1
|
Wolters JF, LaBella AL, Opulente DA, Rokas A, Hittinger CT. Mitochondrial genome diversity across the subphylum Saccharomycotina. Front Microbiol 2023; 14:1268944. [PMID: 38075892 PMCID: PMC10701893 DOI: 10.3389/fmicb.2023.1268944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Eukaryotic life depends on the functional elements encoded by both the nuclear genome and organellar genomes, such as those contained within the mitochondria. The content, size, and structure of the mitochondrial genome varies across organisms with potentially large implications for phenotypic variance and resulting evolutionary trajectories. Among yeasts in the subphylum Saccharomycotina, extensive differences have been observed in various species relative to the model yeast Saccharomyces cerevisiae, but mitochondrial genome sampling across many groups has been scarce, even as hundreds of nuclear genomes have become available. Methods By extracting mitochondrial assemblies from existing short-read genome sequence datasets, we have greatly expanded both the number of available genomes and the coverage across sparsely sampled clades. Results Comparison of 353 yeast mitochondrial genomes revealed that, while size and GC content were fairly consistent across species, those in the genera Metschnikowia and Saccharomyces trended larger, while several species in the order Saccharomycetales, which includes S. cerevisiae, exhibited lower GC content. Extreme examples for both size and GC content were scattered throughout the subphylum. All mitochondrial genomes shared a core set of protein-coding genes for Complexes III, IV, and V, but they varied in the presence or absence of mitochondrially-encoded canonical Complex I genes. We traced the loss of Complex I genes to a major event in the ancestor of the orders Saccharomycetales and Saccharomycodales, but we also observed several independent losses in the orders Phaffomycetales, Pichiales, and Dipodascales. In contrast to prior hypotheses based on smaller-scale datasets, comparison of evolutionary rates in protein-coding genes showed no bias towards elevated rates among aerobically fermenting (Crabtree/Warburg-positive) yeasts. Mitochondrial introns were widely distributed, but they were highly enriched in some groups. The majority of mitochondrial introns were poorly conserved within groups, but several were shared within groups, between groups, and even across taxonomic orders, which is consistent with horizontal gene transfer, likely involving homing endonucleases acting as selfish elements. Discussion As the number of available fungal nuclear genomes continues to expand, the methods described here to retrieve mitochondrial genome sequences from these datasets will prove invaluable to ensuring that studies of fungal mitochondrial genomes keep pace with their nuclear counterparts.
Collapse
Affiliation(s)
- John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| | - Abigail L. LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
- Biology Department, Villanova University, Villanova, PA, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
2
|
Tomáška Ľ, Nosek J. Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. J Mol Evol 2020; 88:293-318. [PMID: 32157325 DOI: 10.1007/s00239-020-09935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
3
|
Chen XJ, Clark-Walker GD. Unveiling the mystery of mitochondrial DNA replication in yeasts. Mitochondrion 2017; 38:17-22. [PMID: 28778567 DOI: 10.1016/j.mito.2017.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 11/27/2022]
Abstract
Conventional DNA replication is initiated from specific origins and requires the synthesis of RNA primers for both the leading and lagging strands. In contrast, the replication of yeast mitochondrial DNA is origin-independent. The replication of the leading strand is likely primed by recombinational structures and proceeded by a rolling circle mechanism. The coexistent linear and circular DNA conformers facilitate the recombination-based initiation. The replication of the lagging strand is poorly understood. Re-evaluation of published data suggests that the rolling circle may also provide structures for the synthesis of the lagging-strand by mechanisms such as template switching. Thus, the coupling of recombination with rolling circle replication and possibly, template switching, may have been selected as an economic replication mode to accommodate the reductive evolution of mitochondria. Such a replication mode spares the need for conventional replicative components, including those required for origin recognition/remodelling, RNA primer synthesis and lagging-strand processing.
Collapse
Affiliation(s)
- Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
4
|
MIYAKAWA I. Organization and dynamics of yeast mitochondrial nucleoids. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:339-359. [PMID: 28496055 PMCID: PMC5489437 DOI: 10.2183/pjab.93.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mitochondrial DNA (mtDNA) is packaged by association with specific proteins in compact DNA-protein complexes named mitochondrial nucleoids (mt-nucleoids). The budding yeast Saccharomyces cerevisiae is able to grow either aerobically or anaerobically. Due to this characteristic, S. cerevisiae has been extensively used as a model organism to study genetics, morphology and biochemistry of mitochondria for a long time. Mitochondria of S. cerevisiae frequently fuse and divide, and perform dynamic morphological changes depending on the culture conditions and the stage of life cycle of the yeast cells. The mt-nucleoids also dynamically change their morphology, accompanying morphological changes of mitochondria. The mt-nucleoids have been isolated morphologically intact and functional analyses of mt-nucleoid proteins have been extensively performed. These studies have revealed that the functions of mt-nucleoid proteins are essential for maintenance of mtDNA. The aims of this review are to summarize the history on the research of yeast mt-nucleoids as well as recent findings on the organization of the mt-nucleoids and mitochondrial dynamics.
Collapse
Affiliation(s)
- Isamu MIYAKAWA
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
- Correspondence should be addressed: I. Miyakawa, Department of Biology, Faculty of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan (e-mail: )
| |
Collapse
|
5
|
Nishimura Y, Tanifuji G, Kamikawa R, Yabuki A, Hashimoto T, Inagaki Y. Mitochondrial Genome of Palpitomonas bilix: Derived Genome Structure and Ancestral System for Cytochrome c Maturation. Genome Biol Evol 2016; 8:3090-3098. [PMID: 27604877 PMCID: PMC5174734 DOI: 10.1093/gbe/evw217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We here reported the mitochondrial (mt) genome of one of the heterotrophic microeukaryotes related to cryptophytes, Palpitomonas bilix. The P. bilix mt genome was found to be a linear molecule composed of “single copy region” (∼16 kb) and repeat regions (∼30 kb) arranged in an inverse manner at both ends of the genome. Linear mt genomes with large inverted repeats are known for three distantly related eukaryotes (including P. bilix), suggesting that this particular mt genome structure has emerged at least three times in the eukaryotic tree of life. The P. bilix mt genome contains 47 protein-coding genes including ccmA, ccmB, ccmC, and ccmF, which encode protein subunits involved in the system for cytochrome c maturation inherited from a bacterium (System I). We present data indicating that the phylogenetic relatives of P. bilix, namely, cryptophytes, goniomonads, and kathablepharids, utilize an alternative system for cytochrome c maturation, which has most likely emerged during the evolution of eukaryotes (System III). To explain the distribution of Systems I and III in P. bilix and its phylogenetic relatives, two scenarios are possible: (i) System I was replaced by System III on the branch leading to the common ancestor of cryptophytes, goniomonads, and kathablepharids, and (ii) the two systems co-existed in their common ancestor, and lost differentially among the four descendants.
