairments in protein removal, which assumes protein synthesis remains relatively unchanged during proteasome inhibition. We conducted experimentation using established proteasome inhibitors and primary rat neuron cultures in order to elucidate whether proteasome inhibition had any effect on neuronal protein synthesis. Proteasome inhibition impaired neuronal protein synthesis, with concentrations of inhibitor necessary to significantly inhibit protein synthesis similar to the concentrations necessary to induce subsequent neuron death. The inhibition of protein synthesis was reversible during the first 6 h of treatment, with the neurotoxicity of proteasome inhibition reversible during the first 12 h of treatment. These studies are the first to demonstrate a potentially important interplay between the proteasome and protein synthesis in neurons, and the first to identify that some effects of proteasome inhibition are reversible in neurons. Together these findings have important implications for understanding proteasome inhibition as a potential contributor to aging and age-related disease.
Collapse
Affiliation(s)
- Qunxing Ding
- 205 Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, Kentucky 40536-0230, USA
| | | | | | | |
Collapse
|
14
|
Ding Q, Markesbery WR, Cecarini V, Keller JN. Decreased RNA, and Increased RNA Oxidation, in Ribosomes from Early Alzheimer’s Disease. Neurochem Res 2006; 31:705-10. [PMID: 16770743 DOI: 10.1007/s11064-006-9071-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
All cells rely on efficient protein synthesis in order to maintain cellular homeostasis. Recent studies from our laboratory indicate that declines in protein synthesis and ribosome function occur in the earliest stage of Alzheimer's disease (AD). Additional studies indicate a potential role for ribosomal RNA oxidation as a potential mediator of decreased protein synthesis in AD. The ribosome is a complex of proteins and nucleic acids that mediates all protein synthesis. At present it is unclear if significant alterations in ribosomal RNA occurs within the ribosome complex during the progression of AD. In this study we examined the amount of ribosomal RNA in the different ribosomal fractions generated from control subjects, individuals with mild cognitive impairment (MCI), and individuals with AD. Studies were conducted in the inferior parietal lobule of each subject. Together, these data demonstrate that during the progression of AD there is a gross decline in the amount of ribosomal RNA within the ribosome complex. Additionally, these studies provide evidence for gross elevations in RNA oxidation within the ribosome complex of MCI and AD. Together, these data strongly suggest a role for RNA alterations within the ribosome as a mediator of decreased protein synthesis in both MCI and AD.
Collapse
Affiliation(s)
- Qunxing Ding
- Anatomy and Neurobiology, University of Kentucky, 205 Sanders-Brown Center on Aging, Lexington, KY 40536-0230, USA
| | | | | | | |
Collapse
|
15
|
McIntosh KB, Bonham-Smith PC. Ribosomal protein gene regulation: what about plants? ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribosome is an intricate ribonucleoprotein complex with a multitude of protein constituents present in equimolar amounts. Coordination of the synthesis of these ribosomal proteins (r-proteins) presents a major challenge to the cell. Although most r-proteins are highly conserved, the mechanisms by which r-protein gene expression is regulated often differ widely among species. While the primary regulatory mechanisms coordinating r-protein synthesis in bacteria, yeast, and animals have been identified, the mechanisms governing the coordination of plant r-protein expression remain largely unexplored. In addition, plants are unique among eukaryotes in carrying multiple (often more than two) functional genes encoding each r-protein, which substantially complicates coordinate expression. A survey of the current knowledge regarding coordinated systems of r-protein gene expression in different model organisms suggests that vertebrate r-protein gene regulation provides a valuable comparison for plants.
Collapse
Affiliation(s)
- Kerri B. McIntosh
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Peta C. Bonham-Smith
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
16
|
Al-Bader MD, Al-Sarraf HA. Housekeeping gene expression during fetal brain development in the rat-validation by semi-quantitative RT-PCR. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 156:38-45. [PMID: 15862626 DOI: 10.1016/j.devbrainres.2005.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 01/26/2005] [Accepted: 01/26/2005] [Indexed: 11/19/2022]
Abstract
Mammalian gene expression is usually carried out at the level of mRNA where the amount of mRNA of interest is measured under different conditions such as growth and development. It is therefore important to use a "housekeeping gene", that does not change in relative abundance during the experimental conditions, as a standard or internal control. However, recent data suggest that expression of some housekeeping genes may vary with the extent of cell proliferation, differentiation and under various experimental conditions. In this study, the expression of various housekeeping genes (18S rRNA [18S], glyceraldehydes-3-phosphate dehydrogenase [G3PDH], beta-glucuronidase [BGLU], histone H4 [HH4], ribosomal protein L19 [RPL19] and cyclophilin [CY]) was investigated during fetal rat brain development using semi-quantitative RT-PCR at 16, 19 and 21 days gestation. It was found that all genes studied, with exception to G3PDH, did not show any change in their expression levels during development. G3PDH, on the other hand, showed increased expression with development. These results suggest that the choice of a housekeeping gene is critical to the interpretation of experimental results and should be modified according to the nature of the study.
Collapse
Affiliation(s)
- Maie Dawoud Al-Bader
- Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat, Zip Code 13110, Kuwait.
| | | |
Collapse
|
17
|
Lee AY, Kim NH, Park SW. All Trans-Retinoic Acid (ATRA) Elevated Eukaryotic Translation Initiation Factor 4A1 (eIF4A1) mRNA in ATRA-Responsive Vitiliginous Epidermis. ACTA ACUST UNITED AC 2004; 17:659-67. [PMID: 15541024 DOI: 10.1111/j.1600-0749.2004.00186.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic skin disorders that require long-term treatment with corticosteroids, such as vitiligo, may use a combination of topical corticosteroids and topical all-trans-retinoic acid (ATRA) to prevent corticosteroid-induced skin atrophy. Besides protecting against the side effects of corticosteroids, ATRA produces a better clinical outcome in some patients. This study examined whether ATRA influences the expression of mRNAs responsible for the clinical correlation. Differential display was performed using kits incorporating an annealing control primer. Epidermis from suction blisters taken from six patients diagnosed with a generalized type of vitiligo, who were included in a placebo-controlled paired-comparison left-right study using ATRA and vehicle for 3-6 months, were used. Ten differentially expressed mRNAs were identified in those six patients. Expression levels were restored to normal particularly in four types of mRNAs, which were matched with sequences encoding eukaryotic translation initiation factor 4A1 (eIF4A1), ribosomal protein L13, mediator of RNA polymerase to transcription (MRT) and ribosomal phosphoprotein PO. Of those mRNAs, the level of eIF4A1 mRNA showed a clinical correlation; The expression of eIF4A1 mRNA, examined by real-time PCR, was elevated in four patients who showed a favorable clinical response to ATRA, whereas no change or a decrease occurred in three patients whose clinical responses did not differ between ATRA and vehicle treatment. The eIF4A1 protein expression from the other two patients, one of them with a favorable response to ATRA, also showed a clinical correlation. Therefore, eIF4A1 mRNA may be an important gene related to ATRA effects, although further studies are required.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, Eulji University School of Medicine, Seoul, South Korea.
