1
|
Carter H, Costa RM, Adams TS, Gilchrist TM, Emch CE, Bame M, Oldham JM, Huang SK, Linderholm AL, Noth I, Kaminski N, Moore BB, Gurczynski SJ. CD103+ dendritic cell-fibroblast crosstalk via TLR9, TDO2, and AHR signaling drives lung fibrogenesis. JCI Insight 2025; 10:e177072. [PMID: 39964756 PMCID: PMC11949071 DOI: 10.1172/jci.insight.177072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring and loss of lung function. With limited treatment options, patients die from the disease within 2-5 years. The molecular pathogenesis underlying the immunologic changes that occur in IPF is poorly understood. We characterize noncanonical aryl-hydrocarbon receptor (ncAHR) signaling in DCs as playing a role in the production of IL-6 and increased IL-17+ cells, promoting fibrosis. TLR9 signaling in myofibroblasts is shown to regulate production of TDO2, which converts tryptophan into the endogenous AHR ligand kynurenine. Mice with augmented ncAHR signaling were created by crossing mice harboring a floxed AHR exon 2 deletion (AHRΔex2) with mice harboring a CD11c-Cre. Bleomycin (blm) was used to study fibrotic pathogenesis. Isolated CD11c+ cells and primary fibroblasts were treated ex vivo with relevant TLR agonists and AHR-modulating compounds to study how AHR signaling influenced inflammatory cytokine production. Human datasets were also interrogated. Inhibition of all AHR signaling rescued fibrosis; however, AHRΔex2 mice treated with blm developed more fibrosis, and DCs from these mice were hyperinflammatory and profibrotic upon adoptive transfer. Treatment of fibrotic fibroblasts with TLR9 agonist increased expression of TDO2, and fibrotic fibroblasts activated IL-6 production in CD103+ DCs. Study of human samples corroborated the relevance of these findings in patients with IPF. We also show, for the first time to our knowledge, that AHR exon 2 floxed mice retain the capacity for ncAHR signaling.
Collapse
Affiliation(s)
- Hannah Carter
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rita Medina Costa
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Taylor S. Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Talon M. Gilchrist
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Claire E. Emch
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Monica Bame
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven K. Huang
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Angela L. Linderholm
- Division of Pulmonary and Critical Care Medicine, University of California, Davis, California, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen J. Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Carter H, Costa RM, Adams TS, Gilchrist T, Emch CE, Bame M, Oldham JM, Linderholm AL, Noth I, Kaminski N, Moore BB, Gurczynski SJ. Dendritic Cell - Fibroblast Crosstalk via TLR9 and AHR Signaling Drives Lung Fibrogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.584457. [PMID: 38559175 PMCID: PMC10980010 DOI: 10.1101/2024.03.15.584457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring and loss of lung function. With limited treatment options, patients succumb to the disease within 2-5 years. The molecular pathogenesis of IPF regarding the immunologic changes that occur is poorly understood. We characterize a role for non-canonical aryl-hydrocarbon receptor signaling (ncAHR) in dendritic cells (DCs) that leads to production of IL-6 and IL-17, promoting fibrosis. TLR9 signaling in myofibroblasts is shown to regulate production of TDO2 which converts tryptophan into the endogenous AHR ligand kynurenine. Mice with augmented ncAHR signaling were created by crossing floxed AHR exon-2 deletion mice (AHR Δex2 ) with mice harboring a CD11c-Cre. Bleomycin was used to study fibrotic pathogenesis. Isolated CD11c+ cells and primary fibroblasts were treated ex-vivo with relevant TLR agonists and AHR modulating compounds to study how AHR signaling influenced inflammatory cytokine production. Human datasets were also interrogated. Inhibition of all AHR signaling rescued fibrosis, however, AHR Δex2 mice treated with bleomycin developed more fibrosis and DCs from these mice were hyperinflammatory and profibrotic upon adoptive transfer. Treatment of fibrotic fibroblasts with TLR9 agonist increased expression of TDO2. Study of human samples corroborate the relevance of these findings in IPF patients. We also, for the first time, identify that AHR exon-2 floxed mice retain capacity for ncAHR signaling.
Collapse
|
3
|
Wan T, Au DWT, Mo J, Chen L, Cheung KM, Kong RYC, Seemann F. Assessment of parental benzo[a]pyrene exposure-induced cross-generational neurotoxicity and changes in offspring sperm DNA methylome in medaka fish. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac013. [PMID: 35769199 PMCID: PMC9233418 DOI: 10.1093/eep/dvac013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 05/29/2023]
Abstract
Previous studies have revealed that DNA methylation changes could serve as potential genomic markers for environmental benzo[a]pyrene (BaP) exposure and intergenerational inheritance of various physiological impairments (e.g. obesity and reproductive pathologies). As a typical aromatic hydrocarbon pollutant, direct BaP exposure has been shown to induce neurotoxicity. To unravel the inheritance mechanisms of the BaP-induced bone phenotype in freshwater medaka, we conducted whole-genome bisulfite sequencing of F1 sperm and identified 776 differentially methylated genes (DMGs). Ingenuity pathway analysis revealed that DMGs were significantly enriched in pathways associated with neuronal development and function. Therefore, it was hypothesized that parental BaP exposure (1 μg/l, 21 days) causes offspring neurotoxicity. Furthermore, the possibility for sperm methylation as an indicator for a neurotoxic phenotype was investigated. The F0 adult brains and F1 larvae were analyzed for BaP-induced direct and inherited toxicity. Acetylcholinesterase activity was significantly reduced in the larvae, together with decreased swimming velocity. Molecular analysis revealed that the marker genes associated with neuron development and growth (alpha1-tubulin, mbp, syn2a, shh, and gap43) as well as brain development (dlx2, otx2, and krox-20) were universally downregulated in the F1 larvae (3 days post-hatching). While parental BaP exposure at an environmentally relevant concentration could induce neurotoxicity in the developing larvae, the brain function of the exposed F0 adults was unaffected. This indicates that developmental neurotoxicity in larvae may result from impaired neuronal development and differentiation, causing delayed brain growth. The present study demonstrates that the possible adverse health effects of BaP in the environment are more extensive than currently understood. Thus, the possibility of multigenerational BaP toxicity should be included in environmental risk assessments.
Collapse
Affiliation(s)
- Teng Wan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Doris Wai-Ting Au
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Kwok-Ming Cheung
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Richard Yuen-Chong Kong
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- South Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Frauke Seemann
- *Correspondence address. Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA. Tel: +1-361-825-2683; Fax: +1 (361) 825-2742;
| |
Collapse
|
4
|
Mechanisms of Binding Specificity among bHLH Transcription Factors. Int J Mol Sci 2021; 22:ijms22179150. [PMID: 34502060 PMCID: PMC8431614 DOI: 10.3390/ijms22179150] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA’s shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.
Collapse
|
5
|
Trajectory Shifts in Interdisciplinary Research of the Aryl Hydrocarbon Receptor-A Personal Perspective on Thymus and Skin. Int J Mol Sci 2021; 22:ijms22041844. [PMID: 33673338 PMCID: PMC7918350 DOI: 10.3390/ijms22041844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying historical trajectories is a useful exercise in research, as it helps clarify important, perhaps even “paradigmatic”, shifts in thinking and moving forward in science. In this review, the development of research regarding the role of the transcription factor “aryl hydrocarbon receptor” (AHR) as a mediator of the toxicity of environmental pollution towards a link between the environment and a healthy adaptive response of the immune system and the skin is discussed. From this fascinating development, the opportunities for targeting the AHR in the therapy of many diseases become clear.
Collapse
|
6
|
Doering JA, Beitel SC, Patterson S, Eisner BK, Giesy JP, Hecker M, Wiseman S. Aryl hydrocarbon receptor nuclear translocators (ARNT1, ARNT2, and ARNT3) of white sturgeon (Acipenser transmontanus): Sequences, tissue-specific expressions, and response to β-naphthoflavone. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108726. [PMID: 32081761 DOI: 10.1016/j.cbpc.2020.108726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/01/2022]
Abstract
Sturgeons (Acipenseridae) are ancient fishes that have tissue-specific profiles of transcriptional responses to dioxin-like compounds (DLCs) that are unique from those generally measured in teleost fishes. Because DLCs exert their critical toxicities through activation of the aryl hydrocarbon receptor (AHR), this transcription factor has been the subject of intensive study. However, less attention has focused on the aryl hydrocarbon receptor nuclear translocator (ARNT), which is the dimerization partner of the AHR and required for AHR-mediated transcription. The present study sequenced ARNT1, ARNT2, and ARNT3 in a representative species of sturgeon, the white sturgeon (Acipenser transmontanus), and quantified tissue-specific basal transcript abundance for each ARNT and the response following exposure to the model agonist of the AHR, β-naphthoflavone. In common with other proteins in sturgeons, the amino acid sequences of ARNTs are more similar to those of tetrapods than are ARNTs of other fishes. Transcripts of ARNT1, ARNT2, and ARNT3 were detected in all tissues investigated. Expression of ARNTs are tightly regulated in vertebrates, but β-naphthoflavone caused down-regulation in liver and up-regulation in gill, while an upward trend was measured in intestine. ARNTs are dimeric partners for multiple proteins, including the hypoxia inducible factor 1α (HIF1α), which mediates response to hypoxia. A downward trend in abundance of HIF1α transcript was measured in liver of white sturgeon exposed to β-naphthoflavone. Altered expression of ARNTs and HIF1α caused by activation of the AHR might affect the ability of certain tissues in sturgeons to respond to hypoxia when co-exposed to DLCs or other agonists.