Collapse
Affiliation(s)
- Yuki Nishimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Present address: Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, Japan Collection of Microorganisms Microbe Division, Tsukuba, Japan
| | - Goro Tanifuji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Present address: Department of Zoology, National Museum of Nature and Science, Tsukuba, Japan
| | - Ryoma Kamikawa
- Graduate School of Global Environmental Studies and Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Goodwin SB, McCorison CB, Cavaletto JR, Culley DE, LaButti K, Baker SE, Grigoriev IV. The mitochondrial genome of the ethanol-metabolizing, wine cellar mold Zasmidium cellare is the smallest for a filamentous ascomycete. Fungal Biol 2016; 120:961-974. [PMID: 27521628 DOI: 10.1016/j.funbio.2016.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/31/2016] [Accepted: 05/07/2016] [Indexed: 01/26/2023]
Abstract
Fungi in the class Dothideomycetes often live in extreme environments or have unusual physiology. One of these, the wine cellar mold Zasmidium cellare, produces thick curtains of mycelia in cellars with high humidity, and its ability to metabolize volatile organic compounds is thought to improve air quality. Whether these abilities have affected its mitochondrial genome is not known. To fill this gap, the circular-mapping mitochondrial genome of Z. cellare was sequenced and, at only 23 743 bp, is the smallest reported for a filamentous fungus. Genes were encoded on both strands with a single change of direction, different from most other fungi but consistent with the Dothideomycetes. Other than its small size, the only unusual feature of the Z. cellare mitochondrial genome was two copies of a 110-bp sequence that were duplicated, inverted and separated by approximately 1 kb. This inverted-repeat sequence confused the assembly program but appears to have no functional significance. The small size of the Z. cellare mitochondrial genome was due to slightly smaller genes, lack of introns and non-essential genes, reduced intergenic spacers and very few ORFs relative to other fungi rather than a loss of essential genes. Whether this reduction facilitates its unusual biology remains unknown.
Collapse
Affiliation(s)
- Stephen B Goodwin
- USDA, Agricultural Research Service, Crop Production and Pest Control Research Unit, 915 West State Street, Purdue University, West Lafayette, IN 47907-2054, USA.
| | - Cassandra B McCorison
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Jessica R Cavaletto
- USDA, Agricultural Research Service, Crop Production and Pest Control Research Unit, 915 West State Street, Purdue University, West Lafayette, IN 47907-2054, USA
| | - David E Culley
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN P8-60, Richland, WA 99352, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Scott E Baker
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA 99354, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| |
Collapse
|
7
|
Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell Mol Life Sci 2014; 71:847-65. [PMID: 24042202 PMCID: PMC11113737 DOI: 10.1007/s00018-013-1469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elisa Derboven
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Sona Valuchova
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Central European Institute of Technology, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
8
|
Doublet V, Helleu Q, Raimond R, Souty-Grosset C, Marcadé I. Inverted repeats and genome architecture conversions of terrestrial isopods mitochondrial DNA. J Mol Evol 2013; 77:107-18. [PMID: 24068302 DOI: 10.1007/s00239-013-9587-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Mitochondrial DNA (mtDNA) is usually depicted as a circular molecule, however, there is increasing evidence that linearization of mtDNA evolved independently many times in organisms such as fungi, unicellular eukaryotes, and animals. Recent observations in various models with linear mtDNA revealed the presence of conserved inverted repeats (IR) at both ends that, when they become single-stranded, may be able to fold on themselves to create telomeric-hairpins involved in genome architecture conversions. The atypical mtDNA of terrestrial isopods (Crustacea: Oniscidea) composed of linear monomers and circular dimers is an interesting model to study genome architecture conversions. Here, we present the mtDNA control region sequences of two species of the genus Armadillidium: A. vulgare and A. pelagicum. All features of arthropods mtDNA control regions are present (origin of replication, poly-T stretch, GA and TA-rich blocks and one variable domain), plus a conserved IR. This IR can potentially fold into a hairpin structure and is present in two different orientations among the A. vulgare populations: either in one sense or in its reverse complement. This polymorphism, also observed in a single individual (heteroplasmy), might be a signature of genome architecture conversions from linear to circular monomeric mtDNA via successive opening and closing of the molecules.
Collapse
Affiliation(s)
- Vincent Doublet
- Equipe Ecologie Evolution Symbiose, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022, Poitiers Cedex, France,
| | | | | | | | | |
Collapse
|
9
|
Ma L, Huang DW, Cuomo CA, Sykes S, Fantoni G, Das B, Sherman BT, Yang J, Huber C, Xia Y, Davey E, Kutty G, Bishop L, Sassi M, Lempicki RA, Kovacs JA. Sequencing and characterization of the complete mitochondrial genomes of three Pneumocystis species provide new insights into divergence between human and rodent Pneumocystis. FASEB J 2013; 27:1962-72. [PMID: 23392351 DOI: 10.1096/fj.12-224444] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pneumocystis jirovecii is an important opportunistic pathogen associated with AIDS and other immunodeficient conditions. Currently, very little is known about its nuclear and mitochondrial genomes. In this study, we sequenced the complete mitochondrial genome (mtDNA) of this organism and its closely related species Pneumocystis carinii and Pneumocystis murina by a combination of sequencing technologies. Our study shows that P. carinii and P. murina mtDNA share a nearly identical number and order of genes in a linear configuration, whereas P. jirovecii has a circular mtDNA containing nearly the same set of genes but in a different order. Detailed studies of the mtDNA terminal structures of P. murina and P. carinii suggest a unique replication mechanism for linear mtDNA. Phylogenetic analysis supports a close association of Pneumocystis species with Taphrina, Saitoella, and Schizosaccharomyces, and divergence within Pneumocystis species, with P. murina and P. carinii being more closely related to each other than either is to P. jirovecii. Comparative analysis of four complete P. jirovecii mtDNA sequences in this study and previously reported mtDNA sequences for diagnosing and genotyping suggests that the current diagnostic and typing methods can be improved using the complete mtDNA data. The availability of the complete P. jirovecii mtDNA also opens the possibility of identifying new therapeutic targets.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, 10 Center Dr., Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Swart EC, Nowacki M, Shum J, Stiles H, Higgins BP, Doak TG, Schotanus K, Magrini VJ, Minx P, Mardis ER, Landweber LF. The Oxytricha trifallax mitochondrial genome. Genome Biol Evol 2011; 4:136-54. [PMID: 22179582 PMCID: PMC3318907 DOI: 10.1093/gbe/evr136] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Oxytricha trifallax mitochondrial genome contains the largest sequenced ciliate mitochondrial chromosome (~70 kb) plus a ~5-kb linear plasmid bearing mitochondrial telomeres. We identify two new ciliate split genes (rps3 and nad2) as well as four new mitochondrial genes (ribosomal small subunit protein genes: rps- 2, 7, 8, 10), previously undetected in ciliates due to their extreme divergence. The increased size of the Oxytricha mitochondrial genome relative to other ciliates is primarily a consequence of terminal expansions, rather than the retention of ancestral mitochondrial genes. Successive segmental duplications, visible in one of the two Oxytricha mitochondrial subterminal regions, appear to have contributed to the genome expansion. Consistent with pseudogene formation and decay, the subtermini possess shorter, more loosely packed open reading frames than the remainder of the genome. The mitochondrial plasmid shares a 251-bp region with 82% identity to the mitochondrial chromosome, suggesting that it most likely integrated into the chromosome at least once. This region on the chromosome is also close to the end of the most terminal member of a series of duplications, hinting at a possible association between the plasmid and the duplications. The presence of mitochondrial telomeres on the mitochondrial plasmid suggests that such plasmids may be a vehicle for lateral transfer of telomeric sequences between mitochondrial genomes. We conjecture that the extreme divergence observed in ciliate mitochondrial genomes may be due, in part, to repeated invasions by relatively error-prone DNA polymerase-bearing mobile elements.
