1
|
Pavliuchenko N, Duric I, Kralova J, Fabisik M, Spoutil F, Prochazka J, Kasparek P, Pokorna J, Skopcova T, Sedlacek R, Brdicka T. Molecular interactions of adaptor protein PSTPIP2 control neutrophil-mediated responses leading to autoinflammation. Front Immunol 2022; 13:1035226. [PMID: 36605205 PMCID: PMC9807597 DOI: 10.3389/fimmu.2022.1035226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Autoinflammatory diseases are characterized by dysregulation of innate immune system leading to spontaneous sterile inflammation. One of the well-established animal models of this group of disorders is the mouse strain Pstpip2cmo . In this strain, the loss of adaptor protein PSTPIP2 leads to the autoinflammatory disease chronic multifocal osteomyelitis. It is manifested by sterile inflammation of the bones and surrounding soft tissues of the hind limbs and tail. The disease development is propelled by elevated production of IL-1β and reactive oxygen species by neutrophil granulocytes. However, the molecular mechanisms linking PSTPIP2 and these pathways have not been established. Candidate proteins potentially involved in these mechanisms include PSTPIP2 binding partners, PEST family phosphatases (PEST-PTPs) and phosphoinositide phosphatase SHIP1. Methods To address the role of these proteins in PSTPIP2-mediated control of inflammation, we have generated mouse strains in which PEST-PTP or SHIP1 binding sites in PSTPIP2 have been disrupted. In these mouse strains, we followed disease symptoms and various inflammation markers. Results Our data show that mutation of the PEST-PTP binding site causes symptomatic disease, whereas mice lacking the SHIP1 interaction site remain asymptomatic. Importantly, both binding partners of PSTPIP2 contribute equally to the control of IL-1β production, while PEST-PTPs have a dominant role in the regulation of reactive oxygen species. In addition, the interaction of PEST-PTPs with PSTPIP2 regulates the production of the chemokine CXCL2 by neutrophils. Its secretion likely creates a positive feedback loop that drives neutrophil recruitment to the affected tissues. Conclusions We demonstrate that PSTPIP2-bound PEST-PTPs and SHIP1 together control the IL-1β pathway. In addition, PEST-PTPs have unique roles in the control of reactive oxygen species and chemokine production, which in the absence of PEST-PTP binding to PSTPIP2 shift the balance towards symptomatic disease.
Collapse
Affiliation(s)
- Nataliia Pavliuchenko
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia,Department of Cell Biology, Charles University, Faculty of Science, Prague, Czechia
| | - Iris Duric
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia,Department of Cell Biology, Charles University, Faculty of Science, Prague, Czechia
| | - Jarmila Kralova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Matej Fabisik
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia,Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jana Pokorna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Tereza Skopcova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia,Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Tomas Brdicka
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia,*Correspondence: Tomas Brdicka,
| |
Collapse
|
2
|
The Entry and Egress of Monocytes in Atherosclerosis: A Biochemical and Biomechanical Driven Process. Cardiovasc Ther 2021; 2021:6642927. [PMID: 34345249 PMCID: PMC8282391 DOI: 10.1155/2021/6642927] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
In accordance with “the response to injury” theory, the entry of monocytes into the intima guided by inflammation signals, taking up cholesterol and transforming into foam cells, and egress from plaques determines the progression of atherosclerosis. Multiple cytokines and receptors have been reported to be involved in monocyte recruitment such as CCL2/CCR2, CCL5/CCR5, and CX3CL1/CX3CR1, and the egress of macrophages from the plaque like CCR7/CCL19/CCL21. Interestingly, some neural guidance molecules such as Netrin-1 and Semaphorin 3E have been demonstrated to show an inhibitory effect on monocyte migration. During the processes of monocytes recruitment and migration, factors affecting the biomechanical properties (e.g., the membrane fluidity, the deformability, and stiffness) of the monocytes, like cholesterol, amyloid-β peptide (Aβ), and lipopolysaccharides (LPS), as well as the biomechanical environment that the monocytes are exposed, like the extracellular matrix stiffness, mechanical stretch, blood flow, and hypertension, were discussed in the latter section. Till now, several small interfering RNAs (siRNAs), monoclonal antibodies, and antagonists for CCR2 have been designed and shown promising efficiency on atherosclerosis therapy. Seeking more possible biochemical factors that are chemotactic or can affect the biomechanical properties of monocytes, and uncovering the underlying mechanism, will be helpful in future studies.
Collapse
|
3
|
Weiss E, Schlegel J, Terpitz U, Weber M, Linde J, Schmitt AL, Hünniger K, Marischen L, Gamon F, Bauer J, Löffler C, Kurzai O, Morton CO, Sauer M, Einsele H, Loeffler J. Reconstituting NK Cells After Allogeneic Stem Cell Transplantation Show Impaired Response to the Fungal Pathogen Aspergillus fumigatus. Front Immunol 2020; 11:2117. [PMID: 33013893 PMCID: PMC7511764 DOI: 10.3389/fimmu.2020.02117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
Delayed natural killer (NK) cell reconstitution after allogeneic stem cell transplantation (alloSCT) is associated with a higher risk of developing invasive aspergillosis. The interaction of NK cells with the human pathogen Aspergillus (A.) fumigatus is mediated by the fungal recognition receptor CD56, which is relocated to the fungal interface after contact. Blocking of CD56 signaling inhibits the fungal mediated chemokine secretion of MIP-1α, MIP-1β, and RANTES and reduces cell activation, indicating a functional role of CD56 in fungal recognition. We collected peripheral blood from recipients of an allograft at defined time points after alloSCT (day 60, 90, 120, 180). NK cells were isolated, directly challenged with live A. fumigatus germ tubes, and cell function was analyzed and compared to healthy age and gender-matched individuals. After alloSCT, NK cells displayed a higher percentage of CD56brightCD16dim cells throughout the time of blood collection. However, CD56 binding and relocalization to the fungal contact side were decreased. We were able to correlate this deficiency to the administration of corticosteroid therapy that further negatively influenced the secretion of MIP-1α, MIP-1β, and RANTES. As a consequence, the treatment of healthy NK cells ex vivo with corticosteroids abrogated chemokine secretion measured by multiplex immunoassay. Furthermore, we analyzed NK cells regarding their actin cytoskeleton by Structured Illumination Microscopy (SIM) and flow cytometry and demonstrate an actin dysfunction of NK cells shown by reduced F-actin content after fungal co-cultivation early after alloSCT. This dysfunction remains until 180 days post-alloSCT, concluding that further actin-dependent cellular processes may be negatively influenced after alloSCT. To investigate the molecular pathomechansism, we compared CD56 receptor mobility on the plasma membrane of healthy and alloSCT primary NK cells by single-molecule tracking. The results were very robust and reproducible between tested conditions which point to a different molecular mechanism and emphasize the importance of proper CD56 mobility.
Collapse
Affiliation(s)
- Esther Weiss
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Würzburg, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Michael Weber
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Jörg Linde
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Anna-Lena Schmitt
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Würzburg, Germany
| | - Kerstin Hünniger
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Institute for Hygiene and Microbiology, Julius-Maximilian-University, Würzburg, Germany
| | - Lothar Marischen
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Würzburg, Germany
| | - Florian Gamon
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Würzburg, Germany
| | - Joachim Bauer
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Würzburg, Germany
| | - Claudia Löffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Würzburg, Germany
| | - Oliver Kurzai
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Institute for Hygiene and Microbiology, Julius-Maximilian-University, Würzburg, Germany
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Würzburg, Germany
| | - Juergen Loeffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Würzburg, Germany
| |
Collapse
|
4
|
Spike AJ, Rosen JM. C/EBPß Isoform Specific Gene Regulation: It's a Lot more Complicated than you Think! J Mammary Gland Biol Neoplasia 2020; 25:1-12. [PMID: 32078094 PMCID: PMC7694698 DOI: 10.1007/s10911-020-09444-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
It has been almost 30 years since C/EBPß was discovered. Seminal studies have shown that C/EBPß is a master regulator of mammary gland development and has been shown to control and influence proliferation and differentiation through varying mechanisms. The single-exon C/EBPß mRNA yields at least three different protein isoforms which have diverse, specific, context-dependent, and often non-overlapping roles throughout development and breast cancer progression. These roles are dictated by a number of complex factors including: expression levels of other C/EBP family members and their stoichiometry relative to the isoform in question, binding site affinity, post-translational modifications, co-factor expression, and even hormone levels and lactogenic status. Here we summarize the historical work up to the latest findings in the field on C/EBPß in the mammary gland and in breast cancer. With the current emphasis on improving immunotherapy in breast cancer the role of specific C/EBPß isoforms in regulating specific chemokine and cytokine expression and the immune microenvironment will be of increasing interest.
Collapse
Affiliation(s)
- Aaron J Spike
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Pradère JP, Hernandez C, Koppe C, Friedman RA, Luedde T, Schwabe RF. Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Sci Signal 2016; 9:ra85. [PMID: 27555662 DOI: 10.1126/scisignal.aab2820] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nuclear factor κB (NF-κB) is a master regulator of inflammation and cell death. Whereas most of the activity of NF-κB is regulated through the inhibitor of κB (IκB) kinase (IKK)-dependent degradation of IκB, IKK also phosphorylates subunits of NF-κB. We investigated the contribution of the phosphorylation of the NF-κB subunit p65 at the IKK phosphorylation site serine 536 (Ser(536)) in humans, which is thought to be required for the activation and nuclear translocation of NF-κB. Through experiments with knock-in mice (S534A mice) expressing a mutant p65 with an alanine-to-serine substitution at position 534 (the murine homolog of human Ser(536)), we observed increased expression of NF-κB-dependent genes after injection of mice with the inflammatory stimulus lipopolysaccharide (LPS) or exposure to gamma irradiation, and the enhanced gene expression was most pronounced at late time points. Compared to wild-type mice, S534A mice displayed increased mortality after injection with LPS. Increased NF-κB signaling in the S534A mice was at least in part explained by the increased stability of the S534A p65 protein compared to that of the Ser(534)-phosphorylated wild-type protein. Together, our results suggest that Ser(534) phosphorylation of p65 in mice (and, by extension, Ser(536) phosphorylation of human p65) is not required for its nuclear translocation, but instead inhibits NF-κB signaling to prevent deleterious inflammation.
Collapse
Affiliation(s)
| | - Céline Hernandez
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Christiane Koppe
- Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
6
|
Scoville DK, White CC, Botta D, McConnachie LA, Zadworny ME, Schmuck SC, Hu X, Gao X, Yu J, Dills RL, Sheppard L, Delaney MA, Griffith WC, Beyer RP, Zangar RC, Pounds JG, Faustman EM, Kavanagh TJ. Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains. Toxicol Appl Pharmacol 2015; 289:240-50. [PMID: 26476918 DOI: 10.1016/j.taap.2015.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
Abstract
Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains) were exposed to CdSe-ZnS core-shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci.
