1
|
Lee WH, Hong KJ, Li H, Lee GR. Transcription Factor Id1 Plays an Essential Role in Th9 Cell Differentiation by Inhibiting Tcf3 and Tcf4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305527. [PMID: 37867222 PMCID: PMC10724384 DOI: 10.1002/advs.202305527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Indexed: 10/24/2023]
Abstract
T helper type 9 (Th9) cells play important roles in immune responses by producing interleukin-9 (IL-9). Several transcription factors are responsible for Th9 cell differentiation; however, transcriptional regulation of Th9 cells is not fully understood. Here, it is shown that Id1 is an essential transcriptional regulator of Th9 cell differentiation. Id1 is induced by IL-4 and TGF-β. Id1-deficient naïve CD4 T cells fail to differentiate into Th9 cells, and overexpression of Id1 induce expression of IL-9. Mass spectrometry analysis reveals that Id1 interacts with Tcf3 and Tcf4 in Th9 cells. In addition, RNA-sequencing, chromatin immunoprecipitation, and transient reporter assay reveal that Tcf3 and Tcf4 bind to the promoter region of the Il9 gene to suppress its expression, and that Id1 inhibits their function, leading to Th9 differentiation. Finally, Id1-deficient Th9 cells ameliorate airway inflammation in an animal model of asthma. Thus, Id1 is a transcription factor that plays an essential role in Th9 cell differentiation by inhibiting Tcf3 and Tcf4.
Collapse
Affiliation(s)
- Woo Ho Lee
- Department of Life ScienceSogang University35 Baekbeom‐roMapo‐guSeoul04107South Korea
| | - Kyung Jin Hong
- Department of Life ScienceSogang University35 Baekbeom‐roMapo‐guSeoul04107South Korea
| | - Hua‐Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of Medicine280 Chongqing South Rd, Building #5‐602Shanghai200025China
| | - Gap Ryol Lee
- Department of Life ScienceSogang University35 Baekbeom‐roMapo‐guSeoul04107South Korea
| |
Collapse
|
2
|
Davis EE, Balasubramanian R, Kupchinsky ZA, Keefe DL, Plummer L, Khan K, Meczekalski B, Heath KE, Lopez-Gonzalez V, Ballesta-Martinez MJ, Margabanthu G, Price S, Greening J, Brauner R, Valenzuela I, Cusco I, Fernandez-Alvarez P, Wierman ME, Li T, Lage K, Barroso PS, Chan YM, Crowley WF, Katsanis N. TCF12 haploinsufficiency causes autosomal dominant Kallmann syndrome and reveals network-level interactions between causal loci. Hum Mol Genet 2021; 29:2435-2450. [PMID: 32620954 DOI: 10.1093/hmg/ddaa120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated GnRH deficiency (IGD). Here, we report 13 families (12 autosomal dominant and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12, and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD, highlight the genetic links between craniofacial patterning and GnRH dysfunction and begin to assemble the functional network that regulates the development of the GnRH axis.
Collapse
Affiliation(s)
- Erica E Davis
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA.,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ravikumar Balasubramanian
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital (MGH), Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | | | - David L Keefe
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
| | - Lacey Plummer
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
| | - Kamal Khan
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-512 Poznan, Poland
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM) Hospital Universitario La Paz, Universidad Autonoma de Madrid, IdiPAZ, Madrid, Spain and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28046 Madrid, Spain
| | - Vanesa Lopez-Gonzalez
- Medical Genetics Unit, Department of Pediatrics, Hospital Clinico, Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain and CIBERER, ISCIII, 28046 Madrid, Spain
| | - Mary J Ballesta-Martinez
- Medical Genetics Unit, Department of Pediatrics, Hospital Clinico, Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain and CIBERER, ISCIII, 28046 Madrid, Spain
| | | | - Susan Price
- Northampton General Hospital, Northampton NN1 5BD, UK
| | - James Greening
- University Hospitals of Leicester, Leicester LE3 9QP, UK
| | - Raja Brauner
- Pediatric Endocrinology Unit, Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, 75019 Paris, France
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ivon Cusco
- Department of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Paula Fernandez-Alvarez
- Department of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Margaret E Wierman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Taibo Li
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kasper Lage
- Harvard Medical School, Boston, MA 02115, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Priscila Sales Barroso
- Divisao de Endocrinologia e Metabologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, 05403-900 Brazil
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - William F Crowley
- Harvard Medical School, Boston, MA 02115, USA.,MGH Center for Human Genetics & The Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston MA 02114, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA.,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Frias AB, Boi SK, Lan X, Youngblood B. Epigenetic regulation of T cell adaptive immunity. Immunol Rev 2021; 300:9-21. [PMID: 33644866 DOI: 10.1111/imr.12943] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
The conceptualization of adaptive immunity, founded on the observation of immunological memory, has served as the basis for modern vaccination and immunotherapy approaches. This fundamental concept has allowed immunologists to explore mechanisms that enable humoral and cellular lymphocytes to tailor immune response functions to a wide array of environmental insults and remain poised for future pathogenic encounters. Until recently, for T cells it has remained unclear how memory differentiation acquires and sustains a gene expression program that grants a cell with a capacity for a heightened recall response. Recent investigations into this critical question have identified epigenetic programs as a causal molecular mechanism governing T cell subset specification and immunological memory. Here, we outline the studies that have illustrated this concept and posit on how insights into T cell adaptive immunity can be applied to improve upon existing immunotherapies.
Collapse
Affiliation(s)
- Adolfo B Frias
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shannon K Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
4
|
Lister JA, Baron MH. Induction of basic helix-loop-helix protein-containing complexes during erythroid differentiation. Gene Expr 2018; 7:25-38. [PMID: 9572395 PMCID: PMC6151944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The involvement of basic helix-loop-helix (bHLH) transcription factors in erythroid differentiation and development has been established by forced expression of the proteins TAL1 and Id1 in cultured cell lines and by targeted disruption of the mouse TAL1 gene. To better understand the mechanism by which bHLH proteins regulate erythropoiesis, we have investigated HLH protein-DNA interactions in mouse erythroleukemia (MEL) cells before and during chemically induced differentiation. Three bHLH (E-box) binding activities were found to be induced in nuclei from differentiating MEL cells. Using specific antisera, we have demonstrated that these complexes are dimers of TAL1 and ubiquitous E proteins. Similar complexes were detected in nuclear extracts from a human erythroid cell line, K562, and from mouse fetal liver. All three bHLH complexes were disrupted in vitro by Id1, a dominant-negative HLH protein that we and others have previously shown to antagonize MEL cell differentiation. During differentiation of an Id1-overexpressing MEL cell line, induction of a complex containing TAL1 and E2A was not only blocked but reduced below the levels seen in undifferentiating cells. These observations are consistent with the idea that TAL1 and Id1 have opposing effects on erythroid differentiation and that the level of TAL1/E2A heterodimer and/or another E protein-containing complex may influence the decision of a cell to terminally differentiate.
Collapse
Affiliation(s)
- James A. Lister
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138
| | - Margaret H. Baron
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138
- Address correspondence to Margaret H. Baron at her present address: The Mount Sinai School of Medicine, Box 1079, Research Building East, Rm 11-70B, 1425 Madison Avenue, New York, NY 10029. Tel: (212) 824-7420; Fax: (212) 996-1029; E-mail:
| |
Collapse
|
5
|
Vacchio MS, Bosselut R. What Happens in the Thymus Does Not Stay in the Thymus: How T Cells Recycle the CD4+-CD8+ Lineage Commitment Transcriptional Circuitry To Control Their Function. THE JOURNAL OF IMMUNOLOGY 2017; 196:4848-56. [PMID: 27260768 DOI: 10.4049/jimmunol.1600415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/06/2016] [Indexed: 12/24/2022]
Abstract
MHC-restricted CD4(+) and CD8(+) T cells are at the core of most adaptive immune responses. Although these cells carry distinct functions, they arise from a common precursor during thymic differentiation, in a developmental sequence that matches CD4 and CD8 expression and functional potential with MHC restriction. Although the transcriptional control of CD4(+)-CD8(+) lineage choice in the thymus is now better understood, less was known about what maintains the CD4(+) and CD8(+) lineage integrity of mature T cells. In this review, we discuss the mechanisms that establish in the thymus, and maintain in postthymic cells, the separation of these lineages. We focus on recent studies that address the mechanisms of epigenetic control of Cd4 expression and emphasize how maintaining a transcriptional circuitry nucleated around Thpok and Runx proteins, the key architects of CD4(+)-CD8(+) lineage commitment in the thymus, is critical for CD4(+) T cell helper functions.