Collapse
Affiliation(s)
- Estienne C Swart
- Department of Ecology and Evolutionary Biology, Princeton University, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Valach M, Farkas Z, Fricova D, Kovac J, Brejova B, Vinar T, Pfeiffer I, Kucsera J, Tomaska L, Lang BF, Nosek J. Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Res 2011; 39:4202-19. [PMID: 21266473 PMCID: PMC3105423 DOI: 10.1093/nar/gkq1345] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry, Comenius University, Mlynska dolina CH-1, 842 15 Bratislava, Slovak republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Smith DR, Hua J, Lee RW. Evolution of linear mitochondrial DNA in three known lineages of Polytomella. Curr Genet 2010; 56:427-38. [PMID: 20574726 DOI: 10.1007/s00294-010-0311-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 11/30/2022]
Abstract
Although DNA sequences of linear mitochondrial genomes are available for a wide variety of species, sequence and conformational data from the extreme ends of these molecules (i.e., the telomeres) are limited. Data on the telomeres is important because it can provide insights into how linear genomes overcome the end-replication problem. This study explores the evolution of linear mitochondrial DNAs (mtDNAs) in the green-algal genus Polytomella (Chlorophyceae, Chlorophyta), the members of which are non-photosynthetic. Earlier works analyzed the linear and linear-fragmented mitochondrial genomes of Polytomella capuana and Polytomella parva. Here we present the mtDNA sequence for Polytomella strain SAG 63-10 [also known as Polytomella piriformis (Pringsheim 1963)], which is the only known representative of a mostly unexplored Polytomella lineage. We show that the P. piriformis mtDNA is made up of two linear fragments of 13 and 3 kb. The telomeric sequences of the large and small fragments are terminally inverted, and appear to end in vitro with either closed (hairpin-loop) or open (nicked-loop) structures as also shown here for P. parva and shown earlier for P. capuana. The structure of the P. piriformis mtDNA is more similar to that of P. parva, which is also fragmented, than to that of P. capuana, which is contained in a single chromosome. Phylogenetic analyses reveal high substitution rates in the mtDNA of all three Polytomella species relative to other chlamydomonadalean algae. These elevated rates could be the result of a greater number of vegetative cell divisions and/or small population sizes in Polytomella species as compared with other chlamydomonadalean algae.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| | | | | |
Collapse
|
13
|
Fricova D, Valach M, Farkas Z, Pfeiffer I, Kucsera J, Tomaska L, Nosek J. The mitochondrial genome of the pathogenic yeast Candida subhashii: GC-rich linear DNA with a protein covalently attached to the 5' termini. MICROBIOLOGY-SGM 2010; 156:2153-2163. [PMID: 20395267 PMCID: PMC3068681 DOI: 10.1099/mic.0.038646-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As a part of our initiative aimed at a large-scale comparative analysis of fungal mitochondrial genomes, we determined the complete DNA sequence of the mitochondrial genome of the yeast Candida subhashii and found that it exhibits a number of peculiar features. First, the mitochondrial genome is represented by linear dsDNA molecules of uniform length (29 795 bp), with an unusually high content of guanine and cytosine residues (52.7 %). Second, the coding sequences lack introns; thus, the genome has a relatively compact organization. Third, the termini of the linear molecules consist of long inverted repeats and seem to contain a protein covalently bound to terminal nucleotides at the 5′ ends. This architecture resembles the telomeres in a number of linear viral and plasmid DNA genomes classified as invertrons, in which the terminal proteins serve as specific primers for the initiation of DNA synthesis. Finally, although the mitochondrial genome of C. subhashii contains essentially the same set of genes as other closely related pathogenic Candida species, we identified additional ORFs encoding two homologues of the family B protein-priming DNA polymerases and an unknown protein. The terminal structures and the genes for DNA polymerases are reminiscent of linear mitochondrial plasmids, indicating that this genome architecture might have emerged from fortuitous recombination between an ancestral, presumably circular, mitochondrial genome and an invertron-like element.
Collapse
Affiliation(s)
- Dominika Fricova
- Department of Biochemistry, Comenius University, Faculty of Natural Sciences, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic
| | - Matus Valach
- Department of Biochemistry, Comenius University, Faculty of Natural Sciences, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic
| | - Zoltan Farkas
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726 Szeged, Hungary
| | - Ilona Pfeiffer
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726 Szeged, Hungary
| | - Judit Kucsera
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726 Szeged, Hungary
| | - Lubomir Tomaska
- Department of Genetics, Comenius University, Faculty of Natural Sciences, Mlynska dolina B-1, 842 15 Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Comenius University, Faculty of Natural Sciences, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
14
|
Voigt O, Erpenbeck D, Wörheide G. A fragmented metazoan organellar genome: the two mitochondrial chromosomes of Hydra magnipapillata. BMC Genomics 2008; 9:350. [PMID: 18655725 PMCID: PMC2518934 DOI: 10.1186/1471-2164-9-350] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 07/26/2008] [Indexed: 01/30/2023] Open
Abstract
Background Animal mitochondrial (mt) genomes are characteristically circular molecules of ~16–20 kb. Medusozoa (Cnidaria excluding Anthozoa) are exceptional in that their mt genomes are linear and sometimes subdivided into two to presumably four different molecules. In the genus Hydra, the mt genome comprises one or two mt chromosomes. Here, we present the whole mt genome sequence from the hydrozoan Hydra magnipapillata, comprising the first sequence of a fragmented metazoan mt genome encoded on two linear mt chromosomes (mt1 and mt2). Results The H. magnipapillata mt chromosomes contain the typical metazoan set of 13 genes for respiratory proteins, the two rRNA genes and two tRNA genes. All genes are unidirectionally oriented on mt1 and mt2, and several genes overlap. The gene arrangement suggests that the two mt chromosomes originated from one linear molecule that separated between nd5 and rns. Strong correlations between the AT content of rRNA genes (rns and rnl) and the AT content of protein-coding genes among 24 cnidarian genomes imply that base composition is mainly determined by mt genome-wide constraints. We show that identical inverted terminal repeats (ITR) occur on both chromosomes; these ITR contain a partial copy or part of the 3' end of cox1 (54 bp). Additionally, both mt chromosomes possess identical oriented sequences (IOS) at the 5' and 3' ends (5' and 3' IOS) adjacent to the ITR. The 5' IOS contains trnM and non-coding sequences (119 bp), whereas the 3' IOS comprises a larger part (mt2) with a larger partial copy of cox1 (243 bp). Conclusion ITR are also documented in the two other available medusozoan mt genomes (Aurelia aurita and Hydra oligactis). In H. magnipapillata, the arrangement of ITR and 5' IOS and 3' IOS suggest that these regions are crucial for mt DNA replication and/or transcription initiation. An analogous organization occurs in a highly fragmented ichthyosporean mt genome. With our data, we can reject a model of mt replication that has previously been proposed for Hydra. This raises new questions regarding replication mechanisms probably employed by all medusozoans, and also has general implications for the expected organization of fragmented linear mt chromosomes of other taxa.