Collapse
Affiliation(s)
- David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Collin C White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dianne Botta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lisa A McConnachie
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Megan E Zadworny
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Stefanie C Schmuck
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xiaoge Hu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jianbo Yu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Russell L Dills
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Martha A Delaney
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Richard P Beyer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Richard C Zangar
- Systems Toxicology Group - Division of Biological Sciences, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Joel G Pounds
- Systems Toxicology Group - Division of Biological Sciences, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Herpesvirus entry mediator on radiation-resistant cell lineages promotes ocular herpes simplex virus 1 pathogenesis in an entry-independent manner. mBio 2015; 6:e01532-15. [PMID: 26489863 PMCID: PMC4620471 DOI: 10.1128/mbio.01532-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ocular herpes simplex virus 1 (HSV-1) infection leads to a potentially blinding immunoinflammatory syndrome, herpes stromal keratitis (HSK). Herpesvirus entry mediator (HVEM), a widely expressed tumor necrosis factor (TNF) receptor superfamily member with diverse roles in immune signaling, facilitates viral entry through interactions with viral glycoprotein D (gD) and is important for HSV-1 pathogenesis. We subjected mice to corneal infection with an HSV-1 mutant in which HVEM-mediated entry was specifically abolished and found that the HVEM-entry mutant produced clinical disease comparable to that produced by the control virus. HVEM-mediated induction of corneal cytokines, which correlated with an HVEM-dependent increase in levels of corneal immune cell infiltrates, was also gD independent. Given the complexity of HVEM immune signaling, we used hematopoietic chimeric mice to determine which HVEM-expressing cells mediate HSV-1 pathogenesis in the eye. Regardless of whether the donor was a wild-type (WT) or HVEM knockout (KO) strain, HVEM KO recipients were protected from ocular HSV-1, suggesting that HVEM on radiation-resistant cell types, likely resident cells of the cornea, confers wild-type-like susceptibility to disease. Together, these data indicate that HVEM contributes to ocular pathogenesis independently of entry and point to an immunomodulatory role for this protein specifically on radiation-resistant cells. Immune privilege is maintained in the eye in order to protect specialized ocular tissues, such as the translucent cornea, from vision-reducing damage. Ocular herpes simplex virus 1 (HSV-1) infection can disrupt this immune privilege, provoking a host response that ultimately brings about the majority of the damage seen with the immunoinflammatory syndrome herpes stromal keratitis (HSK). Our previous work has shown that HVEM, a host TNF receptor superfamily member that also serves as a viral entry receptor, is a critical component contributing to ocular HSV-1 pathogenesis, although its precise role in this process remains unclear. We hypothesized that HVEM promotes an inflammatory microenvironment in the eye through immunomodulatory actions, enhancing disease after ocular inoculation of HSV-1. Investigating the mechanisms responsible for orchestrating this aberrant immune response shed light on the initiation and maintenance of HSK, one of the leading causes of infectious blindness in the developed world.
Collapse
|
8
|
Simone V, Ciavarella S, Brunetti O, Savonarola A, Cives M, Tucci M, Opinto G, Maiorano E, Silvestris F. Everolimus restrains the paracrine pro-osteoclast activity of breast cancer cells. BMC Cancer 2015; 15:692. [PMID: 26468083 PMCID: PMC4606500 DOI: 10.1186/s12885-015-1717-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 10/08/2015] [Indexed: 11/27/2022] Open
Abstract
Background Breast cancer (BC) cells secrete soluble factors that accelerate osteoclast (OC) differentiation, leading to the formation of osteolytic bone metastases. In the BOLERO-2 trial, BC patients with bone involvement who received Everolimus had a delayed tumor progression in the skeleton as a result of direct OC suppression through the inhibition of mTOR, in addition to the general suppressor effect on the cancer cells. Here, we explored the effect of Everolimus, as mTOR inhibitor, on the pro-OC paracrine activity of BC cells. Methods Both MDA-MB-231 and MCF-7 BC cell lines were incubated with sub-lethal amounts of Everolimus, and their conditioned supernatants were assessed for their capacity to differentiate OCs from PBMC from healthy donors, as well as to interfere with their bone resorbing activity shown on calcium phosphate slices. We also measured the mRNA levels of major pro-OC factors in Everolimus-treated BC cells and their secreted levels by ELISA, and evaluated by immunoblotting the phosphorylation of transcription factors enrolled by pathways cooperating with the mTOR inhibition. Finally, the in vivo pro-OC activity of these cells was assessed in SCID mice after intra-tibial injections. Results We found that Everolimus significantly inhibited the differentiation of OCs and their in vitro bone-resorbing activity, and also found decreases of both mRNA and secreted pro-OC factors such as M-CSF, IL-6, and IL-1β, whose lower ELISA levels paralleled the defective phosphorylation of NFkB pathway effectors. Moreover, when intra-tibially injected in SCID mice, Everolimus-treated BC cells produced smaller bone metastases than the untreated cells. Conclusions mTOR inhibition in BC cells leads to a suppression of their paracrine pro-OC activity by interfering with the NFkB pathway; this effect may also account for the delayed progression of bone metastatic disease observed in the BOLERO-2 trial. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1717-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valeria Simone
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", P.zza Giulio Cesare, 11-70124, Bari, Italy.
| | - Sabino Ciavarella
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", P.zza Giulio Cesare, 11-70124, Bari, Italy.
| | - Oronzo Brunetti
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", P.zza Giulio Cesare, 11-70124, Bari, Italy.
| | - Annalisa Savonarola
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", P.zza Giulio Cesare, 11-70124, Bari, Italy.
| | - Mauro Cives
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", P.zza Giulio Cesare, 11-70124, Bari, Italy.
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", P.zza Giulio Cesare, 11-70124, Bari, Italy.
| | - Giuseppina Opinto
- Department of Pathological Anatomy, University of Bari "A. Moro", Bari, Italy.
| | - Eugenio Maiorano
- Department of Pathological Anatomy, University of Bari "A. Moro", Bari, Italy.
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", P.zza Giulio Cesare, 11-70124, Bari, Italy.
| |
Collapse
|
9
|
Cerebral Oedema, Blood-Brain Barrier Breakdown and the Decrease in Na(+),K(+)-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease. Mol Neurobiol 2015; 53:3714-3723. [PMID: 26133302 DOI: 10.1007/s12035-015-9313-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na(+),K(+)-ATPase activity, affects the permeability of the blood-brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na(+),K(+)-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na(+),K(+)-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na(+),K(+)-ATPase or through a generalized effect on the permeability of the BBB to all compounds.
Collapse
|
10
|
Scruggs BS, Gilchrist DA, Nechaev S, Muse GW, Burkholder A, Fargo DC, Adelman K. Bidirectional Transcription Arises from Two Distinct Hubs of Transcription Factor Binding and Active Chromatin. Mol Cell 2015; 58:1101-12. [PMID: 26028540 DOI: 10.1016/j.molcel.2015.04.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/29/2015] [Accepted: 04/01/2015] [Indexed: 11/26/2022]
Abstract
Anti-sense transcription originating upstream of mammalian protein-coding genes is a well-documented phenomenon, but remarkably little is known about the regulation or function of anti-sense promoters and the non-coding RNAs they generate. Here we define at nucleotide resolution the divergent transcription start sites (TSSs) near mouse mRNA genes. We find that coupled sense and anti-sense TSSs precisely define the boundaries of a nucleosome-depleted region (NDR) that is highly enriched in transcription factor (TF) motifs. Notably, as the distance between sense and anti-sense TSSs increases, so does the size of the NDR, the level of signal-dependent TF binding, and gene activation. We further discover a group of anti-sense TSSs in macrophages with an enhancer-like chromatin signature. Interestingly, this signature identifies divergent promoters that are activated during immune challenge. We propose that anti-sense promoters serve as platforms for TF binding and establishment of active chromatin to further regulate or enhance sense-strand mRNA expression.
Collapse
Affiliation(s)
- Benjamin S Scruggs
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Daniel A Gilchrist
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Sergei Nechaev
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ginger W Muse
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Adam Burkholder
- Center for Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - David C Fargo
- Center for Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Karen Adelman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
11
|
The Lineage-Specific Transcription Factor PU.1 Prevents Polycomb-Mediated Heterochromatin Formation at Macrophage-Specific Genes. Mol Cell Biol 2015; 35:2610-25. [PMID: 26012552 DOI: 10.1128/mcb.00027-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/22/2015] [Indexed: 11/20/2022] Open
Abstract
Lineage-specific transcription factors (TFs) are important determinants of cellular identity, but their exact mode of action has remained unclear. Here we show using a macrophage differentiation system that the lineage-specific TF PU.1 keeps macrophage-specific genes accessible during differentiation by preventing Polycomb repressive complex 2 (PRC2) binding to transcriptional regulatory elements. We demonstrate that the distal enhancer of a gene becomes bound by PRC2 as cells differentiate in the absence of PU.1 binding and that the gene is wrapped into heterochromatin, which is characterized by increased nucleosome occupancy and H3K27 trimethylation. This renders the gene inaccessible to the transcriptional machinery and prevents induction of the gene in response to an external signal in mature cells. In contrast, if PU.1 is bound at the transcriptional regulatory region of a gene during differentiation, PRC2 is not recruited, nucleosome occupancy is kept low, and the gene can be induced in mature macrophages. Similar results were obtained at the enhancers of other macrophage-specific genes that fail to bind PU.1 as an estrogen receptor fusion (PUER) in this system. These results show that one role of PU.1 is to exclude PRC2 and to prevent heterochromatin formation at macrophage-specific genes.
Collapse
|
12
|
Kanayama M, Inoue M, Danzaki K, Hammer G, He YW, Shinohara ML. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun 2015; 6:5779. [PMID: 25609235 PMCID: PMC4304414 DOI: 10.1038/ncomms6779] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/07/2014] [Indexed: 12/26/2022] Open
Abstract
Immune responses must be well restrained in a steady state to avoid excessive inflammation. However, such restraints are quickly removed to exert antimicrobial responses. Here we report a role of autophagy in an early host antifungal response by enhancing NFκB activity through A20 sequestration. Enhancement of NFκB activation is achieved by autophagic depletion of A20, an NFκB inhibitor, in F4/80(hi) macrophages in the spleen, peritoneum and kidney. We show that p62, an autophagic adaptor protein, captures A20 to sequester it in the autophagosome. This allows the macrophages to release chemokines to recruit neutrophils. Indeed, mice lacking autophagy in myeloid cells show higher susceptibility to Candida albicans infection due to impairment in neutrophil recruitment. Thus, at least in the specific aforementioned tissues, autophagy appears to break A20-dependent suppression in F4/80(hi) macrophages, which express abundant A20 and contribute to the initiation of efficient innate immune responses.
Collapse
Affiliation(s)
- Masashi Kanayama
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Makoto Inoue
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Keiko Danzaki
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Gianna Hammer
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Mari L Shinohara
- 1] Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
13
|
Paris JJ, Singh HD, Ganno ML, Jackson P, McLaughlin JP. Anxiety-like behavior of mice produced by conditional central expression of the HIV-1 regulatory protein, Tat. Psychopharmacology (Berl) 2014; 231:2349-60. [PMID: 24352568 PMCID: PMC4020990 DOI: 10.1007/s00213-013-3385-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
Abstract
RATIONALE Human immunodeficiency virus (HIV) infection is associated with substantial increases in generalized anxiety. The HIV regulatory protein, transactivator of transcription (Tat), has been implicated in the neuropathogenesis related to HIV-1 infection. However, direct examination of the effect of Tat on behavioral measures of anxiety has not been demonstrated. OBJECTIVE To identify whether expression of the Tat1-86 protein exerts dose-dependent and persistent anxiety-like effects in a whole animal model, the GT-tg bigenic mouse. METHODS GT-tg mice and C57BL/6J controls were administered doxycycline in a dose- (0, 50, 100, or 125 mg/kg, i.p., for 7 days) or duration- (100 mg/kg, i.p., for 0, 1, 3, 5, or 14 days) dependent manner to induce Tat1-86 in brain. Mice were assessed for anxiety-like behavior in an open field, social interaction, or marble burying task 0, 7, and/or 14 days later. Central expression of Tat1-86 protein was verified with Western blot analyses. RESULTS Doxycycline produced no effects on C57BL/6J controls that lacked the Tat1-86 transgene. Among GT-tg mice, doxycycline (100 mg/kg for 3, 5, or 7 days) significantly increased anxiety-like behavior in all tasks, commensurate with enhanced Western blot labeling of Tat1-86 protein in brain, displaying optimal effects with the 7-day regimen. Greater exposure to doxycycline (either 125 mg/kg for 7 days or 100 mg/kg for 14 days) impaired locomotor behavior; whereas lower dosing (below 100 mg/kg) produced only transient increases in anxiety-like behavior. CONCLUSIONS Expression of HIV-1-Tat1-86 in GT-tg mouse brain produces exposure-dependent, persistent increases in anxiety-like behavior.