Collapse
Affiliation(s)
- Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
6
|
Issuree PDA, Ng CP, Littman DR. Heritable Gene Regulation in the CD4:CD8 T Cell Lineage Choice. Front Immunol 2017; 8:291. [PMID: 28382035 PMCID: PMC5360760 DOI: 10.3389/fimmu.2017.00291] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 12/04/2022] Open
Abstract
The adaptive immune system is dependent on functionally distinct lineages of T cell antigen receptor αβ-expressing T cells that differentiate from a common progenitor in the thymus. CD4+CD8+ progenitor thymocytes undergo selection following interaction with MHC class I and class II molecules bearing peptide self-antigens, giving rise to CD8+ cytotoxic and CD4+ helper or regulatory T cell lineages, respectively. The strict correspondence of CD4 and CD8 expression with distinct cellular phenotypes has made their genes useful surrogates for investigating molecular mechanisms of lineage commitment. Studies of Cd4 and Cd8 transcriptional regulation have uncovered cis-regulatory elements that are critical for mediating epigenetic modifications at distinct stages of development to establish heritable transcriptional programs. In this review, we examine the epigenetic mechanisms involved in Cd4 and Cd8 gene regulation during T cell lineage specification and highlight the features that make this an attractive system for uncovering molecular mechanisms of heritability.
Collapse
Affiliation(s)
- Priya D A Issuree
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine , New York, NY , USA
| | - Charles P Ng
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine , New York, NY , USA
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Godoy PRDV, Montaldi APL, Sakamoto-Hojo ET. HEB silencing induces anti-proliferative effects on U87MG cells cultured as neurospheres and monolayers. Mol Med Rep 2016; 14:5253-5260. [PMID: 27779678 DOI: 10.3892/mmr.2016.5877] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/14/2016] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal tumor and novel strategies are required to overcome resistance. Transcription factor 12 (HEB) has been associated with neural and stem cell proliferation, is overexpressed in certain tumor types and is induced in irradiated U87MG cells. The present study aimed to determine whether HEB knockdown, with or without irradiation, may sensitize GBM cells. U87MG GBM and ACBRI‑371 primary human astrocytes were cultured in monolayers or neurospheres. Cell proliferation and death, cell cycle and sub‑G1 detection, and cluster of differentiation (CD) 133 immunofluorescence were analyzed by flow cytometry, whereas HEB protein expression was analyzed by immunocytochemistry and western blotting. Greater HEB protein expression was observed in U87MG neurospheres compared with ACBRI‑371, and the two cell lines exhibited nuclear HEB expression. HEB silencing in cells grown in monolayers induced a significant reduction in proliferation and decreased the proportion of cells in G0/G1 phase. In addition, HEB silencing reduced (two‑fold) the number of neurospheres compared with control scrambled (SCR) cells. HEB silencing combined with irradiation reduced U87MG cell proliferation when cultured in monolayers and reduced neurosphere cell number compared with the SCR irradiated group; however, not significantly. Differentiation of U87MG cells from neurospheres was reduced in HEB‑silenced cells, whereas in irradiated cells the proportion of CD133+ cells was similar in HEB‑silenced cells compared with the SCR control. These results suggest that HEB may contribute to the proliferation and maintenance of GBM cells. However, only limited effects were exerted by irradiation in HEB‑silenced cells. HEB may be a potential target to decrease proliferation in U87MG GBM cells, grown as monolayers or neurospheres, and may provide important information for the development of novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Paulo R D V Godoy
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040‑901, Brazil
| | - Ana Paula L Montaldi
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040‑901, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040‑901, Brazil
| |
Collapse
|
8
|
Seo W, Taniuchi I. Transcriptional regulation of early T-cell development in the thymus. Eur J Immunol 2016; 46:531-8. [DOI: 10.1002/eji.201545821] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/30/2015] [Accepted: 01/08/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Wooseok Seo
- Laboratory for Transcriptional Regulation; RIKEN Center for Integrative Medical Sciences; Yokohama Kanagawa Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation; RIKEN Center for Integrative Medical Sciences; Yokohama Kanagawa Japan
| |
Collapse
|
9
|
Witte S, O'Shea JJ, Vahedi G. Super-enhancers: Asset management in immune cell genomes. Trends Immunol 2015; 36:519-26. [PMID: 26277449 DOI: 10.1016/j.it.2015.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 12/29/2022]
Abstract
Super-enhancers (SEs) are regions of the genome consisting of clusters of regulatory elements bound with very high amounts of transcription factors, and this architecture appears to be the hallmark of genes and noncoding RNAs linked with cell identity. Recent studies have identified SEs in CD4(+) T cells and have further linked these regions to single nucleotide polymorphisms (SNPs) associated with immune-mediated disorders, pointing to an important role for these structures in the T cell differentiation and function. Here we review the features that define SEs, and discuss their function within the broader understanding of the mechanisms that define immune cell identity and function. We propose that SEs present crucial regulatory hubs, coordinating intrinsic and extrinsic differentiation signals, and argue that delineating these regions will provide important insight into the factors and mechanisms that define immune cell identity.
Collapse
Affiliation(s)
- Steven Witte
- Lymphocyte Cell Biology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Abstract
During blood cell development, hematopoietic stem cells generate diverse mature populations via several rounds of binary fate decisions. At each bifurcation, precursors adopt one fate and inactivate the alternative fate either stochastically or in response to extrinsic stimuli and stably maintain the selected fates. Studying of these processes would contribute to better understanding of etiology of immunodeficiency and leukemia, which are caused by abnormal gene regulation during the development of hematopoietic cells. The CD4(+) helper versus CD8(+) cytotoxic T-cell fate decision serves as an excellent model to study binary fate decision processes. These two cell types are derived from common precursors in the thymus. Positive selection of their TCRs by self-peptide presented on either MHC class I or class II triggers their fate decisions along with mutually exclusive retention and silencing of two coreceptors, CD4 and CD8. In the past few decades, extensive effort has been made to understand the T-cell fate decision processes by studying regulation of genes encoding the coreceptors and selection processes. These studies have identified several key transcription factors and gene regulatory networks. In this chapter, I will discuss recent advances in our understanding of the binary cell fate decision processes of T cells.
Collapse
Affiliation(s)
- Takeshi Egawa
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
11
|
Goodings C, Tripathi R, Cleveland SM, Elliott N, Guo Y, Shyr Y, Davé UP. Enforced expression of E47 has differential effects on Lmo2-induced T-cell leukemias. Leuk Res 2014; 39:100-9. [PMID: 25499232 DOI: 10.1016/j.leukres.2014.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/30/2014] [Accepted: 11/22/2014] [Indexed: 11/18/2022]
Abstract
LIM domain only-2 (LMO2) overexpression in T cells induces leukemia but the molecular mechanism remains to be elucidated. In hematopoietic stem and progenitor cells, Lmo2 is part of a protein complex comprised of class II basic helix loop helix proteins, Tal1and Lyl1. The latter transcription factors heterodimerize with E2A proteins like E47 and Heb to bind E boxes. LMO2 and TAL1 or LYL1 cooperate to induce T-ALL in mouse models, and are concordantly expressed in human T-ALL. Furthermore, LMO2 cooperates with the loss of E2A suggesting that LMO2 functions by creating a deficiency of E2A. In this study, we tested this hypothesis in Lmo2-induced T-ALL cell lines. We transduced these lines with an E47/estrogen receptor fusion construct that could be forced to homodimerize with 4-hydroxytamoxifen. We discovered that forced homodimerization induced growth arrest in 2 of the 4 lines tested. The lines sensitive to E47 homodimerization accumulated in G1 and had reduced S phase entry. We analyzed the transcriptome of a resistant and a sensitive line to discern the E47 targets responsible for the cellular effects. Our results suggest that E47 has diverse effects in T-ALL but that functional deficiency of E47 is not a universal feature of Lmo2-induced T-ALL.
Collapse
Affiliation(s)
- Charnise Goodings
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rati Tripathi
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan M Cleveland
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Natalina Elliott
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Guo
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Utpal P Davé
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Yang J, Li X, Morrell NW. Id proteins in the vasculature: from molecular biology to cardiopulmonary medicine. Cardiovasc Res 2014; 104:388-98. [PMID: 25274246 DOI: 10.1093/cvr/cvu215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The inhibitors of differentiation (Id) proteins belong to the helix-loop-helix group of transcription factors and regulate cell differentiation and proliferation. Recent studies have reported that Id proteins play important roles in cardiogenesis and formation of the vasculature. We have also demonstrated that heritable pulmonary arterial hypertension (HPAH) patients have dysregulated Id gene expression in pulmonary artery smooth muscle cells. The interaction between bone morphogenetic proteins and other growth factors or cytokines regulates Id gene expression, which impacts on pulmonary vascular cell differentiation and proliferation. Exploration of the roles of Id proteins in vascular remodelling that occurs in PAH and atherosclerosis might provide new insights into the molecular basis of these diseases. In addition, current progress in identification of the interactors of Id proteins will further the understanding of the function of Ids in vascular cells and enable the identification of novel targets for therapy in PAH and other cardiovascular diseases.