| | | | | |
Collapse
|
18
|
Goggin MM, Nelsen CJ, Kimball SR, Jefferson LS, Morley SJ, Albrecht JH. Rapamycin-sensitive induction of eukaryotic initiation factor 4F in regenerating mouse liver. Hepatology 2004; 40:537-44. [PMID: 15349891 DOI: 10.1002/hep.20338] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Following acute injuries that diminish functional liver mass, the remaining hepatocytes substantially increase overall protein synthesis to meet increased metabolic demands and to allow for compensatory liver growth. Previous studies have not clearly defined the mechanisms that promote protein synthesis in the regenerating liver. In the current study, we examined the regulation of key proteins involved in translation initiation following 70% partial hepatectomy (PH) in mice. PH promoted the assembly of eukaryotic initiation factor (eIF) 4F complexes consisting of eIF4E, eIF4G, eIF4A1, and poly-A binding protein. eIF4F complex formation after PH occurred without detectable changes in eIF4E-binding protein 1 (4E-BP1) phosphorylation or its binding eIF4E. The amount of serine 1108-phosphorylated eIF4G (but not Ser209-phosphorylated eIF4E) was induced following PH. These effects were antagonized by treatment with rapamycin, indicating that target of rapamycin (TOR) activity is required for eIF4F assembly in the regenerating liver. Rapamycin inhibited the induction of cyclin D1, a known eIF4F-sensitive gene, at the level of protein expression but not messenger RNA (mRNA) expression. In conclusion, increased translation initiation mediated by the mRNA cap-binding complex eIF4F contributes to the induction of protein synthesis during compensatory liver growth. Further study of factors that regulate translation initiation may provide insight into mechanisms that govern metabolic homeostasis and regeneration in response to liver injury.
Collapse
Affiliation(s)
- Melissa M Goggin
- Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, MN 55415, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kleene KC, Cataldo L, Mastrangelo MA, Tagne JB. Alternative patterns of transcription and translation of the ribosomal protein L32 mRNA in somatic and spermatogenic cells in mice. Exp Cell Res 2003; 291:101-10. [PMID: 14597412 DOI: 10.1016/s0014-4827(03)00339-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The patterns of transcription and translation of the ribosomal protein L32 (Rpl32) mRNA differ greatly in adult testis and somatic tissues. Northern blots reveal that the levels of Rpl32 mRNA are four- to five-fold higher in prepubertal and adult testes, and purified pachytene spermatocytes and round spermatids than in a variety of nongrowing adult somatic tissues. 5' RACE demonstrates that transcription in 8-day prepubertal testis, which lacks meiotic and haploid cells, strongly prefers the same start site in the 5' terminal oligopyrimidine tract (5' TOP) that is used is somatic cells. The 5' TOP is a cis element that inhibits translation of many mRNAs in nongrowing somatic cells. Although the sizes of deadenylated Rpl32 mRNAs are indistinguishable in somatic and spermatogenic cells, transcription initiates at 11 sites over a 31-nt segment in adult testis and approximately 62% of Rpl32 mRNAs lack a 5' TOP. In agreement with previous studies, low levels of cycloheximide increase the proportions and sizes of polysomes in absorbance profiles, and increase the proportions and sizes of polysomes translating four 5' TOP mRNA species including the Rpl32 mRNA in 8-day seminiferous tubules. In contrast, cycloheximide has little or no effect on the absorbance profiles and distribution of Rpl32 mRNA and 5' TOP mRNAs in adult seminiferous tubules. The failure of cycloheximide to increase the size of polysomes in adult seminiferous tubules implies a block in the pathway by which ribosomes are recruited onto translationally active mRNAs.
Collapse
Affiliation(s)
- Kenneth C Kleene
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125-3393, USA.
| | | | | | | |
Collapse
|
20
|
Asmal M, Colgan J, Naef F, Yu B, Lee Y, Magnasco M, Luban J. Production of Ribosome Components in Effector CD4+ T Cells Is Accelerated by TCR Stimulation and Coordinated by ERK-MAPK. Immunity 2003; 19:535-48. [PMID: 14563318 DOI: 10.1016/s1074-7613(03)00268-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Effector CD4+ T cells rapidly activate high-level cytokine expression following TCR stimulation. Consistent with accelerated protein production in these cells, global mRNA profiles revealed that, after cytokines, the most impressive cluster of activated genes encode rRNA-maturation factors. Activation of these genes was ERK-MAPK dependent, accompanied by increased rRNA transcription and faster maturation kinetics, and much greater in effector CD4+ T cells than in naive cells. Ribosomal protein subunit (RPS) synthesis was also ERK-MAPK dependent and increased to match rRNA production, but without evident increase in RPS mRNA. Instead, stimulation promoted polysome loading of RPS mRNA via cis-acting, 5'-terminal oligopyrimidines. These results demonstrate how, in response to extracellular signals, effector CD4+ T cells coordinately increase multiple ribosomal components to accommodate burgeoning cytokine production.
Collapse
Affiliation(s)
- Mohammed Asmal
- Department of Microbiology, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Kimball SR, Orellana RA, O'Connor PMJ, Suryawan A, Bush JA, Nguyen HV, Thivierge MC, Jefferson LS, Davis TA. Endotoxin induces differential regulation of mTOR-dependent signaling in skeletal muscle and liver of neonatal pigs. Am J Physiol Endocrinol Metab 2003; 285:E637-44. [PMID: 12773308 DOI: 10.1152/ajpendo.00340.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, differential responses of regulatory proteins involved in translation initiation in skeletal muscle and liver during sepsis were studied in neonatal pigs treated with lipopolysaccharide (LPS). LPS did not alter eukaryotic initiation factor (eIF) 2B activity in either tissue. In contrast, binding of eIF4G to eIF4E to form the active mRNA-binding complex was repressed in muscle and enhanced in liver. Phosphorylation of eIF4E-binding protein, 4E-BP1, and ribosomal protein S6 kinase, S6K1, was reduced in muscle during sepsis but increased in liver. Finally, changes in 4E-BP1 and S6K1 phosphorylation were associated with altered phosphorylation of the protein kinase mammalian target of rapamycin (mTOR). Overall, the results suggest that translation initiation in both skeletal muscle and liver is altered during neonatal sepsis by modulation of the mRNA-binding step through changes in mTOR activation. Moreover, the LPS-induced changes in factors that regulate translation initiation are more profound than previously reported changes in global rates of protein synthesis in the neonate. This finding suggests that the initiator methionyl-tRNA-rather than the mRNA-binding step in translation initiation may play a more critical role in maintaining protein synthesis rates in the neonate during sepsis.