Collapse
Affiliation(s)
- Jason J. Paris
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Harminder D. Singh
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Michelle L. Ganno
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Pauline Jackson
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Jay P. McLaughlin
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA,Contact for Correspondence: Jay P. McLaughlin, Ph.D., Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA, Phone: +1 772-345-4715, Fax: +1 772-345-3649,
| |
Collapse
|
14
|
Aupperlee MD, Zhao Y, Tan YS, Leipprandt JR, Bennett J, Haslam SZ, Schwartz RC. Epidermal growth factor receptor (EGFR) signaling is a key mediator of hormone-induced leukocyte infiltration in the pubertal female mammary gland. Endocrinology 2014; 155:2301-13. [PMID: 24693965 PMCID: PMC4020926 DOI: 10.1210/en.2013-1933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well documented that macrophages and eosinophils play important roles in normal murine pubertal mammary gland development. Although it is accepted that estrogen (E) and progesterone (P) are key players in mammary gland development, the roles these hormones might play in regulating the actions of leukocytes in that process is an understudied area. We show here that P and E, respectively, induce unique, but overlapping, sets of proinflammatory and angiogenic cytokines and chemokines, in the pubertal female BALB/c mammary gland, as well as induce infiltration of macrophages and eosinophils to the mammary periepithelium. This extends earlier studies showing P induction of proinflammatory products in pubertal and adult mammary epithelial organoids and P-induced in vivo infiltration of leukocytes to the adult mammary periepithelium. Importantly, epidermal growth factor receptor-signaling, which is likely mediated by amphiregulin (Areg), a downstream mediator of E and P, is both necessary and sufficient for both E- and P-induced recruitment of macrophages and eosinophils to the pubertal mammary periepithelium. We further show that receptor activator of nuclear factor κB ligand (RANKL), although not sufficient of itself to cause macrophage and eosinophil recruitment, contributes to an optimal response to P. The potency of Areg is highlighted by the fact that it is sufficient to induce macrophage and eosinophil recruitment at levels equivalent to that induced by either E or P. Our finding of a dominant role for Areg in hormonally induced leukocyte recruitment to the pubertal mammary gland parallels its dominance in regulating ductal outgrowth and its role in P-induced proliferation in the pubertal gland.
Collapse
Affiliation(s)
- Mark D Aupperlee
- Breast Cancer and the Environment Research Program, Departments of Physiology (M.D.A., Y.Z., Y.S.T., J.R.L., J.B., S.Z.H.) and Microbiology and Molecular Genetics (R.C.S.), Michigan State University, East Lansing, Michigan 48824
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang J, Tian Y, Phillips KLE, Chiverton N, Haddock G, Bunning RA, Cross AK, Shapiro IM, Le Maitre CL, Risbud MV. Tumor necrosis factor α- and interleukin-1β-dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1. ACTA ACUST UNITED AC 2013; 65:832-42. [PMID: 23233369 DOI: 10.1002/art.37819] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/29/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To investigate tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) regulation of CCL3 expression in nucleus pulposus (NP) cells and in macrophage migration. METHODS Quantitative reverse transcription-polymerase chain reaction and immunohistochemistry were used to measure CCL3 expression in NP cells. Transfections were used to determine the role of NF-κB, CCAAT/enhancer binding protein (C/EBPβ), and MAPK on cytokine-mediated CCL3 promoter activity. The effect of NP-conditioned medium on macrophage migration was measured using a Transwell system. RESULTS An increase in CCL3 expression and promoter activity was observed in NP cells after TNFα or IL-1β treatment. Treatment of cells with NF-κB and MAPK inhibitors abolished the effect of the cytokines on CCL3 expression. The inductive effect of p65 and C/EBPβ on the CCL3 promoter was confirmed through gain-of-function and loss-of-function studies. Notably, cotransfection with p50 completely blocked cytokine- and p65-dependent induction. In contrast, c-Rel and RelB had little effect on promoter activity. Lentiviral transduction with short hairpin RNA for p65 (shp65) and shIKKβ significantly decreased the TNFα-dependent increase in CCL3 expression. Analysis of degenerated human NP tissue samples showed that CCL3, but not CCL4, expression correlated positively with the grade of tissue degeneration. Importantly, treatment of macrophages with conditioned medium of NP cells treated with TNFα or IL-1β promoted their migration. Pretreatment of macrophages with an antagonist of CCR1, the primary receptor for CCL3 and CCL4, blocked cytokine-mediated migration. CONCLUSION Our findings indicate that TNFα and IL-1β modulate the expression of CCL3 in NP cells by controlling the activation of MAPK, NF-κB, and C/EBPβ signaling. The CCL3-CCR1 axis may play an important role in promoting macrophage infiltration in degenerated, herniated discs.
Collapse
Affiliation(s)
- Jianru Wang
- Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yoo KY, Yoo DY, Hwang IK, Park JH, Lee CH, Choi JH, Kwon SH, Her S, Lee YL, Won MH. Time-course alterations of Toll-like receptor 4 and NF-κB p65, and their co-expression in the gerbil hippocampal CA1 region after transient cerebral ischemia. Neurochem Res 2011; 36:2417-26. [PMID: 21842272 DOI: 10.1007/s11064-011-0569-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 12/24/2022]
Abstract
Innate immune system is very important to modulate the host defense against a large variety of pathogens. Toll-like receptors (TLRs) play a key role in controlling innate immune response. Among TLRs, TLR4 is a specific receptor for lipopolysaccharide and associated with the release of pro-inflammatory cytokines. In the present study, we investigated ischemia-related changes of TLR4 immunoreactivity and its protein level, and nuclear factor κB (NF-κB) p65 immunoreactivity regarding inflammatory responses in the hippocampal CA1 region after 5 min of transient cerebral ischemia to identify the correlation between transient ischemia and inflammation. In the sham-operated group, TLR4 immunoreactivity was easily detected in pyramidal neurons of the hippocampal CA1 region (CA1). TLR4 immunoreactivity in pyramidal neurons was distinctively decreased after ischemia/reperfusion (I/R); instead, based on double immunofluorescence study, TLR4 immunoreactivity was expressed in non-pyramidal neurons and astrocytes from 2 days postischemia. In addition, TLR4 protein level was lowest at 1 day postischemia and highest 4 days after I/R. On the other hand, NF-κB p65 immunoreactivity was not detected in the CA1 of the sham-operated group, and NF-κB p65 immunoreactivity was not observed until 1 day after I/R. However, NF-κB p65 immunoreactivity began to be expressed in astrocytes at 2 days postischemia, and the immunoreactivity was strong 4 days postischemia. Our results indicate that TLR4 and NF-κB p65 immunoreactivity are changed in CA1 pyramidal neurons and newly expressed in astrocytes, not in microglia, in the CA1 region after transient cerebral ischemia.
Collapse
Affiliation(s)
- Ki-Yeon Yoo
- Department of Oral Anatomy, College of Dentistry, Gangneung-Wonju National University, Gangneung 210-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Patial S, Shahi S, Saini Y, Lee T, Packiriswamy N, Appledorn DM, Lapres JJ, Amalfitano A, Parameswaran N. G-protein coupled receptor kinase 5 mediates lipopolysaccharide-induced NFκB activation in primary macrophages and modulates inflammation in vivo in mice. J Cell Physiol 2011; 226:1323-33. [PMID: 20945396 DOI: 10.1002/jcp.22460] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein coupled receptor kinase-5 (GRK5) is a serine/threonine kinase discovered for its role in the regulation of G-protein coupled receptor signaling. Recent studies have shown that GRK5 is also an important regulator of signaling pathways stimulated by non-GPCRs. This study was undertaken to determine the physiological role of GRK5 in Toll-like receptor-4-induced inflammatory signaling pathways in vivo and in vitro. Using mice genetically deficient in GRK5 (GRK5(-/-) ) we demonstrate here that GRK5 is an important positive regulator of lipopolysaccharide (LPS, a TLR4 agonist)-induced inflammatory cytokine and chemokine production in vivo. Consistent with this role, LPS-induced neutrophil infiltration in the lungs (assessed by myeloperoxidase activity) was markedly attenuated in the GRK5(-/-) mice compared to the GRK5(+/+) mice. Similar to the in vivo studies, primary macrophages from GRK5(-/-) mice showed attenuated cytokine production in response to LPS. Our results also identify TLR4-induced NFκB pathway in macrophages to be selectively regulated by GRK5. LPS-induced IκBα phosphorylation, NFκB p65 nuclear translocation, and NFκB binding were markedly attenuated in GRK5(-/-) macrophages. Together, our findings demonstrate that GRK5 is a positive regulator of TLR4-induced IκBα-NFκB pathway as well as a key modulator of LPS-induced inflammatory response.
Collapse
Affiliation(s)
- Sonika Patial
- Department of Physiology, Division of Human Pathology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Oyegunwa AO, Sikes ML, Wilson JR, Scholle F, Laster SM. Tetra-O-methyl nordihydroguaiaretic acid (Terameprocol) inhibits the NF-κB-dependent transcription of TNF-α and MCP-1/CCL2 genes by preventing RelA from binding its cognate sites on DNA. JOURNAL OF INFLAMMATION-LONDON 2010; 7:59. [PMID: 21138578 PMCID: PMC3002343 DOI: 10.1186/1476-9255-7-59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/07/2010] [Indexed: 11/28/2022]
Abstract
Background Tetra-O-methyl nordihydroguaiaretic acid, also known as terameprocol (TMP), is a naturally occurring phenolic compound found in the resin of the creosote bush. We have shown previously that TMP will suppress production of certain inflammatory cytokines, chemokines and lipids from macrophages following stimulation with LPS or infection with H1N1 influenza virus. In this study our goal was to elucidate the mechanism underlying TMP-mediated suppression of cytokine and chemokine production. We focused our investigations on the response to LPS and the NF-κB protein RelA, a transcription factor whose activity is critical to LPS-responsiveness. Methods Reporter assays were performed with HEK293 cells overexpressing either TLR-3, -4, or -8 and a plasmid containing the luciferase gene under control of an NF-κB response element. Cells were then treated with LPS, poly(I:C), or resiquimod, and/or TMP, and lysates measured for luciferase activity. RAW 264.7 cells treated with LPS and/or TMP were used in ChIP and EMSA assays. For ChIP assays, chromatin was prepared and complexes precipitated with anti-NF-κB RelA Ab. Cross-links were reversed, DNA purified, and sequence abundance determined by Q-PCR. For EMSA assays, nuclear extracts were incubated with radiolabeled probes, analyzed by non-denaturing PAGE and visualized by autoradiography. RAW 264.7 cells treated with LPS and/or TMP were also used in fluorescence microscopy and western blot experiments. Translocation experiments were performed using a primary Ab to NF-κB RelA and a fluorescein-conjugated secondary Ab. Western blots were performed using Abs to IκB-α and phospho-IκB-α. Bands were visualized by chemiluminescence. Results In reporter assays with TLR-3, -4, and -8 over-expressing cells, TMP caused strong inhibition of NF-κB-dependent transcription. ChIP assays showed TMP caused virtually complete inhibition of RelA binding in vivo to promoters for the genes for TNF-α, MCP-1/CCL2, and RANTES/CCL5 although the LPS-dependent synthesis of IκB-α was not inhibited. EMSA assays did not reveal an effect of TMP on the binding of RelA to naked DNA templates in vitro. TMP did not inhibit the nuclear translocation of NF-κB RelA nor the phosphorylation of IκB-α. Conclusion TMP acts indirectly as an inhibitor of NF-κB-dependent transcription by preventing RelA from binding the promoters of certain key cytokine and chemokine genes.
Collapse
Affiliation(s)
- Akinbolade O Oyegunwa
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina, 27695-7615, USA.
| | | | | | | | | |
Collapse
|
19
|
Downes CE, Crack PJ. Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS? Br J Pharmacol 2010; 160:1872-88. [PMID: 20649586 DOI: 10.1111/j.1476-5381.2010.00864.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The CNS can exhibit features of inflammation in response to injury, infection or disease, whereby resident cells generate inflammatory mediators, including cytokines, prostaglandins, free radicals and complement, chemokines and adhesion molecules that recruit immune cells, and activate glia and microglia. Cerebral ischaemia triggers acute inflammation, which exacerbates primary brain damage. The regulation of inflammation after stroke is multifaceted and comprises vascular effects, distinct cellular responses, apoptosis and chemotaxis. There are many cell types that are affected including neurons, astrocytes, microglia and endothelial cells, all responding to the resultant neuroinflammation in different ways. Over the past 20 years, researchers examining brain tissue at various time intervals after stroke observed the presence of inflammatory cells, neutrophils and monocytes at the site of injury, as well as the activation of endogenous glia and microglia. This review examines the involvement of these cells in the progression of neural injury and proposes that the Toll-like receptors (TLRs) are likely to be an integral component in the communication between the CNS and the periphery. This receptor system is the archetypal pathogen sensing receptor system and its presence and signalling in the brain following neural injury suggests a more diverse role. We propose that the TLR system presents excellent pharmacological targets for the design of a new generation of therapeutic agents to modulate the inflammation that accompanies neural injury.