Collapse
Affiliation(s)
- Oliver Voigt
- Courant Research Center Geobiology, Georg-August-Universität Göttingen, Goldschmidtstr, 3, 37077 Göttingen, Germany.
| | | | | |
Collapse
|
15
|
Miyakawa I, Yawata K. Purification of an Abf2p-like protein from mitochondrial nucleoids of yeast Pichia jadinii and its role in the packaging of mitochondrial DNA. Antonie van Leeuwenhoek 2007; 91:197-207. [PMID: 17295092 DOI: 10.1007/s10482-006-9105-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 07/13/2006] [Indexed: 11/29/2022]
Abstract
A 26-kDa protein with highly basic pI was purified from the mitochondrial (mt-) nucleoids of the yeast Pichia jadinii by a combination of acid extraction, hydroxyapatite chromatography and DNA-cellulose chromatography. The 26-kDa protein has the ability to introduce a supercoil into circular plasmid DNA in the presence of topoisomerase I and to package mtDNA into nucleoid-like aggregates. The mt-nucleoids isolated from P. jadinii cells were disassembled in the presence of 2 M NaCl and reassembled into nucleoid-like aggregates by the removal of the salts. During the course of the reassembly of the mt-nucleoids, three specific proteins of 20 kDa, 26 kDa and 56 kDa predominantly precipitated after the centrifugation of the reassembled mt-nucleoids. These results suggest that the 26-kDa protein of P. jadinii has a similar function in the packaging of mtDNA to Abf2p, a major mitochondrial DNA-binding protein in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Isamu Miyakawa
- Department of Physics, Biology, and Informatics, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan.
| | | |
Collapse
|
16
|
Abstract
Chromosomes may be either circular or linear, the latter being prone to erosion caused by incomplete replication, degradation and inappropriate repair. Despite these problems, the linear form of DNA is frequently found in viruses, bacteria, eukaryotic nuclei and organelles. The high incidence of linear chromosomes and/or genomes evokes why and how they emerged in evolution. Here we suggest that the primordial terminal structures (telomeres) of linear chromosomes in eukaryotic nuclei were derived from selfish element(s), which caused the linearization of ancestral circular genome. The telomeres were then essential in solving the emerged problems. Molecular fossils of such elements were recently identified in phylogenetically distant genomes and were shown to generate terminal arrays of tandem repeats. These arrays might mediate the formation of higher order structures at chromosomal termini that stabilize the linear chromosomal form by fulfilling essential telomeric functions.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Comenius University, Bratislava, Slovakia.
| | | | | |
Collapse
|
17
|
Zivanovic Y, Wincker P, Vacherie B, Bolotin-Fukuhara M, Fukuhara H. Complete nucleotide sequence of the mitochondrial DNA from Kluyveromyces lactis. FEMS Yeast Res 2005; 5:315-22. [PMID: 15691736 DOI: 10.1016/j.femsyr.2004.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 09/14/2004] [Accepted: 09/15/2004] [Indexed: 11/22/2022] Open
Abstract
The total nucleotide sequence of the mitochondrial genome of the yeast Kluyveromyces lactis was determined. The DNA is a circular molecule of 40,291 base pairs, with 26.1% GC. It contains a set of protein- and RNA-coding genes equivalent to those of the Saccharomyces cerevisiae mitochondrial genome. The genome size is about one half of that of S. cerevisiae mitochondrial DNA. The difference in size is due essentially to a reduced proportion of intergenic and intronic sequences. The coding sequences occupy about one third of the genome, the rest being composed of AT-rich sequences and numerous short GC-rich clusters that are dispersed mostly in the non-coding regions and a few within coding sequences. The presence of these GC clusters is a characteristic feature common to K. lactis and S. cerevisiae mitochondrial DNA, although their sequence patterns are different. The absence of the NADH dehydrogenase subunit genes distinguishes this yeast and S. cerevisiae from the typically aerobic species. The genetic code appears to be that of the standard fungal mitochondrial genomes, with UGA as a tryptophan codon. There are only 22 transfer RNA genes, those corresponding to CUN and CGN codons being missing. CUN codons are absent in the protein-coding sequences. There are five CGN codons within the open reading frames, but they are located exclusively in the introns, rendering them untranslatable. Introns are found only the genes in KlCOX1 and LrRNA. The transcription promoter motif known in S. cerevisiae and several other yeast species is also present. All genes are transcribed from the same strand, except those on a single 7-kilobase pairs segment (EMBL Accession No. AY654900).
Collapse
Affiliation(s)
- Yvan Zivanovic
- Institut de Génétique et Microbiologie, UMR8621, Bâtiments 400/409, Université Paris-Sud, Orsay 91405, France
| | | | | | | | | |
Collapse
|
18
|
Nosek J, Tomáška Ľ, Kucejová B. The chromosome end replication: lessons from mitochondrial genetics. J Appl Biomed 2004. [DOI: 10.32725/jab.2004.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
19
|
Nosek J, Tomáska L. Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 2003; 44:73-84. [PMID: 12898180 DOI: 10.1007/s00294-003-0426-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 06/25/2003] [Accepted: 06/26/2003] [Indexed: 11/28/2022]
Abstract
Mitochondrial genomes in organisms from diverse phylogenetic groups vary in both size and molecular form. Although the types of mitochondrial genome appear very dissimilar, several lines of evidence argue that they do not differ radically. This would imply that interconversion between different types of mitochondrial genome might have occurred via relatively simple mechanisms. We exemplify this scenario on patterns accompanying evolution of mitochondrial telomeres. We propose that mitochondrial telomeres are derived from mobile elements (transposons or plasmids) that invaded mitochondria, integrated into circular or polydisperse linear mitochondrial DNAs (mtDNAs) and subsequently enabled precise resolution of the linear genophore. Simply, the selfish elements generated a problem - how to maintain the ends of a linear DNA - and, at the same time, made themselves essential by providing its solution. This scenario implies that insertion or deletion of such resolution elements may represent relatively simple routes for interconversion between different forms of the mitochondrial genome.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 842 15, Bratislava, Slovakia.