Collapse
Affiliation(s)
- Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hornstein E, Tang H, Meyuhas O. Mitogenic and nutritional signals are transduced into translational efficiency of TOP mRNAs. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:477-84. [PMID: 12762050 DOI: 10.1101/sqb.2001.66.477] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- E Hornstein
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
23
|
Gastens MH, Fischer HG. Toxoplasma gondii eukaryotic translation initiation factor 4A associated with tachyzoite virulence is down-regulated in the bradyzoite stage. Int J Parasitol 2002; 32:1225-34. [PMID: 12204222 DOI: 10.1016/s0020-7519(02)00096-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Comparative proteome analysis of mouse-virulent and attenuated Toxoplasma gondii strain revealed that steady-state synthesis of an unknown 53 kDa protein is markedly reduced in attenuated parasites. The results from protein microsequencing allowed isolation of a single-copy gene encoding a T. gondii homologue of eukaryotic translation initiation factor (eIF)4A. The deduced primary structure exhibits all sequence motifs typical of eIF4A. Differential expression of eIF4A between virulent and attenuated parasites was reconfirmed by immunoblot. Consistent with an involvement in the ribosomal preinitiation complex, the protein was localised in the tachyzoite extranuclear cytosol, being loosely associated with microsomal particles. Immunofluorescence detection of eIF4A in T. gondii stages of the intermediate host indicated that the protein is tachyzoite-specific. Stage-dependent expression is regulated at the transcriptional level as determined by reverse transcription-polymerase chain reaction and immunoblot. The down-regulation of eIF4A in attenuated T. gondii parasites and in the bradyzoite stage implies a role in tuning of the homeostasis of protein biosynthesis.
Collapse
Affiliation(s)
- Martin H Gastens
- Institute for Medical Microbiology and Virology, Heinrich-Heine-University, Universitätsstrasse 1, Geb. 22.21, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
24
|
Karsi A, Patterson A, Feng J, Liu Z. Translational machinery of channel catfish: I. A transcriptomic approach to the analysis of 32 40S ribosomal protein genes and their expression. Gene 2002; 291:177-86. [PMID: 12095691 DOI: 10.1016/s0378-1119(02)00595-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ribosomal protein (RP) genes have become widely used as markers for phylogenetic studies and comparative genomics. However, they have not been available for evolutionary studies in fish although teleosts are the largest group of vertebrates with more than 23,000 species. Using a transcriptomic approach, we have cloned and sequenced 32 40S RP complementary DNAs (cDNAs) from channel catfish (Ictalurus punctatus), making them one of the most complete sets of 40S RP gene sequences from a single organism. Most 40S RPs in channel catfish are highly similar to their orthologues in mammalian species, but S19, S21, and S25 are highly divergent. Only one type of cDNA was found for all RP genes except S26 and S27, for which two cDNAs were found in channel catfish. Alternatively spliced transcripts for the S3 and alternatively polyadenylated transcripts for S19 and S21 were found. The 32 40S RP genes are generally highly expressed and together they account for 5.33-11.42% of expression depending on the tissues. Expression levels of the RP genes were highly variable both within a single tissue among different RP genes and among tissues with regard to a single RP gene. Taken together, these data strongly suggest post-transcriptional regulation of RP gene expression, particularly in consideration of the stoichiometry of their representation in ribosomes.
Collapse
Affiliation(s)
- Attila Karsi
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Auburn University, 201 Swingle Hall, Auburn, AL 36849, USA
| | | | | | | |
Collapse
|
25
|
Anthony TG, Reiter AK, Anthony JC, Kimball SR, Jefferson LS. Deficiency of dietary EAA preferentially inhibits mRNA translation of ribosomal proteins in liver of meal-fed rats. Am J Physiol Endocrinol Metab 2001; 281:E430-9. [PMID: 11500297 DOI: 10.1152/ajpendo.2001.281.3.e430] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of these studies was to investigate the mechanisms by which amino acid supply regulates global rates of protein synthesis as well as the translation of ribosomal protein (rp) mRNAs in liver. In the experiments conducted, male weanling rats were trained over a 2-wk period to consume their daily food intake within 3 h. On day 14, rats were fed the control diet or an isocaloric, isonitrogenous diet lacking glycine, tryptophan, leucine, or the branched-chain amino acids (BCAA) for 1 h. Feeding Trp-, Leu-, or BCAA-deficient diets resulted in significant reductions in serum insulin, hepatic protein synthesis, eukaryotic initiation factor 2B (eIF2B) activity, and phosphorylation of eIF4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase (S6K1). Phosphorylation of eIF2alpha was inversely related to eIF2B activity under all conditions. Alterations in the hepatic synthesis of rp were assessed by changes in the distribution of rp (S4, S8, L26) mRNAs across sucrose density gradients and compared with non-rp (beta-actin, albumin) mRNAs. In all dietary treatments, non-rp mRNAs were mostly polysome associated. Conversely, the proportion of rp mRNAs residing in polysomes was two- to fivefold less in rats fed diets lacking tryptophan, leucine, or BCAA compared with rats fed the control diet. Total hepatic abundance of all mRNAs examined did not differ among treatment groups. For all parameters examined, there were no differences between rats fed the glycine-deficient diet and rats fed the control diet. The data suggest that essential amino acid (EAA) deficiency inhibits global rates of liver protein synthesis via a block in translation initiation. Additionally, the translation of rp mRNAs is preferentially repressed in association with decreased S6K1 phosphorylation.
Collapse
Affiliation(s)
- T G Anthony
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
26
|
Jiang YP, Ballou LM, Lin RZ. Rapamycin-insensitive regulation of 4e-BP1 in regenerating rat liver. J Biol Chem 2001; 276:10943-51. [PMID: 11278364 DOI: 10.1074/jbc.m007758200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In cultured cells, growth factor-induced phosphorylation of two translation modulators, p70 S6 kinase and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), is blocked by nanomolar concentrations of the immunosuppressant rapamycin. Rapamycin also attenuates liver regeneration after partial hepatectomy, but it is not known if this growth-suppressive effect is due to dephosphorylation of p70 S6 kinase and/or 4E-BP1. We found that partial hepatectomy induced a transient increase in liver p70 S6 kinase activity and 4E-BP1 phosphorylation as compared with sham-operated rats. The amount of p70 S6 kinase protein in regenerating liver did not increase, but active kinase from partially hepatectomized animals was highly phosphorylated. Phosphorylated 4E-BP1 from regenerating liver was unable to form an inhibitory complex with initiation factor 4E. Rapamycin blocked the activation of p70 S6 kinase in response to partial hepatectomy in a dose-dependent manner, but 4E-BP1 phosphorylation was not inhibited. By contrast, functional phosphorylation of 4E-BP1 induced by injection of cycloheximide or growth factors was partially reversed by the drug. The mammalian target of rapamycin (mTOR) has been proposed to directly phosphorylate 4E-BP1. Western blot analysis using phospho-specific antibodies showed that phosphorylation of Thr-36/45 and Ser-64 increased in response to partial hepatectomy in a rapamycin-resistant manner. Thus, rapamycin inhibits p70 S6 kinase activation and liver regeneration, but not functional phosphorylation of 4E-BP1, in response to partial hepatectomy. These results indicate that the effect of rapamycin on 4E-BP1 function in vivo can be significantly different from its effect in cultured cells.