Collapse
Affiliation(s)
- Catherine E Downes
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
20
|
Zhang Z, Bryan JL, DeLassus E, Chang LW, Liao W, Sandell LJ. CCAAT/enhancer-binding protein β and NF-κB mediate high level expression of chemokine genes CCL3 and CCL4 by human chondrocytes in response to IL-1β. J Biol Chem 2010; 285:33092-33103. [PMID: 20702408 PMCID: PMC2963416 DOI: 10.1074/jbc.m110.130377] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/16/2010] [Indexed: 11/06/2022] Open
Abstract
A large set of chemokines is highly up-regulated in human chondrocytes in response to IL-1β (Sandell, L. J., Xing, X., Franz, C., Davies, S., Chang, L. W., and Patra, D. (2008) Osteoarthr. Cartil. 16, 1560-1571). To investigate the mechanism of transcriptional regulation, deletion constructs of selected chemokine gene promoters, the human CCL3 (MIP-1α) and CCL4 (MIP-1β), were transfected into human chondrocytes with or without IL-1β. The results show that an IL-1β-responsive element is located between bp -300 and -140 of the CCL3 promoter and between bp -222 and -100 of the CCL4 promoter. Because both of these elements contain CCAAT/enhancer-binding protein β (C/EBPβ) motifs, the function of C/EBPβ was examined. IL-1β stimulated the expression of C/EBPβ, and the direct binding of C/EBPβ to the C/EBPβ motif was confirmed by EMSA and ChIP analyses. The -300 bp CCL3 promoter and -222 bp CCL4 promoter were strongly up-regulated by co-transfection with the C/EBPβ expression vector. Mutation of the C/EBPβ motif and reduction of C/EBPβ expression by siRNA decreased the up-regulation. Additionally, another cytokine-related transcription factor, NF-κB, was also shown to be involved in the up-regulation of chemokines in response to IL-1β, and the binding site was identified. The regulation of C/EBPβ and NF-κB was confirmed by the inhibition by C/EBPβ and NF-κB and by transfection with C/EBPβ and NF-κB expression vectors in the presence or absence of IL-1β. Taken together, our results suggest that C/EBPβ and NF-κB are both involved in the IL-1β-responsive up-regulation of chemokine genes in human chondrocytes. Time course experiments indicated that C/EBPβ gradually and steadily induces chemokine up-regulation, whereas NF-κB activity was highest at the early stage of chemokine up-regulation.
Collapse
Affiliation(s)
- Zhiqi Zhang
- From the Departments of Orthopaedic Surgery, St. Louis, Missouri 63110; Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jennifer L Bryan
- From the Departments of Orthopaedic Surgery, St. Louis, Missouri 63110
| | | | - Li-Wei Chang
- Pathology and Immunology, St. Louis, Missouri 63110
| | - Weiming Liao
- Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Linda J Sandell
- From the Departments of Orthopaedic Surgery, St. Louis, Missouri 63110; Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110.
| |
Collapse
|
21
|
Rani S, Barbe MF, Barr AE, Litivn J. Role of TNF alpha and PLF in bone remodeling in a rat model of repetitive reaching and grasping. J Cell Physiol 2010; 225:152-67. [PMID: 20458732 DOI: 10.1002/jcp.22208] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously developed a voluntary rat model of highly repetitive reaching that provides an opportunity to study effects of non-weight bearing muscular loads on bone and mechanisms of naturally occurring inflammation on upper limb tissues in vivo. In this study, we investigated the relationship between inflammatory cytokines and matricellular proteins (Periostin-like-factor, PLF, and connective tissue growth factor, CTGF) using our model. We also examined the relationship between inflammatory cytokines, PLF and bone formation processes. Rats underwent initial training for 5 weeks, and then performed a high repetition high force (HRHF) task (12 reaches/min, 60% maximum grip force, 2 h/day, 3 days/week) for 6 weeks. We then examined the effect of training or task performance with or without treatment with a rat specific TNFalpha antibody on inflammatory cytokines, osteocalcin (a bone formation marker), PLF, CTGF, and behavioral indicators of pain or discomfort. The HRHF task decreased grip strength and induced forepaw mechanical hypersensitivity in both trained control and 6-week HRHF animals. Two weeks of anti-TNFalpha treatment improved grip strength in both groups, but did not ameliorate forepaw hypersensitivity. Moreover, anti-TNFalpha treatment attenuated task-induced increases in inflammatory cytokines (TNFalpha, IL-1alpha, and MIP2 in serum; TNFalpha in forelimb bone and muscles) and serum osteocalcin in 6-week HRHF animals. PLF levels in forelimb bones and flexor digitorum muscles increased significantly in 6-week HRHF animals, increases attenuated by anti-TNFalpha treatment. CTGF levels were unaffected by task performance or anti-TNFalpha treatment in 6-week HRHF muscles. In primary osteoblast cultures, TNFalpha, MIP2 and MIP3a treatment increased PLF levels in a dose dependent manner. Also in primary osteoblast cultures, increased PLF promoted proliferation and differentiation, the latter assessed by measuring Runx2, alkaline phosphatase (ALP) and osteocalcin mRNA levels; ALP activity; as well as calcium deposition and mineralization. Increased PLF also promoted cell adhesion in MC3T3-E1 osteoblast-like cell cultures. Thus, tissue loading in vivo resulted in increased TNFalpha, which increased PLF, which then induced anabolic bone formation, the latter results confirmed in vitro.
Collapse
Affiliation(s)
- Shobha Rani
- Department of Anatomy and Cell Biology, Temple Medical School, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
22
|
De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 2010; 8:e1000384. [PMID: 20485488 PMCID: PMC2867938 DOI: 10.1371/journal.pbio.1000384] [Citation(s) in RCA: 659] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 04/21/2010] [Indexed: 01/17/2023] Open
Abstract
A substantial fraction of extragenic Pol II transcription sites coincides with transcriptional enhancers, which may be relevant for functional annotation of mammalian genomes. Mammalian genomes are pervasively transcribed outside mapped protein-coding genes. One class of extragenic transcription products is represented by long non-coding RNAs (lncRNAs), some of which result from Pol_II transcription of bona-fide RNA genes. Whether all lncRNAs described insofar are products of RNA genes, however, is still unclear. Here we have characterized transcription sites located outside protein-coding genes in a highly regulated response, macrophage activation by endotoxin. Using chromatin signatures, we could unambiguously classify extragenic Pol_II binding sites as belonging to either canonical RNA genes or transcribed enhancers. Unexpectedly, 70% of extragenic Pol_II peaks were associated with genomic regions with a canonical chromatin signature of enhancers. Enhancer-associated extragenic transcription was frequently adjacent to inducible inflammatory genes, was regulated in response to endotoxin stimulation, and generated very low abundance transcripts. Moreover, transcribed enhancers were under purifying selection and contained binding sites for inflammatory transcription factors, thus suggesting their functionality. These data demonstrate that a large fraction of extragenic Pol_II transcription sites can be ascribed to cis-regulatory genomic regions. Discrimination between lncRNAs generated by canonical RNA genes and products of transcribed enhancers will provide a framework for experimental approaches to lncRNAs and help complete the annotation of mammalian genomes. Mammalian genomes contain vast intergenic regions that are extensively transcribed and generate various types of short and long non-coding RNAs (ncRNAs). Although in some cases specific functions have been assigned to intergenic transcripts, the functional significance of this transcriptional output remains largely unknown, and the possibility exists that part of this transcription reflects noise generated by random collisions of the transcriptional machinery with the genome to generate meaningless transcription. In this study we used chromatin signatures to characterize extragenic transcription sites targeted by RNA Polymerase II (RNA Pol II) in a highly regulated response—endotoxin activation of macrophages. We found that a significant portion of extragenic transcription sites are associated with the chromatin signature characteristic of enhancers. Consistent with their chromatin signature, we found that these extragenic transcription sites are under purifying selection and contain binding sites for inflammatory transcription factors, as well as for PU.1, a hematopoietic transcription factor that marks enhancers in macrophages. Moreover, much of this extragenic transcription is regulated by stimulation. We also identified hundreds of transcribed regions with a signature of canonical RNA genes. Our data indicate that extragenic transcription sites can be efficiently classified using chromatin signatures, which will be relevant for functional annotation of mammalian genomes.
Collapse
Affiliation(s)
- Francesca De Santa
- Department of Experimental Oncology, European Institute of Oncology (IEO) Campus IFOM-IEO, Milan, Italy
| | - Iros Barozzi
- Department of Experimental Oncology, European Institute of Oncology (IEO) Campus IFOM-IEO, Milan, Italy
| | - Flore Mietton
- Department of Experimental Oncology, European Institute of Oncology (IEO) Campus IFOM-IEO, Milan, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) Campus IFOM-IEO, Milan, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) Campus IFOM-IEO, Milan, Italy
| | - Betsabeh Khoramian Tusi
- Department of Experimental Oncology, European Institute of Oncology (IEO) Campus IFOM-IEO, Milan, Italy
| | - Heiko Muller
- Department of Experimental Oncology, European Institute of Oncology (IEO) Campus IFOM-IEO, Milan, Italy
| | - Jiannis Ragoussis
- Genomics Laboratory, Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford, Oxford, United Kingdom
| | - Chia-Lin Wei
- Genome Technology and Biology Group, Genome Institute of Singapore, Singapore
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO) Campus IFOM-IEO, Milan, Italy
- * E-mail:
| |
Collapse
|
23
|
Abstract
Atrial fibrillation (AF) is the most common clinically encountered abnormal heart beat. It is associated with an increased risk of stroke and symptoms of heart failure. Current therapies are directed toward controlling the rate of ventricular activation and preventing strokes through anticoagulation. Attempts at suppressing the arrhythmia are often ineffective, in part because the underlying pathogenesis is poorly understood. Recently, structural and electrical remodeling has been shown to occur during AF. These changes involve alterations in gene regulation and help perpetuate the arrhythmia. Some signals for remodeling are have been identified. Moreover, AF is associated with oxidative stress, and this redox imbalance may contribute to the altered gene regulation. One likely mediator of this change in transcriptional regulation is the redox sensitive transcription factor, nuclear factor-kappaB (NF-kappaB). Recently, NF-kappaB has been shown to downregulate transcription of the cardiac sodium channel in response to oxidative stress. NF-kappaB may contribute to the regulation of other ion channels, transcription factors, or splicing factors altered in AF and may represent a therapeutic target in AF management.
Collapse
Affiliation(s)
- Ge Gao
- Section of Cardiology, University of Illinois at Chicago, and the Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA
| | | |
Collapse
|
24
|
Conner JR, Smirnova II, Poltorak A. A mutation in Irak2c identifies IRAK-2 as a central component of the TLR regulatory network of wild-derived mice. ACTA ACUST UNITED AC 2009; 206:1615-31. [PMID: 19564352 PMCID: PMC2715079 DOI: 10.1084/jem.20090490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In a phenotypic screen of the wild-derived mouse strain MOLF/Ei, we describe an earlier and more potent toll-like receptor (TLR)–mediated induction of IL-6 transcription compared with the classical inbred strain C57BL/6J. The phenotype correlated with increased activity of the IκB kinase axis as well as p38, but not extracellular signal-regulated kinase or c-Jun N-terminal kinase, mitogen-activated protein kinase (MAPK) phosphorylation. The trait was mapped to the Why1 locus, which contains Irak2, a gene previously implicated as sustaining the late phase of TLR responses. In the MOLF/Ei TLR signaling network, IRAK-2 promotes early nuclear factor κB (NF-κB) activity and is essential for the activation of p38 MAPK. We identify a deletion in the MOLF/Ei promoter of the inhibitory Irak2c gene, leading to an increased ratio of pro- to antiinflammatory IRAK-2 isoforms. These findings demonstrate that IRAK-2 is an essential component of the early TLR response in MOLF/Ei mice and show a distinct pathway of p38 and NF-κB activation in this model organism. In addition, they demonstrate that studies in evolutionarily divergent model organisms are essential to complete dissection of signal transduction pathways.