| | | |
Collapse
|
20
|
Pfeiffer I, Kucsera J, Gácser A, Litter J, Golubev WI. Diversity of extrachromosomal genetic elements in yeasts (a rewiev). Acta Microbiol Immunol Hung 2003; 49:315-9. [PMID: 12109164 DOI: 10.1556/amicr.49.2002.2-3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ilona Pfeiffer
- Department of Microbiology, Faculty of Sciences, University of Szeged, P.O. Box 533, H-6701 Szeged, Hungary
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Deneke J, Ziegelin G, Lurz R, Lanka E. Phage N15 telomere resolution. Target requirements for recognition and processing by the protelomerase. J Biol Chem 2002; 277:10410-9. [PMID: 11788606 DOI: 10.1074/jbc.m111769200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Escherichia coli prophage N15 exists as a linear DNA molecule with covalently closed ends. Purified N15 protelomerase TelN is the only protein required to convert circular DNA substrates to the linear form with hairpin termini. Within the center of the telomerase occupancy site tos, the target for TelN is the 56-bp telRL consisting of the central 22-bp palindrome telO and two 14-bp flanking inverted sequence repetitions. DNase I footprinting of TelN-telRL complexes shows a segment of approximately 50 bp protected by TelN. Surface plasmon resonance studies demonstrate that this extended footprint is caused by two TelN molecules bound to telRL. Stable TelN-target DNA complexes are achieved with telRL; however, the additional sequences of tos stabilize the TelN-target complexes. TelO alone is not sufficient for specific stable complex formation. However, processing can occur, i.e. generation of the linear covalently closed DNA. Within the context of telRL, sequences of telO are involved in specific TelN-telRL complex formation, in processing itself, and/or in recognition of the processing site. The sequence of the central (CG)(3) within telO that is part of a 14-bp stretch proposed to have Z-DNA conformation is essential for processing but not for formation of specific TelN-telRL complexes. The concerted action of both TelN molecules at the target site is the basis for telomere resolution. Capturing of reaction intermediates demonstrates that TelN binds covalently to the 3'-phosphoryl of the cleaved strands.
Collapse
Affiliation(s)
- Jan Deneke
- Max-Planck-Institut für Molekulare Genetik, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
23
|
Forget L, Ustinova J, Wang Z, Huss VAR, Lang BF. Hyaloraphidium curvatum: a linear mitochondrial genome, tRNA editing, and an evolutionary link to lower fungi. Mol Biol Evol 2002; 19:310-9. [PMID: 11861890 DOI: 10.1093/oxfordjournals.molbev.a004084] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have sequenced the mitochondrial DNA (mtDNA) of Hyaloraphidium curvatum, an organism previously classified as a colorless green alga but now recognized as a lower fungus based on molecular data. The 29.97-kbp mitochondrial chromosome is maintained as a monomeric, linear molecule with identical, inverted repeats (1.43 kbp) at both ends, a rare genome architecture in mitochondria. The genome encodes only 14 known mitochondrial proteins, 7 tRNAs, the large subunit rRNA and small subunit rRNA (SSU rRNA), and 3 ORFs. The SSU rRNA is encoded in two gene pieces that are located 8 kbp apart on the mtDNA. Scrambled and fragmented mitochondrial rRNAs are well known from green algae and alveolate protists but are unprecedented in fungi. Protein genes code for apocytochrome b; cytochrome oxidase 1, 2, and 3, NADH dehydrogenase 1, 2, 3, 4, 4L, 5, and 6, and ATP synthase 6, 8, and 9 subunits, and several of these genes are organized in operon-like clusters. The set of seven mitochondrially encoded tRNAs is insufficient to recognize all codons that occur in the mitochondrial protein genes. When taking into account the pronounced codon bias, at least 16 nuclear-encoded tRNAs are assumed to be imported into the mitochondria. Three of the seven predicted mitochondria-encoded tRNA sequences carry mispairings in the first three positions of the acceptor stem. This strongly suggests that these tRNAs are edited by a mechanism similar to the one seen in the fungus Spizellomyces punctatus and the rhizopod amoeba Acanthamoeba castellanii. Our phylogenetic analysis confirms with overwhelming support that H. curvatum is a member of the chytridiomycete fungi, specifically related to the Monoblepharidales.
Collapse
Affiliation(s)
- Lise Forget
- Program in Evolutionary Biology, Département de Biochimie, Canadian Institute for Advanced Research, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
24
|
Benham CJ, Savitt AG, Bauer WR. Extrusion of an imperfect palindrome to a cruciform in superhelical DNA: complete determination of energetics using a statistical mechanical model. J Mol Biol 2002; 316:563-81. [PMID: 11866518 DOI: 10.1006/jmbi.2001.5361] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We present a detailed study of the extrusion of an imperfect palindrome, derived from the terminal regions of vaccinia virus DNA and contained in a superhelical plasmid, into a cruciform containing bulged bases. We monitor the course of extrusion by two-dimensional gel electrophoresis experiments as a function of temperature and linking number. We find that extrusion pauses at partially extruded states as negative superhelicity increases. To understand the course of extrusion with changes in linking number, DeltaLk, we present a rigorous semiempirical statistical mechanical analysis that includes complete coupling between DeltaLk, cruciform extrusion, formation of extrahelical bases, and temperature-dependent denaturation. The imperfections in the palindrome are sequentially incorporated into the cruciform arms as hairpin loops, single unpaired bases, and complex local regions containing several unpaired bases. We analyze the results to determine the free energies, enthalpies and entropies of formation of all local structures involved in extrusion. We find that, for each unpaired structure, the DeltaG, DeltaH and DeltaS of formation are all approximately proportional to the number of unpaired bases contained therein. This surprising result holds regardless of the arrangement or composition of unpaired bases within a particular structure. Imperfections have major effects on the overall energetics of cruciform extrusion and on the course of this transition. In particular, the extent of the DeltaLk change necessary to extrude an imperfect palindrome is considerably greater than that required for extrusion of the underlying perfect palindrome. Our analysis also suggests that, at higher temperatures, significant denaturation at the base of an imperfect cruciform can successfully compete with extension of the cruciform arms.