Collapse
Affiliation(s)
- Y P Jiang
- Departments of Pharmacology and Medicine, University of Texas Health Science Center and the Research Service, Audie L. Murphy Memorial Veterans Hospital, San Antonio, Texas 78229, USA
| | | | | |
Collapse
|
27
|
Cairo G, Pietrangelo A. Iron regulatory proteins in pathobiology. Biochem J 2000; 352 Pt 2:241-50. [PMID: 11085915 PMCID: PMC1221453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The capacity of readily exchanging electrons makes iron not only essential for fundamental cell functions, but also a potential catalyst for chemical reactions involving free-radical formation and subsequent oxidative stress and cell damage. Cellular iron levels are therefore carefully regulated in order to maintain an adequate substrate while also minimizing the pool of potentially toxic 'free iron'. Iron homoeostasis is controlled through several genes, an increasing number of which have been found to contain non-coding sequences [i.e. the iron-responsive elements (IREs)] which are recognized at the mRNA level by two cytoplasmic iron-regulatory proteins (IRP-1 and IRP-2). The IRPs belong to the aconitase superfamily. By means of an Fe-S-cluster-dependent switch, IRP-1 can function as an mRNA-binding protein or as an enzyme that converts citrate into isocitrate. Although structurally and functionally similar to IRP-1, IRP-2 does not seem to assemble a cluster nor to possess aconitase activity; moreover, it has a distinct pattern of tissue expression and is modulated by means of proteasome-mediated degradation. In response to fluctuations in the level of the 'labile iron pool', IRPs act as key regulators of cellular iron homoeostasis as a result of the translational control of the expression of a number of iron metabolism-related genes. Conversely, various agents and conditions may affect IRP activity, thereby modulating iron and oxygen radical levels in different pathobiological settings. As the number of mRNAs regulated through IRE-IRP interactions keeps growing, the definition of IRPs as iron-regulatory proteins may in the near future become limiting as their role expands to other essential metabolic pathways.
Collapse
Affiliation(s)
- G Cairo
- Institute of General Pathology, University of Milan, via Mangiagalli 31, 20133 Milan, Italy
| | | |
Collapse
|
28
|
Meyuhas O. Synthesis of the translational apparatus is regulated at the translational level. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6321-30. [PMID: 11029573 DOI: 10.1046/j.1432-1327.2000.01719.x] [Citation(s) in RCA: 413] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthesis of many mammalian proteins associated with the translational apparatus is selectively regulated by mitogenic and nutritional stimuli, at the translational level. The apparent advantages of the regulation of gene expression at the translational level are the speed and the readily reversible nature of the response to altering physiological conditions. These two features enable cells to rapidly repress the biosynthesis of the translational machinery upon shortage of amino acids or growth arrest, thus rapidly blocking unnecessary energy wastage. Likewise, when amino acids are replenished or mitogenic stimulation is applied, then cells can rapidly respond in resuming the costly biosynthesis of the translational apparatus. A structural hallmark, common to mRNAs encoding many components of the translational machinery, is the presence of a 5' terminal oligopyrimidine tract (5'TOP), referred to as TOP mRNAs. This structural motif comprises the core of the translational cis-regulatory element of these mRNAs. The present review focuses on the mechanism underlying the translational control of TOP mRNAs upon growth and nutritional stimuli. A special emphasis is put on the pivotal role played by ribosomal protein S6 kinase (S6K) in this mode of regulation, and the upstream regulatory pathways, which might be engaged in transducing external signals into activation of S6K. Finally, the possible involvement of pyrimidine-binding proteins in the translational control of TOP mRNAs is discussed.
Collapse
Affiliation(s)
- O Meyuhas
- Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
29
|
Loreni F, Thomas G, Amaldi F. Transcription inhibitors stimulate translation of 5' TOP mRNAs through activation of S6 kinase and the mTOR/FRAP signalling pathway. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6594-601. [PMID: 11054111 DOI: 10.1046/j.1432-1327.2000.01753.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have analysed the effect of transcription inhibitors on the polysomal localization of 5' terminal oligopyrimidine (TOP-) mRNAs. It is known that, in vertebrates, the translation of this group of mRNAs is regulated according to the growth status of the cell. Mitogenic stimulation of quiescent cells induces a rapid recruitment of TOP mRNAs from translationally inactive light messenger ribonucleoprotein particles to polysomes. It was found that administration of transcription inhibitors to resting cells causes a similar collective translational activation of TOP mRNAs, without affecting global translation. A number of transcription inhibitors were tested in amphibian and mammalian cultured cells. Actinomycin D (act D), cordycepin, and 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole caused a similar activation whereas alpha-amanitin or low doses of act D did not induce the translational response. Concentrations of act D sufficient to induce TOP mRNA translation also induce 40S ribosomal protein S6 kinases 1 (S6K1) activation. Moreover at these concentrations of act D increased phosphorylation of 4E-BP1 was also observed, indicating the involvement of FRAP/mTOR. Consistent with this observation, pretreatment of resting cells with rapamycin suppresses the activation of TOP mRNA translation induced by act D. These results indicate that the effect of act D on translation is mediated by the S6Ks through FRAP/mTOR.
Collapse
Affiliation(s)
- F Loreni
- Dipartimento di Biologia, Universita' 'Tor Vergata', Roma, Italy; Department of Growth Control, Friedrich Miescher Institut, Basel, Switzerland.
| | | | | |
Collapse
|
30
|
Twiss JL, Smith DS, Chang B, Shooter EM. Translational control of ribosomal protein L4 mRNA is required for rapid neurite regeneration. Neurobiol Dis 2000; 7:416-28. [PMID: 10964612 DOI: 10.1006/nbdi.2000.0293] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Under some circumstances neurons can be primed to rapidly regenerate injured neuritic processes independent of new gene expression. Such transcription-independent neurite extension occurs in adult rat sensory neurons cultured after sciatic nerve crush and in NGF-differentiated PC12 cells whose neurites have been mechanically sheared. In the PC12 cells, neurite regeneration occurs by means of translational control of mRNAs which were transcribed prior to neurite injury. The survival of such translationally regulated mRNAs is relatively short in the differentiated PC12 cells (< or =10 h). By subtractive hybridization, we have isolated a short-lived mRNA from differentiated PC12 cells. This mRNA, which encodes the ribosomal protein L4, is translationally regulated during neurite regeneration in PC12 cells. Antisense oligonucleotides to L4 mRNA inhibit neurite regeneration from the differentiated PC12 cells as well as axonal elongation from conditioned sensory neurons, indicating that ongoing translation of L4 mRNA is needed for these forms of rapid transcription-independent neurite growth. Taken together, these data point to the importance of translational regulation of existing neuronal mRNAs in the regenerative responses to neuronal injury. Although there are other examples of neuronal translational control, there are no other known neuronal proteins whose levels are regulated predominantly by translational rather than transcriptional control.