Collapse
Affiliation(s)
- James R Conner
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
25
|
BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes. Biochem J 2009; 417:457-66. [PMID: 18831712 DOI: 10.1042/bj20080925] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BCL11B is a transcriptional regulator with an important role in T-cell development and leukaemogenesis. We demonstrated recently that BCL11B controls expression from the IL (interleukin)-2 promoter through direct binding to the US1 (upstream site 1). In the present study, we provide evidence that BCL11B also participates in the activation of IL-2 gene expression by enhancing NF-kappaB (nuclear factor kappaB) activity in the context of TCR (T-cell receptor)/CD28-triggered T-cell activation. Enhanced NF-kappaB activation is not a consequence of BCL11B binding to the NF-kappaB response elements or association with the NF-kappaB-DNA complexes, but rather the result of higher translocation of NF-kappaB to the nucleus caused by enhanced degradation of IkappaB (inhibitor of NF-kappaB). The enhanced IkappaB degradation in cells with increased levels of BCL11B was specific for T-cells activated through the TCR, but not for cells activated through TNFalpha (tumour necrosis factor alpha) or UV light, and was caused by increased activity of IkappaB kinase, as indicated by its increase in phosphorylation. As BCL11B is a transcription factor, we investigated whether the expression of genes upstream of IkappaB kinase in the TCR/CD28 signalling pathway was affected by increased BCL11B expression, and found that Cot (cancer Osaka thyroid oncogene) kinase mRNA levels were elevated. Cot kinase is known to promote enhanced IkappaB kinase activity, which results in the phosphorylation and degradation of IkappaB and activation of NF-kappaB. The implied involvement of Cot kinase in BCL11B-mediated NF-kappaB activation in response to TCR activation is supported by the fact that a Cot kinase dominant-negative mutant or Cot kinase siRNA (small interfering RNA) knockdown blocked BCL11B-mediated NF-kappaB activation. In support of our observations, in the present study we report that BCL11B enhances the expression of several other NF-kappaB target genes, in addition to IL-2. In addition, we provide evidence that BCL11B associates with intron 2 of the Cot kinase gene to regulate its expression.
Collapse
|
26
|
Joo M, Kwon M, Azim AC, Sadikot RT, Blackwell TS, Christman JW. Genetic determination of the role of PU.1 in macrophage gene expression. Biochem Biophys Res Commun 2008; 372:97-102. [PMID: 18485892 PMCID: PMC2494535 DOI: 10.1016/j.bbrc.2008.04.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 04/30/2008] [Indexed: 01/29/2023]
Abstract
PU.1, an Ets family transcription factor, mediates macrophage effector function in inflammation by regulating gene expression. But, the extent and nature of PU.1 function in gene expression has not been genetically determined because ablation of PU.1 gene abolishes macrophage development. Here, we epigenetically suppressed PU.1 by stably expressing PU.1 specific siRNA in macrophages, and determined the effect of PU.1 deficiency on expressions of key inflammatory genes: Toll-like receptor 4 (TLR4), cyclooxygenase-2 (COX-2), and macrophage inflammatory protein-1alpha (MIP-1alpha). PU.1-silenced cell lines expressed lower TLR4 mRNA and COX-2 protein, but higher MIP-1alpha protein, than controls. Over-expression of PU.1 suppressed lipopolysaccharide-induced MIP-1alpha production. PU.1 occupied proximal and distal cognate sites in the endogenous MIP-1alpha promoter, but dissociated only from the distal sites in response to lipopolysaccharide, suggesting a novel negative regulatory mechanism by PU.1. Together, our results defined PU.1 function in differentially regulating expressions of TLR4, COX-2, and MIP-1alpha.
Collapse
Affiliation(s)
- Myungsoo Joo
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, B1222 MCN, Nashville, TN 37232-2650, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Shu ST, Nadella MVP, Dirksen WP, Fernandez SA, Thudi NK, Werbeck JL, Lairmore MD, Rosol TJ. A novel bioluminescent mouse model and effective therapy for adult T-cell leukemia/lymphoma. Cancer Res 2008; 67:11859-66. [PMID: 18089816 DOI: 10.1158/0008-5472.can-07-1701] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adult T-cell /lymphomaleukemia (ATLL) is caused by human T-cell lymphotropic virus type 1 (HTLV-1). Approximately 80% of ATLL patients develop humoral hypercalcemia of malignancy (HHM), a life-threatening complication leading to a poor prognosis. Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1 alpha (MIP-1 alpha) are important factors in the pathogenesis of HHM in ATLL and the expression of PTHrP can be activated by nuclear factor kappaB (NF-kappaB). NF-kappaB is constitutively activated in ATLL cells and is essential for leukemogenesis including transformation of lymphocytes infected by HTLV-1. Our goal was to evaluate the effects of NF-kappaB disruption by a proteasomal inhibitor (PS-341) and osteoclastic inhibition by zoledronic acid (Zol) on the development of ATLL and HHM using a novel bioluminescent mouse model. We found that PS-341 decreased cell viability, increased apoptosis, and down-regulated PTHrP expression in ATLL cells in vitro. To investigate the in vivo efficacy, nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice were xenografted with ATLL cells and treated with vehicle control, PS-341, Zol, or a combination of PS-341 and Zol. Bioluminescent imaging and tumor cell count showed a significant reduction in tumor burden in mice from all treatment groups. All treatments also significantly reduced the plasma calcium concentrations. Zol treatment increased trabecular bone volume and decreased osteoclast parameters. PS-341 reduced PTHrP and MIP-1 alpha expression in tumor cells in vivo. Our results indicate that both PS-341 and Zol are effective treatments for ATLL and HHM, which are refractory to conventional therapy.
Collapse
Affiliation(s)
- Sherry T Shu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43214, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Nam JS, Kang MJ, Suchar AM, Shimamura T, Kohn EA, Michalowska AM, Jordan VC, Hirohashi S, Wakefield LM. Chemokine (C-C motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells. Cancer Res 2006; 66:7176-84. [PMID: 16849564 PMCID: PMC1557381 DOI: 10.1158/0008-5472.can-06-0825] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dysadherin, a cancer-associated membrane glycoprotein, down-regulates E-cadherin and promotes cancer metastasis. This study examined the role of dysadherin in breast cancer progression. Expression of dysadherin was found to be highest in breast cancer cell lines and tumors that lacked the estrogen receptor (ER). Knockdown of dysadherin caused increased association of E-cadherin with the actin cytoskeleton in breast cancer cell lines that expressed E-cadherin. However, knockdown of dysadherin could still suppress cell invasiveness in cells that had no functional E-cadherin, suggesting the existence of a novel mechanism of action. Global gene expression analysis identified chemokine (C-C motif) ligand 2 (CCL2) as the transcript most affected by dysadherin knockdown in MDA-MB-231 cells, and dysadherin was shown to regulate CCL2 expression in part through activation of the nuclear factor-kappaB pathway. The ability of dysadherin to promote tumor cell invasion in vitro was dependent on the establishment of a CCL2 autocrine loop, and CCL2 secreted by dysadherin-positive tumor cells also promoted endothelial cell migration in a paracrine fashion. Finally, experimental suppression of CCL2 in MDA-MB-231 cells reduced their ability to metastasize in vivo. This study shows that dysadherin has prometastatic effects that are independent of E-cadherin expression and that CCL2 could play an important role in mediating the prometastatic effect of dysadherin in ER-negative breast cancer.
Collapse
Affiliation(s)
- Jeong-Seok Nam
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | - Mi-Jin Kang
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | - Adam M. Suchar
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | - Takeshi Shimamura
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Ethan A. Kohn
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | - Aleksandra M. Michalowska
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | - V. Craig Jordan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | - Setsuo Hirohashi
- Pathology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Lalage M. Wakefield
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA
- Correspondence to: Lalage M. Wakefieldm, Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Building 41, Room C629, 41 Library Drive MSC 5055, Bethesda, Maryland 20892-5055, USA. Phone: (301) 496-8351; Fax: (301) 496-8395; E-mail:
| |
Collapse
|
29
|
Lee CW, Bennouna S, Denkers EY. Screening for Toxoplasma gondii-regulated transcriptional responses in lipopolysaccharide-activated macrophages. Infect Immun 2006; 74:1916-23. [PMID: 16495567 PMCID: PMC1418623 DOI: 10.1128/iai.74.3.1916-1923.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii-infected macrophages are blocked in production of the proinflammatory cytokines interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-alpha) upon activation with lipopolysaccharide (LPS). Here, we used pathway-focused cDNA arrays to identify additional T. gondii-regulated transcriptional responses. Parasite infection decreased 57 (inclusive of IL-12 and TNF-alpha) and increased expression of 7 of 77 LPS-activated cytokine and cytokine-related genes. Interestingly, we found that the LPS-induced transcriptional response of the anti-inflammatory cytokine IL-10 was synergistically increased by T. gondii, results that we validated by conventional reverse transcription-PCR and enzyme-linked immunosorbent assay. Importantly, although the parasite exerted disparate effects in LPS-signaling leading to TNF-alpha versus IL-10 production, both responses required functional Toll-like receptor 4. We suggest that these effects represent parasite defense mechanisms to avoid or delay induction of antimicrobial activity and/or T-cell-mediated immunity during Toxoplasma infection.
Collapse
Affiliation(s)
- Chiang W Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | |
Collapse
|
30
|
Pradervand S, Maurya MR, Subramaniam S. Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages. Genome Biol 2006; 7:R11. [PMID: 16507166 PMCID: PMC1431720 DOI: 10.1186/gb-2006-7-2-r11] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/25/2005] [Accepted: 01/18/2006] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Release of immuno-regulatory cytokines and chemokines during inflammatory response is mediated by a complex signaling network. Multiple stimuli produce different signals that generate different cytokine responses. Current knowledge does not provide a complete picture of these signaling pathways. However, using specific markers of signaling pathways, such as signaling proteins, it is possible to develop a 'coarse-grained network' map that can help understand common regulatory modules for various cytokine responses and help differentiate between the causes of their release. RESULTS Using a systematic profiling of signaling responses and cytokine release in RAW 264.7 macrophages made available by the Alliance for Cellular Signaling, an analysis strategy is presented that integrates principal component regression and exhaustive search-based model reduction to identify required signaling factors necessary and sufficient to predict the release of seven cytokines (G-CSF, IL-1alpha, IL-6, IL-10, MIP-1alpha, RANTES, and TNFalpha) in response to selected ligands. This study provides a model-based quantitative estimate of cytokine release and identifies ten signaling components involved in cytokine production. The models identified capture many of the known signaling pathways involved in cytokine release and predict potentially important novel signaling components, like p38 MAPK for G-CSF release, IFNgamma- and IL-4-specific pathways for IL-1a release, and an M-CSF-specific pathway for TNFalpha release. CONCLUSION Using an integrative approach, we have identified the pathways responsible for the differential regulation of cytokine release in RAW 264.7 macrophages. Our results demonstrate the power of using heterogeneous cellular data to qualitatively and quantitatively map intermediate cellular phenotypes.
