1
|
Davidson A, Tyler J, Hume P, Singh V, Koronakis V. A kinase-independent function of PAK is crucial for pathogen-mediated actin remodelling. PLoS Pathog 2021; 17:e1009902. [PMID: 34460869 PMCID: PMC8432889 DOI: 10.1371/journal.ppat.1009902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/10/2021] [Accepted: 08/17/2021] [Indexed: 02/02/2023] Open
Abstract
The p21-activated kinase (PAK) family regulate a multitude of cellular processes, including actin cytoskeleton remodelling. Numerous bacterial pathogens usurp host signalling pathways that regulate actin reorganisation in order to promote Infection. Salmonella and pathogenic Escherichia coli drive actin-dependent forced uptake and intimate attachment respectively. We demonstrate that the pathogen-driven generation of both these distinct actin structures relies on the recruitment and activation of PAK. We show that the PAK kinase domain is dispensable for this actin remodelling, which instead requires the GTPase-binding CRIB and the central poly-proline rich region. PAK interacts with and inhibits the guanine nucleotide exchange factor β-PIX, preventing it from exerting a negative effect on cytoskeleton reorganisation. This kinase-independent function of PAK may be usurped by other pathogens that modify host cytoskeleton signalling and helps us better understand how PAK functions in normal and diseased eukaryotic cells.
Collapse
Affiliation(s)
- Anthony Davidson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joe Tyler
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Peter Hume
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Vikash Singh
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Luo K, Zhang L, Liao Y, Zhou H, Yang H, Luo M, Qing C. Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review). Oncol Rep 2021; 45:824-834. [PMID: 33432368 PMCID: PMC7859916 DOI: 10.3892/or.2021.7927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor pathway substrate 8 (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which is involved in cell mitosis, differentiation and other physiological functions. Numerous studies over the last decade have demonstrated that Eps8 is overexpressed in most ubiquitous malignant tumours and subsequently binds with its receptor to activate multiple signalling pathways. Eps8 not only participates in the regulation of malignant phenotypes, such as tumour proliferation, invasion, metastasis and drug resistance, but is also related to the clinicopathological characteristics and prognosis of patients. Therefore, Eps8 is a potential tumour diagnosis and prognostic biomarker and even a therapeutic target. This review aimed to describe the structural characteristics, role and related molecular mechanism of Eps8 in malignant tumours. In addition, the prospect of Eps8 as a target for cancer therapy is examined.
Collapse
Affiliation(s)
- Kaili Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Lei Zhang
- Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongyu Zhou
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongying Yang
- Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
| | - Min Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
3
|
Blockage of Squamous Cancer Cell Collective Invasion by FAK Inhibition Is Released by CAFs and MMP-2. Cancers (Basel) 2020; 12:cancers12123708. [PMID: 33321813 PMCID: PMC7764466 DOI: 10.3390/cancers12123708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancers include a diverse collection of cells harboring distinct molecular signatures with different levels of pro-metastatic activities. This intratumoral heterogeneity and phenotypic plasticity are major causes of targeted therapeutic failure and it should be considered when developing prognostic tests. Through the analysis of the Focal Adhesion Kinase (FAK) protein and the matrix metalloprotease MMP-2, both implicated in multiple steps of the metastatic spectrum, in complex multicellular tumor spheroids we show that cancer cell populations over-expressing MMP-2 or cancer-associated fibroblasts can release FAK-deficient cancer cells from their constrained metastatic fitness. Consistently, MMP-2, not FAK, serves as an independent prognostic factor in head and neck squamous cell carcinomas. Measurement of intratumor heterogeneity facilitate the development of more efficient biomarkers to predict the risk of metastasis and of more-effective personalized cancer therapies. Abstract Metastasis remains a clinically unsolved issue in cancer that is initiated by the acquisition of collective migratory properties of cancer cells. Phenotypic and functional heterogeneity that arise among cancer cells within the same tumor increase cellular plasticity and promote metastasis, however, their impact on collective cell migration is incompletely understood. Here, we show that in vitro collective cancer cell migration depends on FAK and MMP-2 and on the presence of cancer-associated fibroblasts (CAFs). The absence of functional FAK rendered cancer cells incapable of invading the surrounding stroma. However, CAFs and cancer cells over-expressing MMP-2 released FAK-deficient cells from this constraint by taking the leader positions in the invasive tracks, pushing FAK-deficient squamous cell carcinoma (SCC) cells towards the stroma and leading to the transformation of non-invasive cells into invasive cells. Our cell-based studies and the RNAseq data from the TCGA cohort of patients with head and neck squamous cell carcinomas reveal that, although both FAK and MMP-2 over-expression are associated with epithelial–mesenchymal transition, it is only MMP-2, not FAK, that functions as an independent prognostic factor. Given the significant role of MMP-2 in cancer dissemination, targeting of this molecule, better than FAK, presents a more promising opportunity to block metastasis.
Collapse
|
4
|
Aboubakar Nana F, Vanderputten M, Ocak S. Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential as a Therapeutic Target. Cancers (Basel) 2019; 11:E1683. [PMID: 31671774 PMCID: PMC6895835 DOI: 10.3390/cancers11111683] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the molecular steps leading to SCLC development and progression these last years. After four decades, the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion. FAK also plays a role in tumor immune evasion, epithelial-mesenchymal transition, DNA damage repair, radioresistance, and regulation of cancer stem cells. FAK is of particular interest in SCLC, being known for its aggressiveness. The inhibition of FAK in SCLC cell lines demonstrated significative decrease in cell proliferation, invasion, and migration, and induced cell cycle arrest and apoptosis. In this review, we will focus on the role of FAK in cancer cells and their microenvironment, and its potential as a therapeutic target in SCLC.
Collapse
Affiliation(s)
- Frank Aboubakar Nana
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, Cliniques Universitaires St-Luc, UCL, 1200 Brussels, Belgium.
| | - Marie Vanderputten
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Sebahat Ocak
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, 5530 Yvoir, Belgium.
| |
Collapse
|
5
|
Increased expression of FAK isoforms as potential cancer biomarkers in ovarian cancer. Oncol Lett 2019; 17:4779-4786. [PMID: 31186683 PMCID: PMC6507456 DOI: 10.3892/ol.2019.10147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is expressed in most human cell types (example: Epithelial cells, fibroblasts and endothelial), it serves a key role in the control of cell survival, proliferation and motility. The abnormal expression of FAK has been associated with poor prognosis in cancer, including ovarian cancer. However, although FAK isoforms with specific molecular and functional properties have been characterized, there are a limited number of published studies that examine FAK isoforms in ovarian cancer. The aim of the present study was to analyze the expression level of FAK and its isoforms in ovarian cancer. The expression of FAK kinase and focal adhesion targeting (FAT) domains was determined with immunohistochemistry in healthy ovary, and serous and mucinous cystadenoma, borderline tumor and carcinoma samples. Additionally, the expression of FAK and its isoforms were investigated in three ovarian cancer-derived cell lines with western blotting and reverse transcription-semi-quantitative polymerase chain reaction. An increased expression of FAK kinase domain was determined in serous tumor samples and was associated with advancement of the lesion. FAK kinase domain expression was moderate-to-low in mucinous tumor samples. The expression of the FAK FAT domain in tumor samples was reduced, compared with healthy ovary samples; however, the FAT domain was localized to the cellular nucleus. Expression of alternative transcripts FAK°, FAK28,6 and FAK28 was determined in all three cell lines investigated. In conclusion, FAK kinase and FAT domains are differentially expressed among ovarian tumor types. These results indicated the presence of at least two isoforms of FAK (FAK and the putative FAK-related non-kinase) in tumor tissue, which is supported by the cells producing at least three FAK alternative transcripts. These results may support the use of FAK and its isoforms as biomarkers for ovarian cancer.
Collapse
|
6
|
Nah AS, Chay KO. Roles of paxillin phosphorylation in IL-3 withdrawal-induced Ba/F3 cell apoptosis. Genes Genomics 2019; 41:241-248. [PMID: 30604146 DOI: 10.1007/s13258-018-00779-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Ba/F3, a mouse pro-B cell line, is dependent on IL-3 for its survival and proliferation. IL-3 withdrawal causes cells to round, stop in G1 phase, then undergo apoptosis. Additionally, IL-3 is known to induce tyrosine phosphorylation of paxillin, a scaffold and signaling protein. We previously determined that overexpression of paxillin prohibited Ba/F3 cell apoptosis induced by IL-3 withdrawal. OBJECTIVE Address whether phosphorylation is essential for the anti-apoptotic effect of overexpressed paxillin. METHODS Mutations were introduced into paxillin cDNA at five phosphorylation sites-Y31F, Y40F, Y118F, Y181F, S273A, or S273D. After overexpression of paxillin mutants in Ba/F3 cells, the apoptotic proportions of cell populations were measured by an annexin V conjugation assay while cells were undergoing IL-3 withdrawal. RESULTS The anti-apoptotic effect of paxillin overexpression was abolished by site-directed mutagenesis replacing Y31, Y40, Y118, and Y181 with phenylalanine, and S273 with aspartic acid. In contrast, the mutation replacing S273 with alanine had no effect on the anti-apoptotic effect. CONCLUSION The above results suggest that paxillin-mediated phosphorylation at Y31, Y40, Y118, and Y181 is essential for the anti-apoptotic effect of paxillin overexpression in Ba/F3 cells and contributes to the cell survival signaling pathway triggered by IL-3. Conversely, phosphorylation at S273 is involved in the negative regulation of the anti-apoptotic action of overexpressed paxillin.
Collapse
Affiliation(s)
- Ae Sun Nah
- Department of Biochemistry, Medical School, Chonnam National University, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Kee Oh Chay
- Department of Biochemistry, Medical School, Chonnam National University, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
7
|
Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions. Cancers (Basel) 2018; 10:cancers10090278. [PMID: 30134553 PMCID: PMC6162372 DOI: 10.3390/cancers10090278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors.
Collapse
|
8
|
Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development. Cancers (Basel) 2018; 10:E196. [PMID: 29891810 PMCID: PMC6025627 DOI: 10.3390/cancers10060196] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 have been found to have promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled via modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved in this control are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and with particular focus on how these mechanisms could inspire or improve anticancer therapies.