Collapse
Affiliation(s)
- J L Twiss
- Department of Pathology and Laboratory Medicine/Brain Research Institute, University of California at Los Angeles School of Medicine, 10833 Le Conte Avenue, Los Angeles, California, 90095, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Ribosomal proteins have the complex task of coordinating protein biosynthesis to maintain cell homeostasis and survival. Recent evidence suggests that a number of ribosomal proteins have secondary functions independent of their involvement in protein biosynthesis. A number of these proteins function as cell proliferation regulators and in some instances as inducers of cell death. Specifically, expression of human ribosomal protein L13a has been shown to induce apoptosis, presumably by arresting cell growth in the G2/M phase of the cell cycle. In addition, inhibition of expression of L13a induces apoptosis in target cells, suggesting that this protein is necessary for cell survival. Similar results have been obtained in the yeast Saccharomyces cerevisiae, where inactivation of the yeast homologues of L13a, rp22 and rp23, by homologous recombination results in severe growth retardation and death. In addition, a closely related ribosomal protein, L7, arrests cells in G1 and also induces apoptosis. Thus, it appears that a group of ribosomal proteins may function as cell cycle checkpoints and compose a new family of cell proliferation regulators.
Collapse
Affiliation(s)
- F W Chen
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
32
|
Niu LL, Fallon AM. The ribosomal protein L34 gene from the mosquito, Aedes albopictus: exon-intron organization, copy number, and potential regulatory elements. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1999; 29:1105-1117. [PMID: 10612044 DOI: 10.1016/s0965-1748(99)00090-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe the structural analysis of genomic DNA encoding ribosomal protein (rp) L34 from the mosquito, Aedes albopictus. Comparison of genomic DNA sequences encompassing approximately 8 kb with the rpL34 cDNA sequence showed that the gene contains three exons and two introns, encoding a primary transcript with a deduced size of 6196 nucleotides from the transcription start site to the polyadenylation site. Exon 1, which is not translated, measures only 45 bp, and is separated from Exon 2 by a 359 bp intron. Exon 2 measures 78 bp, and contains the AUG translation initiation codon 14 nucleotides downstream of its 5'-end. Downstream of Exon 2 is a 5270 bp intron, followed by the remainder of the coding sequence in Exon 3, which measures 444 bp including the polyadenylation signal. We used a novel PCR-based procedure to obtain 1.7 kb of DNA upstream of the rpL34 gene. Like the previously described Ae. albopictus rpL8 gene and various mammalian rp genes, the DNA immediately upstream of the rpL34 gene lacks the TATA box, and the rpL34 transcription initiation site is embedded in a characteristic polypyrimidine tract. The 5'-flanking DNA contained a number of cis-acting elements that potentially interact with transcription factors characterized by basic domains, zinc-coordinating DNA binding domains, helix-turn-helix motifs, and beta scaffold factors with minor groove contacts. Particularly striking was the conservation of an AP-4 binding site within 100 nucleotides upstream of the transcription initiation site in both Aal-rpL34 and Aal-rpL8 genes. Comparison of Southern hybridization signals using probes from the 5' and 3'-ends of the 5.3 kb second intron and the cDNA suggested that the Ae. albopictus rpL34 gene most likely occurs as a single expressed copy per haploid genome with restriction enzyme polymorphisms in the upstream flanking DNA and the likely presence of one or more pseudogenes.
Collapse
Affiliation(s)
- L L Niu
- Department of Entomology, University of Minnesota, St Paul 55108, USA.
| | | |
Collapse
|
33
|
Kubota S, Copeland TD, Pomerantz RJ. Nuclear and nucleolar targeting of human ribosomal protein S25: common features shared with HIV-1 regulatory proteins. Oncogene 1999; 18:1503-14. [PMID: 10050887 DOI: 10.1038/sj.onc.1202429] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The nuclear and nucleolar targeting properties of human ribosomal protein S25 (RPS25) were analysed by the expression of epitope-tagged RPS25 cDNAs in Cos-1 cells. The tagged RPS25 was localized to the cell nucleus, with a strong predominance in the nucleolus. At the amino terminus of RPS25, two stretches of highly basic residues juxtapose. This configuration shares common features with the nucleolar targeting signals (NOS) of lentiviral RNA-binding transactivators, including human immunodeficiency viruses' (HIV) Rev proteins. Deletion and site-directed mutational analyses demonstrated that the first NOS-like stretch is dispensable for both nuclear and nucleolar localization of RPS25, and that the nuclear targeting signal is located within the second NOS-like stretch. It has also been suggested that a set of continuous basic residues and the total number of basic residues should be required for nucleolar targeting. Signal-mediated nuclear/nucleolar targeting was further characterized by the construction and expression of a variety of chimeric constructs, utilizing three different backbones with RPS25 cDNA fragments. Immunofluorescence analyses demonstrated a 17 residue peptide of RPS25 as a potential nuclear/nucleolar targeting signal. The identified peptide signal may belong to a putative subclass of NOS, characterized by compact structure, together with lentiviral RNA-binding transactivators.
Collapse
Affiliation(s)
- S Kubota
- Center for Human Virology, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
34
|
Hornstein E, Git A, Braunstein I, Avni D, Meyuhas O. The expression of poly(A)-binding protein gene is translationally regulated in a growth-dependent fashion through a 5'-terminal oligopyrimidine tract motif. J Biol Chem 1999; 274:1708-14. [PMID: 9880551 DOI: 10.1074/jbc.274.3.1708] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(A)-binding protein (PABP) is an important regulator of gene expression that has been implicated in control of translation initiation. Here we report the isolation and the initial structural and functional characterization of the human PABP gene. Delineation of the promoter region revealed that it directs the initiation of transcription at consecutive C residues within a stretch of pyrimidines. A study of the translational behavior of the corresponding mRNA demonstrates that it is translationally repressed upon growth arrest of cultured mouse fibroblasts and translationally activated in regenerating rat liver. Furthermore, transfection experiments show that the first 32 nucleotides of PABP mRNA are sufficient to confer growth-dependent translational control on a heterologous mRNA. Substitution of the C residue at the cap site by purines abolishes the translational control of the chimeric mRNA. These features have established PABP mRNA as a new member of the terminal oligopyrimidine tract mRNA family. Members of this family are known to encode for components of the translational apparatus and to contain an oligopyrimidine tract at the 5' terminus (5'TOP). This motif mediates their translational control in a growth-dependent manner.