Collapse
Affiliation(s)
- Craig J Benham
- Department of Biomathematical Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
25
|
Oldenburg DJ, Bendich AJ. Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5' protein. J Mol Biol 2001; 310:549-62. [PMID: 11439023 DOI: 10.1006/jmbi.2001.4783] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mapping predicts that the mitochondrial genome of the liverwort Marchantia polymorpha exists as a circular molecule, although nearly all the mitochondrial DNA (mtDNA) is found as genome-sized and multigenomic molecules in linear and branched form. We used restriction enzymes with one recognition site per genome, end-specific exonucleases and pulsed-field gel electrophoresis (PFGE) to analyze the arrangement of genomic units and the terminal structure of the molecules. We find a head-to-tail arrangement in the concatemers and circular permutation in both the monomeric and multigenomic molecules. The termini contain covalently bound protein at the 5' end and an open (unblocked) 3' end. We find that the standard in-gel procedure used to prepare large DNA molecules for PFGE may introduce extraction artifacts leading to erroneous conclusions about the termini. These artifacts can be reduced by omitting high salt (high EDTA) and protease during mitochondrial lysis. Our results suggest that the mtDNA may use a T4 phage-like mechanism of replication and that the linear molecules may be due to strand breaks mediated by type II topoisomerase.
Collapse
MESH Headings
- Artifacts
- DNA Replication
- DNA Restriction Enzymes/metabolism
- DNA Topoisomerases, Type II/metabolism
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA-Binding Proteins/metabolism
- Edetic Acid/pharmacology
- Electrophoresis, Gel, Pulsed-Field
- Endopeptidase K/metabolism
- Exodeoxyribonucleases/metabolism
- Genome
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Models, Genetic
- Nucleic Acid Conformation
- Plant Cells
- Plant Proteins/metabolism
- Plants/genetics
- Salts/pharmacology
- Viral Proteins
Collapse
Affiliation(s)
- D J Oldenburg
- Department of Botany, University of Washington, Seattle, WA 98195-5325, USA
| | | |
Collapse
|
26
|
Tomáska L, Nosek J, Kucejová B. Mitochondrial single-stranded DNA-binding proteins: in search for new functions. Biol Chem 2001; 382:179-86. [PMID: 11308016 DOI: 10.1515/bc.2001.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
During the evolution of the eukaryotic cell, genes encoding proteins involved in the metabolism of mitochondrial DNA (mtDNA) have been transferred from the endosymbiont into the host genome. Mitochondrial single-stranded DNA-binding (mtSSB) proteins serve as an excellent argument supporting this aspect of the endosymbiotic theory. The crystal structure of the human mtSSB, together with an abundance of biochemical and genetic data, revealed several exciting features of mtSSB proteins and enabled a detailed comparison with their prokaryotic counterparts. Moreover, identification of a novel member of the mtSSB family, mitochondrial telomere-binding protein of the yeast Candida parapsilosis, has raised interesting questions regarding mtDNA metabolism and evolution.
Collapse
Affiliation(s)
- L Tomáska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | |
Collapse
|
27
|
Ravin V, Ravin N, Casjens S, Ford ME, Hatfull GF, Hendrix RW. Genomic sequence and analysis of the atypical temperate bacteriophage N15. J Mol Biol 2000; 299:53-73. [PMID: 10860722 DOI: 10.1006/jmbi.2000.3731] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N15 is a temperate bacteriophage that forms stable lysogens in Escherichia coli. While its virion is morphologically very similar to phage lambda and its close relatives, it is unusual in that the prophage form replicates autonomously as a linear DNA molecule with closed hairpin telomeres. Here, we describe the genomic architecture of N15, and its global pattern of gene expression, which reveal that N15 contains several plasmid-derived genes that are expressed in N15 lysogens. The tel site, at which processing occurs to form the prophage ends is close to the center of the genome in a similar location to that occupied by the attachment site, attP, in lambda and its relatives and defines the boundary between the left and right arms. The left arm contains a long cluster of structural genes that are closely related to those of the lambda-like phages, but also includes homologs of umuD', which encodes a DNA polymerase accessory protein, and the plasmid partition genes, sopA and sopB. The right arm likewise contains a mixture of apparently phage- and plasmid-derived genes including genes encoding plasmid replication functions, a phage repressor, a transcription antitermination system, as well as phage host cell lysis genes and two putative DNA methylases. The unique structure of the N15 genome suggests that the large global population of bacteriophages may exhibit a much greater diversity of genomic architectures than was previously recognized.
Collapse
MESH Headings
- Bacteriolysis
- Bacteriophage lambda/genetics
- Bacteriophages/enzymology
- Bacteriophages/genetics
- Bacteriophages/ultrastructure
- Base Composition
- Base Sequence
- Escherichia coli/physiology
- Escherichia coli/virology
- Gene Expression Regulation, Bacterial
- Genes, Viral/genetics
- Genome, Viral
- Lysogeny/genetics
- Microscopy, Electron
- Plasmids/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Response Elements/genetics
- Sequence Analysis, DNA
- Terminator Regions, Genetic/genetics
- Transcription, Genetic/genetics
- Viral Proteins/genetics
Collapse
Affiliation(s)
- V Ravin
- Center for Bioengineering, Russian Academy of Science, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
28
|
Nosek J, Tomáska L, Pagácová B, Fukuhara H. Mitochondrial telomere-binding protein from Candida parapsilosis suggests an evolutionary adaptation of a nonspecific single-stranded DNA-binding protein. J Biol Chem 1999; 274:8850-7. [PMID: 10085128 DOI: 10.1074/jbc.274.13.8850] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial genome in a number of organisms is represented by linear DNA molecules with defined terminal structures. The telomeres of linear mitochondrial DNA (mtDNA) of yeast Candida parapsilosis consist of tandem arrays of large repetitive units possessing single-stranded 5' extension of about 110 nucleotides. Recently we identified the first mitochondrial telomere-binding protein (mtTBP) that specifically binds a sequence derived from the extreme end of C. parapsilosis linear mtDNA and protects it from attack by various DNA-modifying enzymes (Tomáska, L'., Nosek, J., and Fukuhara, H. (1997) J. Biol. Chem. 272, 3049-3059). Here we report the isolation of MTP1, the gene encoding mtTBP of C. parapsilosis. Sequence analysis revealed that mtTBP shares homology with several bacterial and mitochondrial single-stranded DNA-binding proteins that nonspecifically bind to single-stranded DNA with high affinity. Recombinant mtTBP displays a preference for the telomeric 5' overhang of C. parapsilosis mtDNA. The heterologous expression of a mtTBP-GFP fusion protein resulted in its localization to the mitochondria but was unable to functionally substitute for the loss of the S. cerevisiae homologue Rimlp. Analysis of the MTP1 gene and its translation product mtTBP may provide an insight into the evolutionary origin of linear mitochondrial genomes and the role it plays in their replication and maintenance.