Collapse
Affiliation(s)
- Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - Shawn C Beitel
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Sarah Patterson
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Bryanna K Eisner
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76706, United States
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
7
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. Chaperones, somatotroph tumors and the cyclic AMP (cAMP)-dependent protein kinase (PKA) pathway. Mol Cell Endocrinol 2020; 499:110607. [PMID: 31586652 DOI: 10.1016/j.mce.2019.110607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023]
Abstract
The cAMP-PKA pathway plays an essential role in the pituitary gland, governing cell differentiation and survival, and maintenance of endocrine function. Somatotroph growth hormone transcription and release as well as cell proliferation are regulated by the cAMP-PKA pathway; cAMP-PKA pathway abnormalities are frequently detected in sporadic as well as in hereditary somatotroph tumors and more rarely in other pituitary tumors. Inactivating variants of the aryl hydrocarbon receptor-interacting protein (AIP)-coding gene are the genetic cause of a subset of familial isolated pituitary adenomas (FIPA). Multiple functional links between the co-chaperone AIP and the cAMP-PKA pathway have been described. This review explores the role of chaperones including AIP in normal pituitary function as well as in somatotroph tumors, and their interaction with the cAMP-PKA pathway.
Collapse
Affiliation(s)
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| |
Collapse
|
8
|
Josyula N, Andersen ME, Kaminski NE, Dere E, Zacharewski TR, Bhattacharya S. Gene co-regulation and co-expression in the aryl hydrocarbon receptor-mediated transcriptional regulatory network in the mouse liver. Arch Toxicol 2019; 94:113-126. [PMID: 31728591 DOI: 10.1007/s00204-019-02620-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/06/2019] [Indexed: 01/16/2023]
Abstract
Four decades after its discovery, the aryl hydrocarbon receptor (AHR), a ligand-inducible transcription factor (TF) activated by the persistent environmental contaminant 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), remains an enigmatic molecule with a controversial endogenous role. Here, we have assembled a global map of the AHR gene regulatory network in female C57BL/6 mice orally gavaged with 30 µg/kg of TCDD from a combination of previously published gene expression and genome-wide TF-binding data sets. Using Kohonen self-organizing maps and subspace clustering, we show that genes co-regulated by common upstream TFs in the AHR network exhibit a pattern of co-expression. Directly bound, indirectly bound, and non-genomic AHR target genes exhibit distinct expression patterns, with the directly bound targets associated with highest median expression. Interestingly, among the directly bound AHR target genes, the expression level increases with the number of AHR-binding sites in the proximal promoter regions. Finally, we show that co-regulated genes in the AHR network activate distinct groups of downstream biological processes. Although the specific findings described here are restricted to hepatic effects under short-term TCDD exposure, this work describes a generalizable approach to the reconstruction and analysis of transcriptional regulatory cascades underlying cellular stress response, revealing network hierarchy and the nature of information flow from the initial signaling events to phenotypic outcomes. Such reconstructed networks can form the basis of a new generation of quantitative adverse outcome pathways.
Collapse
Affiliation(s)
- Navya Josyula
- Biomedical and Translational Informatics Program, Geisinger Health System, Rockville, MD, 20850, USA
| | | | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.,Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, USA
| | - Edward Dere
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Genentech, South San Francisco, CA, 94080, USA
| | - Timothy R Zacharewski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Sudin Bhattacharya
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA. .,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824-1226, USA. .,Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, USA. .,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Hale MD, Bertucci EM, Rainwater TR, Wilkinson PM, Parrott BB. The impact of maternally derived dioxins on embryonic development and hepatic AHR signaling in a long-lived apex predator. CHEMOSPHERE 2019; 229:489-499. [PMID: 31096085 DOI: 10.1016/j.chemosphere.2019.04.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Dioxins and related contaminants are highly pervasive in aquatic systems and elicit deleterious effects in exposed organisms. Because dioxins exhibit a proclivity to bioaccumulate, long-lived predatory species are particularly vulnerable to their persistence in the environment. We have previously reported elevated expression of CYP1A2, a biomarker of dioxin exposure, in American alligator embryos collected from the Tom Yawkey Wildlife Center (YWC). This coastal population inhabits a system with historical dioxin contamination associated with industrial activities. Herein, we utilize ecological attributes of the alligator to address the persistence of dioxins and furans in yolk and their potential to drive changes in hepatic function. Specifically, we assess variation in expression of AHR signaling components in embryos and its connection to contaminant levels in matched yolk samples. Compared to a reference population, TEQ levels and total penta-, hexa-, octa-substituted CDDs were elevated at YWC. Contrary to predictions, TEQ levels were not significantly related to hepatic AHR1B or CYP1A2 expression. However, a significant association was detected between expression of both factors and embryo:yolk mass ratios, wherein decreasing embryo mass was negatively associated with CYP1A2 but positively associated with AHR1B. These findings suggest that variation in embryonic metabolism and developmental progression likely influence AHR signaling and dioxin toxicity in alligators and potentially other oviparous species. While dioxin concentrations observed in alligators in this study are lower than historical values reported for other wildlife species inhabiting this system, they indicate the continued presence and possible long-term influence of these contaminants in a high trophic status species.
Collapse
Affiliation(s)
- Matthew D Hale
- Savannah River Ecology Laboratory Laboratory, Aiken, SC, USA; Odum School of Ecology, University of Georgia, Athens, GA, USA.
| | - Emily M Bertucci
- Savannah River Ecology Laboratory Laboratory, Aiken, SC, USA; Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Thomas R Rainwater
- Tom Yawkey Wildlife Center Heritage Preserve, South Carolina Department of Natural Resources, Georgetown, SC, USA; Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC, USA
| | - Philip M Wilkinson
- Tom Yawkey Wildlife Center Heritage Preserve, South Carolina Department of Natural Resources, Georgetown, SC, USA
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory Laboratory, Aiken, SC, USA; Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Xie X, Jiang J, Ye W, Chen R, Deng Y, Wen J. Sp1, Instead of AhR, Regulates the Basal Transcription of Porcine CYP1A1 at the Proximal Promoter. Front Pharmacol 2018; 9:927. [PMID: 30174605 PMCID: PMC6107784 DOI: 10.3389/fphar.2018.00927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Pigs are commonly used as an animal model to evaluate the toxic effects of exogenous compounds. Cytochrome P450 1A1 (CYP1A1) metabolizes numerous exogenous compounds and is abundantly expressed in the liver, kidneys, and intestines. The high amino acid similarity between human and porcine CYP1A1 indicates that they probably have the same metabolic characteristics. Therefore, understanding the regulatory mechanism of CYP1A1 expression in pigs is particularly important for predicting the toxicology and metabolic kinetics of exogenous chemicals. Currently, the transcriptional regulation of porcine CYP1A1 has rarely been studied, especially regarding basal transcription. In this study, we first confirmed that the key regulatory elements of porcine CYP1A1 basal transactivation are in the proximal promoter region using promoter truncation analysis via a dual luciferase assay in a porcine kidney cell line LLC-PK1. Two overlapping cis-elements, the xenobiotic response element (XRE) and GC box, in this proximal region potentially play key roles in the basal transactivation of porcine CYP1A1. Furthermore, using electrophoretic mobility shift assay and chromatin immunoprecipitation, the GC box binding protein Sp1 was confirmed to bind to the proximal promoter of porcine CYP1A1, instead of AhR, the XRE binding protein. In LLC-PK1 cells, by knocking down either Sp1 or AhR, the expression of porcine CYP1A1 at the mRNA level and protein level was significantly downregulated, suggesting both proteins are important for porcine CYP1A1 expression. However, promoter activity analysis in LLC-PK1 cells treated with an AhR agonist and antagonist confirmed that AhR does not participate in the basal regulation of porcine CYP1A1 at the proximal promoter. In conclusion, our study revealed that the proximal promoter is the key regulatory region for porcine CYP1A1 basal expression. Although AhR plays an important role in the transactivation of porcine CYP1A1 expression, the key determinant transcription factor for its basal transactivation is Sp1 at the proximal promoter of porcine CYP1A1.
Collapse
Affiliation(s)
- Xuan Xie
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Wenchu Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Choi EM, Suh KS, Jung WW, Park SY, Chin SO, Rhee SY, Kim Pak Y, Chon S. Glabridin attenuates antiadipogenic activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in murine 3T3-L1 adipocytes. J Appl Toxicol 2018; 38:1426-1436. [DOI: 10.1002/jat.3664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Sciences; Cheongju University; Cheongju Chungbuk 28503 Republic of Korea
| | - So Young Park
- Department of Medicine, Graduate School; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| | - Youngmi Kim Pak
- Department of Physiology; Kyung Hee University; College of Medicine Seoul 02447 Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| |
Collapse
|
12
|
Hale MD, Galligan TM, Rainwater TR, Moore BC, Wilkinson PM, Guillette LJ, Parrott BB. AHR and CYP1A expression link historical contamination events to modern day developmental effects in the American alligator. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:1050-1061. [PMID: 28764121 DOI: 10.1016/j.envpol.2017.07.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 05/16/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that initiates a transcriptional pathway responsible for the expression of CYP1A subfamily members, key to the metabolism of xenobiotic compounds. Toxic planar halogenated aromatic hydrocarbons, including dioxin and PCBs, are capable of activating the AHR, and while dioxin and PCB inputs into the environment have been dramatically curbed following strict regulatory efforts in the United States, they persist in the environment and exposures remain relevant today. Little is known regarding the effects that long-term chronic exposures to dioxin or dioxin-like compounds might have on the development and subsequent health of offspring from exposed individuals, nor is much known regarding AHR expression in reptilians. Here, we characterize AHR and CYP1A gene expression in embryonic and juvenile specimen of a long-lived, apex predator, the American alligator (Alligator mississippiensis), and investigate variation in gene expression profiles in offspring collected from sites conveying differential exposures to environmental contaminants. Both age- and tissue-dependent patterning of AHR isoform expression are detected. We characterize two downstream transcriptional targets of the AHR, CYP1A1 and CYP1A2, and describe conserved elements of their genomic architecture. When comparisons across different sites are made, hepatic expression of CYP1A2, a direct target of the AHR, appears elevated in embryos from a site associated with a dioxin point source and previously characterized PCB contamination. Elevated CYP1A2 expression is not persistent, as site-specific variation was absent in juveniles originating from field-collected eggs but reared under lab conditions. Our results illustrate the patterning of AHR gene expression in a long-lived environmental model species, and indicate a potential contemporary influence of historical contamination. This research presents a novel opportunity to link contamination events to critical genetic pathways during embryonic development, and carries significant potential to inform our understanding of potential health effects in wildlife and humans.