Collapse
Affiliation(s)
- E Hornstein
- Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
35
|
De Benedetti A, Harris AL. eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 1999; 31:59-72. [PMID: 10216944 DOI: 10.1016/s1357-2725(98)00132-0] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A central issue in the study of neoplastic transformation is to understand how proto-oncogene products deregulate normal processes of cell growth and differentiation: an intrinsic aspect of this is to probe the sequence of events leading to altered expression of proto-oncogenes. In the past few years, studies aimed at understanding the regulation and function of protein synthesis initiation factors, eIF4E initially, culminated in the unexpected finding that a moderate overexpression of this factor results in dramatic phenotypic changes, including rapid proliferation and malignant transformation. Conversely, the tumorigenic properties of cancer cells can be strongly inhibited by antisense-RNA against eIF4E, or overexpression of the inhibitory proteins: 4E-BPs. Furthermore, eIF4E is elevated in carcinomas of the breast, head and neck (HNSCC) and prostate, but not in typical benign lesions. This is a strong indication that elevated eIF4E expression may mark a critical transition in cancer progression. Establishing a greater protein synthesis output may be a necessary step for cancer cells in order to sustain their rapid proliferation. However, analysis of cells transformed by eIF4E revealed that the synthesis of only a few proteins was greatly enhanced, while synthesis of most was minimally increased. One possible explanation is that eIF4E causes these effects by specifically increasing the translational efficiency of several oncogene transcripts, leading to overexpression of their products. The feasibility of this hypothesis was confirmed experimentally with the identification of several important products that are specifically upregulated in eIF4E-overexpressing cells. These include: c-Myc, cyclin DI and ODC, which control cycle progression and tumorigenesis; basic fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF), which are powerful promoters of cell growth and angiogenesis. A deeper understanding of the mRNAs that are strongly dependent on excess eIF4E/F for efficient translation will eventually result in fuller understanding of the fundamental role of translational control in different pathophysiological conditions, including malignancy.
Collapse
Affiliation(s)
- A De Benedetti
- Department of Biochemistry and Molecular Biology, Lousiana State University Medical Center, Shreveport 71130, USA.
| | | |
Collapse
|
36
|
Cairo G, Tacchini L, Pietrangelo A. Lack of coordinate control of ferritin and transferrin receptor expression during rat liver regeneration. Hepatology 1998; 28:173-8. [PMID: 9657110 DOI: 10.1002/hep.510280123] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Transferrin receptor (TfR) and ferritin, key proteins of cellular iron metabolism, are coordinately and divergently controlled by cytoplasmic proteins (iron regulatory proteins, IRP-1 and IRP-2) that bind to conserved mRNA motifs called iron-responsive elements (IRE). IRP, in response to specific stimuli (low iron levels, growth and stress signals) are activated and prevent TfR mRNA degradation and ferritin mRNA translation by hindering ferritin mRNA binding to polysomes. We previously found that, in regenerating liver, IRP activation was accompanied by increased TfR mRNA levels, but not by reduced ferritin expression. The basis for this unexpected behavior was investigated in the present study. Liver regeneration triggered by carbon tetrachloride (CCl4) stimulated by four- to fivefold the synthesis of both L and H ferritin chains. This increase was accompanied with a transcriptionally regulated twofold rise in the amount of ferritin mRNAs. Moreover, polysome-associated ferritin transcripts were fourfold higher in CCl4-treated animals than in control animals. Because RNA bandshift assays showed a fourfold increase in IRP-2 binding activity after CCl4 administration, activated IRP in regenerating liver seemed unable to prevent ferritin mRNAs binding to polysomes. This was confirmed by direct demonstration in the wheat germ translation system that the efficiency of IRP as a translational repressor of a mRNA bearing an IRE motif in front of a reporter transcript is impaired in CCl4-treated rats in spite of an enhanced IRE-binding capacity. In conclusion, we show for the first time that the paradigm of coordinate and opposite control of ferritin and TfR by IRP is contradicted in liver regeneration. Under these circumstances, growth-dependent signals may activate ferritin gene transcription and at the same time hamper the ability of activated IRP-2 to repress translation of ferritin mRNAs, thus preserving for growing liver cells an essential iron-storage compartment.
Collapse
Affiliation(s)
- G Cairo
- Centro di Studio sulla Patologia Cellulare, CNR, Milano, Italy
| | | | | |
Collapse
|
37
|
Affiliation(s)
- B T Kren
- Department of Medicine, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
38
|
Croniger C, Trus M, Lysek-Stupp K, Cohen H, Liu Y, Darlington GJ, Poli V, Hanson RW, Reshef L. Role of the isoforms of CCAAT/enhancer-binding protein in the initiation of phosphoenolpyruvate carboxykinase (GTP) gene transcription at birth. J Biol Chem 1997; 272:26306-12. [PMID: 9334201 DOI: 10.1074/jbc.272.42.26306] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The gene for phosphoenolpyruvate carboxykinase (PEPCK), a target of CCAAT/enhancer-binding protein-alpha (C/EBPalpha) and -beta (C/EBPbeta), begins to be expressed in the liver at birth. Mice homozygous for a deletion in the gene for CEBPalpha (C/EBPalpha-/- mice) die shortly after birth of hypoglycemia, with no detectable hepatic PEPCK mRNA and negligible hepatic glycogen stores. Half of the mice homozygous for a deletion in the gene for CEBPbeta (C/EBPbeta-/- mice) have normal glucose homeostasis (phenotype A), and the other half die at birth of hypoglycemia due to a failure to express the gene for PEPCK and to mobilize hepatic glycogen (phenotype B). Insulin deficiency induces C/EBPalpha and PEPCK gene transcription in the livers of 19-day fetal rats, whereas dibutyryl cyclic AMP (Bt2cAMP) increases the expression of the gene for C/EBPbeta and causes a transient burst of PEPCK mRNA. Bt2cAMP induces PEPCK mRNA in the livers of fetal C/EBPalpha-/- mice, but at only 20% of the level of control animals; however, there is no induction of PEPCK mRNA if the cyclic nucleotide is injected into C/EBPalpha-/- mice immediately after delivery. The expression of the gene for C/EBPbeta is markedly induced in the livers of C/EBPalpha-/- mice within 2 h after the administration of Bt2cAMP. C/EBPbeta-/- mice injected at 20 days of fetal life with Bt2cAMP have a normal pattern of induction of hepatic PEPCK mRNA. In C/EBPbeta-/- mice with phenotype B, the administration of Bt2cAMP immediately after delivery induces PEPCK mRNA, causes the mobilization of hepatic glycogen, and maintains normal glucose homeostasis for up to 4 h (duration of the experiment). We conclude that C/EBPalpha is required for the cAMP induction of PEPCK gene expression in the liver and that C/EBPbeta can compensate for the loss of C/EBPalpha if its concentration is induced to appropriate levels.