Collapse
Affiliation(s)
- Rayan Naser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Abdullah Aldehaiman
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Escarlet Díaz-Galicia
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
9
|
Sáenz-de-Santa-María I, Bernardo-Castiñeira C, Enciso E, García-Moreno I, Chiara JL, Suarez C, Chiara MD. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget 2017; 8:20939-20960. [PMID: 28423494 PMCID: PMC5400557 DOI: 10.18632/oncotarget.15467] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
Tunneling nanotubes (TnTs) are thin channels that temporally connect nearby cells allowing the cell-to-cell trafficking of biomolecules and organelles. The presence or absence of TnTs in human neoplasms and the mechanisms of TnT assembly remains largely unexplored. In this study, we have identified TnTs in tumor cells derived from squamous cell carcinomas (SCC) cultured under bi-dimensional and tri-dimensional conditions and also in human SCC tissues. Our study demonstrates that TnTs are not specific of epithelial or mesenchymal phenotypes and allow the trafficking of endosomal/lysosomal vesicles, mitochondria, and autophagosomes between both types of cells. We have identified focal adhesion kinase (FAK) as a key molecule required for TnT assembly via a mechanism involving the MMP-2 metalloprotease. We have also found that the FAK inhibitor PF-562271, which is currently in clinical development for cancer treatment, impairs TnT formation. Finally, FAK-deficient cells transfer lysosomes/autophagosomes to FAK-proficient cells via TnTs which may represent a novel mechanism to adapt to the stress elicited by impaired FAK signaling. Collectively, our results strongly suggest a link between FAK, MMP-2, and TnT, and unveil new vulnerabilities that can be exploited to efficiently eradicate cancer cells.
Collapse
Affiliation(s)
- Inés Sáenz-de-Santa-María
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, CIBERONC, Universidad de Oviedo, Oviedo, Spain
| | - Cristóbal Bernardo-Castiñeira
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, CIBERONC, Universidad de Oviedo, Oviedo, Spain
| | - Eduardo Enciso
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Carlos Suarez
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, CIBERONC, Universidad de Oviedo, Oviedo, Spain
| | - María-Dolores Chiara
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, CIBERONC, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
10
|
Zak TJ, Koshman YE, Samarel AM, Robia SL. Regulation of Focal Adhesion Kinase through a Direct Interaction with an Endogenous Inhibitor. Biochemistry 2017; 56:4722-4731. [PMID: 28782937 DOI: 10.1021/acs.biochem.7b00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Focal adhesion kinase (FAK) plays a key role in integrin and growth factor signaling pathways. FAK-related non-kinase (FRNK) is an endogenous inhibitor of FAK that shares its primary structure with the C-terminal third of FAK. FAK S910 phosphorylation is known to regulate FAK protein-protein interactions, but the role of the equivalent site on FRNK (S217) is unknown. Here we determined that S217 is highly phosphorylated by ERK in cultured rat aortic smooth muscle cells. Blocking phosphorylation by mutation (S217A) greatly increased FRNK inhibitory potency, resulting in strong inhibition of FAK autophosphorylation at Y397 and induction of smooth muscle cell apoptosis. FRNK has been proposed to compete for FAK anchoring sites in focal adhesions, but we did not detect displacement of FAK by WT-FRNK or superinhibitory S217A-FRNK. Instead, we found FRNK interacted directly with FAK, and this interaction is markedly strengthened for the superinhibitory S217A-FRNK. The results suggest that FRNK limits growth and survival signaling pathways by binding directly to FAK in an inhibitory complex, and this inhibition is relieved by phosphorylation of FRNK at S217.
Collapse
Affiliation(s)
- Taylor J Zak
- Department of Cell and Molecular Physiology and ‡Department of Medicine, Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | - Yevgenia E Koshman
- Department of Cell and Molecular Physiology and ‡Department of Medicine, Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | - Allen M Samarel
- Department of Cell and Molecular Physiology and ‡Department of Medicine, Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | - Seth L Robia
- Department of Cell and Molecular Physiology and ‡Department of Medicine, Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| |
Collapse
|
11
|
Jang B, Jung H, Choi S, Lee YH, Lee ST, Oh ES. Syndecan-2 cytoplasmic domain up-regulates matrix metalloproteinase-7 expression via the protein kinase Cγ-mediated FAK/ERK signaling pathway in colon cancer. J Biol Chem 2017; 292:16321-16332. [PMID: 28821612 DOI: 10.1074/jbc.m117.793752] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/04/2017] [Indexed: 12/25/2022] Open
Abstract
The syndecan family of heparan sulfate proteoglycans contributes to cell adhesion and communication by serving as co-receptors for cell signaling and extracellular matrix molecules. Syndecan-2 is located at the cell surface, and we previously reported that it induces matrix metalloproteinase-7 (MMP-7) expression in colon cancer cells. However, the underlying regulatory mechanisms are unknown. Here, we report that overexpression of syndecan-2 in HT-29 colon cancer cells increases the phosphorylation of focal adhesion kinase (FAK) and ERK in parallel with up-regulated MMP-7 expression, but a syndecan-2 mutant lacking the cytoplasmic domain showed significant reductions in these effects. Consistent with this observation, FAK inhibition via FAK-related non-kinase expression or inhibition of ERK with the ERK1/2 inhibitor SCH772984 diminished the syndecan-2-mediated up-regulation of MMP-7. Activation of PKC enhanced syndecan-2-mediated MMP-7 expression, whereas inhibition of PKC had the opposite effect. Of note, the exogenous expression of syndecan-2 triggered localization of PKCγ to the membrane. Expression of syndecan-2 harboring a phosphomimetic (S198E) mutation of the variable region of the cytoplasmic domain enhanced MMP-7 expression and FAK phosphorylation. Finally, experimental suppression of shedding of the syndecan-2 extracellular domain did not significantly affect the syndecan-2-mediated up-regulation of MMP-7 in the early period after syndecan-2 overexpression. Taken together, these findings suggest that syndecan-2's cytoplasmic domain up-regulates MMP-7 expression in colon cancer cells via PKCγ-mediated activation of FAK/ERK signaling.
Collapse
Affiliation(s)
- Bohee Jang
- From the Department of Life Sciences, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760 and
| | - Hyejung Jung
- From the Department of Life Sciences, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760 and
| | - Sojoong Choi
- From the Department of Life Sciences, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760 and
| | - Young Hun Lee
- the Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Seung-Taek Lee
- the Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Eok-Soo Oh
- From the Department of Life Sciences, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760 and
| |
Collapse
|
12
|
Wu Y, Huang Y, Gunst SJ. Focal adhesion kinase (FAK) and mechanical stimulation negatively regulate the transition of airway smooth muscle tissues to a synthetic phenotype. Am J Physiol Lung Cell Mol Physiol 2016; 311:L893-L902. [PMID: 27612967 DOI: 10.1152/ajplung.00299.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/05/2016] [Indexed: 01/10/2023] Open
Abstract
The effects of mechanical forces and focal adhesion kinase (FAK) in regulating the inflammatory responses of airway smooth muscle (ASM) tissues to stimulation with interleukin (IL)-13 were investigated. Canine tracheal tissues were subjected to different mechanical loads in vitro, and the effects of mechanical load on eotaxin secretion and inflammatory signaling pathways in response to IL-13 were determined. Eotaxin secretion by tissues in response to IL-13 was significantly inhibited in muscles maintained at a higher (+) load compared with those at a lower (-) load as assessed by ELISA, and Akt activation was also reduced in the higher (+) loaded tissues. Conversely the (+) mechanical load increased activation of the focal adhesion proteins FAK and paxillin in the tissues. The role of FAK in regulating the mechanosensitive responses was assessed by overexpressing FAK-related nonkinase in the tissues, by expressing the FAK kinase-dead mutant FAK Y397F, or by treating tissues with the FAK inhibitor PF-573228. FAK inactivation potentiated Akt activity and increased eotaxin secretion in response to IL-13. FAK inhibition also suppressed the mechanosensitivity of Akt activation and eotaxin secretion. In addition, FAK inactivation suppressed smooth muscle myosin heavy chain expression induced by the higher (+) mechanical load. The results demonstrate that the imposition of a higher mechanical load on airway smooth muscle stimulates FAK activation, which promotes the expression of the differentiated contractile phenotype and suppresses the synthetic phenotype and the inflammatory responses of the muscle tissue.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Youliang Huang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
13
|
Vu HL, Aplin AE. Targeting TBK1 inhibits migration and resistance to MEK inhibitors in mutant NRAS melanoma. Mol Cancer Res 2014; 12:1509-19. [PMID: 24962318 DOI: 10.1158/1541-7786.mcr-14-0204] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
UNLABELLED Melanoma is a devastating form of skin cancer with limited therapeutic options. Fifteen to 20% of patients with melanoma have an activating mutation in the GTPase, NRAS. The major downstream effectors of RAS are RAFs (ARAF, BRAF, and CRAF), phosphoinositide 3-kinase (PI3K), and the Ral guanine exchange factors (RalGEF). TANK-binding kinase 1 (TBK1) is an atypical IκB kinase family member that acts downstream of RalGEFs. Whereas many studies have analyzed RAF and PI3K signaling in mutant NRAS melanoma, the role of RalGEF/Ral is understudied and TBK1 has not been examined. To address this, TBK1 was modulated with knockdown approaches and targeted therapies to determine the role of TBK1 in motility, apoptosis, and signaling. In melanoma, NRAS overexpression increased TBK1 phosphorylation. TBK1 depletion inhibited migration and invasion, whereas its constitutive overexpression led to an increase in invasion. In three-dimensional systems that mimic the dermal microenvironment, TBK1 depletion or inhibition cooperated with MEK inhibitors to promote apoptosis, particularly in the context of MEK-insensitive mutant NRAS. This effect was absent in melanoma cells that are wild-type for NRAS. These results suggest the utility of TBK1 inhibitors as part of a treatment regimen for patients with mutant NRAS melanoma, for whom there are no current effective therapies. IMPLICATIONS TBK1 promotes the malignant properties of NRAS-mutant melanoma and its targeting, in combination with MEK, promotes apoptosis, thus providing a potential novel targeted therapeutic option.