Collapse
Affiliation(s)
- Sylvain Pradervand
- Bioinformatics and Data Coordination Laboratory, Alliance for Cellular Signaling, San Diego Supercomputer Center, University of California at San Diego, Gilman Drive, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California at San Diego, Gilman Drive, La Jolla, CA 92093, USA
| | - Mano R Maurya
- Bioinformatics and Data Coordination Laboratory, Alliance for Cellular Signaling, San Diego Supercomputer Center, University of California at San Diego, Gilman Drive, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California at San Diego, Gilman Drive, La Jolla, CA 92093, USA
| | - Shankar Subramaniam
- Bioinformatics and Data Coordination Laboratory, Alliance for Cellular Signaling, San Diego Supercomputer Center, University of California at San Diego, Gilman Drive, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California at San Diego, Gilman Drive, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California at San Diego, Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Luo Q, Ma X, Wahl SM, Bieker JJ, Crossley M, Montaner LJ. Activation and repression of interleukin-12 p40 transcription by erythroid Kruppel-like factor in macrophages. J Biol Chem 2004; 279:18451-6. [PMID: 14976188 PMCID: PMC2965204 DOI: 10.1074/jbc.m400320200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of interleukin (IL)-12 p40 in myeloid cells is attributed to the recruitment of multiple activated transcription factors such as nuclear factor kappaB (NFkappaB), CCAAT enhancer-binding protein beta, ets-2, PU.1, and so forth. We now provide the first description of the human erythroid Kruppel-like factor (EKLF) in human primary macrophages and identify the role of EKLF in IL-12 p40 expression. EKLF-specific binding to the CACCC element (-224 to -220) on the human IL-12 p40 promoter was observed in resting human primary macrophages. Functional analysis of the CACCC element revealed a dependent role for EKLF binding in activating IL-12 p40 transcription in resting RAW264.7 cells, whereas EKLF overexpression in the presence or absence of this element repressed IL-12 p40 transcription in interferon gamma/lipopolysaccharide-stimulated RAW264.7 cells. Murine endogenous IL-12 p40 mRNA was consistently induced by overexpressed EKLF in resting RAW264.7 cells, whereas EKLF suppressed IL-12 p40 expression in activated RAW264.7 cells. Modulation of nuclear binding activities at the IL-12 p40 NFkappaB half-site was induced by EKLF for down-regulation of IL-12 p40 transcription in activated RAW264.7 cells, but no effect of EKLF on NFkappaB activity was observed in resting RAW264.7 cells. Taken together, we identify EKLF as a transcription factor in macrophages able to regulate IL-12 p40 transcription depending on the cellular activation status. The bifunctional control of IL-12 p40 by EKLF and its modulation of NFkappaB support a potential function for this factor in orchestrating IL-12 p40 production in macrophages.
Collapse
Affiliation(s)
- Qi Luo
- The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Medical College, Cornell University, New York, New York 10012
| | - Sharon M. Wahl
- Cellular Immunology Section, National Institutes of Health, Bethesda, Maryland 20892
| | - James J. Bieker
- Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029
| | - Merlin Crossley
- Department of Biochemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Luis J. Montaner
- The Wistar Institute, Philadelphia, Pennsylvania 19104
- To whom correspondence should be addressed: The Wistar Institute, Philadelphia, PA 19104. Tel.: 215-898-9143; Fax: 215-573-9272;
| |
Collapse
|
32
|
Song X, Shapiro S, Goldman DL, Casadevall A, Scharff M, Lee SC. Fcgamma receptor I- and III-mediated macrophage inflammatory protein 1alpha induction in primary human and murine microglia. Infect Immun 2002; 70:5177-84. [PMID: 12183568 PMCID: PMC128255 DOI: 10.1128/iai.70.9.5177-5184.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Microglial cell phagocytic receptors may play important roles in the pathogenesis and treatment of several neurological diseases. We studied microglial Fc receptor (FcR) activation with respect to the specific FcgammaR types involved and the downstream signaling events by using monoclonal antibody (MAb)-coated Cryptococcus neoformans immune complexes as the stimuli and macrophage inflammatory protein 1alpha (MIP-1alpha) production as the final outcome. C. neoformans complexed with murine immunoglobulin G (IgG) of gamma1, gamma2a, and gamma3, but not gamma2b isotype, was effective in inducing MIP-1alpha in human microglia. Since murine gamma2b binds to human FcgammaRII (but not FcgammaRI or FcgammaRIII), these results indicate that FcgammaRI and/or FcgammaRIII is involved in MIP-1alpha production. Consistent with this, an antibody that blocks FcgammaRII (IV.3) failed to inhibit MIP-1alpha production, while an antibody that blocks FcgammaRIII (3G8) did. An anti-C. neoformans MAb, 18B7 (IgG1), but not its F(ab')(2), induced extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase kinase phosphorylation, and MIP-1alpha release was suppressed by the ERK inhibitor U0126. C. neoformans plus 18B7 also induced degradation of I-kappaBalpha, and MIP-1alpha release was suppressed by the antioxidant NF-kappaB inhibitor pyrrolidine dithiocarbamate. To confirm the role of FcR more directly, we isolated microglia from wild-type and various FcR-deficient mice and then challenged them with C. neoformans plus 18B7. While FcgammaRII-deficient microglia showed little difference from the wild-type microglia, both FcgammaRI alpha-chain- and FcgammaRIII alpha-chain-deficient microglia produced less MIP-1alpha, and the common Fc gamma-chain-deficient microglia showed no MIP-1alpha release. Taken together, our results demonstrate a definitive role for FcgammaRI and FcgammaRIII in microglial chemokine induction and implicate ERK and NF-kappaB as the signaling components leading to MIP-1alpha expression. Our results delineate a new mechanism for microglial activation and may have implications for central nervous system inflammatory diseases.
Collapse
Affiliation(s)
- Xianyuan Song
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
33
|
Choe W, Volsky DJ, Potash MJ. Activation of NF-kappaB by R5 and X4 human immunodeficiency virus type 1 induces macrophage inflammatory protein 1alpha and tumor necrosis factor alpha in macrophages. J Virol 2002; 76:5274-7. [PMID: 11967342 PMCID: PMC136147 DOI: 10.1128/jvi.76.10.5274-5277.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-kappaB is a transcriptional activator that often regulates inflammatory responses. We demonstrate that human immunodeficiency virus type 1 activates nuclear localization of NF-kappaB in macrophages in a manner dependent upon virus strain but independent of virus replication. Through the use of an inhibitor, NF-kappaB activation was found to be responsible for the cytokine and chemokine induction that we recently reported.
Collapse
Affiliation(s)
- Wonkyu Choe
- Division of Molecular Virology, St. Luke's-Roosevelt Hospital Center, Columbia University, New York, New York 10019, USA
| | | | | |
Collapse
|
34
|
Josse C, Boelaert JR, Best-Belpomme M, Piette J. Importance of post-transcriptional regulation of chemokine genes by oxidative stress. Biochem J 2001; 360:321-33. [PMID: 11716760 PMCID: PMC1222232 DOI: 10.1042/0264-6021:3600321] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transcription factor, nuclear factor kappa B (NF-kappa B), is activated by various stimuli including cytokines, radiation, viruses and oxidative stress. Here we show that, although induction with H(2)O(2) gives rise to NF-kappa B nuclear translocation in both lymphocyte (CEM) and monocyte (U937) cells, it leads only to the production of mRNA species encoding interleukin-8 (IL-8) and macrophage inflammatory protein 1 alpha in U937 cells. Under similar conditions these mRNA species are not observed in CEM cells. With the use of a transient transfection assay of U937 cells transfected with reporter constructs of the IL-8 promoter and subsequently treated with H(2)O(2), we show that (1) IL-8-promoter-driven transcription is stimulated in both U937 and CEM cells and (2) the NF-kappa B site is crucial for activation because its deletion abolishes activation by H(2)O(2). The production of IL-8 mRNA in U937 cells is inhibited by the NF-kappa B inhibitors clasto-lactacystin-beta-lactone and E-64D (l-3-trans-ethoxycarbonyloxirane-2-carbonyl-L-leucine-3-methyl amide) but requires protein synthesis de novo. Moreover, inhibition of the p38 mitogen-activated protein kinase also decreases the IL-8 mRNA up-regulation mediated by H(2)O(2). Taken together, these results show the importance of post-transcriptional events controlled by a p38-dependent pathway in the production of IL-8 mRNA in U937. The much lower activation of p38 in CEM cells in response to H(2)O(2) could explain the lack of stabilization of IL-8 mRNA in these cells.
Collapse
Affiliation(s)
- C Josse
- Laboratory of Virology and Immunology, Institute of Pathology B23, University of Liège, B-4000 Liège, Belgium
| | | | | | | |
Collapse
|
35
|
Abstract
Ets is a family of transcription factors present in species ranging from sponges to human. All family members contain an approximately 85 amino acid DNA binding domain, designated the Ets domain. Ets proteins bind to specific purine-rich DNA sequences with a core motif of GGAA/T, and transcriptionally regulate a number of viral and cellular genes. Thus, Ets proteins are an important family of transcription factors that control the expression of genes that are critical for several biological processes, including cellular proliferation, differentiation, development, transformation, and apoptosis. Here, we tabulate genes that are regulated by Ets factors and describe past, present and future strategies for the identification and validation of Ets target genes. Through definition of authentic target genes, we will begin to understand the mechanisms by which Ets factors control normal and abnormal cellular processes.
Collapse
Affiliation(s)
- V I Sementchenko
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
36
|
Rocksén D, Lilliehöök B, Larsson R, Johansson T, Bucht A. Differential anti-inflammatory and anti-oxidative effects of dexamethasone and N-acetylcysteine in endotoxin-induced lung inflammation. Clin Exp Immunol 2000; 122:249-56. [PMID: 11091282 PMCID: PMC1905762 DOI: 10.1046/j.1365-2249.2000.01373.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inhalation of bacterial endotoxin induces an acute inflammation in the lower respiratory tract. In this study, the anti-inflammatory effects of the anti-oxidant N-acetylcysteine (NAC) and the glucocorticoid dexamethasone were investigated in mice exposed to aerosolized endotoxin (lipopolysaccharide (LPS)). Powerful reduction of neutrophils in bronchoalveolar lavage fluid (BALF) was obtained by a single i.p. injection of dexamethasone (10 mg/kg), whereas treatment with NAC only resulted in reduction of neutrophils when administered at a high dose (500 mg/kg). Measurement of cytokine and chemokine expression in lung tissue revealed a significant decrease of tumour necrosis factor-alpha, IL-1alpha, IL-1beta IL-6, IL- 12p40, and MIP-1alpha mRNA when mice where treated with dexamethasone but not when treated with NAC. Analysis of oxidative burst demonstrated a remarkable reduction of oxygen radicals in BALF neutrophils after treatment with dexamethasone, whereas the effect of NAC was not significantly different from that in untreated animals. In conclusion, dexamethasone exerted both anti-inflammatory and anti-oxidative effects in acute airway inflammation, probably by blocking early events in the inflammatory cascade. In contrast, treatment with NAC resulted in a weak reduction of the inflammatory response but no inhibition of proinflammatory cytokines or reduction of oxidative burst in neutrophils. These results demonstrate dramatic differences in efficiency and also indicate that the two drugs have different actions. Combined treatment with NAC and dexamethasone revealed an additive action but no synergy was observed.
Collapse
Affiliation(s)
- D Rocksén
- Department of Biomedicine, Defence Research Establishment, Umeå, Sweden
| | | | | | | | | |
Collapse
|
37
|
Abstract
The vertebrate transcription factor NF-kappaB is induced by over 150 different stimuli. Active NF-kappaB, in turn, participates in the control of transcription of over 150 target genes. Because a large variety of bacteria and viruses activate NF-kappaB and because the transcription factor regulates the expression of inflammatory cytokines, chemokines, immunoreceptors, and cell adhesion molecules, NF-kappaB has often been termed a 'central mediator of the human immune response'. This article contains a complete listing of all NF-kappaB inducers and target genes described to date. The collected data argue that NF-kappaB functions more generally as a central regulator of stress responses. In addition, NF-kappaB activation blocks apoptosis in several cell types. Coupling stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Collapse
Affiliation(s)
- H L Pahl
- Department of Experimental Anesthesiology, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
38
|
Kim S, Mao PL, Gagliardi M, Bédard PA. C/EBPbeta (NF-M) is essential for activation of the p20K lipocalin gene in growth-arrested chicken embryo fibroblasts. Mol Cell Biol 1999; 19:5718-31. [PMID: 10409760 PMCID: PMC84423 DOI: 10.1128/mcb.19.8.5718] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1999] [Accepted: 05/05/1999] [Indexed: 11/20/2022] Open
Abstract
The p20K gene is induced in conditions of reversible growth arrest in chicken embryo fibroblasts (CEF). This expression is dependent on transcriptional activation and on a region of the promoter designated the quiescence-responsive unit (QRU). In this report, we describe the regulatory elements of the QRU responsible for activation in resting cells and characterize the trans-acting proteins interacting with these elements. We show that the QRU consists of functionally distinct domains including quiescence-specific and weak proliferation-responsive elements. The quiescence responsiveness of the QRU was mapped to two C/EBP binding sites, and the activity of the p20K promoter and its QRU was inhibited by the expression of a dominant negative mutant of C/EBPbeta in nondividing cells. The activation of QRU in response to serum starvation and contact inhibition correlated with the presence of a growth arrest-specific complex in electrophoretic mobility shift assays. This complex was supershifted by antibody for C/EBPbeta. C/EBPbeta accumulated in conditions of contact inhibition as a result of transcriptional activation. Therefore, C/EBPbeta was itself regulated as a growth arrest-specific gene in CEF. Finally, we show that the expression of p20K is regulated by linoleic acid, an essential fatty acid binding to p20K. The addition of linoleic acid to contact-inhibited CEF markedly repressed the synthesis of p20K without inducing mitogenesis. The activity of the QRU was inhibited by linoleic acid or the peroxisome proliferator-activated receptor PPARgamma2 in transient expression assays. Therefore, we have identified C/EBPbeta as a key activator of a growth arrest-specific gene in CEF and implicated an essential fatty acid, linoleic acid, in regulation of the QRU and the p20K lipocalin gene.