Collapse
Affiliation(s)
- Matthew D Hale
- Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802, United States; Odum School of Ecology, University of Georgia, Athens, GA 30602, United States
| | - Thomas M Galligan
- Marine Biomedicine and Environmental Sciences Program, Hollings Marine Laboratory and the Medical University of South Carolina, Charleston, SC 29412, United States
| | - Thomas R Rainwater
- Tom Yawkey Wildlife Center & Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC 29442, United States
| | - Brandon C Moore
- Department of Biology, Sewanee: the University of the South, Sewanee, TN 37383, United States
| | - Philip M Wilkinson
- Tom Yawkey Wildlife Center Heritage Preserve, South Carolina Department of Natural Resources, Georgetown, SC 29440, United States
| | - Louis J Guillette
- Marine Biomedicine and Environmental Sciences Program, Hollings Marine Laboratory and the Medical University of South Carolina, Charleston, SC 29412, United States
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802, United States; Odum School of Ecology, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
13
|
Yao M, Hu T, Wang Y, Du Y, Hu C, Wu R. Polychlorinated biphenyls and its potential role in endometriosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:837-845. [PMID: 28774553 DOI: 10.1016/j.envpol.2017.06.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
With the progress of global industrialization and environmental deterioration, the relationship between human health and the living environment has become an increasing focus of attention. Polychlorinated biphenyls (PCBs, including dioxin-like polychlorinated biphenyls and non-dioxin-like polychlorinated biphenyls), as part of the organic chlorine contaminants, have been suspected as playing a role in the etiopathogenesis of endometriosis. Several population-based studies have proposed that exposure to PCBs may increase the risk of developing endometriosis, while some epidemiological studies have failed to find any association between PCBs and endometriosis. The purpose of this review is to discuss the potential pathophysiological relationship between endometriosis and PCBs with a focus on both dioxin-like polychlorinated biphenyls and non-dioxin-like polychlorinated biphenyls.
Collapse
Affiliation(s)
- Mengyun Yao
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Tingting Hu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Yinfeng Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Yongjiang Du
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Changchang Hu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Ruijin Wu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China.
| |
Collapse
|
14
|
Formosa R, Vassallo J. The Complex Biology of the Aryl Hydrocarbon Receptor and Its Role in the Pituitary Gland. Discov Oncol 2017. [PMID: 28634910 DOI: 10.1007/s12672-017-0300-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor best known for its ability to mediate the effects of environmental toxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin), polycyclic aromatic hydrocarbons (PAHs), benzene, and polychlorinated biphenyls (PCBs) through the initiation of transcription of a number of metabolically active enzymes. Therefore, the AHR has been studied mostly in the context of xenobiotic signaling. However, several studies have shown that the AHR is constitutively active and plays an important role in general cell physiology, independently of its activity as a xenobiotic receptor and in the absence of exogenous ligands. Within the pituitary, activation of the AHR by environmental toxins has been implicated in disruption of gonadal development and fertility. Studies carried out predominantly in mouse models have revealed the detrimental influence of several environmental toxins on specific cell lineages of the pituitary tissue mediated by activation of AHR and its downstream effectors. Activation of AHR during fetal development adversely affected pituitary development while adult models exposed to AHR ligands demonstrated varying degrees of pituitary dysfunction. Such dysfunction may arise as a result of direct effects on pituitary cells or indirect effects on the hypothalamic-pituitary-gonadal axis. This review offers in-depth analysis of all aspects of AHR biology, with a particular focus on its role and activity within the adenohypophysis and specifically in pituitary tumorigenesis. A novel mechanism by which the AHR may play a direct role in pituitary cell proliferation and tumor formation is postulated. This review therefore attempts to cover all aspects of the AHR's role in the pituitary tissue, from fetal development to adult physiology and the pathophysiology underlying endocrine disruption and pituitary tumorigenesis.
Collapse
Affiliation(s)
- Robert Formosa
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta. .,Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta.
| |
Collapse
|
15
|
Wajda A, Łapczuk J, Grabowska M, Pius-Sadowska E, Słojewski M, Laszczynska M, Urasinska E, Machalinski B, Drozdzik M. Cell and region specificity of Aryl hydrocarbon Receptor (AhR) system in the testis and the epididymis. Reprod Toxicol 2017; 69:286-296. [PMID: 28341572 DOI: 10.1016/j.reprotox.2017.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/14/2017] [Accepted: 03/20/2017] [Indexed: 11/18/2022]
Abstract
Aryl hydrocarbon receptor (AhR) plays multiple important functions in adaptive responses. Exposure to AhR ligands may produce an altered metabolic activity controlled by the AhR pathways, and consequently affect drug/toxin responses, hormonal status and cellular homeostasis. This research revealed species-, cell- and region-specific pattern of the AhR system expression in the rat and human testis and epididymis, complementing the existing knowledge, especially within the epididymal segments. The study showed that AhR level in the rat and human epididymis is higher than in the testis. The downregulation of AhR expression after TCDD treatment was revealed in the spermatogenic cells at different stages and the epididymal epithelial cells, but not in the Sertoli and Leydig cells. Hence, this basic research provides information about the AhR function in the testis and epididymis, which may provide an insight into deleterious effects of drugs, hormones and environmental pollutants on male fertility.
Collapse
Affiliation(s)
- A Wajda
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland.
| | - J Łapczuk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - M Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin, Poland
| | - E Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Poland
| | - M Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - M Laszczynska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin, Poland
| | - E Urasinska
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - B Machalinski
- Department of General Pathology, Pomeranian Medical University, Poland
| | - M Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
16
|
Inamoto I, Chen G, Shin JA. The DNA target determines the dimerization partner selected by bHLHZ-like hybrid proteins AhRJun and ArntFos. MOLECULAR BIOSYSTEMS 2017; 13:476-488. [DOI: 10.1039/c6mb00795c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular basis of protein–partner selection and DNA binding of the basic helix–loop–helix (bHLH) and basic region-leucine zipper (bZIP) superfamilies of dimeric transcription factors is fundamental toward understanding gene regulation.
Collapse
Affiliation(s)
- Ichiro Inamoto
- Department of Chemistry
- University of Toronto
- Mississauga
- Canada L5L 1C6
| | - Gang Chen
- Department of Chemistry
- University of Toronto
- Mississauga
- Canada L5L 1C6
| | - Jumi A. Shin
- Department of Chemistry
- University of Toronto
- Mississauga
- Canada L5L 1C6
| |
Collapse
|
17
|
Regulations and Advisories. Toxicol Ind Health 2016. [DOI: 10.1177/074823370001600312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Molecular evidence for the existence of an aryl hydrocarbon receptor pathway in scallops Chlamys farreri. Comp Biochem Physiol B Biochem Mol Biol 2016; 196-197:74-84. [DOI: 10.1016/j.cbpb.2016.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/14/2016] [Accepted: 02/23/2016] [Indexed: 11/22/2022]
|
19
|
Ishqi HM, Ur Rehman S, Sarwar T, Husain MA, Tabish M. Identification of differentially expressed three novel transcript variants of mouse ARNT gene. IUBMB Life 2015; 68:122-35. [DOI: 10.1002/iub.1464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/25/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Hassan Mubarak Ishqi
- Department of Biochemistry, Faculty of Life Sciences; A.M. University; Aligarh Uttar Pradesh India
| | - Sayeed Ur Rehman
- Department of Biochemistry, Faculty of Life Sciences; A.M. University; Aligarh Uttar Pradesh India
| | - Tarique Sarwar
- Department of Biochemistry, Faculty of Life Sciences; A.M. University; Aligarh Uttar Pradesh India
| | - Mohammed Amir Husain
- Department of Biochemistry, Faculty of Life Sciences; A.M. University; Aligarh Uttar Pradesh India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences; A.M. University; Aligarh Uttar Pradesh India
| |
Collapse
|
20
|
Ishida M, Mikami S, Shinojima T, Kosaka T, Mizuno R, Kikuchi E, Miyajima A, Okada Y, Oya M. Activation of aryl hydrocarbon receptor promotes invasion of clear cell renal cell carcinoma and is associated with poor prognosis and cigarette smoke. Int J Cancer 2015; 137:299-310. [PMID: 25523818 DOI: 10.1002/ijc.29398] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/02/2014] [Indexed: 12/16/2023]
Abstract
Although exposure to environmental pollutants is one of the risk factors for renal cell carcinoma (RCC), its relationship with carcinogenesis and the progression of RCC remains unknown. The present study was designed to elucidate the role of the aryl hydrocarbon receptor (AhR), a major mediator of carcinogenesis caused by environmental pollutants, in the progression of RCC. The expression of AhR was investigated in 120 patients with RCC using immunohistochemistry, and its relationship with clinicopathological parameters and prognoses was statistically analyzed. RCC cell lines were exposed to indirubin or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), AhR ligands, to activate the AhR pathway, or were transfected with small interfering RNA (siRNA) for AhR. The expression of the AhR target genes CYP1A1 and CYP1B1, matrix metalloproteinases (MMPs), and invasion through Matrigel(TM) were then examined. AhR was predominantly expressed in the nuclei of high-grade clear cell RCC (ccRCC) and tumor-infiltrating lymphocytes (TILs), and its expression levels in cancer cells and TILs correlated with the pathological tumor stage and histological grade. A multivariate Cox analysis revealed that the strong expression of AhR in cancer cells was a significant and independent predictor of disease-specific survival. AhR ligands up-regulated the expression of AhR and CYPs and promoted invasion by up-regulating MMPs. Furthermore, siRNA for AhR down-regulated CYPs, and inhibited cancer cell invasion together with the down-regulation of MMPs. These results suggest that AhR regulates the invasion of ccRCC and may be involved in tumor immunity. Therefore, inhibiting the activation of AhR may represent a potentially attractive therapeutic target for ccRCC patients.