Collapse
Affiliation(s)
- Ha Linh Vu
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
Yao L, Li K, Peng W, Lin Q, Li S, Hu X, Zheng X, Shao Z. An aberrant spliced transcript of focal adhesion kinase is exclusively expressed in human breast cancer. J Transl Med 2014; 12:136. [PMID: 24885534 PMCID: PMC4040474 DOI: 10.1186/1479-5876-12-136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/17/2014] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To clarify the roles of a new aberrantly spliced transcript of FAK that lacks exon 26 (denoted -26-exon FAK) in human breast cancers. METHODS Transcripts of FAK expressed in 102 human breast tumor tissues and 52 corresponding normal tissues were analyzed by RT-PCR and DNA sequencing, as well as agarose gel electrophoresis. The cDNA of -26-exon FAK was cloned and expressed in MCF-10A cells, and then the kinase activity, cellular localization and migration capability of FAK were examined by western blotting, immunofluorescent staining and migration assays, respectively. The expression levels of FAK were analyzed by western blotting in MCF-7 cells treated with TNF-α or in MCF-10A cells upon serum deprivation. The MCF-10A cells transfected with a plasmid expressing -26-exon FAK were cultured in serum-free medium and cell apoptosis was analyzed by flow cytometry. RESULTS The -26-exon FAK transcript was exclusively present in human breast tumor tissues and the encoded protein possessed the same kinase activity, cellular localization and cell migration-promoting ability as wild-type FAK. In MCF-7 cells treated with TNF-α, and in MCF-10A cells upon serum deprivation, the -26-exon FAK was resistant to proteolysis while wild-type FAK was largely cleaved. In addition, the -26-exon FAK, but not wild-type FAK, inhibited cell apoptosis. CONCLUSIONS The -26-exon FAK transcript, which is exclusively expressed in human breast tumor tissues, encodes a protein that possesses the same kinase activity and biological function as the wild-type FAK, but because it is resistant to the caspase-mediated cleavage that induces the proteolysis of the wild-type form, it ultimately prevents apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhiming Shao
- Department of Oncology, Breast Cancer Institute, Shanghai Cancer Center, Shanghai Medical College, Fudan University, No,270, Dong'an Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
15
|
EGFR/MEK/ERK/CDK5-dependent integrin-independent FAK phosphorylated on serine 732 contributes to microtubule depolymerization and mitosis in tumor cells. Cell Death Dis 2013; 4:e815. [PMID: 24091658 PMCID: PMC3824663 DOI: 10.1038/cddis.2013.353] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 02/08/2023]
Abstract
FAK is a non-receptor tyrosine kinase contributing to migration and proliferation downstream of integrin and/or growth factor receptor signaling of normal and malignant cells. In addition to well-characterized tyrosine phosphorylations, FAK is phosphorylated on several serines, whose role is not yet clarified. We observed that phosphorylated FAK on serine 732 (P-FAKSer732) is present at variable levels in vitro, in several melanoma, ovarian and thyroid tumor cell lines and in vivo, in tumor cells present in fresh ovarian cancer ascites. In vitro P-FAKSer732 was barely detectable during interphase while its levels strongly increased in mitotic cells upon activation of the EGFR/MEK/ERK axis in an integrin-independent manner. P-FAKSer732 presence was crucial for the maintenance of the proliferation rate and its levels were inversely related to the levels of acetylated α-tubulin. P-FAKSer732 localized at the microtubules (MTs) of the spindle, biochemically associated with MTs and contributed to MT depolymerization. The lack of the phosphorylation on Ser732 as well as the inhibition of CDK5 activity by roscovitine impaired mitotic spindle assembly and correct chromosome alignment during mitosis. We also identified, for the first time, that the EGF-dependent EGFR activation led to increased P-FAKSer732 and polymerized MTs. Our data shed light on the multifunctional roles of FAK in neoplastic cells, being involved not only in integrin-dependent migratory signaling but also in integrin-independent MT dynamics and mitosis control. These findings provide a new potential target for inhibiting the growth of tumor cells in which the EGFR/MEK/ERK/CDK5 pathway is active.
Collapse
|
16
|
FAK-related nonkinase is a multifunctional negative regulator of pulmonary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1572-84. [PMID: 23499373 DOI: 10.1016/j.ajpath.2013.01.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/07/2012] [Accepted: 01/14/2013] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease whose underlying molecular mechanisms are largely unknown. Herein, we show that focal adhesion kinase-related nonkinase (FRNK) plays a key role in limiting the development of lung fibrosis. Loss of FRNK function in vivo leads to increased lung fibrosis in an experimental mouse model. The increase in lung fibrosis is confirmed at the histological, biochemical, and physiological levels. Concordantly, loss of FRNK function results in increased fibroblast migration and myofibroblast differentiation and activation of signaling proteins that drive these phenotypes. FRNK-deficient murine lung fibroblasts also have an increased capacity to produce and contract matrix proteins. Restoration of FRNK expression in vivo and in vitro reverses these profibrotic phenotypes. These data demonstrate the multiple antifibrotic actions of FRNK. More important, FRNK expression is down-regulated in human IPF, and down-regulation of FRNK in normal human lung fibroblasts recapitulates the profibrotic phenotype seen in FRNK-deficient cells. The effect of loss and gain of FRNK in the experimental model, when taken together with its down-regulation in human IPF, suggests that FRNK acts as an endogenous negative regulator of lung fibrosis by repressing multiple profibrotic responses.
Collapse
|
17
|
Hayes JM, Hartsock A, Clark BS, Napier HRL, Link BA, Gross JM. Integrin α5/fibronectin1 and focal adhesion kinase are required for lens fiber morphogenesis in zebrafish. Mol Biol Cell 2012; 23:4725-38. [PMID: 23097490 PMCID: PMC3521681 DOI: 10.1091/mbc.e12-09-0672] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/16/2012] [Indexed: 11/16/2022] Open
Abstract
Lens fiber formation and morphogenesis requires a precise orchestration of cell- extracellular matrix (ECM) and cell-cell adhesive changes in order for a lens epithelial cell to adopt a lens fiber fate, morphology, and migratory ability. The cell-ECM interactions that mediate these processes are largely unknown, and here we demonstrate that fibronectin1 (Fn1), an ECM component, and integrin α5, its cellular binding partner, are required in the zebrafish lens for fiber morphogenesis. Mutations compromising either of these proteins lead to cataracts, characterized by defects in fiber adhesion, elongation, and packing. Loss of integrin α5/Fn1 does not affect the fate or viability of lens epithelial cells, nor does it affect the expression of differentiation markers expressed in lens fibers, although nucleus degradation is compromised. Analysis of the intracellular mediators of integrin α5/Fn1 activity focal adhesion kinase (FAK) and integrin-linked kinase (ILK) reveals that FAK, but not ILK, is also required for lens fiber morphogenesis. These results support a model in which lens fiber cells use integrin α5 to migrate along a Fn-containing substrate on the apical side of the lens epithelium and on the posterior lens capsule, likely activating an intracellular signaling cascade mediated by FAK in order to orchestrate the cytoskeletal changes in lens fibers that facilitate elongation, migration, and compaction.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Fibronectins/genetics
- Fibronectins/metabolism
- Focal Adhesion Kinase 1/genetics
- Focal Adhesion Kinase 1/metabolism
- Gene Expression Regulation, Developmental
- Gene Knockdown Techniques
- Immunohistochemistry
- In Situ Hybridization
- Integrin alpha5/genetics
- Integrin alpha5/metabolism
- Lens, Crystalline/embryology
- Lens, Crystalline/metabolism
- Lens, Crystalline/ultrastructure
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Confocal
- Microscopy, Electron
- Models, Genetic
- Morphogenesis/genetics
- Mutation
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Julie M. Hayes
- Section of Molecular Cell and Developmental Biology and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78722
| | - Andrea Hartsock
- Section of Molecular Cell and Developmental Biology and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78722
| | - Brian S. Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Hugh R. L. Napier
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Brian A. Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Jeffrey M. Gross
- Section of Molecular Cell and Developmental Biology and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78722
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78722
| |
Collapse
|
18
|
Serna-Marquez N, Villegas-Comonfort S, Galindo-Hernandez O, Navarro-Tito N, Millan A, Salazar EP. Role of LOXs and COX-2 on FAK activation and cell migration induced by linoleic acid in MDA-MB-231 breast cancer cells. Cell Oncol (Dordr) 2012. [PMID: 23179791 DOI: 10.1007/s13402-012-0114-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epidemiological studies and animal models suggest a link between high levels of dietary fat intake and an increased risk of developing breast cancer. Particularly, free fatty acids (FFAs) are involved in several processes, including proliferation, migration and invasion, in breast cancer cells. Linoleic acid (LA) is a dietary n-6 polyunsaturated fatty acid that is known to induce proliferation and invasion in breast cancer cells. So far, however, the contribution of LA to focal adhesion kinase (FAK) activation and cell migration in breast cancer cells has not been studied. RESULTS Here, we show that LA promotes FAK and Src activation, as well as cell migration, in MDA-MB-231 breast cancer cells. FAK activation and cell migration require Src, Gi/Go, COX-2 and LOXs activities, whereas both are independent of Δ6 desaturase activity. In addition, we show that cell migration requires FAK activity, whereas FAK activation requires Src activity, thus suggesting a reciprocal catalytic activation mechanism of FAK and Src. CONCLUSIONS In summary, our findings show that LA induces FAK activation and cell migration in MDA-MB-231 breast cancer cells.
Collapse
|
19
|
Activation of endogenous FAK via expression of its amino terminal domain in Xenopus embryos. PLoS One 2012; 7:e42577. [PMID: 22880041 PMCID: PMC3412797 DOI: 10.1371/journal.pone.0042577] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022] Open
Abstract
Background The Focal Adhesion Kinase is a well studied tyrosine kinase involved in a wide number of cellular processes including cell adhesion and migration. It has also been shown to play important roles during embryonic development and targeted disruption of the FAK gene in mice results in embryonic lethality by day 8.5. Principal Findings Here we examined the pattern of phosphorylation of FAK during Xenopus development and found that FAK is phosphorylated on all major tyrosine residues examined from early blastula stages well before any morphogenetic movements take place. We go on to show that FRNK fails to act as a dominant negative in the context of the early embryo and that the FERM domain has a major role in determining FAK’s localization at the plasma membrane. Finally, we show that autonomous expression of the FERM domain leads to the activation of endogenous FAK in a tyrosine 397 dependent fashion. Conclusions Overall, our data suggest an important role for the FERM domain in the activation of FAK and indicate that integrin signalling plays a limited role in the in vivo activation of FAK at least during the early stages of development.