Collapse
Affiliation(s)
- C Croniger
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Espinosa L, Martín M, Nicolas A, Fabre M, Navarro E. Primary sequence of the human, lysine-rich, ribosomal protein RPL38 and detection of an unusual RPL38 processed pseudogene in the promoter region of the type-1 angiotensin II receptor gene. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1354:58-64. [PMID: 9375793 DOI: 10.1016/s0167-4781(97)00124-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated a cDNA clone encoding the human ribosomal protein L38 (HSRPL38). The longest ORF of the cDNA predicts a lysine-rich small polypeptide identical to the rat RPL38 protein (100% identity), and sharing a 84% of identity to the tomato RPL38 protein sequence. Northern blot analysis of a number of epithelial cell lines showed that the HSRPL38 is encoded by a mRNA ubiquitously expressed. Southern blot analysis of human genomic DNA suggested that the RPL38 does not constitute a multigene family but it is encoded by a reduced set of active genes, among which we have also found a RPL38 processed pseudogene located in the promoter region of the human type-1 angiotensin II receptor gene. This RPL38 pseudogene is very unusual among processed pseudogenes in that the poly A tail and the entire 5'-UTR of the original RPL38 mRNA were deleted during the retrotransposition process.
Collapse
Affiliation(s)
- L Espinosa
- UBCM - Institut Municipal d'Investigació Mèdica, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | |
Collapse
|
40
|
Nika J, Erickson FL, Hannig EM. Ribosomal protein L9 is the product of GRC5, a homolog of the putative tumor suppressor QM in S. cerevisiae. Yeast 1997; 13:1155-66. [PMID: 9301022 DOI: 10.1002/(sici)1097-0061(19970930)13:12<1155::aid-yea166>3.0.co;2-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genes encoding members of the highly conserved QM family have been identified in eukaryotic organisms from yeast to man. Results of previous studies have suggested roles for QM in control of cell growth and proliferation, perhaps as a tumor suppressor, and in energy metabolism. We identified recessive lethal alleles of the Saccharomyces cerevisiae QM homolog GRC5 that increased GCN4 expression when present in multiple copies. These alleles encode truncated forms of the yeast QM protein Grc5p. Using a functional epitope-tagged GRC5 allele, we localized Grc5p to a 60S fraction that contained the large ribosomal subunit. Two-dimensional gel analysis of highly purified yeast ribosomes indicated that Grc5p corresponds to 60S ribosomal protein L9. This identification is consistent with the predicted physical characteristics of eukaryotic QM proteins, the highly biased codon usage of GRC5, and the presence of putative Rap1p-binding sites in the 5' sequences of the yeast GRC5 gene.
Collapse
Affiliation(s)
- J Nika
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson 75083-0688, USA
| | | | | |
Collapse
|
41
|
|
42
|
Biberman Y, Meyuhas O. Substitution of just five nucleotides at and around the transcription start site of rat beta-actin promoter is sufficient to render the resulting transcript a subject for translational control. FEBS Lett 1997; 405:333-6. [PMID: 9108314 DOI: 10.1016/s0014-5793(97)00234-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vertebrate mRNAs with a 5' terminal oligopyrimidine tract (5' TOP), including those encoding ribosomal proteins and elongation factors, are candidates for translational control in a growth-dependent fashion. The present study was designed to determine the minimal cis-regulatory element involved in this mode of regulation. We selected rat beta-actin mRNA, a typical translationally uncontrolled transcript, as a subject for gain-of-function analysis. Mutations at and around its cap site leading to the formation of a 7 pyrimidines long 5' TOP render the resulting transcript translationally repressed upon growth arrest of lymphosarcoma cells. In contrast, growth-dependent translational control of this mRNA in fibroblasts requires, in addition, a GC motif downstream of the 5' TOP. A similar motif is present in all ribosomal prtein mRNAs shown to be translationally controlled.
Collapse
Affiliation(s)
- Y Biberman
- Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
43
|
Amaldi F, Pierandrei-Amaldi P. TOP genes: a translationally controlled class of genes including those coding for ribosomal proteins. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1997; 18:1-17. [PMID: 8994258 DOI: 10.1007/978-3-642-60471-3_1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- F Amaldi
- Dipartimento di Biologia, Università di Roma Tor Vergata, Italy
| | | |
Collapse
|
44
|
Rosenwald IB. Upregulated expression of the genes encoding translation initiation factors eIF-4E and eIF-2alpha in transformed cells. Cancer Lett 1996; 102:113-23. [PMID: 8603359 DOI: 10.1016/0304-3835(96)04171-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Increased protein synthesis is necessary for the transition of cells from quiescence to proliferation. It is shown in this paper that the induction of expression of the translation initiation factor eIF-4E in normal cells requires serum growth factors, while this requirement is abrogated in tumor cells analyzed in this study. Further, the expression of eIF-4E and eIF-2alpha is increased in c-myc, v-src, and v-abl-transformed cells. It is demonstrated that an increase in c-myc function leads to elevated expression of eIF-4E and eIF-2alpha, increases in net protein synthesis and cell proliferation. It may be suggested that constitutive activation of translational machinery may be one common mechanism by which various oncogenes exert their transforming function.
Collapse
Affiliation(s)
- I B Rosenwald
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, 02139, USA
| |
Collapse
|
45
|
Amaldi F, Camacho-Vanegas O, Cardinall B, Cecconi F, Crosio C, Loreni F, Mariottini P, Pellizzoni L, Pierandrei-Amaldi P. Structure and expression of ribosomal protein genes in Xenopus laevis. Biochem Cell Biol 1995; 73:969-77. [PMID: 8722012 DOI: 10.1139/o95-104] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In Xenopus laevis, as well as in other vertebrates, ribosomal proteins (r-proteins) are coded by a class of genes that share some organizational and structural features. One of these, also common to genes coding for other proteins involved in the translation apparatus synthesis and function, is the presence within their introns of sequences coding for small nucleolar RNAs. Another feature is the presence of common structures, mainly in the regions surrounding the 5' ends, involved in their coregulated expression. This is attained at various regulatory levels: transcriptional, posttranscriptional, and translational. Particular attention is given here to regulation at the translational level, which has been studied during Xenopus oogenesis and embryogenesis and also during nutritional changes of Xenopus cultured cells. This regulation, which responds to the cellular need for new ribosomes, operates by changing the fraction of rp-mRNA (ribosomal protein mRNA) engaged on polysomes. A typical 5' untranslated region characterizing all vertebrate rp-mRNAs analyzed to date is responsible for this translational behaviour: it is always short and starts with an 8-12 nucleotide polypyrimidine tract. This region binds in vitro some proteins that can represent putative trans-acting factors for this translational regulation.