Collapse
Affiliation(s)
- Masaru Ishida
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
- Department of Urology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Shuji Mikami
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | | | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Ryuichi Mizuno
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Kikuchi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Miyajima
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Ghosh S, Mitra PS, Loffredo CA, Trnovec T, Murinova L, Sovcikova E, Ghimbovschi S, Zang S, Hoffman EP, Dutta SK. Transcriptional profiling and biological pathway analysis of human equivalence PCB exposure in vitro: indicator of disease and disorder development in humans. ENVIRONMENTAL RESEARCH 2015; 138:202-16. [PMID: 25725301 PMCID: PMC4739739 DOI: 10.1016/j.envres.2014.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Our earlier gene-expression studies with a Slovak PCBs-exposed population have revealed possible disease and disorder development in accordance with epidemiological studies. The present investigation aimed to develop an in vitro model system that can provide an indication of disrupted biological pathways associated with developing future diseases, well in advance of the clinical manifestations that may take years to appear in the actual human exposure scenario. METHODS We used human Primary Blood Mononuclear Cells (PBMC) and exposed them to a mixture of human equivalence levels of PCBs (PCB-118, -138, -153, -170, -180) as found in the PCBs-exposed Slovak population. The microarray studies of global gene expression were conducted on the Affymetrix platform using Human Genome U133 Plus 2.0 Array along with Ingenuity Pathway Analysis (IPA) to associate the affected genes with their mechanistic pathways. High-throughput qRT-PCR Taqman Low Density Array (TLDA) was done to further validate the selected 6 differentially expressed genes of our interest, viz., ARNT, CYP2D6, LEPR, LRP12, RRAD, TP53, with a small population validation sample (n=71). RESULTS Overall, we revealed a discreet gene expression profile in the experimental model that resembled the diseases and disorders observed in PCBs-exposed population studies. The disease pathways included endocrine system disorders, genetic disorders, metabolic diseases, developmental disorders, and cancers, strongly consistent with the evidence from epidemiological studies. INTERPRETATION These gene finger prints could lead to the identification of populations and subgroups at high risk for disease, and can pose as early disease biomarkers well ahead of time, before the actual disease becomes visible.
Collapse
Affiliation(s)
- Somiranjan Ghosh
- Molecular Genetics Laboratory, Department of Biology, Howard University, Washington, DC 20059, USA.
| | - Partha S Mitra
- Molecular Genetics Laboratory, Department of Biology, Howard University, Washington, DC 20059, USA
| | - Christopher A Loffredo
- Department of Oncology & Department of Biostatistics, Georgetown University, Washington, DC 20057, USA
| | - Tomas Trnovec
- Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - Lubica Murinova
- Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - Eva Sovcikova
- Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - Svetlana Ghimbovschi
- Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Shizhu Zang
- Molecular Genetics Laboratory, Department of Biology, Howard University, Washington, DC 20059, USA
| | - Eric P Hoffman
- Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Sisir K Dutta
- Molecular Genetics Laboratory, Department of Biology, Howard University, Washington, DC 20059, USA.
| |
Collapse
|
22
|
Influence of Teratogenic Factors on Mouse 39hoxGene Expression. Biosci Biotechnol Biochem 2014; 73:2416-21. [DOI: 10.1271/bbb.90378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Ramachandrappa S, Raimondo A, Cali AM, Keogh JM, Henning E, Saeed S, Thompson A, Garg S, Bochukova EG, Brage S, Trowse V, Wheeler E, Sullivan AE, Dattani M, Clayton PE, Datta V, Bruning JB, Wareham NJ, O’Rahilly S, Peet DJ, Barroso I, Whitelaw ML, Farooqi IS, Farooqi IS. Rare variants in single-minded 1 (SIM1) are associated with severe obesity. J Clin Invest 2013; 123:3042-50. [PMID: 23778139 PMCID: PMC3696558 DOI: 10.1172/jci68016] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/18/2013] [Indexed: 02/02/2023] Open
Abstract
Single-minded 1 (SIM1) is a basic helix-loop-helix transcription factor involved in the development and function of the paraventricular nucleus of the hypothalamus. Obesity has been reported in Sim1 haploinsufficient mice and in a patient with a balanced translocation disrupting SIM1. We sequenced the coding region of SIM1 in 2,100 patients with severe, early onset obesity and in 1,680 controls. Thirteen different heterozygous variants in SIM1 were identified in 28 unrelated severely obese patients. Nine of the 13 variants significantly reduced the ability of SIM1 to activate a SIM1-responsive reporter gene when studied in stably transfected cells coexpressing the heterodimeric partners of SIM1 (ARNT or ARNT2). SIM1 variants with reduced activity cosegregated with obesity in extended family studies with variable penetrance. We studied the phenotype of patients carrying variants that exhibited reduced activity in vitro. Variant carriers exhibited increased ad libitum food intake at a test meal, normal basal metabolic rate, and evidence of autonomic dysfunction. Eleven of the 13 probands had evidence of a neurobehavioral phenotype. The phenotypic similarities between patients with SIM1 deficiency and melanocortin 4 receptor (MC4R) deficiency suggest that some of the effects of SIM1 deficiency on energy homeostasis are mediated by altered melanocortin signaling.
Collapse
Affiliation(s)
- Shwetha Ramachandrappa
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Anne Raimondo
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Anna M.G. Cali
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Julia M. Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Sadia Saeed
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Amanda Thompson
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Sumedha Garg
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Elena G. Bochukova
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Soren Brage
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Victoria Trowse
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Eleanor Wheeler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Adrienne E. Sullivan
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Mehul Dattani
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Peter E. Clayton
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Vippan Datta
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - John B. Bruning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Nick J. Wareham
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Stephen O’Rahilly
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Daniel J. Peet
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Ines Barroso
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Murray L. Whitelaw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Discipline of Biochemistry, School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, Australia.
Wellcome Trust Sanger Institute, Cambridge, United Kingdom.
MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London, United Kingdom.
Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom.
Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | | |
Collapse
|
24
|
Abstract
The response of eukaryotic microbes to low-oxygen (hypoxic) conditions is strongly regulated at the level of transcription. Comparative analysis shows that some of the transcriptional regulators (such as the sterol regulatory element-binding proteins, or SREBPs) are of ancient origin and probably regulate sterol synthesis in most eukaryotic microbes. However, in some fungi SREBPs have been replaced by a zinc-finger transcription factor (Upc2). Nuclear localization of fungal SREBPs is determined by regulated proteolysis, either by site-specific proteases or by an E3 ligase complex and the proteasome. The exact mechanisms of oxygen sensing are not fully characterized but involve responding to low levels of heme and/or sterols and possibly to levels of nitric oxide and reactive oxygen species. Changes in central carbon metabolism (glycolysis and respiration) are a core hypoxic response in some, but not all, fungal species. Adaptation to hypoxia is an important virulence characteristic of pathogenic fungi.
Collapse
Affiliation(s)
- Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
25
|
Yin XF, Chen J, Mao W, Wang YH, Chen MH. Downregulation of aryl hydrocarbon receptor expression decreases gastric cancer cell growth and invasion. Oncol Rep 2013; 30:364-70. [PMID: 23604401 DOI: 10.3892/or.2013.2410] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/14/2013] [Indexed: 11/05/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor associated with tumor initiation and progression. AhR expression is significantly increased in gastric cancer tissues and gastric cancer cell lines; however, the relationship between AhR and gastric cancer is still unclear. In the present study, we explored the effects of the inhibition of AhR expression by RNA interference on the biological behavior of gastric cancer cells (MKN45 and SGC7901), and elucidated the specific mechanisms of AhR action in the development of gastric cancer. Results showed that small interfering RNA (siRNA) against AhR effectively inhibited the expression of AhR, and decreased the expression of cytochrome P450 (CYP)1A1 and CYP1B1, which are classic target genes of the AhR pathway. Compared to the negative control group, AhR-siRNA-transfected cells showed decreased cellular growth, delayed G1-S cell cycle progression and increased apoptosis rate. Furthermore, inhibition of AhR expression by siRNA in SGC7901 cells led to decreased cell migratory and invasive ability, accompanied by downregulation of expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9. Our results, therefore, suggest that AhR promotes the growth and invasiveness of gastric cancer cells and AhR may serve as a promising therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Xiao-Fei Yin
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | | | | | | | | |
Collapse
|
26
|
The Intersection of Genetics and Epigenetics: Reactivation of Mammalian LINE-1 Retrotransposons by Environmental Injury. ENVIRONMENTAL EPIGENOMICS IN HEALTH AND DISEASE 2013. [DOI: 10.1007/978-3-642-23380-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Vikström Bergander L, Cai W, Klocke B, Seifert M, Pongratz I. Tryptamine serves as a proligand of the AhR transcriptional pathway whose activation is dependent of monoamine oxidases. Mol Endocrinol 2012; 26:1542-51. [PMID: 22865928 DOI: 10.1210/me.2011-1351] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The function of the aryl hydrocarbon receptor (AhR) in mediating the biological effect to environmental pollutants is well established. However, accumulated evidence indicates a wide range of physiological and pathological functions mediated by the AhR, suggesting the existence of endogenous AhR ligand(s). The nature of an AhR ligand remain elusive; however, it is known that the AhR is activated by several compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin or the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole. In this study, we show that physiological concentrations of tryptamine (TA) lead to induction of cytochrome P4501A1 transcription through an AhR-dependent mechanism. In addition, we show that activation of the AhR by TA requires a functional monoamino oxidase system, suggesting that TA acts as an AhR proligand possibly by converting to a high-affinity AhR ligand. Taken together, we show a possible mechanism, through which AhR signaling is activated by endogenous conversion of TA involving monoamine oxidases.