Collapse
|
20
|
Slanina H, Hebling S, Hauck CR, Schubert-Unkmeir A. Cell invasion by Neisseria meningitidis requires a functional interplay between the focal adhesion kinase, Src and cortactin. PLoS One 2012; 7:e39613. [PMID: 22768099 PMCID: PMC3387252 DOI: 10.1371/journal.pone.0039613] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/23/2012] [Indexed: 02/07/2023] Open
Abstract
Entry of Neisseria meningitidis (the meningococcus) into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin or vitronectin bound to the surface protein Opc forming a bridge to the respective integrins. This interaction leads to cytoskeletal rearrangement and uptake of meningococci. In this study, we determined that the focal adhesion kinase (FAK), which directly associates with integrins, is involved in integrin-mediated internalization of N. meningitidis in HBMEC. Inhibition of FAK activity by the specific FAK inhibitor PF 573882 reduced Opc-mediated invasion of HBMEC more than 90%. Moreover, overexpression of FAK mutants that were either impaired in the kinase activity or were not capable of autophosphorylation or overexpression of the dominant-negative version of FAK (FRNK) blocked integrin-mediated internalization of N. meningitidis. Importantly, FAK-deficient fibroblasts were significantly less invaded by N. meningitidis. Furthermore, N. meningitidis induced tyrosine phosphorylation of several host proteins including the FAK/Src complex substrate cortactin. Inhibition of cortactin expression by siRNA silencing and mutation of critical amino acid residues within cortactin, that encompass Arp2/3 association and dynamin binding, significantly reduced meningococcal invasion into eukaryotic cells suggesting that both domains are critical for efficient uptake of N. meningitidis into eukaryotic cells. Together, these results indicate that N. meningitidis exploits the integrin signal pathway for its entry and that FAK mediates the transfer of signals from activated integrins to the cytoskeleton. A cooperative interplay between FAK, Src and cortactin then enables endocytosis of N. meningitidis into host cells.
Collapse
Affiliation(s)
- Heiko Slanina
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Sabrina Hebling
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
21
|
Su B, Gao L, Meng F, Guo LW, Rothschild J, Gelman IH. Adhesion-mediated cytoskeletal remodeling is controlled by the direct scaffolding of Src from FAK complexes to lipid rafts by SSeCKS/AKAP12. Oncogene 2012; 32:2016-26. [PMID: 22710722 PMCID: PMC3449054 DOI: 10.1038/onc.2012.218] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metastatic cell migration and invasion are regulated by altered adhesion-mediated signaling to the actin-based cytoskeleton via activated Src-FAK complexes. SSeCKS (the rodent orthologue of human Gravin/AKAP12), whose expression is downregulated by oncogenic Src and in many human cancers, antagonizes oncogenic Src pathways including those driving neovascularization at metastatic sites, metastatic cell motility and invasiveness. This is likely manifested through its function as a scaffolder of F-actin and signaling proteins such as cyclins, calmodulin, protein kinase (PK) C and PKA. Here, we show that in contrast to its ability to inhibit haptotaxis, SSeCKS increased prostate cancer cell adhesion to fibronectin (FN) and type I collagen in a FAK-dependent manner, correlating with a relative increase in FAKpoY397 levels. In contrast, SSeCKS suppressed adhesion-induced Src activation (SrcpoY416) and phosphorylation of FAK at Y925, a known Src substrate site. SSeCKS also induced increased cell spreading, cell flattening, integrin β1 clustering and formation of mature focal adhesion plaques. An in silico analysis identified a Src-binding domain on SSeCKS (a.a.153–166) that is homologous to the Src binding domain of Caveolin-1, and this region is required for SSeCKS-Src interaction, for SSeCKS-enhanced Src activity and sequestration to lipid rafts, and for SSeCKS-enhanced adhesion of MAT-LyLu and CWR22Rv1 prostate cancer cells. Our data suggest a model in which SSeCKS suppresses oncogenic motility by sequestering Src to caveolin-rich lipid rafts, thereby disengaging Src from FAK-associated adhesion and signaling complexes.
Collapse
Affiliation(s)
- B Su
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|
22
|
Myers JP, Robles E, Ducharme-Smith A, Gomez TM. Focal adhesion kinase modulates Cdc42 activity downstream of positive and negative axon guidance cues. J Cell Sci 2012; 125:2918-29. [PMID: 22393238 DOI: 10.1242/jcs.100107] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is biochemical, imaging and functional evidence that Rho GTPase signaling is a crucial regulator of actin-based structures such as lamellipodia and filopodia. However, although Rho GTPases are believed to serve similar functions in growth cones, the spatiotemporal dynamics of Rho GTPase signaling has not been examined in living growth cones in response to known axon guidance cues. Here we provide the first measurements of Cdc42 activity in living growth cones acutely stimulated with both growth-promoting and growth-inhibiting axon-guidance cues. Interestingly, we find that both permissive and repulsive factors can work by modulating Cdc42 activity, but in opposite directions. We find that the growth-promoting factors laminin and BDNF activate Cdc42, whereas the inhibitor Slit2 reduces Cdc42 activity in growth cones. Remarkably, we find that regulation of focal adhesion kinase (FAK) activity is a common upstream modulator of Cdc42 by BDNF, laminin and Slit. These findings suggest that rapid modulation of Cdc42 signaling through FAK by receptor activation underlies changes in growth cone motility in response to permissive and repulsive guidance cues.
Collapse
Affiliation(s)
- Jonathan P Myers
- Department of Neuroscience, Medical Scientist Training Program and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
23
|
Koshman YE, Chu M, Engman SJ, Kim T, Iyengar R, Robia SL, Samarel AM. Focal adhesion kinase-related nonkinase inhibits vascular smooth muscle cell invasion by focal adhesion targeting, tyrosine 168 phosphorylation, and competition for p130(Cas) binding. Arterioscler Thromb Vasc Biol 2012; 31:2432-40. [PMID: 21852560 DOI: 10.1161/atvbaha.111.235549] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Focal adhesion kinase-related nonkinase (FRNK), the C-terminal domain of focal adhesion kinase (FAK), is a tyrosine-phosphorylated, vascular smooth muscle cell (VSMC)-specific inhibitor of cell migration. FRNK inhibits both FAK and proline-rich tyrosine kinase 2 (PYK2) in cultured VSMCs, and both kinases may be involved in VSMC invasion during vascular remodeling. METHODS AND RESULTS Adenovirally mediated gene transfer of green fluorescent protein-tagged, wild-type (wt) FRNK into balloon-injured rat carotid arteries confirmed that FRNK overexpression inhibited both FAK and PYK2 phosphorylation and downstream signaling in vivo. To identify which kinase was involved in regulating VSMC invasion, adenovirally mediated expression of specific short hairpin RNAs was used to knock down FAK versus PYK2 in cultured VSMCs, but only FAK short hairpin RNA was effective in reducing VSMC invasion. The role of FRNK tyrosine phosphorylation was then examined using adenoviruses expressing nonphosphorylatable (Tyr168Phe-, Tyr232Phe-, and Tyr168,232Phe-) green fluorescent protein-FRNK mutants. wtFRNK and all FRNK mutants localized to FAs, but only Tyr168 phosphorylation was required for FRNK to inhibit invasion. Preventing Tyr168 phosphorylation also increased FRNK-paxillin interaction, as determined by coimmunoprecipitation, total internal reflection fluorescence microscopy, and fluorescence recovery after photobleaching. Furthermore, wtFRNK competed with FAK for binding to p130(Cas) (a critically important regulator of cell migration) and prevented its phosphorylation. However, Tyr168Phe-FRNK was unable to bind p130(Cas). CONCLUSION We propose a 3-stage mechanism for FRNK inhibition: focal adhesion targeting, Tyr168 phosphorylation, and competition with FAK for p130 binding and phosphorylation, which are all required for FRNK to inhibit VSMC invasion.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- Cardiovascular Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Mao Y, Finnemann SC. Essential diurnal Rac1 activation during retinal phagocytosis requires αvβ5 integrin but not tyrosine kinases focal adhesion kinase or Mer tyrosine kinase. Mol Biol Cell 2012; 23:1104-14. [PMID: 22262456 PMCID: PMC3302737 DOI: 10.1091/mbc.e11-10-0840] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Diurnal phagocytosis of shed photoreceptor outer-segment particles by retinal pigment epithelial (RPE) cells belongs to a group of conserved clearance mechanisms employing αv integrins upstream of tyrosine kinases and Rho GTPases. In this study, we tested the interdependence of the tyrosine kinases focal adhesion kinase (FAK) and Mer tyrosine kinase (MerTK) and Rho GTPases during engulfment. RPE cells activated and redistributed Rac1, but not RhoA or Cdc42, during phagocytosis. Toxin B, overexpression of dominant-negative Rac1, or decreasing Rac1 expression prevented particle engulfment. Fluorescence microscopy showed that Rac1 inhibition had no obvious effect on F-actin arrangement in resting RPE but prevented recruitment of F-actin to surface-bound phagocytic particles. Quantification of active GTP-Rac1 in wild-type and mutant RPE in culture and in vivo revealed that Rac1 activation during phagocytosis requires αvβ5 integrin and its ligand milk fat globule EGF factor-8 (MFG-E8) but not the receptor tyrosine kinase MerTK. Abolishing tyrosine kinase signaling downstream of αvβ5 toward MerTK by inhibiting FAK specifically or tyrosine kinases generally neither prevented Rac1 activation nor F-actin recruitment during phagocytosis. Likewise, inhibiting Rac1 had no effect on FAK or MerTK activation. We conclude that MerTK activation via FAK and F-actin recruitment via Rac1 both require MFG-E8-ligated αvβ5 integrin. Both pathways are independently activated and required for clearance phagocytosis.
Collapse
Affiliation(s)
- Yingyu Mao
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | | |
Collapse
|
25
|
Wary KK, Kohler EE, Chatterjee I. Focal adhesion kinase regulation of neovascularization. Microvasc Res 2012; 83:64-70. [PMID: 21616084 PMCID: PMC3186864 DOI: 10.1016/j.mvr.2011.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 11/22/2022]
Abstract
In this review, we discuss the role of focal adhesion kinase (FAK), an intracellular tyrosine kinase, in endothelial cells in relation to neovascularization. Genetic and in vitro studies have identified critical factors, receptor systems, and their intracellular signaling components that regulate the neovasculogenic phenotypes of endothelial cells. Among these factors, FAK appears to regulate several aspects of endothelial cellular behavior, including migration, survival, cytoskeletal organization, as well as cell proliferation. Upon adhesion of endothelial cells to extracellular matrix (ECM) ligands, integrins cluster on the plane of plasma-membrane, while cytoplasmic domains of integrins interact with cytoskeletal proteins and signaling molecules including FAK. However, FAK not only serves as a critical component of integrin signaling, but is also a downstream element of the VEGF/VEGF-receptor and other ligand-receptor systems that regulate neovascularization. A complete understanding of FAK-mediated neovascularization, therefore, should address the molecular and cellular mechanisms that regulate the biology of FAK. Continued research on FAK may, therefore, yield novel therapies to improve treatment modalities for the pathological neovascularization associated with diseases.