Collapse
Affiliation(s)
- Jun Yang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 DongdanSantiao, Beijing 100005, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
13
|
Abstract
As members of the basic helix-loop-helix (bHLH) family of transcription factors, E proteins function in the immune system by directing and maintaining a vast transcriptional network that regulates cell survival, proliferation, differentiation, and function. Proper activity of this network is essential to the functionality of the immune system. Aberrations in E protein expression or function can cause numerous defects, ranging from impaired lymphocyte development and immunodeficiency to aberrant function, cancer, and autoimmunity. Additionally, disruption of inhibitor of DNA-binding (Id) proteins, natural inhibitors of E proteins, can induce additional defects in development and function. Although E proteins have been investigated for several decades, their study continues to yield novel and exciting insights into the workings of the immune system. The goal of this chapter is to discuss the various classical roles of E proteins in lymphocyte development and highlight new and ongoing research into how these roles, if compromised, can lead to disease.
Collapse
Affiliation(s)
- Ian Belle
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA.
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA
| |
Collapse
|
14
|
Myor/ABF-1 mRNA [corrected] Expression Marks Follicular Helper T Cells but Is Dispensable for Tfh Cell Differentiation and Function In Vivo. PLoS One 2013; 8:e84415. [PMID: 24386375 PMCID: PMC3873420 DOI: 10.1371/journal.pone.0084415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/20/2013] [Indexed: 11/27/2022] Open
Abstract
Follicular T helper cells (Tfh) are crucial for effective antibody responses and long term T cell-dependent humoral immunity. Although many studies are devoted to this novel T helper cell population, the molecular mechanisms governing Tfh cell differentiation have yet to be characterized. MyoR/ABF-1 is a basic helix-loop-helix transcription factor that plays a role in the differentiation of the skeletal muscle and Hodgkin lymphoma. Here we show that MyoR mRNA is progressively induced during the course of Tfh-like cell differentiation in vitro and is expressed in Tfh responding to Alum-precipitated antigens in vivo. This expression pattern suggests that MyoR could play a role in the differentiation and/or function of Tfh cells. We tested this hypothesis using MyoR-deficient mice and found this deficiency had no impact on Tfh differentiation. Hence, MyoR-deficient mice developed optimal T-dependent humoral responses to Alum-precipitated antigens. In conclusion, MyoR is a transcription factor selectively up-regulated in CD4 T cells during Tfh cell differentiation in vitro and upon response to alum-protein vaccines in vivo, but the functional significance of this up-regulation remains uncertain.
Collapse
|
15
|
Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013; 70:4537-53. [PMID: 23793512 PMCID: PMC3827898 DOI: 10.1007/s00018-013-1393-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/24/2022]
Abstract
The differentiation and function of peripheral helper and cytotoxic T cell lineages is coupled with the expression of CD4 and CD8 coreceptor molecules, respectively. This indicates that the control of coreceptor gene expression is closely linked with the regulation of CD4/CD8 lineage decision of DP thymocytes. Research performed during the last two decades revealed comprehensive mechanistic insight into the developmental stage- and subset/lineage-specific regulation of Cd4, Cd8a and Cd8b1 (Cd8) gene expression. These studies provided important insight into transcriptional control mechanisms during T cell development and into the regulation of cis-regulatory networks in general. Moreover, the identification of transcription factors involved in the regulation of CD4 and CD8 significantly advanced the knowledge of the transcription factor network regulating CD4/CD8 cell-fate choice of DP thymocytes. In this review, we provide an overview of the identification and characterization of CD4/CD8 cis-regulatory elements and present recent progress in our understanding of how these cis-regulatory elements control CD4/CD8 expression during T cell development and in peripheral T cells. In addition, we describe the transcription factors implicated in the regulation of coreceptor gene expression and discuss how these factors are integrated into the transcription factor network that regulates CD4/CD8 cell-fate choice of DP thymocytes.
Collapse
|
16
|
HEB in the spotlight: Transcriptional regulation of T-cell specification, commitment, and developmental plasticity. Clin Dev Immunol 2012; 2012:678705. [PMID: 22577461 PMCID: PMC3346973 DOI: 10.1155/2012/678705] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 12/12/2011] [Indexed: 12/02/2022]
Abstract
The development of T cells from multipotent progenitors in the thymus occurs by cascades of interactions between signaling molecules and transcription factors, resulting in the loss of alternative lineage potential and the acquisition of the T-cell functional identity. These processes require Notch signaling and the activity of GATA3, TCF1, Bcl11b, and the E-proteins HEB and E2A. We have shown that HEB factors are required to inhibit the thymic NK cell fate and that HEBAlt allows the passage of T-cell precursors from the DN to DP stage but is insufficient for suppression of the NK cell lineage choice. HEB factors are also required to enforce the death of cells that have not rearranged their TCR genes. The synergistic interactions between Notch1, HEBAlt, HEBCan, GATA3, and TCF1 are presented in a gene network model, and the influence of thymic stromal architecture on lineage choice in the thymus is discussed.
Collapse
|
17
|
del Blanco B, García-Mariscal A, Wiest DL, Hernández-Munain C. Tcra enhancer activation by inducible transcription factors downstream of pre-TCR signaling. THE JOURNAL OF IMMUNOLOGY 2012; 188:3278-93. [PMID: 22357628 DOI: 10.4049/jimmunol.1100271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Tcra enhancer (Eα) is essential for pre-TCR-mediated activation of germline transcription and V(D)J recombination. Eα is considered an archetypical enhanceosome that acts through the functional synergy and cooperative binding of multiple transcription factors. Based on dimethylsulfate genomic footprinting experiments, there has been a long-standing paradox regarding Eα activation in the absence of differences in enhancer occupancy. Our data provide the molecular mechanism of Eα activation and an explanation of this paradox. We found that germline transcriptional activation of Tcra is dependent on constant phospholipase Cγ, as well as calcineurin- and MAPK/ERK-mediated signaling, indicating that inducible transcription factors are crucially involved. NFAT, AP-1, and early growth response factor 1, together with CREB-binding protein/p300 coactivators, bind to Eα as part of an active enhanceosome assembled during pre-TCR signaling. We favor a scenario in which the binding of lymphoid-restricted and constitutive transcription factors to Eα prior to its activation forms a regulatory scaffold to recruit factors induced by pre-TCR signaling. Thus, the combinatorial assembly of tissue- and signal-specific transcription factors dictates the Eα function. This mechanism for enhancer activation may represent a general paradigm in tissue-restricted and stimulus-responsive gene regulation.
Collapse
Affiliation(s)
- Beatriz del Blanco
- Departamento de Biología Celular e Inmunología, Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Consejo Superior de Investigaciones Científicas, 18100-Armilla, Granada, Spain
| | | | | | | |
Collapse
|
18
|
Aliahmad P, Kadavallore A, de la Torre B, Kappes D, Kaye J. TOX is required for development of the CD4 T cell lineage gene program. THE JOURNAL OF IMMUNOLOGY 2011; 187:5931-40. [PMID: 22021617 DOI: 10.4049/jimmunol.1101474] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The factors that regulate thymic development of the CD4(+) T cell gene program remain poorly defined. The transcriptional regulator ThPOK is a dominant factor in CD4(+) T cell development, which functions primarily to repress the CD8 lineage fate. Previously, we showed that nuclear protein TOX is also required for murine CD4(+) T cell development. In this study, we sought to investigate whether the requirement for TOX was solely due to a role in ThPOK induction. In apparent support of this proposition, ThPOK upregulation and CD8 lineage repression were compromised in the absence of TOX, and enforced ThPOK expression could restore some CD4 development. However, these "rescued" CD4 cells were defective in many aspects of the CD4(+) T cell gene program, including expression of Id2, Foxo1, and endogenous Thpok, among others. Thus, TOX is necessary to establish the CD4(+) T cell lineage gene program, independent of its influence on ThPOK expression.