Collapse
|
28
|
Ishida M, Mikami S, Kikuchi E, Kosaka T, Miyajima A, Nakagawa K, Mukai M, Okada Y, Oya M. Activation of the aryl hydrocarbon receptor pathway enhances cancer cell invasion by upregulating the MMP expression and is associated with poor prognosis in upper urinary tract urothelial cancer. Carcinogenesis 2009; 31:287-95. [PMID: 19755661 DOI: 10.1093/carcin/bgp222] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) and the activation of the AhR pathway are involved in xenobiotic-induced toxicity and carcinogenesis. Although xenobiotics, such as cigarette smoke, contribute to the development of urothelial carcinoma (UC), the relationship between AhR and UC is unclear. In the present study, we investigated AhR expression in 209 patients with upper urinary tract UC. The nuclear expression of AhR was significantly associated with histological grade, pathological T stage, lymphovascular invasion and lymph node involvement. A multivariate Cox analysis revealed that nuclear AhR expression was a significant and independent predictor for disease-specific survival (hazard ratio = 2.469, P = 0.013). To determine whether the AhR pathway can be activated in the T24 UC cell line, we examined the expression of cytochrome P450 (CYP) 1A1 and CYP1B1, which are target genes of the AhR pathway, following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a ligand of AhR. TCDD treatment upregulated the expression levels of AhR, CYP1A1 and CYP1B1. TCDD enhanced T24 cell invasion associated with the upregulation of matrix metalloproteinase (MMP)-1 and MMP-9. Furthermore, targeting AhR messenger RNA (mRNA) expression in T24 cells with small interfering RNA (siRNA) downregulated the mRNA expression of AhR, CYP1A1, CYP1B1, MMP-1, MMP-2 and MMP-9; furthermore, the cells transfected with siRNA for AhR showed decreased invasion activity in comparison with the cells transfected with a non-targeting siRNA. Our results therefore suggest that AhR plays a role in the invasiveness of UC cells and can serve as a marker for the prognosis of upper urinary tract UC.
Collapse
Affiliation(s)
- Masaru Ishida
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jacob A, Zhou M, Wu R, Wang P. The role of hepatic cytochrome P-450 in sepsis. Int J Clin Exp Med 2009; 2:203-211. [PMID: 19918313 PMCID: PMC2770183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/18/2009] [Indexed: 05/28/2023]
Abstract
Severe sepsis is a common, expensive, and fatal condition with as many deaths annually as those from acute myocardial infarctions. The average cost per case seems to exceed $22,000. The increased morbidity and mortality attributed to sepsis could be due to the lack of our understanding of mediators and factors responsible for early cellular alterations and thus could not be intervened which result in progressive deterioration of cell and organ function and even death. It has been well documented that hepatocellular dysfunction occurs early in sepsis and it contributes to multiple organ failure and ultimately death; however the exact mechanism is poorly understood. We and others have shown that cytochrome P-450 (CYP) enzyme system, a superfamily of heme proteins responsible for the metabolism of a variety of endogenous and exogenous substances, plays a crucial role in the prevention of hepatocellular dysfunction in sepsis. In this review, we describe the alterations of CYP enzymes in the experimental model of sepsis and provide the limited information available in septic and severely injured patients. We also review the potential mechanism for the alterations of CYP enzymes in sepsis. Finally, we highlight the importance of future studies needed to understand the regulation of CYP isoforms to develop therapy for hepatocellular dysfunction in sepsis.
Collapse
Affiliation(s)
- Asha Jacob
- Department of Surgery, North Shore University Hospital-Long Island Jewish Medical Center & Feinstein Institute for Medical Research, 350 Community Drive Manhasset, NY 11030
| | | | | | | |
Collapse
|
30
|
Monostory K, Pascussi JM, Kóbori L, Dvorak Z. Hormonal regulation of CYP1A expression. Drug Metab Rev 2009; 41:547-72. [DOI: 10.1080/03602530903112284] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Yu RMK, Ng PKS, Tan T, Chu DLH, Wu RSS, Kong RYC. Enhancement of hypoxia-induced gene expression in fish liver by the aryl hydrocarbon receptor (AhR) ligand, benzo[a]pyrene (BaP). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 90:235-242. [PMID: 18945501 DOI: 10.1016/j.aquatox.2008.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 05/26/2023]
Abstract
Fish in polluted coastal habitats commonly suffer simultaneous exposure to both hypoxia and xenobiotics. Although the adaptive molecular responses to each stress have been described, little is known about the interaction between the signaling pathways mediating these responses. Previous studies in mammalian hepatoma cell lines have shown that hypoxia-inducible factor (HIF)- and/or aryl hydrocarbon receptor (AhR)-activated gene expression is suppressed following co-exposure to hypoxia and the hallmark AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, whether similar crosstalk exists in the non-tumor liver tissues of fish and whether other non-TCDD ligands also play the same inhibitory role in this crosstalk remain unknown. Here, the in vivo hepatic mRNA expression profiles of multiple hypoxia- and AhR-responsive genes (later gene expression=mRNA expression of the gene) were examined in the orange-spotted grouper (Epinephelus coioides) upon single and combined exposures to hypoxia and benzo[a]pyrene (BaP). Combined exposure enhanced hypoxia-induced gene expression but did not significantly alter BaP-induced gene expression. Protein carbonyl content was markedly elevated in fish subjected to combined exposure, indicating accumulation of reactive oxygen species (ROS). Application of diethyldithiocarbamate (DDC) to hypoxia-treated grouper liver explants similarly exaggerated hypoxia-induced gene expression as in the combined stress tissues in vivo. These observations suggest that ROS derived from the combined hypoxia and BaP stress have a role in enhancing hypoxia-induced gene expression.
Collapse
Affiliation(s)
- Richard Man Kit Yu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
32
|
Ohradanova A, Gradin K, Barathova M, Zatovicova M, Holotnakova T, Kopacek J, Parkkila S, Poellinger L, Pastorekova S, Pastorek J. Hypoxia upregulates expression of human endosialin gene via hypoxia-inducible factor 2. Br J Cancer 2008; 99:1348-56. [PMID: 18813310 PMCID: PMC2570523 DOI: 10.1038/sj.bjc.6604685] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Endosialin is a transmembrane glycoprotein selectively expressed in blood vessels and stromal fibroblasts of various human tumours. It has been functionally implicated in angiogenesis, but the factors that control its expression have remained unclear. As insufficient delivery of oxygen is a driving force of angiogenesis in growing tumours, we investigated whether hypoxia regulates endosialin expression. Here, we demonstrate that endosialin gene transcription is induced by hypoxia predominantly through a mechanism involving hypoxia-inducible factor-2 (HIF-2) cooperating with the Ets-1 transcription factor. We show that HIF-2 activates the endosialin promoter both directly, through binding to a hypoxia-response element adjacent to an Ets-binding site in the distal part of the upstream regulatory region, and indirectly, through Ets-1 and its two cognate elements in the proximal promoter. Our data also suggest that the SP1 transcription factor mediates responsiveness of the endosialin promoter to high cell density. These findings elucidate important aspects of endosialin gene regulation and provide a rational frame for future investigations towards better understanding of its biological significance.
Collapse
Affiliation(s)
- A Ohradanova
- Centre of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhou M, Maitra SR, Wang P. The potential role of transcription factor aryl hydrocarbon receptor in downregulation of hepatic cytochrome P-450 during sepsis. Int J Mol Med 2008; 21:423-428. [PMID: 18360687 PMCID: PMC2694573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
We recently demonstrated that the hepatic cytochrome P-450 (CYP) isoform 1A2 is downregulated in sepsis, which appears to play an important role in the inflammatory response and liver injury. However, the mechanism responsible for the decreased CYP1A2 remains unknown. Since the transcription factor aryl hydrocarbon receptor (AhR) regulates the expression of CYP1A2 and the disruption of the AhR gene causes liver injuries, we hypothesized that downregulation of AhR plays an important role in the reduced hepatic CYP1A2 during sepsis. Adult male rats were subjected to sepsis by cecal ligation and puncture (CLP). Hepatic tissues were collected at 5, 10, and 20 h after CLP or sham-operation. The gene expression of AhR was assessed by RT-PCR technique. Its protein was determined by Western blot analysis. In addition, subcellular localization of AhR was examined by immunohistochemical staining. The results indicate that hepatic AhR gene expression decreased at 5 h and remained downregulated at 10-20 h after CLP. AhR protein levels were significantly reduced at 10-20 h after CLP. Immunohistochemical examination showed that AhR was mainly located in hepatocyte cytoplasm in sham animals. The translocation of AhR from the cytoplasm to the nucleus was observed in septic animals. The downregulation of hepatic AhR and CYP1A2 observed in septic animals does not appear to be due to the elevated endotoxin levels since administration of polymyxin B (an endotoxin-binding agent) did not affect AhR and CYP1A2 gene expression. However, proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta decreased AhR and CYP1A2 expression. As AhR activates the specific gene expression by binding to the target genes, the translocation of AhR to the nucleus in sepsis would suggest that alterations at AhR binding sites may also contribute to the downregulated CYP1A2 expression in sepsis. Since AhR gene expression decreased earlier than the occurrence of depression of CYP1A2 (CYP1A2 decreased at 10-20 h post CLP), the decreased AhR may play an important role in downregulating hepatic CYP1A2 during the progression of sepsis.