Collapse
Affiliation(s)
- Kishore K Wary
- Department of Pharmacology, University of Illinois, 835 S. Wolcott, Room E403, Mail code 868, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
26
|
Focal adhesion kinase promotes integrin adhesion dynamics necessary for chemotropic turning of nerve growth cones. J Neurosci 2011; 31:13585-95. [PMID: 21940449 DOI: 10.1523/jneurosci.2381-11.2011] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ability of extending axons to navigate using combinations of extracellular cues is essential for proper neural network formation. One intracellular signaling molecule that integrates convergent signals from both extracellular matrix (ECM) proteins and growth factors is focal adhesion kinase (FAK). Analysis of FAK function shows that it influences a variety of cellular activities, including cell motility, proliferation, and differentiation. Recent work in developing neurons has shown that FAK and Src function downstream of both attractive and repulsive growth factors, but little is known about the effectors or cellular mechanisms that FAK controls in growth cones on ECM proteins. We report that FAK functions downstream of brain-derived neurotrophic factor (BDNF) and laminin in the modulation of point contact dynamics, phosphotyrosine signaling at filopodial tips, and lamellipodial protrusion. BDNF stimulation accelerates paxillin-containing point contact turnover and formation. Knockdown of FAK function either with a FAK antisense morpholino or by expression of FRNK, a dominant-negative FAK isoform, blocks all aspects of the response to BDNF, including the acceleration of point contact dynamics. On the other hand, expression of specific FAK point mutants can selectively disrupt distinct aspects of the response to BDNF. We also show that growth cone turning depends on both signaling cascades tested here. Finally, we provide the first evidence that growth cone point contacts are asymmetrically regulated during turning to an attractive guidance cue.
Collapse
|
27
|
Quadri SK. Cross talk between focal adhesion kinase and cadherins: role in regulating endothelial barrier function. Microvasc Res 2011; 83:3-11. [PMID: 21864544 DOI: 10.1016/j.mvr.2011.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/26/2011] [Accepted: 08/02/2011] [Indexed: 01/11/2023]
Abstract
A layer of endothelial cells attached to their underlying matrices by complex transmembrane structures termed focal adhesion (FA) proteins maintains the barrier property of microvascular endothelium. FAs sense the physical properties of the extracellular matrix (ECM) and organize the cytoskeleton accordingly. The close association of adherens junction (AJ) protein, cadherin, with the cytoskeleton is known to be essential in coordinating the appropriate mechanical properties to cell-cell contacts. Recently, it has become clear that a crosstalk exists between focal adhesion kinase (FAK) and cadherin that regulates signaling at intercellular endothelial junctions. This review discusses recent advances in our understanding of the dynamic regulation of the molecular connections between FAK and the cadherin complex and cadherin-catenin-actin interaction-dependent changes as well as the role of small GTPases in endothelial barrier regulation. This review also discusses how a signaling network regulates a range of cellular processes important for barrier function and diseases.
Collapse
Affiliation(s)
- Sadiqa K Quadri
- Lung Biology Laboratory, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
28
|
Koshman YE, Kim T, Chu M, Engman SJ, Iyengar R, Robia SL, Samarel AM. FRNK inhibition of focal adhesion kinase-dependent signaling and migration in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2010; 30:2226-33. [PMID: 20705914 DOI: 10.1161/atvbaha.110.212761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To examine whether interference with FRNK targeting to focal adhesions (FAs) affects its inhibitory activity and tyrosine phosphorylation. METHODS AND RESULTS Focal adhesion kinase and its autonomously expressed C-terminal inhibitor, focal adhesion kinase-related nonkinase (FRNK), regulate vascular smooth muscle cell (VSMC) signaling and migration. FRNK-paxillin binding was reduced by a point mutation in its FA targeting domain (L341S-FRNK). Green fluorescent protein-tagged wild type and L341S-FRNK were then adenovirally expressed in VSMCs. L341S-FRNK targeted to VSMC FAs, despite previous studies in other cell types. L341S-FRNK affected FA binding kinetics (assessed by total internal reflection fluorescnece [TIRF] microscopy and fluorescence recovery after photobleaching [FRAP]) and reduced its steady-state paxillin interaction (determined by coimmunoprecipitation). Both wt-FRNK and L341S-FRNK lowered basal and angiotensin II-stimulated focal adhesion kinase, paxillin, and extracellular signal-regulated kinase 1/2 phosphorylation. However, the degree of inhibition was significantly reduced by L341S-FRNK. L341S-FRNK also demonstrated significantly greater migratory activity compared with wt-FRNK-expressing VSMCs. Angiotensin II-induced Y168 phosphorylation was Src dependent, as evident by a significant reduction in Y168 phosphorylation by the Src family kinase inhibitor PP2 is 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Surprisingly, Y168 phosphorylation was unaffected by its targeting. Furthermore, Y232 phosphorylation increased approximately 3-fold in L341S-FRNK, which was less sensitive to PP2. CONCLUSIONS FRNK inhibition of VSMC migration requires both FA targeting and Y168 phosphorylation by Src family kinases. FRNK-Y232 phosphorylation occurs outside of FAs, probably by a PP2-insensitive kinase.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- Cardiovascular Institute, Loyola University Medical Center, 2160 S First Ave, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Gupton SL, Gertler FB. Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis. Dev Cell 2010; 18:725-36. [PMID: 20493807 DOI: 10.1016/j.devcel.2010.02.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/14/2010] [Accepted: 02/25/2010] [Indexed: 10/25/2022]
Abstract
Neurons establish their unique morphology by elaborating multiple neurites that subsequently form axons and dendrites. Neurite initiation entails significant surface area expansion, necessitating addition to the plasma membrane. We report that regulated membrane delivery coordinated with the actin cytoskeleton is crucial for neuritogenesis and identify two independent pathways that use distinct exocytic and cytoskeletal machinery to drive neuritogenesis. One pathway uses Ena/VASP-regulated actin dynamics coordinated with VAMP2-mediated exocytosis and involves a novel role for Ena/VASP in exocytosis. A second mechanism occurs in the presence of laminin through integrin-dependent activation of FAK and src and uses coordinated activity of the Arp2/3 complex and VAMP7-mediated exocytosis. We conclude that neuritogenesis can be driven by two distinct pathways that differentially coordinate cytoskeletal dynamics and exocytosis. These regulated changes and coordination of cytoskeletal and exocytic machinery may be used in other physiological contexts involving cell motility and morphogenesis.
Collapse
Affiliation(s)
- Stephanie L Gupton
- The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
30
|
Bolós V, Gasent JM, López-Tarruella S, Grande E. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. Onco Targets Ther 2010; 3:83-97. [PMID: 20616959 PMCID: PMC2895777 DOI: 10.2147/ott.s6909] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Indexed: 12/11/2022] Open
Abstract
Focal adhesion kinase (FAK) and steroid receptor coactivator (Src) are intracellular (nonreceptor) tyrosine kinases that physically and functionally interact to promote a variety of cellular responses. Plenty of reports have already suggested an additional central role for this complex in cancer through its ability to promote proliferation and anoikis resistance in tumor cells. An important role for the FAK/Src complex in tumor angiogenesis has also been established. Furthermore, FAK and Src have been associated with solid tumor metastasis through their ability to promote the epithelial mesenchymal transition. In fact, a strong correlation between increased FAK/Src expression/phosphorylation and the invasive phenotype in human tumors has been found. Additionally, an association for FAK/Src with resistances to the current anticancer therapies has already been established. Currently, novel anticancer agents that target FAK or Src are under development in a broad variety of solid tumors. In this article we will review the normal cellular functions of the FAK/Src complex as an effector of integrin and/or tyrosine kinase receptor signaling. We will also collect data about their role in cancer and we will summarize the most recent data from the FAK and Src inhibitors under clinical and preclinical development. Furthermore, the association of both these proteins with chemotherapy and hormonal therapy resistances, as a rationale for new combined therapeutic approaches with these novel agents, to abrogate treatment associated resistances, will also be reviewed.
Collapse
|
31
|
SynCAM 1 participates in axo-dendritic contact assembly and shapes neuronal growth cones. Proc Natl Acad Sci U S A 2010; 107:7568-73. [PMID: 20368431 DOI: 10.1073/pnas.0911798107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal growth cones are highly motile structures that tip developing neurites and explore their surroundings before axo-dendritic contact and synaptogenesis. However, the membrane proteins organizing these processes remain insufficiently understood. Here we identify that the synaptic cell adhesion molecule 1 (SynCAM 1), an immunoglobulin superfamily member, is already expressed in developing neurons and localizes to their growth cones. Upon interaction of growth cones with target neurites, SynCAM 1 rapidly assembles at these contacts to form stable adhesive clusters. Synaptic markers can also be detected at these sites. Addressing the functions of SynCAM 1 in growth cones preceding contact, we determine that it is required and sufficient to restrict the number of active filopodia. Further, SynCAM 1 negatively regulates the morphological complexity of migrating growth cones. Focal adhesion kinase, a binding partner of SynCAM 1, is implicated in its morphogenetic activities. These results reveal that SynCAM 1 acts in developing neurons to shape migrating growth cones and contributes to the adhesive differentiation of their axo-dendritic contacts.
Collapse
|
32
|
Chan KT, Bennin DA, Huttenlocher A. Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). J Biol Chem 2010; 285:11418-26. [PMID: 20150423 DOI: 10.1074/jbc.m109.090746] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coordinated and dynamic regulation of adhesions is required for cell migration. We demonstrated previously that limited proteolysis of talin1 by the calcium-dependent protease calpain 2 plays a critical role in adhesion disassembly in fibroblasts (Franco, S. J., Rodgers, M. A., Perrin, B. J., Han, J., Bennin, D. A., Critchley, D. R., and Huttenlocher, A. (2004) Nat. Cell Biol. 6, 977-983). However, little is known about the contribution of other calpain substrates to the regulation of adhesion dynamics. We now provide evidence that calpain 2-mediated proteolysis of focal adhesion kinase (FAK) regulates adhesion dynamics in motile cells. We mapped the preferred calpain cleavage site between the two C-terminal proline-rich regions after Ser-745, resulting in a C-terminal fragment similar in size to the FAK-related non-kinase (FRNK). We generated mutant FAK with a point mutation (V744G) that renders FAK resistant to calpain proteolysis but retains other biochemical properties of FAK. Using time-lapse microscopy, we show that the dynamics of green fluorescent protein-talin1 are impaired in FAK-deficient cells. Expression of wild-type but not calpain-resistant FAK rescues talin dynamics in FAK-deficient cells. Taken together, our findings suggest a novel role for calpain proteolysis of FAK in regulating adhesion dynamics in motile cells.