Collapse
Affiliation(s)
- Parinaz Aliahmad
- Research Division of Immunology, Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
19
|
Jones ME, Zhuang Y. Stage-specific functions of E-proteins at the β-selection and T-cell receptor checkpoints during thymocyte development. Immunol Res 2011; 49:202-15. [PMID: 21128008 DOI: 10.1007/s12026-010-8182-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The E-protein transcription factors E2A and HEB function in a lineage- and stage-specific manner to orchestrate many critical events throughout lymphocyte development. The function of E-proteins in both B- and T-lymphocyte development has been extensively studied through the use of single-gene knockout animals. Unlike B cells, which rely primarily on E2A alone, T cells are regulated by the combinatorial expression of both E2A and HEB. Therefore, many of the roles of E-proteins during T-cell development may be masked in single-gene knockout studies due to the compensatory function of E2A and HEB. More recently, our laboratory has established double-conditional knockout models to eliminate both E2A and HEB in a stage-specific manner throughout T-cell development. These models, in combination with other complimentary genetic approaches, have identified new E-protein functions at each of the two major T-cell developmental checkpoints. Here, we will discuss how E-proteins function to regulate the expression of T-cell receptor components and cell cycle at the β-selection checkpoint, and how they control positive selection, survival, and lineage-specific gene expression at the subsequent T-cell receptor checkpoint.
Collapse
Affiliation(s)
- Mary Elizabeth Jones
- Department of Immunology, Duke University Medical Center, Box 3010, Durham, NC 27710, USA.
| | | |
Collapse
|
20
|
Xiong Y, Bosselut R. The enigma of CD4-lineage specification. Eur J Immunol 2011; 41:568-74. [PMID: 21341258 PMCID: PMC3388806 DOI: 10.1002/eji.201041098] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 11/10/2010] [Accepted: 12/15/2010] [Indexed: 01/20/2023]
Abstract
CD4(+) T cells are essential for defenses against pathogens and affect the functions of most cells involved in the immune response. Although CD4(+) T cells generally recognize peptide antigens bound to MHC-II molecules, important subsets are restricted by other MHC or MHC-like molecules, including CD1d-restricted "invariant" iNK T cells. This review discusses recently identified nodes in the transcriptional circuits that are involved in controlling CD4(+) T-cell differentiation, notably the commitment factor Thpok and its interplay with Runx transcriptional regulators, and focuses on how transcription factors acting upstream of Thpok, including Gata3, Tox and E-box proteins, promote the emergence of CD4-lineage-specific gene expression patterns.
Collapse
Affiliation(s)
- Yumei Xiong
- Laboratory of Immune Cell Biology, Center for Cancer Research (CCR), NCI, NIH, Bethesda, MD 20892-4259, USA
| | | |
Collapse
|
21
|
The epigenetic landscape of lineage choice: lessons from the heritability of CD4 and CD8 expression. Curr Top Microbiol Immunol 2011; 356:165-88. [PMID: 21989924 PMCID: PMC4417357 DOI: 10.1007/82_2011_175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Developing αβ T cells choose between the helper and cytotoxic lineages, depending upon the specificity of their T cell receptors for MHC molecules. The expression of the CD4 co-receptor on helper cells and the CD8 co-receptor on cytotoxic cells is intimately linked to this decision, and their regulation at the transcriptional level has been the subject of intense study to better understand lineage choice. Indeed, as the fate of developing T cells is decided, the expression status of these genes is accordingly locked. Genetic models have revealed important transcriptional elements and the ability to manipulate these elements in the framework of development has added a new perspective on the temporal nature of their function and the epigenetic maintenance of gene expression. We examine here novel insights into epigenetic mechanisms that have arisen through the study of these genes.
Collapse
|
22
|
Abstract
The helper versus cytotoxic-lineage choice of CD4(+)CD8(+) DP thymocytes correlates with MHC restriction of their T cell receptors and the termination of either CD8 or CD4 coreceptor expression. It has been hypothesized that transcription factors regulating the expression of the Cd4/Cd8 coreceptor genes must play a role in regulating the lineage decision of DP thymocytes. Indeed, progress made during the past decade led to the identification of several transcription factors that regulate CD4/CD8 expression that are as well important regulators of helper/cytotoxic cell fate choice. These studies provided insight into the molecular link between the regulation of coreceptor expression and lineage decision. However, studies initiated by the identification of ThPOK, a central transcription factor for helper T cell development, have offered another perspective on the cross-regulation between these two processes. Here, we review advances in our understanding of regulatory circuits composed of transcription factors and their link to epigenetic mechanisms, which play essential roles in specifying and sealing cell lineage identity during the CD4/CD8 commitment process of DP thymocytes.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, Research Center for Allergy and Immunology, RIKEN, Suehiro-cho, Turumi-ku, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
23
|
Wang L, Xiong Y, Bosselut R. Tenuous paths in unexplored territory: From T cell receptor signaling to effector gene expression during thymocyte selection. Semin Immunol 2010; 22:294-302. [PMID: 20537906 PMCID: PMC2941441 DOI: 10.1016/j.smim.2010.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/23/2010] [Indexed: 11/17/2022]
Abstract
During the last step of alphabeta T cell development, thymocytes that have rearranged genes encoding TCR chains and express CD4 and CD8 coreceptors are selected on the basis of their TCR reactivity to escape programmed cell death and become mature CD4 or CD8 T cells. This process is triggered by intrathymic TCR signaling, that activates 'sensor' transcription factors 'constitutively' expressed in DP thymocytes. Eventually, TCR-signaled thymocytes evolve effector transcriptional circuits that control basal metabolism, migration, survival and initiation of lineage-specific gene expression. This review examines how components of the 'sensing' transcription apparatus responds to positive selection signals, and highlights important differences with mature T cell responses. In a second part, we evaluate current observations and hypotheses on the connections between sensing transcription factors and effector circuitries.
Collapse
Affiliation(s)
- Lie Wang
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4259, USA
| | | | | |
Collapse
|
24
|
Schotte R, Dontje W, Nagasawa M, Yasuda Y, Bakker AQ, Spits H, Blom B. Synergy between IL-15 and Id2 Promotes the Expansion of Human NK Progenitor Cells, Which Can Be Counteracted by the E Protein HEB Required To Drive T Cell Development. THE JOURNAL OF IMMUNOLOGY 2010; 184:6670-9. [DOI: 10.4049/jimmunol.0901508] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Abstract
During alphabeta T cell development, cells diverge into alternate CD4 helper and CD8(+) cytotoxic T cell lineages. The precise correlation between a T cell's CD8 and CD4 choice and its TCR specificity to class I or class II MHC was noted more than 20 years ago, and establishing the underlying mechanism has remained a focus of intense study since then. This review deals with three formerly discrete topics that are gradually becoming interconnected: the role of TCR signaling in lineage commitment, the regulation of expression of the CD4 and CD8 genes, and transcriptional regulation of lineage commitment. It is widely accepted that TCR signaling exerts a decisive influence on lineage choice, although the underlying mechanism remains intensely debated. Current evidence suggests that both duration and intensity of TCR signaling may control lineage choice, as proposed by the kinetic signaling and quantitative instructive models, respectively. Alternate expression of the CD4 and CD8 genes is the most visible manifestation of lineage choice, and much progress has been made in defining the responsible cis elements and transcription factors. Finally, important clues to the molecular basis of lineage commitment have been provided by the recent identification of the transcription factor ThPOK as a key regulator of lineage choice. ThPOK is selectively expressed in class II-restricted cells at the CD4(+)8(lo) stage and is necessary and sufficient for development to the CD4 lineage. Given the central role of ThPOK in lineage commitment, understanding its upstream regulation and downstream gene targets is expected to reveal further important aspects of the molecular machinery underlying lineage commitment.
Collapse
Affiliation(s)
- Xi He
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
26
|
Jones ME, Kondo M, Zhuang Y. A tamoxifen inducible knock-in allele for investigation of E2A function. BMC DEVELOPMENTAL BIOLOGY 2009; 9:51. [PMID: 19822014 PMCID: PMC2765948 DOI: 10.1186/1471-213x-9-51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 10/12/2009] [Indexed: 01/02/2023]
Abstract
Background E-proteins are transcription factors important for the development of a variety of cell types, including neural, muscle and lymphocytes of the immune system. E2A, the best characterized E-protein family member in mammals, has been shown to have stage specific roles in cell differentiation, lineage commitment, proliferation, and survival. However, due to the complexity of E2A function, it is often difficult to separate these roles using conventional genetic approaches. Here, we have developed a new genetic model for reversible control of E2A protein activity at physiological levels. This system was created by inserting a tamoxifen-responsive region of the estrogen receptor (ER) at the carboxyl end of the tcfe2a gene to generate E2AER fusion proteins. We have characterized and analyzed the efficiency and kinetics of this inducible E2AER system in the context of B cell development. Results B cell development has been shown previously to be blocked at an early stage in E2A deficient animals. Our E2AER/ER mice demonstrated this predicted block in B cell development, and E2AER DNA binding activity was not detected in the absence of ligand. In vitro studies verified rapid induction of E2AER DNA binding activity upon tamoxifen treatment. While tamoxifen treatment of E2AER/ER mice showed inefficient rescue of B cell development in live animals, direct exposure of bone marrow cells to tamoxifen in an ex vivo culture was sufficient to rescue and support early B cell development from the pre-proB cell stage. Conclusion The E2AER system provides inducible and reversible regulation of E2A function at the protein level. Many previous studies have utilized over-expression systems to induce E2A function, which are complicated by the toxicity often resulting from high levels of E2A. The E2AER model instead restores E2A activity at an endogenous level and in addition, allows for tight regulation of the timing of induction. These features make our E2AER ex vivo culture system attractive to study both immediate and gradual downstream E2A-mediated events.