Collapse
Affiliation(s)
- Mian Zhou
- Department of Surgery, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | |
Collapse
|
34
|
Teh CHL, Loh CC, Lam KKY, Loo JM, Yan T, Lim TM. Neuronal PAS domain protein 1 regulates tyrosine hydroxylase level in dopaminergic neurons. J Neurosci Res 2007; 85:1762-73. [PMID: 17457889 DOI: 10.1002/jnr.21312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Catecholamines (dopamine, norepinephrine, and epinephrine) are all synthesized from a common pathway in which tyrosine hydroxylase (TH) is the rate-limiting enzyme. Dopamine is the main neurotransmitter present in dopaminergic neurons of the ventral midbrain, where dysfunction of these neurons can lead to Parkinson's disease and schizophrenia. Neuronal PAS domain protein 1 (NPAS1) was identified as one of the genes up-regulated during dopaminergic MN9D cell differentiation. We found that there was a corresponding decrease in TH level during MN9D differentiation. Overexpression and siRNA experiments revealed that NPAS1, in concert with ARNT, negatively regulates the expression of TH and that this regulation is mediated by a direct binding of NPAS1 on the TH promoter. Expression studies also confirmed a decrease in TH level in the ventral midbrain during mouse development, concomitant with an increase in NPAS1 level. These results suggest that NPAS1 plays a novel and important role in regulating TH level of dopaminergic neurons in the ventral midbrain during development.
Collapse
Affiliation(s)
- Christina H L Teh
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
35
|
Lee JS, Kim EY, Iwata H, Tanabe S. Molecular characterization and tissue distribution of aryl hydrocarbon receptor nuclear translocator isoforms, ARNT1 and ARNT2, and identification of novel splice variants in common cormorant (Phalacrocorax carbo). Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:379-93. [PMID: 17337252 DOI: 10.1016/j.cbpc.2007.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 01/18/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
High levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons (PHAHs) are accumulated in fish-eating birds including common cormorant (Phalacrocorax carbo). Most of the biochemical and toxic effects of TCDD are mediated by a basic helix-loop-helix and a conserved region among Per, ARNT, and Sim (bHLH/PAS) proteins, aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT). To study the molecular mechanism of TCDD toxicity in common cormorant as an avian model species, characterization of the AHR/ARNT signaling pathway in this species is necessary. The present study focuses on molecular characterization of ARNT from common cormorant (ccARNT). The cDNA of the ccARNT isoform, ccARNT1 obtained by the screening of hepatic cDNA library contains a 2424-bp open reading frame that encodes 807 amino acids, exhibiting high identities (92%) with chicken ARNT. This isoform contains a unique 22 amino acid residue in 3' end of PAS A domain as is also recognized in chicken ARNT. The ccARNT2 cDNA isolated from brain tissue has a 2151-bp open reading frame. The deduced amino acid sequence of ccARNT2 protein (716 aa) shows a conservation of bHLH and PAS motif in its N-terminal region with high similarities (96% and 78%, respectively) to that of ccARNT1. Using quantitative RT-PCR methods, the tissue distribution profiles of ccARNT1 and ccARNT2 were unveiled. Both ccARNT1 and ccARNT2 mRNAs were ubiquitously expressed in all examined tissues including liver. The expression profile of ccARNT1 was comparable with that of rodent ARNT1, but ccARNT2 was not with rodent ARNT2, implying different roles of ARNT2 between the two species. There was a significant positive correlation between ARNT1 and ARNT2 mRNA expression levels in the liver of wild cormorant population, indicating that their expressions may be enforced by similar transcriptional regulation mechanism. Novel variants of ccARNT1 and ccARNT2 isoforms that were supposed to arise from their splicing process were also identified and their hepatic expression profiles were determined. These results indicate that ccARNT1, ccARNT2 and their splice variants may more intricately regulate the AHR/ARNT signaling pathway and consequently may be responsible for the species diversity of toxic effects and susceptibility to PHAHs.
Collapse
Affiliation(s)
- Jin-Seon Lee
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime, Japan
| | | | | | | |
Collapse
|
36
|
Fedorova AV, Chan IS, Shin JA. The GCN4 bZIP can bind to noncognate gene regulatory sequences. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1252-9. [PMID: 16784907 PMCID: PMC2600801 DOI: 10.1016/j.bbapap.2006.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 04/10/2006] [Accepted: 04/17/2006] [Indexed: 12/27/2022]
Abstract
We show that a minimalist basic region/leucine zipper (bZIP) hybrid, comprising the yeast GCN4 basic region and C/EBP leucine zipper, can target mammalian and other gene regulatory sequences naturally targeted by other bZIP and basic/helix-loop-helix (bHLH) proteins. We previously reported that this hybrid, wt bZIP, is capable of sequence-specific, high-affinity binding of DNA comparable to that of native GCN4 to the cognate AP-1 and CRE DNA sites. In this work, we used DNase I footprinting and electrophoretic mobility shift assay to show that wt bZIP can also specifically target noncognate gene regulatory sequences: C/EBP (CCAAT/enhancer binding protein, 5'-TTGCGCAA), XRE1 (Xenobiotic response element, 5'-TTGCGTGA), HRE (HIF response element, 5'-GCACGTAG), and the E-box (Enhancer box, 5'-CACGTG). Although wt bZIP still targets AP-1 with strongest affinity, both DNA-binding specificity and affinity are maintained with wt bZIP binding to noncognate gene regulatory sequences: the dissociation constant for wt bZIP in complex with AP-1 is 13 nM, while that for C/EBP is 120 nM, XRE1 240 nM, and E-box and HRE are in the microM range. These results demonstrate that the bZIP possesses the versatility to bind various sequences with varying affinities, illustrating the potential to fine-tune a designed protein's affinity for its DNA target. Thus, the bZIP scaffold may be a powerful tool in design of small, alpha-helical proteins with desired DNA recognition properties.
Collapse
Affiliation(s)
- Anna V. Fedorova
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5G 4T8
| | - I-San Chan
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5G 4T8
| | - Jumi A. Shin
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5G 4T8
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Corresponding author. Tel.: +1 905 828 5355; fax: +1 905 828 5425. E-mail address: (J.A. Shin)
| |
Collapse
|
37
|
Peters AK, Nijmeijer S, Gradin K, Backlund M, Bergman A, Poellinger L, Denison MS, Van den Berg M. Interactions of polybrominated diphenyl ethers with the aryl hydrocarbon receptor pathway. Toxicol Sci 2006; 92:133-42. [PMID: 16601081 PMCID: PMC3032055 DOI: 10.1093/toxsci/kfj186] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants that have been in use as additives in various consumer products. Structural similarities of PBDEs with other polyhalogenated aromatic hydrocarbons that show affinity for the aryl hydrocarbon receptor (AhR), such as some polychlorinated biphenyls, raised concerns about their possible dioxin-like properties. We studied the ability of environmentally relevant PBDEs (BDE-47, -99, -100, -153, -154, and -183) and the "planar" congener BDE-77 to bind and/or activate the AhR in stably transfected rodent hepatoma cell lines with an AhR-responsive enhanced green fluorescent protein (AhR-EGFP) reporter gene (H1G1.1c3 mouse and H4G1.1c2 rat hepatoma). 7-Ethoxyresorufin-O-deethylation (EROD) was used as a marker for CYP1A1 activity. Dose- and bromination-specific inhibition of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced responses was measured by their ability to inhibit the induction of AhR-EGFP expression and EROD activity. Individual exposure to these PBDEs did not result in any increase in induction of AhR-EGFP or CYP1A1 activity. The lower brominated PBDEs showed the strongest inhibitory effect on TCDD-induced activities in both cell lines. While the highest brominated PBDE tested, BDE-183, inhibited EROD activity, it did not affect the induction of AhR-EGFP expression. Similar findings were observed after exposing stably transfected human hepatoma (xenobiotic response element [XRE]-HepG2) cells to these PBDEs, resulting in a small but statically significant agonistic effect on XRE-driven luciferase activity. Co-exposure with TCDD resulted again in antagonistic effects, confirming that the inhibitory effect of these PBDEs on TCDD-induced responses was not only due to direct interaction at receptor level but also at DNA-binding level. This antagonism was confirmed for BDE-99 in HepG2 cells transiently transfected with a Gal4-AhR construct and the corresponding Gal4-Luc reporter gene. In addition, a chromatin immunoprecipitation assay further confirmed that BDE-99 could bind to the AhR and activate the AhR nuclear translocation and dioxin responsive element (DRE) binding in the context of the CYP1A1 promoter. However, the transactivation function of the BDE-99-activated AhR seems to be very weak. These combined results suggest that PBDEs do bind but not activate the AhR-AhR nuclear translocator protein-XRE complex.
Collapse
Affiliation(s)
- A K Peters
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80176, Yalelaan 2, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Merson RR, Franks DG, Karchner SI, Hahn ME. Development and characterization of polyclonal antibodies against the aryl hydrocarbon receptor protein family (AHR1, AHR2, and AHR repressor) of Atlantic killifish Fundulus heteroclitus. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:85-94. [PMID: 16364694 DOI: 10.1016/j.cbpc.2005.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 10/25/2022]
Abstract
The aryl hydrocarbon receptor (AHR) and AHR repressor (AHRR) proteins regulate gene expression in response to some halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons. The Atlantic killifish is a valuable model of the AHR signaling pathway, but antibodies are not available to fully characterize AHR and AHRR proteins. Using bacterially expressed AHRs, we developed specific and sensitive polyclonal antisera against the killifish AHR1, AHR2, and AHRR. In immunoblots, these antibodies recognized full-length killifish AHR and AHRR proteins synthesized in rabbit reticulocyte lysate, proteins expressed in mammalian cells transfected with killifish AHR and AHRR constructs, and AHR proteins in cytosol preparations from killifish tissues. Killifish AHR1 and AHR2 proteins were detected in brain, gill, kidney, heart, liver, and spleen. Antisera specifically precipitated their respective target proteins in immunoprecipitation experiments with in vitro-expressed proteins. Killifish ARNT2 co-precipitated with AHR1 and AHR2. These sensitive, specific, and versatile antibodies will be valuable to researchers investigating AHR signaling and other physiological processes involving AHR and AHRR proteins.