Collapse
Affiliation(s)
- Keefe T Chan
- Department of Molecular and Cellular Pharmacology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
33
|
Cai GQ, Zheng A, Tang Q, White ES, Chou CF, Gladson CL, Olman MA, Ding Q. Downregulation of FAK-related non-kinase mediates the migratory phenotype of human fibrotic lung fibroblasts. Exp Cell Res 2010; 316:1600-9. [PMID: 20109444 DOI: 10.1016/j.yexcr.2010.01.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 01/11/2023]
Abstract
Fibroblast migration plays an important role in the normal wound healing process; however, dysregulated cell migration may contribute to the progressive formation of fibrotic lesions in the diseased condition. To examine the role of focal-adhesion-kinase (FAK)-related non-kinase (FRNK) in regulation of fibrotic lung fibroblast migration, we examined cell migration, FRNK expression, and activation of focal adhesion kinase (FAK) and Rho GTPase (Rho and Rac) in primary lung fibroblasts derived from both idiopathic pulmonary fibrosis (IPF) patients and normal human controls. Fibrotic (IPF) lung fibroblasts have increased cell migration when compared to control human lung fibroblasts. FRNK expression is significantly reduced in IPF lung fibroblasts, while activation of FAK, Rho and Rac is increased in IPF lung fibroblasts. Endogenous FRNK expression is inversely correlated with FAK activation and cell migration rate in IPF lung fibroblasts. Forced exogenous FRNK expression abrogates the increased cell migration, and blocked the activation of FAK and Rho GTPase (Rho and Rac), in IPF lung fibroblasts. These data for the first time provide evidence that downregulation of endogenous FRNK plays a role in promoting cell migration through FAK and Rho GTPase in fibrotic IPF lung fibroblasts.
Collapse
Affiliation(s)
- Guo-qiang Cai
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
IMPORTANCE OF THE FIELD The focal adhesion tyrosine kinases FAK and Pyk2 are uniquely situated to act as critical mediators for the activation of signaling pathways that regulate cell migration, proliferation and survival. By coordinating adhesion and cytoskeletal dynamics with survival and growth signaling, FAK and Pyk2 represent molecular therapeutic targets in cancer as malignant cells often exhibit defects in these processes. AREAS COVERED IN THIS REVIEW This review examines the structure and function of the focal adhesion kinase Pyk2 and intends to provide a rationale for the employment of modulating strategies that include both catalytic and extra-catalytic approaches that have been developed in the last 3 - 5 years. WHAT THE READER WILL GAIN Targeting tyrosine kinases in oncology has focused on the ATP binding pocket as means to inhibit catalytic activity and downregulate pathways involved in tumor invasion. This review discusses the available catalytic inhibitors and compares them to the alternative approach of targeting protein-protein interactions that regulate kinase activity. TAKE HOME MESSAGE Development of specific catalytic inhibitors of the focal adhesion kinases has improved but significant challenges remain. Thus, approaches that inhibit the effector function of Pyk2 by targeting regulatory modules can increase specificity and will be a welcome asset to the therapeutic arena.
Collapse
Affiliation(s)
- Christopher A Lipinski
- Mayo Clinic Collaborative Research Building, Department of Biochemistry and Molecular Biology, Scottsdale, AZ 85259, USA
| | | |
Collapse
|
35
|
Hao HF, Naomoto Y, Bao XH, Watanabe N, Sakurama K, Noma K, Tomono Y, Fukazawa T, Shirakawa Y, Yamatsuji T, Matsuoka J, Takaoka M. Progress in researches about focal adhesion kinase in gastrointestinal tract. World J Gastroenterol 2009; 15:5916-23. [PMID: 20014455 PMCID: PMC2795178 DOI: 10.3748/wjg.15.5916] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Focal adhesion kinase (FAK) is a 125-kDa non-receptor protein tyrosine. Growth factors or the clustering of integrins facilitate the rapid phosphorylation of FAK at Tyr-397 and this in turn recruits Src-family protein tyrosine kinases, resulting in the phosphorylation of Tyr-576 and Tyr-577 in the FAK activation loop and full catalytic FAK activation. FAK plays a critical role in the biological processes of normal and cancer cells including the gastrointestinal tract. FAK also plays an important role in the restitution, cell survival and apoptosis and carcinogenesis of the gastrointestinal tract. FAK is over-expressed in cancer cells and its over-expression and elevated activities are associated with motility and invasion of cancer cells. FAK has been proposed as a potential target in cancer therapy. Small molecule inhibitors effectively inhibit the kinase activity of FAK and show a potent inhibitory effect for the proliferation and migration of tumor cells, indicating a high potential for application in cancer therapy.
Collapse
|
36
|
Koshman YE, Engman SJ, Kim T, Iyengar R, Henderson KK, Samarel AM. Role of FRNK tyrosine phosphorylation in vascular smooth muscle spreading and migration. Cardiovasc Res 2009; 85:571-81. [PMID: 19793767 DOI: 10.1093/cvr/cvp322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS Focal adhesion kinase (FAK) and its autonomously expressed, C-terminal inhibitor FAK-related non-kinase (FRNK), are important regulators of vascular smooth muscle cell (VSMC) spreading and migration. However, the mechanisms of FRNK-mediated inhibition of FAK-dependent signalling are not fully defined. The aim of this study was to determine the potential role of FRNK tyrosine phosphorylation in regulating these processes. METHODS AND RESULTS Rat carotid arteries were balloon-injured and FAK and FRNK expression and phosphorylation were examined by immunocytochemistry, immunoprecipitation, and western blotting with total and phosphospecific antibodies. FAK and FRNK expression increased four- and nine-fold, respectively, in alpha-smooth muscle actin-positive VSMCs of injured arteries when compared with contralateral control arteries, and the upregulated FRNK was phosphorylated at residues Y168 and Y232. In A7r5 cells (an embryonic rat VSMC line), endogenously expressed FRNK was also phosphorylated at Y168 and Y232 under basal conditions, and Y168/Y232 phosphorylation increased in response to angiotensin II treatment. When overexpressed in A7r5 cells and adult rat aortic smooth muscle cells (RASM), wild-type (wt) GFP-tagged FRNK was also phosphorylated at residues Y168 and Y232, and GFP-wtFRNK inhibited cell spreading and migration. Mutation of GFP-FRNK at Y168 (GFP-Y168F-FRNK) abrogated FRNK-mediated inhibition of cell spreading and migration, but did not affect its localization in VSMC focal adhesions or its ability to inhibit FAK tyrosine phosphorylation. CONCLUSION Phosphorylation of Y168 on FRNK may represent a novel mechanism by which FRNK inhibits cell spreading and migration in VSMCs.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- The Cardiovascular Institute, Loyola University Chicago Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
37
|
Schwock J, Dhani N, Cao MPJ, Zheng J, Clarkson R, Radulovich N, Navab R, Horn LC, Hedley DW. Targeting focal adhesion kinase with dominant-negative FRNK or Hsp90 inhibitor 17-DMAG suppresses tumor growth and metastasis of SiHa cervical xenografts. Cancer Res 2009; 69:4750-9. [PMID: 19458065 DOI: 10.1158/0008-5472.can-09-0454] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focal adhesion kinase (FAK), a nonreceptor protein tyrosine kinase and key modulator of integrin signaling, is widely expressed in different tissues and cell types. Recent evidence indicates a central function of FAK in neoplasia where the kinase contributes to cell proliferation, resistance to apoptosis and anoikis, invasiveness, and metastasis. FAK, like other signaling kinases, is dependent on the chaperone heat shock protein 90 (Hsp90) for its stability and proper function. Thus, inhibition of Hsp90 might be a way of disrupting FAK signaling and, consequently, tumor progression. FAK is expressed in high-grade squamous intraepithelial lesions and metastatic cervical carcinomas but not in nonneoplastic cervical mucosa. In SiHa, a cervical cancer cell line with characteristics of epithelial-to-mesenchymal transition, the stable expression of dominant-negative FAK-related nonkinase decreases anchorage independence and delays xenograft growth. FAK-related nonkinase as well as the Hsp90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin both negatively interfere with FAK signaling and focal adhesion turnover. Short-term 17-dimethylaminoethylamino-17-demethoxygeldanamycin treatment prolongs survival in a SiHa lung metastasis model and chronic administration suppresses tumor growth as well as metastatic spread in orthotopic xenografts. Taken together, our data suggest that FAK is of importance for tumor progression in cervical cancer and that disruption of FAK signaling by Hsp90 inhibition might be an avenue to restrain tumor growth as well as metastatic spread.
Collapse
Affiliation(s)
- Joerg Schwock
- Ontario Cancer Institute, Departments of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Mechanical loading of bone is important for maintenance of bone mass and structural stability of the skeleton. When bone is mechanically loaded, movement of fluid within the spaces surrounding bone cells generates fluid shear stress (FSS) that stimulates osteoblasts, resulting in enhanced anabolic activity. The mechanisms by which osteoblasts convert the external stimulation of FSS into biochemical changes, a process known as mechanotransduction, remain poorly understood. Focal adhesions are prime candidates for transducing external stimuli. Focal adhesion kinase (FAK), a nonreceptor tyrosine kinase found in focal adhesions, may play a key role in mechanotransduction, although its function has not been directly examined in osteoblasts. We examined the role of FAK in osteoblast mechanotransduction using short interfering RNA (siRNA), overexpression of a dominant negative FAK, and FAK(-/-) osteoblasts to disrupt FAK function in calvarial osteoblasts. Osteoblasts were subjected to varying periods oscillatory fluid flow (OFF) from 5 min to 4 h, and several physiologically important readouts of mechanotransduction were analyzed including: extracellular signal-related kinase 1/2 phosphorylation, upregulation of c-fos, cyclooxygenase-2, and osteopontin, and release of prostaglandin E(2). Osteoblasts with disrupted FAK signaling exhibited severely impaired mechanical responses in all endpoints examined. These data indicate the importance of FAK for both short and long periods of FSS-induced mechanotransduction in osteoblasts.