Collapse
Affiliation(s)
- Mary E Jones
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
27
|
McMillan RE, Sikes ML. Promoter activity 5' of Dbeta2 is coordinated by E47, Runx1, and GATA-3. Mol Immunol 2009; 46:3009-17. [PMID: 19592096 PMCID: PMC2732994 DOI: 10.1016/j.molimm.2009.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
V(D)J recombination involves the stepwise assembly of B and T cell receptor genes as lymphocytes progress through the early stages of development. While the mechanisms that restrict each step in recombination to its appropriate developmental stage are largely unknown, they share many of the components that regulate transcription. For example, enhancer-dependent modifications in histone acetylation and methylation are essential for both germline transcription and rearrangement of antigen receptor genes. Promoters positioned proximal to individual D and J gene segments in Tcra, Tcrb, Tcrd, IgH, and Igk also contribute to antigen receptor gene assembly, though their effects appear more localized than those of enhancers. Tcrb assembly initiates with D-to-J joining at each of the two D-J-C gene segment clusters in DN1/2 thymocytes. DJ joints are fused with Vbeta elements to complete Tcrb recombination in DN3 cells. We have previously shown that Dbeta2 is flanked by upstream and downstream promoters, with the 5' promoter being held inactive until D-to-J recombination deletes the NFkappaB-dependent 3' promoter. We now report that activity of the 5' promoter reflects a complex interplay among Runx1, GATA-3, and E47 transcription factors. In particular, while multiple E47 and Runx1 binding sites clustered near the Dbeta2 5'RS and overlapping inr elements define the core 5'PDbeta2, they act in concert with an array of upstream GATA-3 sites to overcome the inhibitory effects of a 110bp distal polypurine.polypyrimidine (R.Y) tract. The dependence of 5'PDbeta2 on E47 is consistent with the reported role of E proteins in post-DN1 thymocyte development and V-to-DJbeta recombination.
Collapse
Affiliation(s)
- Ruth E. McMillan
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael L. Sikes
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
28
|
Egawa T. Runx and ThPOK: A balancing act to regulate thymocyte lineage commitment. J Cell Biochem 2009; 107:1037-45. [DOI: 10.1002/jcb.22212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
del Blanco B, Roberts JL, Zamarreño N, Balmelle-Devaux N, Hernández-Munain C. Flexible Stereospecific Interactions and Composition within Nucleoprotein Complexes Assembled on the TCRα Gene Enhancer. THE JOURNAL OF IMMUNOLOGY 2009; 183:1871-83. [DOI: 10.4049/jimmunol.0803351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Wan M, Zhang J, Lai D, Jani A, Prestone-Hurlburt P, Ramachandran A, Schnitzler GR, Chi T. Molecular basis of CD4 repression by the Swi/Snf-like BAF chromatin remodeling complex. Eur J Immunol 2009; 39:580-8. [PMID: 19180471 PMCID: PMC2774848 DOI: 10.1002/eji.200838909] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Brg1/Brm-associated factor (BAF) chromatin remodeling complex directly binds the CD4 silencer and is essential for CD4 repression during T-cell development, because deletion of the ATPase subunit Brg1 or a dominant negative mutant of BAF57 each impairs CD4 repression in early thymocytes. Paradoxically, BAF57 is dispensable for remodeling nucleosomes in vitro or for binding of the BAF complex to the CD4 silencer in vivo. Thus, it is unclear whether BAF57-dependent CD4 repression involves chromatin remodeling and, if so, how the remodeling translates into CD4 repression. Here we show that nucleosomes at the CD4 silencer occupy multiple translational frames. BAF57 dominant negative mutant does not alter these frames, but reduces the accessibility of the entire silencer without affecting the flanking regions, concomitant with localized accumulation of linker histone H1 and eviction of Runx1, a key repressor of CD4 transcription that directly binds the CD4 silencer. Our data indicate that precise nucleosome positioning is not critical for the CD4 silencer function and that BAF57 participates in remodeling H1-containing chromatin at the CD4 silencer, which enables Runx1 to access the silencer and repress CD4. In addition to BAF57, multiple other subunits in the BAF complex are also dispensable for chromatin remodelling in vitro. Our data suggest that these subunits could also help remodel chromatin at a step after the recruitment of the BAF complex to target genes.
Collapse
Affiliation(s)
- Mimi Wan
- Department of Immunobiology, Yale University Medical School, New Haven, Connecticut, USA
| | - Jianmin Zhang
- Department of Immunobiology, Yale University Medical School, New Haven, Connecticut, USA
| | - Dazhi Lai
- Department of Immunobiology, Yale University Medical School, New Haven, Connecticut, USA
| | - Anant Jani
- Department of Immunobiology, Yale University Medical School, New Haven, Connecticut, USA
| | | | - Aruna Ramachandran
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - Gavin R. Schnitzler
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - Tian Chi
- Department of Immunobiology, Yale University Medical School, New Haven, Connecticut, USA
| |
Collapse
|
31
|
Nagasawa M, Schmidlin H, Hazekamp MG, Schotte R, Blom B. Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2-2 and the Ets factor Spi-B. Eur J Immunol 2008; 38:2389-400. [PMID: 18792017 DOI: 10.1002/eji.200838470] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plasmacytoid dendritic cells (pDC) are central players in the innate and adaptive immune response against viral infections. The molecular mechanism that underlies pDC development from progenitor cells is only beginning to be elucidated. Previously, we reported that the Ets factor Spi-B and the inhibitors of DNA binding protein 2 (Id2) or Id3, which antagonize E-protein activity, are crucially involved in promoting or impairing pDC development, respectively. Here we show that the basic helix-loop-helix protein E2-2 is predominantly expressed in pDC, but not in their progenitor cells or conventional DC. Forced expression of E2-2 in progenitor cells stimulated pDC development. Conversely, inhibition of E2-2 expression by RNA interference impaired the generation of pDC suggesting a key role of E2-2 in development of these cells. Notably, Spi-B was unable to overcome the Id2 enforced block in pDC development and moreover Spi-B transduced pDC expressed reduced Id2 levels. This might indicate that Spi-B contributes to pDC development by promoting E2-2 activity. Consistent with notion, simultaneous overexpression of E2-2 and Spi-B in progenitor cells further stimulated pDC development. Together our results provide additional insight into the transcriptional network controlling pDC development as evidenced by the joint venture of E2-2 and Spi-B.
Collapse
Affiliation(s)
- Maho Nagasawa
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Debnath I, Roundy KM, Dunn DM, Weiss RB, Weis JJ, Weis JH. Defining a transcriptional fingerprint of murine splenic B-cell development. Genes Immun 2008; 9:706-20. [PMID: 18784731 DOI: 10.1038/gene.2008.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
B-cell development occurs in a stepwise fashion that can be followed by the expression of B cell-specific surface markers. In this study, we wished to identify proteins that could contribute to the changes in expression of such markers. By using RNA from freshly isolated B220+ cells, we hoped to reduce the effect of artifacts that occur during the isolation and amplification steps necessary to use flow cytometry analysis-sorted subsets in microarray experiments. Analyses comparing expression patterns from B220+ 2-week bone marrow (pro-B, pre-B, immature B cells), 2-week spleen (predominantly transitional cells) and 8-week spleen (mainly mature B cells) yielded hundreds of genes. We also examined the B cell-activating factor (BAFF)-dependent effects on immature splenic B cells by comparing expression patterns in the spleen between 2-week A/J vs 2-week A/WySnJ mice, which lack functional BAFF receptor signaling. Genes that showed the expression differences between spleen and bone marrow samples were then analyzed through quantitative PCR on B-cell subsets isolated using two different sorting protocols. A comparison of the results from our study with the results from other analyses showed not only some overlap of preferentially expressed genes but also an expansion of other genes potentially involved in B-cell development.