Collapse
Affiliation(s)
- Rebeka R Merson
- Biology Department, Woods Hole Oceanographic Institution, MA 02543, USA.
| | | | | | | |
Collapse
|
39
|
Kawanishi M, Sakamoto M, Shimohara C, Yagi T. Establishment of Reporter Yeasts for Guinea Pig and Syrian Hamster Aryl Hydrocarbon Receptor Ligand Activity. Genes Environ 2006. [DOI: 10.3123/jemsge.28.167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
Monostory K, Kohalmy K, Prough RA, Kóbori L, Vereczkey L. The effect of synthetic glucocorticoid, dexamethasone on CYP1A1 inducibility in adult rat and human hepatocytes. FEBS Lett 2005; 579:229-35. [PMID: 15620718 DOI: 10.1016/j.febslet.2004.11.080] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Accepted: 11/05/2004] [Indexed: 11/24/2022]
Abstract
Glucocorticoids act synergistically with polycyclic aromatic hydrocarbons in increasing mRNA and protein levels of CYP1A1 in rat liver. The action of dexamethasone to modify CYP1A1 expression has been investigated in adult human hepatocytes. The effect of dexamethasone on the induction of CYP1A1 by 3-methylcholanthrene is different in rat and human liver cells. Dexamethasone potentiates the induction of CYP1A1 about 3- to 4-fold in rat cells. In human hepatocytes, it reduces CYP1A1 induction by 50-60% at enzyme protein level, while it does not have an effect on CYP1A1 mRNA amount.
Collapse
Affiliation(s)
- Katalin Monostory
- Chemical Research Center, Hungarian Academy of Sciences, PO Box 17, H-1525 Budapest, Hungary.
| | | | | | | | | |
Collapse
|
41
|
Bracken CP, Whitelaw ML, Peet DJ. Activity of hypoxia-inducible factor 2alpha is regulated by association with the NF-kappaB essential modulator. J Biol Chem 2005; 280:14240-51. [PMID: 15653678 DOI: 10.1074/jbc.m409987200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypoxia-inducible factors 1alpha (HIF-1alpha) and 2alpha (HIF-2alpha) are key regulators of the transcriptional response to low oxygen and are closely related in domain architecture, DNA binding, and activation mechanisms. Despite these similarities, targeted disruption of the HIF-alpha genes in mice results in distinctly different phenotypes demonstrating nonredundancy of function, although the underlying mechanisms remain unclear. Here we report on the novel and specific interaction of HIF-2alpha, but not HIF-1alpha, with the NF-kappaB essential modulator (NEMO) using immunoprecipitation, mammalian two-hybrid, and in vitro protein interaction assays. Reporter gene assays demonstrate that this interaction specifically enhances normoxic HIF-2alpha transcriptional activity, independently of the HIF-2alpha transactivation domain, consistent with a model by which NEMO aids CBP/p300 recruitment to HIF-2alpha. In contrast, HIF-2alpha overexpression does not alter NF-kappaB signaling, suggesting that the functional consequence of the HIF-2alpha/NEMO interaction is limited to the HIF pathway. The specificity of NEMO for HIF-2alpha represents one of the few known differential protein-protein interactions between the HIF-alpha proteins, which has important implications for the activity of HIF-2alpha and is also the first postulated NF-kappaB-independent role for NEMO.
Collapse
Affiliation(s)
- Cameron P Bracken
- School of Molecular and Biomedical Science and the Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | |
Collapse
|
42
|
Galijatovic A, Beaton D, Nguyen N, Chen S, Bonzo J, Johnson R, Maeda S, Karin M, Guengerich FP, Tukey RH. The human CYP1A1 gene is regulated in a developmental and tissue-specific fashion in transgenic mice. J Biol Chem 2004; 279:23969-76. [PMID: 15037607 DOI: 10.1074/jbc.m400973200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation and expression of human CYP1A1 is demonstrated in transgenic mice. We have developed two transgenic mouse lines. One mouse strain (CYPLucR) carries a functional human CYP1A1 promoter (-1612 to +293)-luciferase reporter gene, and the other strain (CYP1A1N) expresses CYP1A1 under control of the full-length human CYP1A1 gene and 9 kb of flanking regulatory DNA. With CYPLucR(+/-) mice, 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) and several other aryl hydrocarbon receptor ligands induced hepatocyte-specific luciferase activity. When other tissues were examined, TCDD induced luciferase activity in brain with limited induction in lung and no detectable luciferase activity in kidney. Treatment of CYP1A1N(+/-) mice with TCDD resulted in induction of human CYP1A1 in liver and lung, while mouse Cyp1a1 was induced in liver, lung, and kidney. Although induced CYP1A1/Cyp1a1 could not be detected by Western blot analysis in brains from CYP1A1N(+/-) mice, induction in brain was verified by detection of CYP1A1/Cyp1a1 RNA. The administration of TCDD to nursing mothers to examine the effect of lactational exposure via milk demonstrated prominent induction of luciferase activity in livers of CYPLucR(+/-) newborn pups with limited induction in brain. However, TCDD treatment of adult CYPLucR(+/-) mice led to a 7-10-fold induction of brain luciferase activity. Combined these results indicate that tissue-specific and developmental factors are controlling aryl hydrocarbon receptor-mediated induction of human CYP1A1.
Collapse
Affiliation(s)
- Alema Galijatovic
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kawanishi M, Sakamoto M, Ito A, Kishi K, Yagi T. Construction of reporter yeasts for mouse aryl hydrocarbon receptor ligand activity. Mutat Res 2003; 540:99-105. [PMID: 12972062 DOI: 10.1016/s1383-5718(03)00174-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aryl hydrocarbons such as dioxins, polychlorinated biphenyls and polyaromatic hydrocarbons bind to the cellular aryl hydrocarbon receptor (AhR) in the initial step of their metabolism. The activation of intracellular signaling subsequent to the AhR binding is highly correlated with the toxicity and carcinogenicity of these chemicals. We produced Saccharomyces cerevisiae coexpressing mouse AhR and aryl hydrocarbon receptor nuclear translocator (Arnt) protein in accordance with Miller III's method for constructing yeasts with human Ahr and Arnt [Toxicol. Appl. Pharmacol. 160 (1998) 297]. Ligand treatment induced a dose-dependent increase in beta-galactosidase activity from a reporter plasmid in the yeast. Then, we compared activities of several ligands in yeast having the mouse Ahr/Arnt genes with those in yeast having the human genes, both of which have the same genetic background. There was no significant difference in the EC50 values of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo[a]pyrene, 3-methylcholanthrene and beta-naphthoflavone between the mouse and human genes. However, indirubin, which was recently found in human urine as a potent AhR ligand [J. Biol. Chem. 276 (2001) 31475], had a 35-140 times higher EC50 value in the yeast with human genes than mouse genes. This difference might reflect species-specificity between mouse and human AhR/Arnt.
Collapse
Affiliation(s)
- Masanobu Kawanishi
- Division of Radiobiology and Environmental Science, Research Institute for Advanced Science and Technology, Osaka Prefecture University, 1-2 Gakuen-cho, Sakai 599-8570, Japan
| | | | | | | | | |
Collapse
|
44
|
Ohata H, Tetsuka T, Hayashi H, Onozaki K, Okamoto T. 3-methylcholanthrene activates human immunodeficiency virus type 1 replication via aryl hydrocarbon receptor. Microbiol Immunol 2003; 47:363-70. [PMID: 12825898 DOI: 10.1111/j.1348-0421.2003.tb03408.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We found that 3-methylcholanthrene (3-MC) could induce the reactivation of human immunodeficiency virus type 1 (HIV-1) replication in OM 10.1 cell, promyelocytic cell line latently infected with HIV-1. Transient luciferase expression experiments have revealed no particular transcription factors that are responsible for the effect of 3-MC in inducing HIV-1 gene expression as HIV-1 LTR mutants lacking various upstream transcriptional activators similarly responded to 3-MC. In addition, there was no effect of 3-MC on the DNA binding activity of nuclear factor-kappa B (NF-kappaB) that was previously reported to be crucial for the effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a chemical homologue of 3-MC. However, overexpression of wild type aryl hydrocarbon receptor (AhR), a nuclear receptor of polycyclic aromatic hydrocarbons (PAHs) such as 3-MC, augmented the effect of 3-MC in the induction of gene expression from HIV-1 LTR. Moreover, a dominant negative mutant of AhR dramatically reduced the 3-MC-mediated activation of HIV-1 LTR. These findings suggest that 3-MC stimulates HIV-1 transcription by interacting with general transcription factors. Our observations indicate that chronic exposure of the HIV-1 infected individuals to PAHs may be contributable to the clinical development of acquired immunodeficiency syndrome (AIDS) among the individuals infected with HIV.