Collapse
|
39
|
Ding Q, Gladson CL, Wu H, Hayasaka H, Olman MA. Focal adhesion kinase (FAK)-related non-kinase inhibits myofibroblast differentiation through differential MAPK activation in a FAK-dependent manner. J Biol Chem 2008; 283:26839-49. [PMID: 18669633 PMCID: PMC2556008 DOI: 10.1074/jbc.m803645200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/24/2008] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor (TGF)-beta1 induces fibroblast transdifferentiation to myofibroblasts, a process that requires the involvement of integrin-mediated signaling and focal adhesion kinase (FAK). FAK-related non-kinase (FRNK) is known for its role in inhibiting integrin-mediated cell migration; however, its role in myofibroblast differentiation has not been defined. Here, we report that FRNK abrogates TGF-beta1-induced myofibroblast differentiation in vitro and in vivo. TGF-beta1 can induce alpha-smooth muscle actin (alpha-SMA) expression in the presence or absence of FAK; however, TGF-beta1-induced alpha-SMA expression is reduced (approximately 73%) in FAK-deficient fibroblasts. Although both ERK and p38 MAPK activation is required for maximal TGF-beta1-induced alpha-SMA expression, ERK is the major signaling intermediate in cells that express FAK. In contrast, p38 MAPK is the dominant mediator of TGF-beta1-induced alpha-SMA expression in FAK-deficient cells. FRNK overexpression blocks TGF-beta1-induced ERK or p38 MAPK activation in the presence, and surprisingly, in the absence of FAK. The loss of FRNK was tested in vivo during experimentally induced pulmonary fibrosis in mice. FRNK knock-out mice have a greater increase in alpha-SMA-expressing cells in response to a pulmonary fibrotic stimulus in vivo, as compared with congenic wild type mice. This is the first time that FRNK loss has been shown to modify the pathobiology in any animal disease model. Together, the data demonstrate that FRNK negatively regulates myofibroblast differentiation in vitro and in vivo. These data further suggest that modulation FRNK expression may be a novel avenue for therapeutic intervention in tissue fibrosis.
Collapse
Affiliation(s)
- Qiang Ding
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
40
|
Parsons JT, Slack-Davis J, Tilghman R, Roberts WG. Focal adhesion kinase: targeting adhesion signaling pathways for therapeutic intervention. Clin Cancer Res 2008; 14:627-32. [PMID: 18245520 DOI: 10.1158/1078-0432.ccr-07-2220] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment plays a central role in cancer progression and metastasis. Within this environment, cancer cells respond to a host of signals including growth factors and chemotactic factors, as well as signals from adjacent cells, cells in the surrounding stroma, and signals from the extracellular matrix. Targeting the pathways that mediate many of these signals has been a major goal in the effort to develop therapeutics.
Collapse
Affiliation(s)
- J Thomas Parsons
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
41
|
Hu G, Place AT, Minshall RD. Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact 2008; 171:177-189. [PMID: 17897637 PMCID: PMC3001132 DOI: 10.1016/j.cbi.2007.08.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 06/01/2007] [Accepted: 08/02/2007] [Indexed: 12/17/2022]
Abstract
An important function of the endothelium is to regulate the transport of liquid and solutes across the semi-permeable vascular endothelial barrier. Two cellular pathways have been identified controlling endothelial barrier function. The normally restrictive paracellular pathway, which can become "leaky" during inflammation when gaps are induced between endothelial cells at the level of adherens and tight junctional complexes, and the transcellular pathway, which transports plasma proteins the size of albumin via transcytosis in vesicle carriers originating from cell surface caveolae. During non-inflammatory conditions, caveolae-mediated transport may be the primary mechanism of vascular permeability regulation of fluid phase molecules as well as lipids, hormones, and peptides that bind avidly to albumin. Src family protein tyrosine kinases have been implicated in the upstream signaling pathways that lead to endothelial hyperpermeability through both the paracellular and transcellular pathways. Endothelial barrier dysfunction not only affects vascular homeostasis and cell metabolism, but also governs drug delivery to underlying cells and tissues. In this review of the field, we discuss the current understanding of Src signaling in regulating paracellular and transcellular endothelial permeability pathways and effects on endogenous macromolecule and drug delivery.
Collapse
Affiliation(s)
- Guochang Hu
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL 60612, United States.
| | | | | |
Collapse
|
42
|
Scheswohl DM, Harrell JR, Rajfur Z, Gao G, Campbell SL, Schaller MD. Multiple paxillin binding sites regulate FAK function. J Mol Signal 2008; 3:1. [PMID: 18171471 PMCID: PMC2246129 DOI: 10.1186/1750-2187-3-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/02/2008] [Indexed: 11/17/2022] Open
Abstract
Background FAK localization to focal adhesions is essential for its activation and function. Localization of FAK is mediated through the C-terminal focal adhesion targeting (FAT) domain. Recent structural analyses have revealed two paxillin-binding sites in the FAT domain of FAK. To define the role of paxillin binding to each site on FAK, point mutations have been engineered to specifically disrupt paxillin binding to each docking site on the FAT domain of FAK individually or in combination. Results These mutants have been characterized and reveal an important role for paxillin binding in FAK subcellular localization and signaling. One paxillin-binding site (comprised of α-helices 1 and 4 of the FAT domain) plays a more prominent role in localization than the other. Mutation of either paxillin-binding site has similar effects on FAK activation and downstream signaling. However, the sites aren't strictly redundant as each mutant exhibits phosphorylation/signaling defects distinct from wild type FAK and a mutant completely defective for paxillin binding. Conclusion The studies demonstrate that the two paxillin-binding sites of FAK are not redundant and that both sites are required for FAK function.
Collapse
Affiliation(s)
- Danielle M Scheswohl
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Bertolucci CM, Guibao CD, Zheng JJ. Phosphorylation of paxillin LD4 destabilizes helix formation and inhibits binding to focal adhesion kinase. Biochemistry 2007; 47:548-54. [PMID: 18092823 DOI: 10.1021/bi702103n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell migration is a dynamic process that requires the coordinated formation and disassembly of focal adhesions (FAs). Several proteins such as paxillin, focal adhesion kinase (FAK), and G protein-coupled receptor kinase-interacting protein 1 (GIT1) are known to play a regulatory role in FA disassembly and turnover. However, the mechanisms by which this occurs remain to be elucidated. Paxillin has been shown to bind the C-terminal domain of FAK in FAs, and an increasing number of studies have linked paxillin association with GIT1 during focal adhesion disassembly. It has been reported recently that phosphorylation of serine 273 in the LD4 motif of paxillin leads to an increased association with Git1 and focal adhesion turnover. In the present study, we examined the effects of phosphorylation of the LD4 peptide on its binding affinity to the C-terminal domain of FAK. We show that phosphorylation of LD4 results in a reduction of binding affinity to FAK. This reduction in binding affinity is not due to the introduction of electrostatic repulsion or steric effects but rather by a destabilization of the helical propensity of the LD4 motif. These results further our understanding of the focal adhesion turnover mechanism as well as identify a novel process by which phosphorylation can modulate intracellular signaling.
Collapse
Affiliation(s)
- Craig M Bertolucci
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
44
|
Halder J, Lin YG, Merritt WM, Spannuth WA, Nick AM, Honda T, Kamat AA, Han LY, Kim TJ, Lu C, Tari AM, Bornmann W, Fernandez A, Lopez-Berestein G, Sood AK. Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian carcinoma. Cancer Res 2007; 67:10976-83. [PMID: 18006843 DOI: 10.1158/0008-5472.can-07-2667] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focal adhesion kinase (FAK) overexpression is frequently found in ovarian and other cancers and is predictive of poor clinical outcome. In the current study, we characterized the biological and therapeutic effects of a novel FAK inhibitor, TAE226. Taxane-sensitive (SKOV3ip1 and HeyA8) and taxane-resistant (HeyA8-MDR) cell lines were used for in vitro and in vivo therapy experiments using TAE226 alone and in combination with docetaxel. Assessment of cytotoxicity, cell proliferation [proliferating cell nuclear antigen (PCNA)], angiogenesis (CD31), and apoptosis (terminal nucleotidyl transferase-mediated nick end labeling) were done by immunohistochemistry and immunofluorescence. In vitro, TAE226 inhibited the phosphorylation of FAK at both Y397 and Y861 sites, inhibited cell growth in a time- and dose-dependent manner, and enhanced docetaxel-mediated growth inhibition by 10- and 20-fold in the taxane-sensitive and taxane-resistant cell lines, respectively. In vivo, FAK inhibition by TAE226 significantly reduced tumor burden in the HeyA8, SKOV3ip1, and HeyA8-MDR models (46-64%) compared with vehicle-treated controls. However, the greatest efficacy was observed with concomitant administration of TAE226 and docetaxel in all three models (85-97% reduction, all P values <0.01). In addition, TAE226 alone and in combination with chemotherapy significantly prolonged survival in tumor-bearing mice. Even in larger tumors, combination therapy with TAE226 and docetaxel resulted in tumor regression. The therapeutic efficacy was related to reduced pericyte coverage, induction of apoptosis of tumor-associated endothelial cells, and reduced microvessel density and tumor cell proliferation. The novel FAK inhibitor, TAE226, offers an attractive therapeutic approach in ovarian carcinoma.
Collapse
Affiliation(s)
- Jyotsnabaran Halder
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim JB, Leucht P, Luppen CA, Park YJ, Beggs HE, Damsky CH, Helms JA. Reconciling the roles of FAK in osteoblast differentiation, osteoclast remodeling, and bone regeneration. Bone 2007; 41:39-51. [PMID: 17459803 PMCID: PMC2699353 DOI: 10.1016/j.bone.2007.01.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/19/2007] [Accepted: 01/26/2007] [Indexed: 11/22/2022]
Abstract
Integrins link the inside of a cell with its outside environment and in doing so regulate a wide variety of cell behaviors. Integrins are well known for their roles in angiogenesis and cell migration but their functions in bone formation are less clear. The majority of integrin signaling proceeds through focal adhesion kinase (FAK), an essential component of the focal adhesion complex. We generated transgenic mice in which FAK was deleted in osteoblasts and uncovered a previously unknown role in osteoblast differentiation associated with bone healing. FAK mutant cells migrated to the site of skeletal injury and angiogenesis was unaffected yet the transgenic mice still exhibited numerous defects in reparative bone formation. Osteoblast differentiation itself was unperturbed by the loss of FAK, whereas the attachment of osteoclasts to the bone matrix was disrupted in vivo. We postulate that defective bi-directional integrin signaling affects the organization of the collagen matrix. Finally, we present a compensatory candidate molecule, Pyk2, which localized to the focal adhesions in osteoblasts that were lacking FAK.