Collapse
Affiliation(s)
- I Debnath
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
33
|
A role for E2-2 at the DN3 stage of early thymopoiesis. Mol Immunol 2008; 45:3302-11. [PMID: 18384878 DOI: 10.1016/j.molimm.2008.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 11/22/2022]
Abstract
Roles for the E-proteins E2A and HEB during T lymphocyte development have been well established. Based on our previous observations of counter selection against T cells lacking E2-2, it seemed reasonable to assume that there would be a function also for E2-2 in thymocyte development. Aiming at assigning such a role for E2-2, we analyzed the expression of E2-2, E2A, HEB as well as Id mRNA during T cell development. Interestingly, whereas all three E-proteins were expressed during early thymocyte development, significant expression beyond the DP stage was detected only for E2A. Among the Id proteins, Id2 displayed a prominent expression exclusively in DN1, whereas Id3 showed some expression in DN1, followed by a down regulation and then a prominent induction, peaking in the DP stage. E2-2 was expressed during the DN stages, as well as in the DP stage, suggesting that E2-2 operates in concert with the other E-proteins during early thymocyte development. We found that E2-2 null thymocytes displayed a partial block at the DN3 stage of development, as well as a reduced expression of pre-T alpha, known to be regulated also by E2A and HEB. The fact that E2-2 deficient thymocytes develop without gross abnormalities is likely to stem from redundancy due to the co-expression of E2A and HEB.
Collapse
|
34
|
Hikima JI, Lennard Richard ML, Wilson MR, Miller NW, Warr GW. Function of E-protein dimers expressed in catfish lymphocytes. Mol Immunol 2008; 45:1165-70. [PMID: 17870169 PMCID: PMC2175175 DOI: 10.1016/j.molimm.2007.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/02/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
E-proteins are essential class I bHLH transcription factors that play a role in lymphocyte development. In catfish lymphocytes the predominant E-proteins expressed are CFEB (a homologue of HEB) and E2A1, which both strongly drive transcription. In this study the role of homodimerization versus heterodimerization in the function of these catfish E-proteins was addressed through the use of expression constructs encoding forced dimers. Constructs expressing homo- and heterodimers were transfected into catfish B cells and shown to drive transcription from the catfish IGH enhancer. Expression from an artificial promoter containing a trimer of muE5 motifs clearly demonstrated that the homodimer of E2A1 drove transcription more strongly (by a factor of 10-25) than the CFEB homodimer in catfish B and T cells, while the heterodimer showed intermediate levels of transcriptional activation. Both CFEB1 and E2A1 proteins dimerized in vitro, and the heterodimer CFEB1-E2A1 was shown to bind the canonical muE5 motif.
Collapse
Affiliation(s)
- Jun-ichi Hikima
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences Center, and Department of Biochemistry and Molecular Biology, Charleston SC 29425, USA
| | - Mara L. Lennard Richard
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences Center, and Department of Biochemistry and Molecular Biology, Charleston SC 29425, USA
| | - Melanie R. Wilson
- University of Mississippi Medical Center, Department of Microbiology, Jackson, MS 39216, USA
| | - Norman W. Miller
- University of Mississippi Medical Center, Department of Microbiology, Jackson, MS 39216, USA
| | - Gregory W. Warr
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences Center, and Department of Biochemistry and Molecular Biology, Charleston SC 29425, USA
| |
Collapse
|
35
|
Abstract
CD8(+) cytotoxic and CD4(+) helper/inducer T cells develop from common thymocyte precursors that express both CD4 and CD8 molecules. Upon T cell receptor signaling, these cells initiate a differentiation program that includes complex changes in CD4 and CD8 expression, allowing identification of transitional intermediates in this developmental pathway. Little is known about regulation of these early transitions or their specific importance to CD4 and CD8 T cell development. Here, we show a severe block at the CD4(lo)CD8(lo) transitional stage of positive selection caused by loss of the nuclear HMG box protein TOX. As a result, CD4 lineage T cells, including regulatory T and CD1d-dependent natural killer T cells, fail to develop. In contrast, functional CD8(+) T cells develop in TOX-deficient mice. Our data suggest that TOX-dependent transition to the CD4(+)CD8(lo) stage is required for continued development of class II major histocompatibility complex-specific T cells, regardless of ultimate lineage fate.
Collapse
Affiliation(s)
- Parinaz Aliahmad
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
36
|
Jones ME, Zhuang Y. Acquisition of a functional T cell receptor during T lymphocyte development is enforced by HEB and E2A transcription factors. Immunity 2007; 27:860-70. [PMID: 18093538 PMCID: PMC2190753 DOI: 10.1016/j.immuni.2007.10.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/20/2007] [Accepted: 10/31/2007] [Indexed: 11/30/2022]
Abstract
The T cell receptor (TCR) is required for positive selection and the subsequent transition from the CD4(+)CD8(+) double-positive (DP) to the CD4(+) or CD8(+) single-positive (SP) stage of alphabeta T cell development. The molecular mechanism that maintains DP fate prior to the acquisition of a functional TCR is not clear. We have shown here that the structurally and functionally related transcription factors HEB and E2A work together to maintain DP fate and to control the DP to SP transition. Simultaneous deletion of HEB and E2A in DP thymocytes was sufficient for DP to SP transition independent of TCR. Loss of HEB and E2A allowed DP cells to bypass the requirement for TCR-mediated positive selection, downregulate DP-associated genes, and upregulate SP-specific genes. These results identify HEB and E2A as the gatekeepers that maintain cells at the DP stage of development until a functional alphabetaTCR is produced.
Collapse
Affiliation(s)
- Mary Elizabeth Jones
- Department of Immunology, Duke University Medical Center, Box 3010, Durham, NC 27710, USA
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Box 3010, Durham, NC 27710, USA
| |
Collapse
|
37
|
Murre C. Regulation and Function of the E2A Proteins in B Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 596:1-7. [PMID: 17338171 DOI: 10.1007/0-387-46530-8_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Cornelis Murre
- University of California, San Diego, 9500 Gilman Drive, 0377, La Jolla, CA 92093, USA
| |
Collapse
|
38
|
Zhong Y, Jiang L, Hiai H, Toyokuni S, Yamada Y. Overexpression of a transcription factor LYL1 induces T- and B-cell lymphoma in mice. Oncogene 2007; 26:6937-47. [PMID: 17486074 DOI: 10.1038/sj.onc.1210494] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
LYL1, a member of the class II basic helix-loop-helix transcription factors, is aberrantly expressed in a fraction of human T-cell acute lymphoblastic leukemia. Here, we generated transgenic mice ubiquitously overexpressing LYL1 using a construct expressing full-length cDNA driven by a human elongation factor 1alpha promoter. Four independent lines exhibiting high LYL1 expression were established. Of these transgenic mice, 96% displayed loss of hair with a short kinked tail. Furthermore, 30% of them developed malignant lymphoma, with an average latent period of 352 days. In these mice, histological examination revealed tumor cell infiltration in multiple organs and immunohistochemical analysis showed that the infiltrated tumor cells were either CD3 or CD45R/B220-positive; fluorescence-activated cell sorter analysis indicated that each tumor consisted either of mainly CD4, CD8 double-positive T cells or mature B cells; the clonality of LYL1-induced lymphoma was confirmed by T-cell receptor rearrangement and immunoglobulin heavy-chain gene rearrangement analyses. Mammalian two-hybrid analysis and luciferase assay suggested that excess LYL1 blocked the dimerization of E2A and thus inhibited the regulatory activity of E2A on the CD4 promoter. Reverse transcription-polymerase chain reaction results showed that the expression of certain E2A/HEB target genes was downregulated. Taken together, our results provide direct evidence that aberrant expression of LYL1 plays a role in lymphomagenesis.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/biosynthesis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- Dimerization
- Gene Rearrangement, T-Lymphocyte
- Helix-Loop-Helix Motifs
- Humans
- Immunophenotyping
- Immunoprecipitation
- Luciferases/metabolism
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Transgenic
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Cell Acute Lymphocytic Leukemia Protein 1
- Two-Hybrid System Techniques
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Y Zhong
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
39
|
Wojciechowski J, Lai A, Kondo M, Zhuang Y. E2A and HEB are required to block thymocyte proliferation prior to pre-TCR expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:5717-26. [PMID: 17442955 PMCID: PMC2265380 DOI: 10.4049/jimmunol.178.9.5717] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymocytes undergoing TCRbeta gene rearrangements are maintained in a low or nonproliferating state during early T cell development. This block in cell cycle progression is not released until the expression of a functional pre-TCR, which is composed of a successfully rearranged TCRbeta-chain and the Pre-Talpha-chain. The regulatory molecules responsible for the coordination of these differentiation and proliferation events are currently unknown. E2A and HEB are structurally and functionally related basic helix-loop-helix transcription factors involved in T cell development. To reveal the function of E2A and HEB through the stage of pre-TCR expression and alleviate functional compensation between E2A and HEB, we use a double-conditional knockout model. The simultaneous deletion of E2A and HEB in developing thymocytes leads to a severe developmental block before pre-TCR expression and a dramatic reduction of Pre-Talpha expression. These developmentally arrested thymocytes exhibit increased proliferation in vivo and dramatic expansion ex vivo in response to IL-7 signaling. These results suggest that E2A and HEB are not only critical for T cell differentiation but also necessary to retain developing thymocytes in cell cycle arrest before pre-TCR expression.