Collapse
Affiliation(s)
- F Amaldi
- Dipartimento di Biologia, Università di Roma Tor Vergata, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sun D, Kar S, Carr BI. Differentially expressed genes in TGF-beta 1 sensitive and resistant human hepatoma cells. Cancer Lett 1995; 89:73-9. [PMID: 7882305 DOI: 10.1016/0304-3835(95)90160-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pathway of growth inhibitory cellular signal transduction by transforming growth factor beta 1 is largely unknown. Although several cellular proteins have been shown to be involved in the pathway, others remain to be identified. To search for other involved proteins, differentially expressed genes were examined in two human hepatoma cell lines that were respectively sensitive and resistant to growth inhibition by TGF-beta 1. Two such genes (SB31 and SB16) were characterized and found to be 100% homologous to leucine-rich alpha 2-glycoprotein and the ribosomal protein S25, respectively. SB31 was coordinately expressed with the TGF-beta I type II receptor, implicating a possible interaction. Expression of both genes in different cell lines can be broadly correlated with the sensitivity of the cell lines to growth inhibition by TGF-beta 1. SB16 expression is strongly suppressed in rat liver regeneration after partial hepatectomy, suggesting that it may have a role in liver growth.
Collapse
Affiliation(s)
- D Sun
- Pittsburgh Transplantation Institute, University of Pittsburgh School of Medicine, PA 15260
| | | | | |
Collapse
|
47
|
Shama S, Avni D, Frederickson RM, Sonenberg N, Meyuhas O. Overexpression of initiation factor eIF-4E does not relieve the translational repression of ribosomal protein mRNAs in quiescent cells. Gene Expr 1995; 4:241-52. [PMID: 7787416 PMCID: PMC6134383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/1994] [Accepted: 11/22/1994] [Indexed: 01/27/2023]
Abstract
Translation of ribosomal protein (rp) mRNA is selectively repressed in mouse erythroleukemia (MEL) cells, which cease to proliferate upon differentiation, and in NIH 3T3 cells, for which growth is arrested by either serum starvation, contact inhibition, or treatment with the DNA polymerase inhibitor, aphidicolin. The efficiency of translation of rp mRNAs correlates with the expression of the gene encoding the cap binding protein, eIF-4E, as indicated by the fact that the abundance of the corresponding mRNA and protein also fluctuates in a growth-dependent manner. To examine the hypothesis that eIF-4E plays a role in regulation of the translation efficiency of rp mRNAs, we utilized an NIH 3T3-derived eIF-4E-overexpressing cell line. These cells overproduce eIF-4E to the extent that even under conditions of growth arrest, the abundance of the respective protein in its active (phosphorylated) form is higher than that found in exponentially growing NIH 3T3 cells. Nevertheless, this surplus amount of eIF-4E does not prevent the translational repression of rp mRNAs when the growth of these cells is arrested by blocking DNA synthesis with aphidicolin or hydroxyurea. In complementary experiments we used an in vitro translation system to compare the competitive potential of mRNAs, containing the translational cis-regulatory element (5' terminal oligopyrimidne tract) and mRNAs lacking such a motif, for the cap binding protein. Our results demonstrate that both types of mRNAs, regardless of their translational response to growth arrest, exhibit similar sensitivity to the cap analogue m7G(5')ppp(5')G. It appears, therefore, that the presence of the regulatory sequence at the 5' terminus of rp mRNAs does not lessen its competitive potential for the cap binding protein and that the growth-dependent decrease in the activity of eIF-4E does not play a key role in the repression of translation of rp mRNAs.
Collapse
Affiliation(s)
- S Shama
- Department of Developmental Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
48
|
Kozak M. Features in the 5' non-coding sequences of rabbit alpha and beta-globin mRNAs that affect translational efficiency. J Mol Biol 1994; 235:95-110. [PMID: 8289269 DOI: 10.1016/s0022-2836(05)80019-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The 5' non-coding sequence of rabbit beta-globin mRNA was mutagenized in an attempt to identify structural features that might contribute to the ability to support translation in an homologous rabbit reticulocyte lysate. Translational efficiency was not reduced by substitutions introduced in nearly every position of the beta-globin leader sequence, suggesting that the 5' non-coding domain of this highly efficient mRNA contains no special effector motifs. Instead, efficient translation appears to require only a moderately long leader sequence devoid of secondary structure, especially near the 5' end. Consistent with that interpretation, substitutions in several positions actually improved translation relative to the wild-type beta-globin leader sequence; experimental assessment of the secondary structure of these derivatives revealed a perfect inverse correlation between secondary structure content and translational efficiency. Other experiments probed the structural basis for the long-noted difference in translational efficiency between rabbit alpha and beta-globin mRNAs, a difference that was reproduced here using only the 5' non-coding domains of those mRNAs. The possibility that translation of ribosomal protein mRNAs might be modulated by a mechanism similar to that of alpha-globin mRNA is discussed. Because the beta-globin leader sequence has been incorporated into some popular expression vectors, and because globin genes are targets for gene therapy, this analysis of how globin mRNA leader sequences function in translation and how they can be improved may have practical applications.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| |
Collapse
|
49
|
Dabeva M, Warner J. Ribosomal protein L32 of Saccharomyces cerevisiae regulates both splicing and translation of its own transcript. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36568-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Overman PF, Rhoads DD, Tasheva ES, Pyle MM, Roufa DJ. Multiple regulatory elements ensure accurate transcription of a human ribosomal protein gene. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:347-62. [PMID: 8211378 DOI: 10.1007/bf01232747] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previously we have shown that expression of a cloned human ribosomal protein gene, RPS14, depends upon regulatory sites located within the gene's proximal upstream DNA plus its first intron. In order to identify cis-active sequence motifs within the RPS14 promoter-enhancer complex, we transiently expressed a set of informative deletion clones in cultured Chinese hamster ovary cells. These experiments revealed three DNA sequence motifs that surround the S14 mRNA initiation site and are necessary for accurate transcription. Electrophoretic mobility shift, DNase I footprint, and methylation interference assays resolved two nuclear proteins, NF alpha-1 and NF beta-1, which bind specifically to these regulatory motifs. NF-alpha 1 recognizes a pair of 6-bp target motifs (5'-TTCCGG-3') that flank the 5' end of RPS14 exon I; and NF-beta 1 binds to a 10-bp target sequence (5'-CCGTGGGAAC-3') within the gene's first intron. Site-directed deletion mutations within the NF-alpha 1 and -beta 1 binding sites markedly inhibit S14 mRNA transcription.
Collapse
Affiliation(s)
- P F Overman
- Division of Biology, Kansas State University, Manhattan 66506
| | | | | | | | | |
Collapse
|