1
|
Liu H, Wang Y, Liu J, Fu W. Proteomics analysis of fetal growth restriction and taurine‑treated fetal growth restriction rat brain tissue by 2D DIGE and MALDI‑TOF/TOF MS analysis. Int J Mol Med 2019; 44:207-217. [PMID: 31115483 PMCID: PMC6559329 DOI: 10.3892/ijmm.2019.4182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/23/2019] [Indexed: 02/05/2023] Open
Abstract
Fetal growth restriction (FGR) is caused by placental insufficiency and can lead to short and long‑term neurodevelopmental delays. Taurine, one of the most abundant amino acids in the brain, is critical for the normal growth and development of the nervous system; however, the mechanistic role of taurine in neural growth and development remains unknown. The present study investigated the role of taurine in FGR. Specifically, we explored the proteomic profiles of fetal rats at 6 h postpartum by two‑dimensional difference gel electrophoresis combined with matrix assisted laser desorption ionization‑time‑of‑flight (TOF)/TOF tandem mass spectrometry; the findings were verified via reverse transcription‑quantitative polymerase chain reaction. A total of 31 differentially expressed protein spots were selected. Among these, 31 were matched, including dihydropyrimidinase‑related protein 2 and , CRK and peroxiredoxin 2. Functional analysis using the Gene Ontology database and Ingenuity Pathway Analysis demonstrated that the differentially expressed proteins were mainly associated with neuronal differentiation, 'metabolic process', 'biological regulation' and developmental processes. The present study identified several proteins that were differentially expressed in rats with FGR in the presence or absence of taurine administration. The results of the present study suggest a potential role for taurine in the treatment and prevention of FGR.
Collapse
Affiliation(s)
- Haifeng Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515
- Department of Neonatology, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000
- Department of Neonatology and NICU of Bayi Children's Hospital, The Army General Hospital of The Chinese PLA, Beijing 100700
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100101
| | - Yan Wang
- NICU of Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Jing Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515
- Department of Neonatology and NICU of Bayi Children's Hospital, The Army General Hospital of The Chinese PLA, Beijing 100700
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100101
| | - Wei Fu
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100101
| |
Collapse
|
2
|
Dhupkar P, Zhao H, Mujoo K, An Z, Zhang N. Crk II silencing down-regulates IGF-IR and inhibits migration and invasion of prostate cancer cells. Biochem Biophys Rep 2016; 8:382-388. [PMID: 28955980 PMCID: PMC5614478 DOI: 10.1016/j.bbrep.2016.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 06/24/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
Crk (C10 regulator of kinase) adaptor proteins are highly expressed in many types of human cancers and often contribute to aggressive cancer phenotypes. Crk II, a member of CRK family, has been reported to regulate cell migration and metastasis in breast cancer cells. However, its role in other cancer types has not been reported. In this study, we investigated the molecular function of Crk II in prostate cancer (PCa) cells (CWR-22rv1) in vitro and using a mouse tumor model. Results showed that Crk II knockdown by shRNA-mediated silencing (Crk II-shRNA) in the PCa cells significantly inhibited both cancer cell migration and invasion in cell culture study. Crk II-shRNA cancer cells also significantly decreased colony formation in vitro, but had no significant reduction of tumor volume after 4 weeks of cancer cell xenografting in vivo when compared to the scramble control. Interestingly, Crk II-shRNA cancer cells showed a greatly reduced level of insulin-like growth factor 1 receptor (IGF-1R) and decreased signaling of the IGF-1R/PI3K/Akt axis upon IGF-1 ligand stimulation. A close interaction between Crk II and IGF-1R was demonstrated upon co-immunoprecipitation of IGF-1R with Crk II protein. Further, treatment of cells with either proteosomal degradation or protein synthesis inhibitor showed higher proportion of ubiquitin-associated IGF-1R and faster degradation of IGF-1R in Crk II-shRNA cells in comparison with that in the control cancer cells. Taken together, these data suggest that Crk II plays an important role in the regulation of IGF-1R protein stability and affects downstream of IGF-1R signaling pathways. Therefore, targeting Crk-II can block IGF-1R growth signaling and suppress cancer cell invasion and progression. Blocking Crk II inhibited cancer cell migration, invasion, and colony formation. Knockdown Crk II decreased IGF-1R protein and its downstream signaling. Crk II knockdown increased ubiquitination and degradation of IGF-1R.