Collapse
Affiliation(s)
| | - Anne Lai
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Motonari Kondo
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
40
|
Wikström I, Forssell J, Goncalves M, Colucci F, Holmberg D. E2-2 regulates the expansion of pro-B cells and follicular versus marginal zone decisions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:6723-9. [PMID: 17082585 DOI: 10.4049/jimmunol.177.10.6723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The E-proteins E2A, HeLa E-box binding protein, and E2-2 constitute a class of basic helix-loop-helix transcription factors that differentially affect B cell development. E2A is by far the most investigated and appears to operate at several levels during B cell ontogeny. Less is known concerning the role of the other E-proteins. To address the role of E2-2, we have performed transfers of fetal liver (FL) cells into irradiated Rag-deficient mice. Although the transfer of E2-2-deficient cells alone can reconstitute all B cell subpopulations, albeit with a moderate reduction in cellularity, E2-2-deficient cells have a disadvantage when transferred together with wild-type cells. Cultivation of E2-2(-/-) day 14.5 FL cells on stromal cells and IL-7 revealed a reduced frequency of responding B cell progenitors despite normal IL-7Ralpha surface expression. Real-time PCR analysis revealed that E2-2 mRNA expression is high at the pro-B cell stage and drops sharply at the pre-B cell stage, consistent with a role for E2-2 in pro-B cells. In contrast, E2A mRNA was most abundant in pre-B cells. Analysis of the peripheral repertoire revealed that mice reconstituted with E2-2(-/-) FL cells had an increased proportion of marginal zone (MZ) B cells. Interestingly, E2-2 mRNA was elevated approximately 2-fold (p < 0.01) in follicular compared with MZ B cells. Although E2A mRNA showed a similar tendency, the difference was not significant. Collectively, our findings indicate that E2-2 is required for optimal expansion of pro-B cells, and also influences the follicular vs MZ decision.
Collapse
Affiliation(s)
- Ingela Wikström
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | | | | | | |
Collapse
|
41
|
Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 2006; 20:1496-510. [PMID: 16826225 DOI: 10.1038/sj.leu.2404302] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For long, T-cell acute lymphoblastic leukemia (T-ALL) remained in the shadow of precursor B-ALL because it was more seldom, and showed a normal karyotype in more than 50% of cases. The last decennia, intense research has been carried out on different fronts. On one side, development of normal thymocyte and its regulation mechanisms have been studied in multiple mouse models and subsequently validated. On the other side, molecular cytogenetics (fluorescence in situ hybridization) and mutation analysis revealed cytogenetically cryptic aberrations in almost all cases of T-ALL. Also, expression microarray analysis disclosed gene expression signatures that recapitulate specific stages of thymocyte development. Investigations are still very much actual, fed by the discovery of new genetic aberrations. In this review, we present a summary of the current cytogenetic changes associated with T-ALL. The genes deregulated by translocations or mutations appear to encode proteins that are also implicated in T-cell development, which prompted us to review the 'normal' and 'leukemogenic' functions of these transcription regulators. To conclude, we show that the paradigm of multistep leukemogenesis is very much applicable to T-ALL and that the different genetic insults collaborate to maintain self-renewal capacity, and induce proliferation and differentiation arrest of T-lymphoblasts. They also open perspectives for targeted therapies.
Collapse
Affiliation(s)
- C Graux
- Department of Hematology, Cliniques Universitaires St Luc, Catholic University of Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
42
|
Huang Z, Xie H, Ioannidis V, Held W, Clevers H, Sadim MS, Sun Z. Transcriptional regulation of CD4 gene expression by T cell factor-1/beta-catenin pathway. THE JOURNAL OF IMMUNOLOGY 2006; 176:4880-7. [PMID: 16585583 DOI: 10.4049/jimmunol.176.8.4880] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
By interacting with MHC class II molecules, CD4 facilitates lineage development as well as activation of Th cells. Expression of physiological levels of CD4 requires a proximal CD4 enhancer to stimulate basic CD4 promoter activity. T cell factor (TCF)-1/beta-catenin pathway has previously been shown to regulate thymocyte survival via up-regulating antiapoptotic molecule Bcl-xL. By both loss and gain of function studies, in this study we show additional function of TCF-1/beta-catenin pathway in the regulation of CD4 expression in vivo. Mice deficient in TCF-1 displayed significantly reduced protein and mRNA levels of CD4 in CD4+ CD8+ double-positive (DP) thymocytes. A transgene encoding Bcl-2 restored survival but not CD4 levels of TCF-1(-/-) DP cells. Thus, TCF-1-regulated survival and CD4 expression are two separate events. In contrast, CD4 levels were restored on DP TCF-1(-/-) cells by transgenic expression of a wild-type TCF-1, but not a truncated TCF-1 that lacks a domain required for interacting with beta-catenin. Furthermore, forced expression of a stabilized beta-catenin, a coactivator of TCF-1, resulted in up-regulation of CD4. TCF-1 or stabilized beta-catenin greatly stimulated activity of a CD4 reporter gene driven by a basic CD4 promoter and the CD4 enhancer. However, mutation of a potential TCF binding site located within the enhancer abrogated TCF-1 and beta-catenin-mediated activation of CD4 reporter. Finally, recruitment of TCF-1 to CD4 enhancer was detected in wild-type but not TCF-1 null mice by chromatin-immunoprecipitation analysis. Thus, our results demonstrated that TCF/beta-catenin pathway enhances CD4 expression in vivo by recruiting TCF-1 to stimulate CD4 enhancer activity.
Collapse
Affiliation(s)
- Zhaofeng Huang
- Department of Microbiology & Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Ikawa T, Kawamoto H, Goldrath AW, Murre C. E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. J Exp Med 2006; 203:1329-42. [PMID: 16682500 PMCID: PMC2121213 DOI: 10.1084/jem.20060268] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 04/06/2006] [Indexed: 01/19/2023] Open
Abstract
The helix-loop-helix protein, E47, is essential for both B- and T-lineage development. Here we demonstrate that in vitro E47 and Notch signaling act in concert to promote T cell development from fetal hematopoietic progenitors and to restrain development into the natural killer and myeloid cell lineages. The expression of an ensemble of genes associated with Notch signaling is activated by E47, and additionally, Notch signaling and E47 act in parallel pathways to induce a T lineage-specific program of gene expression. Enforced expression of the intracellular domain of Notch rescues the developmental arrest at the T cell commitment stage in E2A-deficient fetal thymocytes. Finally, we demonstrate that regulation of Hes1 expression by Notch signaling and E47 is strikingly similar to that observed during Drosophila melanogaster sensory development. Based on these observations, we propose that in developing fetal thymocytes E47 acts to induce the expression of an ensemble of genes involved in Notch signaling, and that subsequently E47 acts in parallel with Notch signaling to promote T-lineage maturation.
Collapse
Affiliation(s)
- Tomokatsu Ikawa
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Transcriptional regulation of T-cell development involves successive interactions between complexes of transcriptional regulators and their binding sites within the regulatory regions of each gene. The regulatory modules that control expression of T-lineage genes frequently include binding sites for a core set of regulators that set the T-cell-specific background for signal-dependent control, including GATA-3, Notch/CSL, c-myb, TCF-1, Ikaros, HEB/E2A, Ets, and Runx factors. Additional regulators in early thymocytes include PU.1, Id-2, SCL, Spi-B, Erg, Gfi-1, and Gli. Many of these factors are involved in simultaneous regulation of non-T-lineage genes, T-lineage genes, and genes involved in cell cycle control, apoptosis, or survival. Potential and known interactions between early thymic transcription factors such as GATA-3, SCL, PU.1, Erg, and Spi-B are explored. Regulatory modules involved in the expression of several critical T-lineage genes are described, and models are presented for shifting occupancy of the DNA-binding sites in the regulatory modules of pre-Talpha, T-cell receptor beta (TCRbeta), recombinase activating genes 1 and 2 (Rag-1/2), and CD4 during T-cell development. Finally, evidence is presented that c-kit, Erg, Hes-1, and HEBAlt are expressed differently in Rag-2(-/-) thymocytes versus normal early thymocytes, which provide insight into potential regulatory interactions that occur during normal T-cell development.