Collapse
Affiliation(s)
- J Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovakia
| | | | | | | |
Collapse
|
29
|
Nosek J, Tomáska L, Fukuhara H, Suyama Y, Kovác L. Linear mitochondrial genomes: 30 years down the line. Trends Genet 1998; 14:184-8. [PMID: 9613202 DOI: 10.1016/s0168-9525(98)01443-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At variance with the earlier belief that mitochondrial genomes are represented by circular DNA molecules, a large number of organisms have been found to carry linear mitochondrial DNA. Studies of linear mitochondrial genomes might provide a novel view on the evolutionary history of organelle genomes and contribute to delineating mechanisms of maintenance and functioning of telomeres. Because linear mitochondrial DNA is present in a number of human pathogens, its replication mechanisms might become a target for drugs that would not interfere with replication of human circular mitochondrial DNA.
Collapse
Affiliation(s)
- J Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
30
|
Abstract
Genomes comprising a pair of separated inverted repeats and called 'amphimers' are reviewed. Amphimeric genomes are observed in a large variety of different organisms, ranging from archaebacteria to mammals. The widespread existence of amphimeric genomes in nature could be due to their particular dynamic structure. Amphimeric genomes containing long inverted segments may provide the only form in which a duplicated segment is stably retained in genomes. Amphimers are often found in amplified subgenomes, indicating that they could promote a special mechanism of DNA replication and amplification. The possible mechanisms of generation, isomerization and replication/amplification of different types of amphimeric genomes are discussed. The study of amphimeric mitochondrial petite genomes of yeast could be a good model system for the study of the role of inverted repeat sequences in genome dynamics.
Collapse
Affiliation(s)
- E Rayko
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, Paris, France.
| |
Collapse
|
31
|
Tomáska L, Nosek J, Fukuhara H. Identification of a putative mitochondrial telomere-binding protein of the yeast Candida parapsilosis. J Biol Chem 1997; 272:3049-56. [PMID: 9006955 DOI: 10.1074/jbc.272.5.3049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Terminal segments (telomeres) of linear mitochondrial DNA (mtDNA) molecules of the yeast Candida parapsilosis consist of large sequence units repeated in tandem. The extreme ends of mtDNA terminate with a 5' single-stranded overhang of about 110 nucleotides. We identified and purified a mitochondrial telomere-binding protein (mtTBP) that specifically recognizes a synthetic oligonucleotide derived from the extreme end of this linear mtDNA. MtTBP is highly resistant to protease and heat treatments, and it protects the telomeric probe from degradation by various DNA-modifying enzymes. Resistance of the complex to bacterial alkaline phosphatase suggests that mtTBP binds the very end of the molecule. We purified mtTBP to near homogeneity using DNA affinity chromatography based on the telomeric oligonucleotide covalently bound to Sepharose. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the purified fractions revealed the presence of a protein with an apparent molecular mass of approximately 15 kDa. UV cross-linking and gel filtration chromatography experiments suggested that native mtTBP is probably a homo-oligomer. MtTBP of C. parapsilosis is the first identified protein that specifically binds to telomeres of linear mitochondrial DNA.
Collapse
Affiliation(s)
- L Tomáska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | | | | |
Collapse
|
32
|
Backert S, Lurz R, Börner T. Electron microscopic investigation of mitochondrial DNA from Chenopodium album (L.). Curr Genet 1996; 29:427-36. [PMID: 8625421 DOI: 10.1007/bf02221510] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA molecules from mitochondria of whole plants and a suspension culture of Chenopodium album were prepared, by a gentle method, for analysis by electron microscopy. Mitochondrial (mt) DNA preparations from both sources contained mostly linear molecules of variable sizes (with the majority of molecules ranging from 40 to 160 kb). Open circular molecules with contour lengths corresponding to 0. 3-183 kb represented 23-26% of all mtDNA molecules in the preparations from the suspension culture and 13-15% in the preparations from whole plants. More than 90% of the circular DNA was smaller than 30 kb. Virtually no size classes of the mtDNA molecules could be identified, and circular or linear molecules of the genome size (about 270 kb) were not observed. In contrast, plastid (pt) DNA preparations from the suspension culture contained linear and circular molecules falling into size classes corresponding to monomers, dimers and trimers of the chromosome. About 23% of the ptDNA molecules were circular. DNA preparations from mitochondria contained a higher percentage of more complex molecules (rosette-like structures, catenate-like molecules) than preparations of ptDNA. Sigma-like molecules (putative intermediates of rolling-circle replication) were observed in mtDNA preparations from the suspension culture (18% of the circles), and in much lower amount (1%) in preparations from whole plants. The results are compared with data obtained previously by pulsed-field gel electrophoresis and discussed in relation to the structural organization and replication of the mt genome of higher plants.
Collapse
MESH Headings
- Artifacts
- Cells, Cultured
- DNA, Chloroplast/isolation & purification
- DNA, Chloroplast/ultrastructure
- DNA, Circular/isolation & purification
- DNA, Circular/ultrastructure
- DNA, Mitochondrial/isolation & purification
- DNA, Mitochondrial/ultrastructure
- DNA, Plant/isolation & purification
- DNA, Plant/ultrastructure
- Electrophoresis, Gel, Pulsed-Field
- Microscopy, Electron
- Plants/genetics
- Plants/ultrastructure
Collapse
Affiliation(s)
- S Backert
- Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany
| | | | | |
Collapse
|
33
|
Gilson P, Waller R, McFadden G. Preliminary characterisation of chlorarachniophyte mitochondrial DNA. J Eukaryot Microbiol 1995; 42:696-701. [PMID: 8520584 DOI: 10.1111/j.1550-7408.1995.tb01618.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The division Chlorarachniophyte comprises amoeboflagellate protists with complex chloroplasts derived from the endosymbiosis of a eukaryotic alga. Analysis of chlorarachniophyte chromosomal DNAs by pulsed-field gel electrophoresis revealed an apparently linear 36-kb chromosome that could not be ascribed to either the host or endosymbiont nuclei. A single eubacterial-like small subunit ribosomal RNA gene is encoded on this chromosome and phylogenetic analyses places this gene within a clade of mitochondrial genes from other eukaryotes. High resolution in situ hybridization demonstrates that transcripts of the small subunit ribosomal RNA gene encoded by the 36-kb chromosome are exclusively located in the mitochondria. The 36-kb chromosome thus likely represents a linear mitochondrial genome. Small amounts of an apparently dimeric (72 kb) form are also detectable in pulsed-field gel electrophoresis.