Collapse
Affiliation(s)
- Jae-Beom Kim
- Department of Stomatology, University of California at San Francisco
- Department of Plastic and Reconstructive Surgery, Stanford University
- Corresponding Authors: Jill Helms and Jae-Beom Kim, 257 Campus Drive, Rm GK207, Stanford, CA 94305, Telephone: 650-736-0919 (JAH) 650-736-1722 (JBK), Fax: 650-736-4374, E-mail: ;
| | - Philipp Leucht
- Department of Plastic and Reconstructive Surgery, Stanford University
- Department of Trauma, Hand and Reconstructive Surgery, Frankfurt University, Germany
| | - Cynthia A. Luppen
- Department of Plastic and Reconstructive Surgery, Stanford University
| | - Yu Jin Park
- Department of Plastic and Reconstructive Surgery, Stanford University
| | - Hilary E. Beggs
- Department of Ophthalmology and Physiology, University of California at San Francisco
| | | | - Jill A. Helms
- Department of Plastic and Reconstructive Surgery, Stanford University
- Corresponding Authors: Jill Helms and Jae-Beom Kim, 257 Campus Drive, Rm GK207, Stanford, CA 94305, Telephone: 650-736-0919 (JAH) 650-736-1722 (JBK), Fax: 650-736-4374, E-mail: ;
| |
Collapse
|
46
|
Kornberg LJ, Grant MB. Adenoviruses increase endothelial cell proliferation, migration, and tube formation: partial reversal by the focal adhesion kinase inhibitor, FRNK. Microvasc Res 2007; 73:157-62. [PMID: 17407784 PMCID: PMC2739134 DOI: 10.1016/j.mvr.2007.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 02/13/2007] [Indexed: 12/16/2022]
Abstract
During the course of examining the feasibility of using an adenoviral vector to deliver a potential anti-angiogenic agent to endothelial cells, we discovered that adenoviruses, themselves, have pro-angiogenic activities. Thus, an adenoviral vector containing a green fluorescent protein transgene (Ad-GFP) stimulated the growth, migration, tube formation, and phosphorylation of focal adhesion kinase (FAK) of human lung microvascular endothelial cells. However, adenovirus-mediated endothelial cell mitogenesis, tube formation, and FAK phosphorylation were completely reduced and migration was partially reversed by the addition of a Fak-Related Non-Kinase (FRNK) transgene to the vector. Because FRNK inhibits focal adhesion kinase (FAK) activity, this suggests that the adenoviral effects on endothelial cells are in part mediated through FAK. These data, as well as data obtained in other laboratories, suggest that adenoviruses should be used with caution in cancer gene therapy due to potential pro-angiogenic effects. However, some of these untoward effects may be modulated by concurrent use of a FAK inhibitor.
Collapse
Affiliation(s)
- Lori J Kornberg
- Department of Otolaryngology, University of Florida, 1600 SW Archer Road, Room M228, Gainesville, FL 32610, USA.
| | | |
Collapse
|
47
|
Nagoshi Y, Yamamoto G, Irie T, Tachikawa T. Expression of FAK-related non-kinase (FRNK) coincides with morphological change in the early stage of cell adhesion. Med Mol Morphol 2006; 39:154-60. [PMID: 16998626 DOI: 10.1007/s00795-006-0325-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 06/01/2006] [Indexed: 01/20/2023]
Abstract
Focal adhesion kinase (FAK), a protein tyrosine kinase, has recently been suggested to play a role in signal transduction through integrins. In fact, FAK is involved in cell proliferation and cell motility by performing signal transduction through integrins. FAK-related non-kinase (FRNK) has been found to be an inhibitor of FAK. As the expression level of FRNK in the cell is very low, the study of FRNK has been preferentially performed by gene overexpression, up to the present, and the role of constitutive FRNK in cells remains unclear. We hypothesized that FRNK is involved in the adhesion of cells to the extracellular matrix (ECM) and investigated the expression of FRNK by time kinetic analysis shortly after cell seeding. We found that FRNK expression was significantly increased in the cells during the early stage of cell adhesion to the ECM. These data indicated that FRNK plays an important role in cell adhesion during the very early stages of cell culture.
Collapse
Affiliation(s)
- Yuuki Nagoshi
- Department of Oral Pathology and Diagnosis, Showa University School of Dentistry, 1-5-8 Hatanodai, Tokyo, 142-8555, Japan.
| | | | | | | |
Collapse
|
48
|
Pirone DM, Liu WF, Ruiz SA, Gao L, Raghavan S, Lemmon CA, Romer LH, Chen CS. An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and RhoA-ROCK signaling. ACTA ACUST UNITED AC 2006; 174:277-88. [PMID: 16847103 PMCID: PMC2064187 DOI: 10.1083/jcb.200510062] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Focal adhesion kinase (FAK) transduces cell adhesion to the extracellular matrix into proliferative signals. We show that FAK overexpression induced proliferation in endothelial cells, which are normally growth arrested by limited adhesion. Interestingly, displacement of FAK from adhesions by using a FAK−/− cell line or by expressing the C-terminal fragment FRNK also caused an escape of adhesion-regulated growth arrest, suggesting dual positive and negative roles for FAK in growth regulation. Expressing kinase-dead FAK-Y397F in FAK−/− cells prevented uncontrolled growth, demonstrating the antiproliferative function of inactive FAK. Unlike FAK overexpression–induced growth, loss of growth control in FAK−/− or FRNK-expressing cells increased RhoA activity, cytoskeletal tension, and focal adhesion formation. ROCK inhibition rescued adhesion-dependent growth control in these cells, and expression of constitutively active RhoA or ROCK dysregulated growth. These findings demonstrate the ability of FAK to suppress and promote growth, and underscore the importance of multiple mechanisms, even from one molecule, to control cell proliferation.
Collapse
Affiliation(s)
- Dana M Pirone
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Corsi JM, Rouer E, Girault JA, Enslen H. Organization and post-transcriptional processing of focal adhesion kinase gene. BMC Genomics 2006; 7:198. [PMID: 16889663 PMCID: PMC1570463 DOI: 10.1186/1471-2164-7-198] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/04/2006] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase critical for processes ranging from embryo development to cancer progression. Although isoforms with specific molecular and functional properties have been characterized in rodents and chicken, the organization of FAK gene throughout phylogeny and its potential to generate multiple isoforms are not well understood. Here, we study the phylogeny of FAK, the organization of its gene, and its post-transcriptional processing in rodents and human. RESULTS A single orthologue of FAK and the related PYK2 was found in non-vertebrate species. Gene duplication probably occurred in deuterostomes after the echinoderma embranchment, leading to the evolution of PYK2 with distinct properties. The amino acid sequence of FAK and PYK2 is conserved in their functional domains but not in their linker regions, with the absence of autophosphorylation site in C. elegans. Comparison of mouse and human FAK genes revealed the existence of multiple combinations of conserved and non-conserved 5'-untranslated exons in FAK transcripts suggesting a complex regulation of their expression. Four alternatively spliced coding exons (13, 14, 16, and 31), previously described in rodents, are highly conserved in vertebrates. Cis-regulatory elements known to regulate alternative splicing were found in conserved alternative exons of FAK or in the flanking introns. In contrast, other reported human variant exons were restricted to Homo sapiens, and, in some cases, other primates. Several of these non-conserved exons may correspond to transposable elements. The inclusion of conserved alternative exons was examined by RT-PCR in mouse and human brain during development. Inclusion of exons 14 and 16 peaked at the end of embryonic life, whereas inclusion of exon 13 increased steadily until adulthood. Study of various tissues showed that inclusion of these exons also occurred, independently from each other, in a tissue-specific fashion. CONCLUSION The alternative coding exons 13, 14, 16, and 31 are highly conserved in vertebrates and their inclusion in mRNA is tightly but independently regulated. These exons may therefore be crucial for FAK function in specific tissues or during development. Conversely pathological disturbance of the expression of FAK and of its isoforms could lead to abnormal cellular regulation.
Collapse
Affiliation(s)
- Jean-Marc Corsi
- Unité Mixte de Recherche-Santé (UMR-S) 536, Institut National de la Santé et de la Recherche Médicale (INSERM) F-75005, Paris, France; Université Pierre et Marie Curie-Paris 6, F-75005, Paris, France; Institut du Fer-à-Moulin, F-75005, Paris, France
| | - Evelyne Rouer
- Unité Mixte de Recherche-Santé (UMR-S) 536, Institut National de la Santé et de la Recherche Médicale (INSERM) F-75005, Paris, France; Université Pierre et Marie Curie-Paris 6, F-75005, Paris, France; Institut du Fer-à-Moulin, F-75005, Paris, France
| | - Jean-Antoine Girault
- Unité Mixte de Recherche-Santé (UMR-S) 536, Institut National de la Santé et de la Recherche Médicale (INSERM) F-75005, Paris, France; Université Pierre et Marie Curie-Paris 6, F-75005, Paris, France; Institut du Fer-à-Moulin, F-75005, Paris, France
| | - Hervé Enslen
- Unité Mixte de Recherche-Santé (UMR-S) 536, Institut National de la Santé et de la Recherche Médicale (INSERM) F-75005, Paris, France; Université Pierre et Marie Curie-Paris 6, F-75005, Paris, France; Institut du Fer-à-Moulin, F-75005, Paris, France
| |
Collapse
|
50
|
Tatsumi Y, Cho YY, He Z, Mizuno H, Choi HS, Bode AM, Dong Z. Involvement of the paxillin pathway in JB6 Cl41 cell transformation. Cancer Res 2006; 66:5968-74. [PMID: 16740738 PMCID: PMC2239243 DOI: 10.1158/0008-5472.can-05-4664] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paxillin is a substrate of the Src tyrosine onco-kinase and is involved in cell transformation, cell spreading, migration, and cancer development mediated through the mitogen-activated protein kinase signaling cascades. Here, we showed that paxillin plays a key role in skin cell transformation induced by epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA). To investigate the mechanism of paxillin's role in cell transformation, we established a paxillin knockdown stably transfected cell line by introducing small interfering RNA-paxillin (si-paxillin). The si-paxillin cells displayed a dramatic suppression of cell proliferation and anchorage-independent cell transformation induced by EGF or TPA compared with si-mock control cells. In si-paxillin cells, decreased activator protein-1 (AP-1)-dependent luciferase activity corresponded with suppressed AP-1 DNA binding activity. Importantly, knockdown of paxillin inhibited EGF- or TPA-induced c-Jun phosphorylation at Ser(63) and Ser(73). Furthermore, total c-Jun protein level was dramatically decreased in si-paxillin cells and was dependent on serum deprivation time. The down-regulation of c-Jun was restored in si-paxillin cells by treatment with the proteasome inhibitor lactacystin but not by the lysosome inhibitor leupeptin. These results clearly provided evidence that paxillin regulates c-Jun protein level and plays a key role in cell transformation most likely through the regulation of c-Jun stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zigang Dong
- Requests for reprints: Zigang Dong, Hormel Institute, University of Minnesota, 801 16th Avenue NE Austin, MN 55912. Tel: 507-437-9600; Fax: 507-437-9606; E-mail:
| |
Collapse
|