Collapse
Affiliation(s)
- Michele K Anderson
- Sunnybrook and Women's College Health Sciences Center, Division of Molecular and Cell Biology, University of Toronto, Department of Immunology, Toronto, ON, Canada.
| |
Collapse
|
45
|
Abstract
Helix-loop-helix (HLH) proteins are transcriptional regulators that control a wide variety of developmental pathways in both invertebrate and vertebrate organisms. Results obtained in the past decade have shown that HLH proteins also contribute to the development of lymphoid lineages. A subset of HLH proteins, the 'E proteins', seems to be particularly important for proper lymphoid development. Members of the E protein family include E12, E47, E2-2 and HEB. The E proteins contribute to B lineage- and T lineage-specific gene expression programs, regulate lymphocyte survival and cellular proliferation, activate the rearrangement of antigen receptor genes and control progression through critical developmental checkpoints. This review discusses HLH proteins in lymphocyte development and homeostasis.
Collapse
Affiliation(s)
- Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92903, USA.
| |
Collapse
|
46
|
Lazorchak A, Jones ME, Zhuang Y. New insights into E-protein function in lymphocyte development. Trends Immunol 2005; 26:334-8. [PMID: 15922950 DOI: 10.1016/j.it.2005.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/28/2005] [Accepted: 03/24/2005] [Indexed: 11/20/2022]
Abstract
Lymphocyte development has long served as an experimental paradigm, revealing fundamental mechanisms of gene regulation and cellular differentiation in mammals. The study of E-protein-mediated transcriptional regulation in lymphocyte development provides a means to address these mechanistic issues. Both genetic and biochemical studies have defined many important regulatory events during lymphocyte development that are mediated by E-proteins. The E2A gene, one of the three known E-protein genes in mammals, has a particularly important role in B-lymphocyte development. Major progress has been made in recent years towards understanding the physiological targets of E2A during B-lymphocyte development. Most notably, new insights have been gained regarding the role of E2A in controlling lineage commitment and V(D)J recombination. This Review focuses primarily on E2A-mediated gene regulation during B-lymphocyte development.
Collapse
Affiliation(s)
- Adam Lazorchak
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
47
|
Abstract
T cell development is guided by a complex set of transcription factors that act recursively, in different combinations, at each of the developmental choice points from T-lineage specification to peripheral T cell specialization. This review describes the modes of action of the major T-lineage-defining transcription factors and the signal pathways that activate them during intrathymic differentiation from pluripotent precursors. Roles of Notch and its effector RBPSuh (CSL), GATA-3, E2A/HEB and Id proteins, c-Myb, TCF-1, and members of the Runx, Ets, and Ikaros families are critical. Less known transcription factors that are newly recognized as being required for T cell development at particular checkpoints are also described. The transcriptional regulation of T cell development is contrasted with that of B cell development, in terms of their different degrees of overlap with the stem-cell program and the different roles of key transcription factors in gene regulatory networks leading to lineage commitment.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
48
|
Feik N, Bilic I, Tinhofer J, Unger B, Littman DR, Ellmeier W. Functional and Molecular Analysis of the Double-Positive Stage-Specific CD8 Enhancer E8III during Thymocyte Development. THE JOURNAL OF IMMUNOLOGY 2005; 174:1513-24. [PMID: 15661911 DOI: 10.4049/jimmunol.174.3.1513] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several developmental stage-, subset-, and lineage-specific Cd8 cis-regulatory regions have been identified. These include the E8(III) enhancer, which directs expression in double-positive (DP) thymocytes, and E8(II), which is active in DP cells and CD8(+) T cells. Using a transgenic reporter expression assay, we identified a 285-bp core fragment of the E8(III) enhancer that retains activity in DP thymocytes. In vitro characterization of the core enhancer revealed five regulatory elements that are required for full enhancer activity, suggesting that multiple factors contribute to the developmental stage-specific activity. Furthermore, deletion of E8(III) in the mouse germline showed that this enhancer is required for nonvariegated expression of CD8 in DP thymocytes when E8(II) is also deleted. These results indicate that E8(III) is one of the cis-elements that contribute to the activation of the Cd8a and Cd8b gene complex during T cell development.
Collapse
Affiliation(s)
- Nicholas Feik
- Institute of Immunology, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The burgeoning body of information on the genetic changes present in and underlying the development and biology of human cancers has carried implications regarding the possible genetic events that are responsible for not only the genesis of these cancers but also the hope of the cure for these cancers. Chondrosarcomas are a group of tumors that fall into this category. The purpose of this review is to summarize the genetic findings in these tumors. RECENT FINDINGS The histopathologic variability of chondrosarcomas is reflected in the complexity and lack of specificity of their cytogenetic and molecular genetic findings, except for extraskeletal myxoid chondrosarcomas. These are characterized in the preponderant number of cases by a translocation, t(9;22)(q22;q12), and in a small number of cases by variant translocations t(9;17)(q22;q11) and t(9;15)(q22;q21). These translocations lead to the formation of abnormal fusion genes and gene products (proteins). In each of these translocations, the CHN gene is involved, resulting in the chimeric fusion genes EWS/CHN, RBP56/CHN, and TCF12/CHN, respectively. The specific translocations and their associated molecular genetic changes are diagnostic of extraskeletal myxoid chondrosarcomas. The abnormal proteins resulting from these fusion genes aberrantly affect gene transcription and cellular signaling pathways thought to be responsible for initiating sarcoma formation. In skeletal (central) chondrosarcomas of varying histopathologic types, the cytogenetic and molecular genetic findings are variable, complex, and apparently lacking in specificity. These changes may reflect a stepwise process (or processes) of oncogenesis involving an array of genes. SUMMARY Although some cartilaginous tumors are characterized by specific or recurrent chromosome alterations and molecular genetic changes, much is yet to be learned about the nature and sequence of these genetics events and about their unique role in the stepwise process involved in the development and biology of each tumor type, both malignant and nonmalignant. Until such time, some of the genetic changes, particularly the presence of specific translocations, can be of definite diagnostic value.
Collapse
Affiliation(s)
- Avery A Sandberg
- Department of DNA Diagnostics, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA.
| |
Collapse
|
50
|
Hikima JI, Cioffi CC, Middleton DL, Wilson MR, Miller NW, Clem LW, Warr GW. Evolution of Transcriptional Control of theIgHLocus: Characterization, Expression, and Function of TF12/HEB Homologs of the Catfish. THE JOURNAL OF IMMUNOLOGY 2004; 173:5476-84. [PMID: 15494495 DOI: 10.4049/jimmunol.173.9.5476] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcriptional enhancer (Emu3') of the IgH locus of the channel catfish, Ictalurus punctatus, differs from enhancers of the mammalian IgH locus in terms of its position, structure, and function. Transcription factors binding to multiple octamer motifs and a single muE5 motif (an E-box site, consensus CANNTG) interact for its function. E-box binding transcription factors of the class I basic helix-loop-helix family were cloned from a catfish B cell cDNA library in this study, and homologs of TF12/HEB were identified as the most highly represented E-proteins. Two alternatively spliced forms of catfish TF12 (termed CFEB1 and -2) were identified and contained regions homologous to the basic helix-loop-helix and activation domains of other vertebrate E-proteins. CFEB message is widely expressed, with CFEB1 message predominating over that of CFEB2. Both CFEB1 and -2 strongly activated transcription from a muE5-dependent artificial promoter. In catfish B cells, CFEB1 and -2 also activated transcription from the core region of the catfish IgH enhancer (Emu3') in a manner dependent on the presence of the muE5 site. Both CFEB1 and -2 bound the muE5 motif, and formed both homo- and heterodimers. CFEB1 and -2 were weakly active or inactive (in a promoter-dependent fashion) in mammalian B-lineage cells. Although E-proteins have been highly conserved in vertebrate evolution, the present results indicate that, at the phylogenetic level of a teleost fish, the TF12/HEB homolog differs from that of mammals in terms of 1) its high level of expression and 2) the presence of isoforms generated by alternative RNA processing.
Collapse
Affiliation(s)
- Jun-Ichi Hikima
- Center for Marine Biomedicine and Environmental Sciences, and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29407, USA
| | | | | | | | | | | | | |
Collapse
|