Collapse
Affiliation(s)
- S Kim
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | | |
Collapse
|
39
|
Czermak BJ, Lentsch AB, Bless NM, Schmal H, Friedl HP, Ward PA. Synergistic enhancement of chemokine generation and lung injury by C5a or the membrane attack complex of complement. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1513-24. [PMID: 10329604 PMCID: PMC1866590 DOI: 10.1016/s0002-9440(10)65405-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Complement plays an important role in many acute inflammatory responses. In the current studies it was demonstrated that, in the presence of either C5a or sublytic forms of the complement-derived membrane attack complex (MAC), rat alveolar macrophages costimulated with IgG immune complexes demonstrated synergistic production of C-X-C (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) and C-C (macrophage inflammatory protein-1alpha and monocyte chemoattractant-1) chemokines. In the absence of the costimulus, C5a or MAC did not induce chemokine generation. In in vivo studies, C5a and MAC alone caused limited or no intrapulmonary generation of chemokines, but in the presence of a costimulus (IgG immune complexes) C5a and MAC caused synergistic intrapulmonary generation of C-X-C and C-C chemokines but not of tumor necrosis factor alpha. Under these conditions increased neutrophil accumulation occurred, as did lung injury. These observations suggest that C5a and MAC function synergistically with a costimulus to enhance chemokine generation and the intensity of the lung inflammatory response.
Collapse
Affiliation(s)
- B J Czermak
- Department of Trauma Surgery, University of Freiburg Medical School, Freiburg/Breisgau, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Rehli M, Lichanska A, Cassady AI, Ostrowski MC, Hume DA. TFEC Is a Macrophage-Restricted Member of the Microphthalmia-TFE Subfamily of Basic Helix-Loop-Helix Leucine Zipper Transcription Factors. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The murine homologue of the TFEC was cloned as part of an analysis of the expression of the microphthalmia-TFE (MiT) subfamily of transcription factors in macrophages. TFEC, which most likely acts as a transcriptional repressor in heterodimers with other MiT family members, was identified in cells of the mononuclear phagocyte lineage, coexpressed with all other known MiT subfamily members (Mitf, TFE3, TFEB). Northern blot analysis of several different cell lineages indicated that the expression of murine TFEC (mTFEC) was restricted to macrophages. A 600-bp fragment of the TATA-less putative proximal promoter of TFEC shares features with many known macrophage-specific promoters and preferentially directs luciferase expression in the RAW264.7 macrophage cell line in transient transfection assays. Five of six putative Ets motifs identified in the TFEC promoter bind the macrophage-restricted transcription factor PU.1 under in vitro conditions and in transfected 3T3 fibroblasts; the minimal luciferase activity of the TFEC promoter could be induced by coexpression of PU.1 or the related transcription factor Ets-2. The functional importance of the tissue-restricted expression of TFEC and a possible role in macrophage-specific gene regulation require further investigation, but are likely to be linked to the role of the other MiT family members in this lineage.
Collapse
Affiliation(s)
- Michael Rehli
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| | - Agnieszka Lichanska
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| | - A. Ian Cassady
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| | | | - David A. Hume
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| |
Collapse
|
41
|
Janabi N, Hau I, Tardieu M. Negative Feedback Between Prostaglandin and α- and β-Chemokine Synthesis in Human Microglial Cells and Astrocytes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The understanding of immune surveillance and inflammation regulation in cerebral tissue is essential in the therapy of neuroimmunological disorders. We demonstrate here that primary human glial cells were able to produce α- and β-chemokines (IL-8 > growth related protein α (GROα) ≫ RANTES > microphage inflammatory protein (MIP)-1α and MIP-1β) in parallel to PGs (PGE2 and PGF2α) after proinflammatory cytokine stimulation: TNF-α + IL-1β induced all except RANTES, which was induced by TNF-α + IFN-γ. Purified cultures of astrocytes and microglia were also induced by the same combination of cytokines, to produce all these mediators except MIP-1α and MIP-1β, which were produced predominantly by astrocytes. The inhibition of PG production by indomethacin led to a 37–60% increase in RANTES, MIP-1α, and MIP-1β but not in GROα and IL-8 secretion. In contrast, inhibition of IL-8 and GRO activities using neutralizing Abs resulted in a specific 6-fold increase in PGE2 but not in PGF2α production by stimulated microglial cells and astrocytes, whereas Abs to β-chemokines had no effect. Thus, the production of PGs in human glial cells down-regulates their β-chemokine secretion, whereas α-chemokine production in these cells controls PG secretion level. These data suggest that under inflammatory conditions, the intraparenchymal production of PGs could control chemotactic gradient of β-chemokines for an appropriate effector cell recruitment or activation. Conversely, the elevated intracerebral α-chemokine levels could reduce PG secretion, preventing the exacerbation of inflammation and neurotoxicity.
Collapse
Affiliation(s)
- Nazila Janabi
- Laboratory of Virus, Neuron and Immunity, Unité de Formation et de Recherche, Kremlin Bicêtre, University of Paris-South, Paris, France
| | - Isabelle Hau
- Laboratory of Virus, Neuron and Immunity, Unité de Formation et de Recherche, Kremlin Bicêtre, University of Paris-South, Paris, France
| | - Marc Tardieu
- Laboratory of Virus, Neuron and Immunity, Unité de Formation et de Recherche, Kremlin Bicêtre, University of Paris-South, Paris, France
| |
Collapse
|
42
|
Zagariya A, Mungre S, Lovis R, Birrer M, Ness S, Thimmapaya B, Pope R. Tumor necrosis factor alpha gene regulation: enhancement of C/EBPbeta-induced activation by c-Jun. Mol Cell Biol 1998; 18:2815-24. [PMID: 9566900 PMCID: PMC110660 DOI: 10.1128/mcb.18.5.2815] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1997] [Accepted: 02/12/1998] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor alpha (TNF alpha) is a key regulatory cytokine whose expression is controlled by a complex set of stimuli in a variety of cell types. Previously, we found that the monocyte/macrophage-enriched nuclear transcription factor C/EBPbeta played an important role in the regulation of the TNF alpha gene in myelomonocytic cells. Abundant evidence suggests that other transcription factors participate as well. Here we have analyzed interactions between C/EBPbeta and c-Jun, a component of the ubiquitously expressed AP-1 complex. In phorbol myristate acetate (PMA)-treated Jurkat T cells, which did not possess endogenous C/EBPbeta, expression of c-Jun by itself had relatively little effect on TNF alpha promoter activity. However, the combination of C/EBPbeta and c-Jun was synergistic, resulting in greater than 130-fold activation. This effect required both the leucine zipper and DNA binding domains, but not the transactivation domain, of c-Jun, plus the AP-1 binding site centered 102/103 bp upstream of the transcription start site in the TNF alpha promoter. To determine if C/EBPbeta and c-Jun might cooperate to regulate the cellular TNF alpha gene in myelomonocytic cells, U937 cells that possess endogenous C/EBPbeta and were stably transfected with either wild-type c-Jun or the transactivation domain deletion mutant (TAM-67) were examined. U937 cells expressing ectopic wild-type c-Jun or TAM-67 secreted over threefold more TNF alpha than the control line in response to PMA plus lipopolysaccharide. Transient transfection of the U937 cells expressing TAM-67 suggested that TAM-67 binding to the -106/-99-bp AP-1 binding site cooperated with endogenous C/EBPbeta in the activation of the -120 TNF alpha promoter-reporter. DNA binding assays using oligonucleotides derived from the TNF alpha promoter suggested that C/EBPbeta and c-Jun interact in vitro and that the interaction may be DNA dependent. Our data demonstrate that the TNF alpha gene is regulated by the interaction of the ubiquitous AP-1 complex protein c-Jun and the monocyte/macrophage-enriched transcription factor C/EBPbeta and that this interaction contributes to the expression of the cellular TNF alpha gene in myelomonocytic cells. This interaction was unique in that it did not require the c-Jun transactivation domain, providing new insight into the cell-type-specific regulation of the TNF alpha gene.
Collapse
Affiliation(s)
- A Zagariya
- Department of Medicine, and Veterans Administration Lakeside Medical Center, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Horton MR, Burdick MD, Strieter RM, Bao C, Noble PW. Regulation of Hyaluronan-Induced Chemokine Gene Expression by IL-10 and IFN-γ in Mouse Macrophages. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.6.3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Turnover of the extracellular matrix (ECM), activation of macrophages, and accumulation of chemokines/cytokines are all hallmarks of chronic inflammation. Extracellular matrix components, such as hyaluronan (HA), have recently been shown to influence macrophage effector functions, such as the release of inflammatory chemokines and cytokines. Although low m.w. fragments of the glycosaminoglycan HA induce macrophages to secrete numerous inflammatory mediators, the mechanisms regulating ECM-induced macrophage activation are poorly understood. We have examined the effects of IL-10 and IFN-γ on HA-induced chemokine gene expression in primary mouse macrophages. We found that IL-10 and IFN-γ independently inhibit HA-induced expression of macrophage inflammatory protein-1α (MIP-1α), MIP-1β, and KC at both the mRNA and protein levels. Whereas IL-10 inhibited most of the HA-induced chemokines tested, IFN-γ selectively inhibited only MIP-1α, MIP-1β, and KC. This inhibition did not require prestimulation and occurred even when the cytokines were added up to 3 h after stimulation with HA. For MIP-1α, the inhibition by IFN-γ occurred at the level of transcription, whereas IL-10 predominantly decreased the stability of MIP-1α mRNA. IFN-γ and IL-10 equally inhibited macrophage expression of MIP-1β mRNA at the level of transcription, but MIP-1β mRNA stability was decreased to a greater extent by IL-10. These data identify a previously unrecognized role for IL-10 and IFN-γ as regulators of ECM-induced macrophage expression of inflammatory chemokines.
Collapse
Affiliation(s)
- Maureen R. Horton
- *Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Marie D. Burdick
- †Department of Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Robert M. Strieter
- †Department of Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Clare Bao
- *Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Paul W. Noble
- *Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| |
Collapse
|
44
|
Plevy SE, Gemberling JH, Hsu S, Dorner AJ, Smale ST. Multiple control elements mediate activation of the murine and human interleukin 12 p40 promoters: evidence of functional synergy between C/EBP and Rel proteins. Mol Cell Biol 1997; 17:4572-88. [PMID: 9234715 PMCID: PMC232311 DOI: 10.1128/mcb.17.8.4572] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Interleukin 12 (IL-12) is a heterodimeric cytokine whose activity is critical for T-helper 1 responses. The gene for the IL-12 p40 subunit is expressed in macrophages following induction by bacterial products, and its expression is augmented by gamma interferon. In this study, we performed a functional analysis of the murine and human p40 promoters in the murine macrophage cell line RAW 264.7. Transcription from the murine p40 promoter was strongly induced by lipopolysaccharide and heat-killed Listeria monocytogenes (HKLM), but promoter activity was not enhanced by gamma interferon. Multiple cis-acting elements involved in activated transcription were identified through an extensive mutant analysis. The most critical element, whose activity is conserved in mice and humans, is located between positions -96 and -88 relative to the murine transcription start site. This element exhibits functional synergy with a previously described NF-kappaB half-site which interacts with Rel proteins. DNase I footprinting and electrophoretic mobility shift assays demonstrated that C/EBP proteins interact with the critical element, but in nuclear extracts, cooperative binding of C/EBP and Rel proteins to their respective sites was not observed. Interestingly, promoter activity was induced by HKLM in the presence of cycloheximide, consistent with induction by posttranslational mechanisms. The results suggest that C/EBP and Rel proteins play important roles in the activation of IL-12 p40 transcription by bacteria. However, many complex interactions will need to be clarified to fully understand p40 regulation.