Collapse
Affiliation(s)
- P Gilson
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC, Australia
| | | | | |
Collapse
|
34
|
Abstract
Pulsed-field gel electrophoresis (PFGE) of isolates of Pythium oligandrum with linear mitochondrial genomes revealed a distinct band in ethidium bromide-stained gels similar in size to values estimated by restriction mapping of mitochondrial DNA (mtDNA). Southern analysis confirmed that these bands were mtDNA and indicated that linear genomes were present in unit-length size as well as multimers. Isolates of this species with circular mtDNA restriction maps also had low levels of linear mono- and multimers visualized by Southern analysis of PFGE gels. Examination of 17 additional species revealed similar results; three species had distinct linear mtDNA bands in ethidium bromide-stained gels while the remainder had linear mono- and multi-mers in lower amounts detected only by Southern analysis. Sequence analysis of an isolate of P. oligandrum with a primarily circular mitochondrial genomic map and a low amount of linear molecules revealed that the small unique region of the circular map (which corresponded to the terminal region of linear genomes) was flanked by palindromic intrastrand complementary sequences separated by a unique 194-bp sequence. Sequences with similarity to ATPase9 coding regions from other organisms were located adjacent to this region. Sequences with similarity to mitochondrial origins of replication and autonomously replicating sequences were also located in this region: their potential involvement in the generation of linear molecules is discussed.
Collapse
Affiliation(s)
- F N Martin
- Plant Pathology Department, University of Florida, Gainesville 32611, USA
| |
Collapse
|
35
|
Nosek J, Dinouël N, Kovac L, Fukuhara H. Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:61-72. [PMID: 7715605 DOI: 10.1007/bf00425822] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The terminal structure of the linear mitochondrial DNA (mtDNA) from the yeast Candida parapsilosis was investigated. This mtDNA, 30 kb long, has symmetrical ends forming inverted terminal repeats. These repeats are made up of a variable number of tandemly repeating units of 738 bp each; the terminal nucleotide corresponds to a precise position within the last repeat unit sequence. The ends had an open structure accessible to enzymes, with a 5' single-stranded extension of about 110 nucleotides. No circular forms were detected in the DNA preparations. Two other unrelated species, Pichia philodendra and Candida salmanticensis also appear to have a linear mtDNA of similar organization. These linear DNAs (which we name Type 2 linear mtDNAs) are distinct from the previously described linear mtDNAs of yeasts whose termini are formed by a closed hairpin loop (Type 1 linear mtDNA). The terminal structure of C. parapsilosis mtDNA is reminiscent of the linear mitochondrial genomes of the ciliate Tetrahymena although, in the latter, the telomeric tandem repeat unit is considerably shorter.
Collapse
Affiliation(s)
- J Nosek
- Institut Curie, Section de Biologie, Centre universitaire Paris XI, Orsay, France
| | | | | | | |
Collapse
|
36
|
Abstract
Fifteen tRNA-encoding genes were mapped on the linear mitochondrial (mt) DNA of the yeast, Candida parapsilosis, and their sequences determined. The gene order and gene sequences indicate that the mt genome of this yeast belongs to a group clearly different from the already known group of linear mt DNAs of yeast.
Collapse
Affiliation(s)
- J Nosek
- Department of Genetics, Comenius University, Bratislava, Slovak Republic
| | | |
Collapse
|
37
|
Drissi R, Sor F, Nosek J, Fukuhara H. Genes of the linear mitochondrial DNA of Williopsis mrakii: coding sequences for a maturase-like protein, a ribosomal protein VAR1 homologue, cytochrome oxidase subunit 2 and methionyl tRNA. Yeast 1994; 10:391-8. [PMID: 8017108 DOI: 10.1002/yea.320100312] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mitochondrial DNA (mtDNA) in some yeasts has a linear structure with inverted terminal repeats closed by a single-stranded loop. These mtDNAs have generally a constant gene order, beginning with a small ribosomal RNA gene at the right end and terminating with a cytochrome oxidase subunit 2 gene (COX2) at the left end, independently of the wide variation in genome size. In the mtDNAs from several species of the genus Williopsis, we found an additional open reading frame, ORF1, which was homologous to the Saccharomyces cerevisiae RF1 gene encoding a group I intron maturase-like protein. ORF1 genes from W. mrakii and W. suaveolens were mapped and sequenced. Next to ORF1, COX2 and methionyl tRNA genes were present on the opposite strand. The same relative positions of genes in the mtDNAs so far examined suggests that the constancy of gene order is generally conserved also at the level of individual tRNA genes. We identified another open reading frame, ORF2, in W. mrakii mtDNA. It was mapped next to the cytochrome oxidase subunit 3 gene. Rich in adenine-thymine bases, ORF2 appears to be a homologue of the VAR1 gene which codes for a small ribosomal subunit protein in S. cerevisiae mitochondria. Nucleotide sequences data have been deposited in the EmBL data library under the following Accession Numbers: X66594 (Apocytochrome b and ORF2 genes of W. mrakii), X66595 (ORF1, tRNA-Met and COX2 genes of W. mrakii), X73415 (tRNA-Met and COX2 genes of W. suaveolens), X73416 (ORF1 gene of W. suaveolens) and X73414 (tRNA-Met and COX2 genes of P. jadinii).
Collapse
Affiliation(s)
- R Drissi
- Institut Curie, Centre Universitaire Paris XI, Orsay, France
| | | | | | | |
Collapse
|
38
|
Yamada T, Higashiyama T. Characterization of the terminal inverted repeats and their neighboring tandem repeats in the Chlorella CVK1 virus genome. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:554-63. [PMID: 8264529 DOI: 10.1007/bf00279897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A unique group of large icosahedral viruses that infect a unicellular green alga (Chlorella sp. NC64A) were isolated from freshwater sources in Japan. These viruses contain a linear double-stranded DNA (dsDNA) genome with hairpin ends. A physical map was constructed for the genomic DNA of CVK1 (Chlorella virus isolated in Kyoto, no. 1) by pulsed-field gel electrophoresis of restriction fragments. The nucleotide sequences around both termini of the CVK1 DNA revealed the presence of inverted terminal repeats (ITR) of approximately 1.0 kb. Adjacent to the ITR, unique sequence elements of 10 to 20 bp were directly repeated 20 to 30 times in tandem array. Several copies of these repeat elements were deleted in virus mutants that were occasionally generated from Chlorella cells that were in a putative CVK1 carrier state. These repeats might represent a hot spot of rearrangement in the CVK1 genome.
Collapse
Affiliation(s)
- T Yamada
- Faculty of Engineering, Hiroshima University, Japan
| | | |
Collapse
|
39
|
Abstract
Linear plasmids and chromosomes were unknown in prokaryotes until recently but have now been found in spirochaetes, Gram-positive bacteria, and Gram-negative bacteria. Two structural types of bacterial linear DNA have been characterized. Linear plasmids of the spirochaete Borrelia have a covalently closed hairpin loop at each end and linear plasmids of the Gram-positive filamentous Streptomyces have a covalently attached protein at each end. Replicons with similar structures are more frequent in eukaryotic cells than in prokaryotes. Linear genomic structures are probably more common in bacteria than previously recognized, however, and some replicons may interconvert between circular and linear isomers. The molecular biology of these widely dispersed elements provides clues to explain the origin of linear DNA in bacteria, including evidence for genetic exchange between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- J Hinnebusch
- Laboratory of Vectors and Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana 59840
| | | |
Collapse
|