Collapse
Affiliation(s)
- Hirokazu Ohata
- Department of Molecular Genetics, Nagoya City University Medical School, Nagoya, Aichi 467-8601, Japan
| | | | | | | | | |
Collapse
|
45
|
Cao Z, Tanguay RL, McKenzie D, Peterson RE, Aiken JM. Identification of a putative calcium-binding protein as a dioxin-responsive gene in zebrafish and rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2003; 63:271-282. [PMID: 12711416 DOI: 10.1016/s0166-445x(02)00184-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) is a widespread environmental contaminant that causes multiple effects in vertebrates. TCDD elicits its toxicity through aryl hydrocarbon receptor (AhR)-mediated modulation of gene regulation, increasing intracellular free calcium, and inducing calcium-mediated apoptosis in cell culture. Two TCDD-responsive cDNAs, which encode putative calcium-binding proteins, have been isolated from zebrafish and rainbow trout. The zebrafish and rainbow trout sequences are 88% similar to each other at the amino acid level and are orthologs of the human S100A4 calcium-binding protein. In zebrafish liver cell culture, treatment with TCDD increases S100A4a mRNA abundance. In juvenile rainbow trout, S100A4 mRNA was constitutively expressed in the heart, kidney, intestine, and spleen, but not in the liver. Exposure to TCDD significantly increased rainbow trout S100A4 mRNA abundance in the rainbow trout kidney. Taken together, these findings demonstrate in zebrafish and rainbow trout that dioxin increases expression of this EF-hand calcium-binding protein gene in a tissue-dependent fashion. However, demonstration that the encoded S100A4 proteins actually bind calcium and play a role in dioxin toxicity will require further study.
Collapse
Affiliation(s)
- Zhengjin Cao
- Department of Animal Health and Biomedical Science, University of Wisconsin, 1656 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
46
|
Minsavage GD, Vorojeikina DP, Gasiewicz TA. Mutational analysis of the mouse aryl hydrocarbon receptor tyrosine residues necessary for recognition of dioxin response elements. Arch Biochem Biophys 2003; 412:95-105. [PMID: 12646272 DOI: 10.1016/s0003-9861(03)00033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tyrosine phosphorylation of the aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix/PER-ARNT-SIM transcription factor family, has been shown to regulate its dioxin response elements (DRE) binding ability, although no specific residues have been directly demonstrated to be phosphorylated. Of the 23 tyrosines in the mouse AhR, 19 are conserved across all mammalian species sequenced thus far. The studies presented here were conducted to examine tyrosine residue(s) that are both likely candidates of phosphorylation and necessary for DNA binding and/or transcriptional activity of the AhR. Two-dimensional gel electrophoresis of phosphatase-treated AhR indicated that the receptor is phosphorylated on serine/threonine and tyrosine residues. Computational analysis predicted several highly conserved tyrosine residues to be phosphorylated. Both the N terminus (amino acids 1-399) and the C terminus (amino acids 399-805) of the mouse receptor synthesized in vitro using a rabbit reticulocyte lysate system are tyrosine phosphorylated as detected by antiphosphotyrosine antibodies. Furthermore, the N-terminal AhR bound DRE in a ligand-dependent manner similar to that by the full-length receptor, suggesting that phosphorylated tyrosines involved in DNA binding are likely located in the region between residues 1 and 399. Mouse AhR tyrosine (Y) residues were evaluated by phenylalanine (F) mutational analysis for both DNA binding (electrophoretic mobility shift assays; EMSAs) and ability to induce a DRE-driven reporter gene in transiently transfected AhR-deficient cells. Of the 12 tyrosine residues in the N-terminal AhR, only a tyrosine 9 mutant (AhRY9F) significantly decreased DRE binding as determined by EMSA. Similarly, only the AhRY9F mutant decreased the DRE-driven luciferase expression in AhR-deficient cells. Overall, these data strongly suggest that the putative posttranslational modification at, or mediated by, tyrosine 9, and not any other individual mouse AhR tyrosine residue, is necessary for AhR DRE binding and transcriptional activity.
Collapse
Affiliation(s)
- Gary D Minsavage
- Department of Environmental Medicine, School of Medicine, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|
47
|
Schultz R, Suominen J, Värre T, Hakovirta H, Parvinen M, Toppari J, Pelto-Huikko M. Expression of aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator messenger ribonucleic acids and proteins in rat and human testis. Endocrinology 2003; 144:767-76. [PMID: 12586752 DOI: 10.1210/en.2002-220642] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dioxins, e.g. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), use the aryl hydrocarbon receptor (AHR)/aryl hydrocarbon receptor nuclear translocator (ARNT) receptor complex to mediate their toxic actions. In addition to interaction with environmental pollutants, several transcription factors, steroid receptors, and growth factors are capable interacting with the AHR/ARNT complex, which suggests a constitutive role for the receptor complex. The testis has been reported to be among the most sensitive organs to TCDD exposure. Our experiments revealed a complex distribution of AHR and ARNT mRNAs and proteins in rat and human testis. AHR and ARNT immunoreactivities could be detected in the nuclei of interstitial and tubular cells. The incubation of seminiferous tubules in a serum-free culture medium resulted in up-regulation of AHR mRNA, which could be depressed by adding FSH to the culture medium. Furthermore, the incubation of tubular segments with a solution of 1 or 100 nM TCDD resulted in a 2- to 3-fold increase in apoptotic cells. Thus, up-regulation of AHR in cultured tubular segments and consecutive depression by FSH suggest a role for AHR in controlled cell death during spermatogenesis. We suggest that AHR and ARNT mediate effects by direct action on testicular cells in the rat and human testis.
Collapse
Affiliation(s)
- Rüdiger Schultz
- Department of Developmental Biology, Tampere University, FIN-33014 Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
48
|
SELDI-TOF-MS Analysis of Transcriptional Activation Protein Binding to Response Elements Regulating Carcinogenesis Enzymes. Int J Mol Sci 2002. [DOI: 10.3390/i3101027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Woods SL, Whitelaw ML. Differential activities of murine single minded 1 (SIM1) and SIM2 on a hypoxic response element. Cross-talk between basic helix-loop-helix/per-Arnt-Sim homology transcription factors. J Biol Chem 2002; 277:10236-43. [PMID: 11782478 DOI: 10.1074/jbc.m110752200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic helix-loop-helix/Per-Arnt-Sim homology (bHLH/PAS) protein family comprises a group of transcriptional regulators that often respond to a variety of developmental and environmental stimuli. Two murine members of this family, Single Minded 1 (SIM1) and Single Minded 2 (SIM2), are essential for postnatal survival but differ from other prototypical family members such as the dioxin receptor (DR) and hypoxia-inducible factors, in that they behave as transcriptional repressors in mammalian one-hybrid experiments and have yet to be ascribed a regulating signal. In cell lines engineered to stably express SIM1 and SIM2, we show that both are nuclear proteins that constitutively complex with the general bHLH/PAS partner factor, ARNT. We report that the murine SIM factors, in combination with ARNT, attenuate transcription from the hypoxia-inducible erythropoietin (EPO) enhancer during hypoxia. Such cross-talk between coexpressed bHLH/PAS factors can occur through competition for ARNT, which we find evident in SIM repression of DR-induced transcription from a xenobiotic response element reporter gene. However, SIM1/ARNT, but not SIM2/ARNT, can activate transcription from the EPO enhancer at normoxia, implying that the SIM proteins have the ability to bind hypoxia response elements and affect either activation or repression of transcription. This notion is supported by co-immunoprecipitation of EPO enhancer sequences with the SIM2 protein. SIM protein levels decrease with hypoxia treatment in our stable cell lines, although levels of the transcripts encoding SIM1 and SIM2 and the approximately 2-h half-lives of each protein are unchanged during hypoxia. Inhibition of protein synthesis, known to occur in cells during hypoxic stress in order to decrease ATP utilization, appears to account for the fall in SIM levels. Our data suggest the existence of a hypoxic switch mechanism in cells that coexpress hypoxia-inducible factor and SIM proteins, where up-regulation and activation of hypoxia-inducible factor-1alpha is concomitant with attenuation of SIM activities.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Amino Acid Sequence
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- Binding, Competitive
- Blotting, Northern
- Blotting, Western
- Cell Line
- Cell Nucleus/metabolism
- Cells, Cultured
- Chromatin/metabolism
- DNA, Complementary/metabolism
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Enhancer Elements, Genetic
- Epitopes
- Genes, Reporter
- Genetic Vectors
- Helix-Loop-Helix Motifs
- Humans
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit
- Immunoblotting
- Kidney/cytology
- Kidney/embryology
- Luciferases/metabolism
- Mice
- Microscopy, Fluorescence
- Molecular Sequence Data
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/metabolism
- Response Elements
- Sequence Homology, Amino Acid
- Time Factors
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Susan L Woods
- Department of Molecular BioSciences, Center for the Molecular Genetics of Development, Adelaide University, South Australia 5005, Australia
| | | |
Collapse
|
50
|
Fink T, Kazlauskas A, Poellinger L, Ebbesen P, Zachar V. Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1. Blood 2002; 99:2077-83. [PMID: 11877282 DOI: 10.1182/blood.v99.6.2077] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) plays a key role in control of coagulation and tissue remodeling and has been shown to be regulated by a number of cell stimuli, among those hypoxia. In this study we characterize the hypoxia-mediated induction of PAI-1 in human hepatoma cell line HepG2. We found that PAI-1 is tightly regulated in a narrow oxygen gradient. After incubation at oxygen concentrations of 1% to 2%, a 60-fold increase in PAI-1 messenger RNA levels was observed, whereas mild hypoxic conditions of more than 3.5% did not appear to induce transcription. Moreover, increased levels of PAI-1 protein were observed after incubation at low oxygen tensions. Through sequence analysis, several putative hypoxia-response elements (HREs 1-5) were identified in the human PAI-I promoter. Reporter gene assays showed that the HRE-2 (-194 to -187) was necessary and sufficient for the hypoxia-mediated response. By electrophoretic mobility assay we observed hypoxia-dependent binding of a protein complex to the HRE-2 motif. Further analysis demonstrated that HRE-2 was specifically recognized by the hypoxia-inducible transcription factor 1alpha-arylhydrocarbon nuclear translocator complex. Taken together, our data demonstrate that hypoxia-induced transcription is mediated through HIF-1 interaction with the HRE-2 site of the human PAI-1 promoter.
Collapse
Affiliation(s)
- Trine Fink
- Department of Virus and Cancer, Danish Cancer Society, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|