Collapse
Affiliation(s)
- S E Plevy
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, California 90095-1662, USA
| | | | | | | | | |
Collapse
|
45
|
Celada A, Borràs FE, Soler C, Lloberas J, Klemsz M, van Beveren C, McKercher S, Maki RA. The transcription factor PU.1 is involved in macrophage proliferation. J Exp Med 1996; 184:61-9. [PMID: 8691150 PMCID: PMC2192661 DOI: 10.1084/jem.184.1.61] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PU.1 is a tissue-specific transcription factor that is expressed in cells of the hematopoietic lineage including macrophages, granulocytes, and B lymphocytes. Bone marrow-derived macrophages transfected with an antisense PU.1 expression construct or treated with antisense oligonucleotides showed a decrease in proliferation compared with controls. In contrast, bone marrow macrophages transfected with a sense PU.1 expression construct displayed enhanced macrophage colony-stimulating factor (M-CSF)-dependent proliferation. Interestingly, there was no effect of sense or antisense constructs of PU.1 on the proliferation of the M-CSF-independent cell line, suggesting that the response was M-CSF dependent. This was further supported by the finding that macrophages transfected with a sense or an antisense PU.1 construct showed, respectively, an increased or a reduced level of surface expression of receptors for M-CSF. The enhancement of proliferation seems to be selective for PU.1, since transfections with several other members of the ets family, including ets-2 and fli-1, had no effect. Various mutants of PU.1 were also tested for their ability to affect macrophage proliferation. A reduction in macrophage proliferation was found when cells were transfected with a construct in which the DNA-binding domain of PU.1 was expressed. The PEST (proline-, glutamic acid-, serine-, and threonine-rich region) sequence of the PU.1 protein, which is an important domain for protein-protein interactions in B cells, was found to have no influence on PU.1-enhanced macrophage proliferation when an expression construct containing PU.1 minus the PEST domain was transfected into bone marrow-derived macrophages. In vivo, PU.1 is phosphorylated on several serine residues. The transfection of plasmids containing PU.1 with mutations at each of five serines showed that only positions 41 and 45 are critical for enhanced macrophage proliferation. We conclude that PU.1 is necessary for the M-CSF-dependent proliferation of macrophages. One of the proliferation-relevant targets of this transcription factor could be the M-CSF receptor.
Collapse
Affiliation(s)
- A Celada
- Departament de Fisiologia (Immunologia), Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Schatzle JD, Kralova J, Bose HR. Avian I kappa B alpha is transcriptionally induced by c-Rel and v-Rel with different kinetics. J Virol 1995; 69:5383-90. [PMID: 7636983 PMCID: PMC189381 DOI: 10.1128/jvi.69.9.5383-5390.1995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Rel/NF-kappa B family of transcription factors participates in the regulation of genes involved in defense responses, inflammation, healing and regeneration processes, and embryogenesis. The control of the transcriptional activation potential of the Rel/NF-kappa B proteins is mediated, in part, by their association with inhibitory proteins of the I kappa B family. This association results in the cytoplasmic retention of these factors until the cell receives a proper stimulatory signal. The I kappa B alpha gene is a target for regulation by the Rel/NF-kappa B proteins and is in fact upregulated in response to Rel/NF-kappa B activation. A naturally occurring oncogenic variant of the Rel/NF-kappa B family, v-rel, transforms avian lymphocytes, bone marrow cells, monocytes, and fibroblasts. Avian I kappa B alpha expression is upregulated in cells transformed by v-Rel. Avian I kappa B alpha is also upregulated in fibroblasts overexpressing c-Rel and oncogenic variants of c-Rel. c-Rel, a carboxy-terminally truncated variant of c-Rel, and v-Rel are all able to directly transactivate the expression of the avian I kappa B alpha gene. However, c-Rel was the most potent activator of this gene, and the induction of I kappa B alpha expression showed faster kinetics in cells overexpressing c-Rel than in those overexpressing v-Rel. The regulation of I kappa B alpha induction by the Rel proteins was shown to be dependent on a 362-bp region of the I kappa B alpha promoter that contains two potential NF-kappa B binding sites and one AP-1-like binding site. Results of electrophoretic mobility shift assays using these NF-kappa B binding sites indicate that major changes in the profile of DNA binding complexes in fibroblasts overexpressing v-Rel correlated temporally with the kinetic changes in v-Rel's ability to activate the expression of the I kappa B alpha gene.
Collapse
Affiliation(s)
- J D Schatzle
- Department of Microbiology, University of Texas at Austin 78712-1095, USA
| | | | | |
Collapse
|
47
|
Abstract
In vivo, equine infectious anemia virus (EIAV) replicates in tissues rich in macrophages, and it is widely believed that the tissue macrophage is the principal, if not sole, cell within the host that replicates virus. No viral replication has been detected in circulating peripheral blood monocytes. However, proviral DNA can be detected in these cells, and monocytes may serve as a reservoir for the virus. In this study, an in vitro model was developed to clarify the role of monocyte maturation in regulating EIAV expression. Freshly isolated, nonadherent equine peripheral blood monocytes were infected with a macrophage-tropic strain of EIAV, and expression of EIAV was monitored in cells held as nonadherent monocytes and cells allowed to adhere and differentiate into macrophages. A 2- to 3-day delay in viral antigen expression was observed in the nonadherent cells. This restriction of viral expression in monocytes was supported by nuclear run-on studies demonstrating that on day 5 postinfection, the level of actively transcribed viral messages was 4.7-fold lower in monocyte cultures than in macrophage cultures. Electrophoretic mobility shift assays identified three regions of the U3 enhancer that interacted with nuclear extracts from normal equine macrophages. Each region contained the core binding motif of a family of transcription factors that includes the product of the proto-oncogene ets. Antibodies to the Ets family member PU.1 caused a supershifting of retarded bands in an electrophoretic mobility shift assay. Transfection studies of ets motif mutants demonstrated that the U3 ets sites were important in the regulation of EIAV transcription in macrophages. Interactions between the ets motif and nuclear extracts from freshly isolated, nonadherent monocytes, macrophages adherent for 1 or 2 days, or macrophages adherent for 5 days gave different patterns of retarded bands, although the binding specificities were similar with all three extracts. The different complexes formed by monocyte and macrophage nuclear extracts may explain the enhanced ability of mature macrophages to support EIAV expression.
Collapse
Affiliation(s)
- W Maury
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| |
Collapse
|
48
|
Pope RM, Leutz A, Ness SA. C/EBP beta regulation of the tumor necrosis factor alpha gene. J Clin Invest 1994; 94:1449-55. [PMID: 7929820 PMCID: PMC295278 DOI: 10.1172/jci117482] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Activated macrophages contribute to chronic inflammation by the secretion of cytokines and proteinases. Tumor necrosis factor alpha (TNF alpha) is particularly important in this process because of its ability to regulate other inflammatory mediators in an autocrine and paracrine fashion. The mechanism(s) responsible for the cell type-specific regulation of TNF alpha is not known. We present data to show that the expression of TNF alpha is regulated by the transcription factor C/EBP beta (NF-IL6). C/EBP beta activated the TNF alpha gene promoter in cotransfection assays and bound to it at a site which failed to bind the closely related protein C/EBP alpha. Finally, a dominant-negative version of C/EBP beta blocked TNF alpha promoter activation in myeloid cells. Our results implicate C/EBP beta as an important regulator of TNF alpha by myelomonocytic cells.
Collapse
Affiliation(s)
- R M Pope
- Department of Medicine, Northwestern University, Chicago, Illinois
| | | | | |
Collapse
|
49
|
Cell-specific expression of the macrophage scavenger receptor gene is dependent on PU.1 and a composite AP-1/ets motif. Mol Cell Biol 1994. [PMID: 8007948 DOI: 10.1128/mcb.14.7.4408] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type I and II scavenger receptors (SRs) are highly restricted to cells of monocyte origin and become maximally expressed during the process of monocyte-to-macrophage differentiation. In this report, we present evidence that SR genomic sequences from -245 to +46 bp relative to the major transcriptional start site were sufficient to confer preferential expression of a reporter gene to cells of monocyte and macrophage origin. This profile of expression resulted from the combinatorial actions of multiple positive and negative regulatory elements. Positive transcriptional control was primarily determined by two elements, located 181 and 46 bp upstream of the major transcriptional start site. Transcriptional control via the -181 element was mediated by PU.1/Spi-1, a macrophage and B-cell-specific transcription factor that is a member of the ets domain gene family. Intriguingly, the -181 element represented a relatively low-affinity binding site for Spi-B, a closely related member of the ets domain family that has been shown to bind with relatively high affinity to other PU.1/Spi-1 binding sites. These observations support the idea that PU.1/Spi-1 and Spi-B regulate overlapping but nonidentical sets of genes. The -46 element represented a composite binding site for a distinct set of ets domain proteins that were preferentially expressed in monocyte and macrophage cell lines and that formed ternary complexes with members of the AP-1 gene family. In concert, these observations suggest a model for how interactions between cell-specific and more generally expressed transcription factors function to dictate the appropriate temporal and cell-specific patterns of SR expression during the process of macrophage differentiation.
Collapse
|
50
|
Moulton KS, Semple K, Wu H, Glass CK. Cell-specific expression of the macrophage scavenger receptor gene is dependent on PU.1 and a composite AP-1/ets motif. Mol Cell Biol 1994; 14:4408-18. [PMID: 8007948 PMCID: PMC358812 DOI: 10.1128/mcb.14.7.4408-4418.1994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The type I and II scavenger receptors (SRs) are highly restricted to cells of monocyte origin and become maximally expressed during the process of monocyte-to-macrophage differentiation. In this report, we present evidence that SR genomic sequences from -245 to +46 bp relative to the major transcriptional start site were sufficient to confer preferential expression of a reporter gene to cells of monocyte and macrophage origin. This profile of expression resulted from the combinatorial actions of multiple positive and negative regulatory elements. Positive transcriptional control was primarily determined by two elements, located 181 and 46 bp upstream of the major transcriptional start site. Transcriptional control via the -181 element was mediated by PU.1/Spi-1, a macrophage and B-cell-specific transcription factor that is a member of the ets domain gene family. Intriguingly, the -181 element represented a relatively low-affinity binding site for Spi-B, a closely related member of the ets domain family that has been shown to bind with relatively high affinity to other PU.1/Spi-1 binding sites. These observations support the idea that PU.1/Spi-1 and Spi-B regulate overlapping but nonidentical sets of genes. The -46 element represented a composite binding site for a distinct set of ets domain proteins that were preferentially expressed in monocyte and macrophage cell lines and that formed ternary complexes with members of the AP-1 gene family. In concert, these observations suggest a model for how interactions between cell-specific and more generally expressed transcription factors function to dictate the appropriate temporal and cell-specific patterns of SR expression during the process of macrophage differentiation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- Cell Nucleus/metabolism
- Cells, Cultured
- Chlorocebus aethiops
- DNA/chemistry
- DNA/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression
- HeLa Cells
- Humans
- Luciferases/biosynthesis
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Membrane Proteins
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oligodeoxyribonucleotides
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- Proto-Oncogene Proteins c-jun/metabolism
- Receptors, Immunologic/biosynthesis
- Receptors, Lipoprotein
- Receptors, Scavenger
- Retroviridae Proteins, Oncogenic
- Scavenger Receptors, Class B
- Substrate Specificity
- Transcription Factors/metabolism
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- K S Moulton
- Division of Cellular and Molecular Medicine, University of California, San Diego, La Jolla 92093-0656
| | | | | | | |
Collapse
|