Collapse
Affiliation(s)
- Pooja Dhupkar
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA.,Experimental Therapeutics Academic Program, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huang Zhao
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA
| | - Kalpana Mujoo
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA
| | - Zhiqiang An
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA.,Experimental Therapeutics Academic Program, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ningyan Zhang
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA
| |
Collapse
|
3
|
Zhou L, Talebian A, Meakin SO. The signaling adapter, FRS2, facilitates neuronal branching in primary cortical neurons via both Grb2- and Shp2-dependent mechanisms. J Mol Neurosci 2014; 55:663-77. [PMID: 25159185 DOI: 10.1007/s12031-014-0406-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 08/15/2014] [Indexed: 12/15/2022]
Abstract
The neurotrophins are a family of closely related growth factors that regulate proliferation and differentiation in the developing and mature nervous systems. Neurotrophins stimulate a family of receptor tyrosine kinases (Trk receptors) and utilize an intracellular docking protein termed fibroblast growth factor (FGF) receptor substrate 2 (FRS2) as a major downstream adapter to activate Ras, phosphatidylinositide 3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) signaling cascades. The goals of this study were twofold: first, to investigate the complexity of neurotrophin-induced FRS2 interactions in primary cortical neurons and to determine which pathway(s) are important in regulating neuronal growth and, second, to determine whether the related signaling adapter, FRS3, stimulates neuron growth comparable to FRS2. We find that neurotrophin treatment of primary cortical neurons stimulates the tyrosine phosphorylation of FRS2 and the subsequent recruitment of Shp2, Grb2, and Gab2. With FRS2 mutants deficient in Grb2 or Shp2 binding, we demonstrate that FRS2 binds Gab1 and Gab2 through Grb2, providing an alternative route to activate PI3 kinase and Shp2. Using recombinant adenoviruses expressing FRS2, we demonstrate that FRS2 overexpression promotes neurite outgrowth and branching in cortical neurons relative to controls. In contrast, overexpression of FRS3 does not stimulate neuronal growth. Moreover, we find that while loss of Shp2, but not Grb2, reduces brain-derived neurotrophic factor (BDNF)-induced MAPK activation, the loss of either pathway impairs neuronal growth. Collectively, these experiments demonstrate that FRS2 functions as an adapter of a multiprotein complex that is activated by the Trk receptors and that the activation of both Grb2- and Shp2-dependent pathways facilitates cortical neuronal growth.
Collapse
Affiliation(s)
- Li Zhou
- Laboratory of Neural Signaling, Molecular Medicine Research Group, The Robarts Research Institute, 1151 Richmond St. N, London, Ontario, N6A 5B7, Canada
| | | | | |
Collapse
|
4
|
Shimosaka M, Ujjal K. Bhawal. bFGF Upregulates the Expression of NGFR in PC12 Cells. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Birge RB, Kalodimos C, Inagaki F, Tanaka S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal 2009; 7:13. [PMID: 19426560 PMCID: PMC2689226 DOI: 10.1186/1478-811x-7-13] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/10/2009] [Indexed: 01/24/2023] Open
Abstract
The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses.
Collapse
Affiliation(s)
- Raymond B Birge
- Department of Biochemistry & Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
6
|
Yeo MG, Sung BH, Oh HJ, Park ZY, Marcantonio EE, Song WK. Focal adhesion targeting of v-Crk is essential for FAK phosphorylation and cell migration in mouse embryo fibroblasts deficient src family kinases or p130CAS. J Cell Physiol 2008; 214:604-13. [PMID: 17786957 DOI: 10.1002/jcp.21247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We examined the consequences of v-Crk expression in mouse embryo fibroblasts deficient Src family kinases or p130CAS. We found that Src kinases are essential for p130CAS/v-Crk signaling leading to FAK phosphorylation and cell migration in which Src is likely to mediate the focal adhesion targeting of v-Crk. SYF cells showed only low levels of FAK phosphorylation and cell migration, even in the presence of v-Crk. Expression of v-Crk restored migration of p130CAS-deficient cells to the level of wild-type cells, most likely through the targeting of v-Crk to focal adhesions by cSrc. In addition, we identified a new v-Crk-interacting protein that mediates v-Crk signaling in p130CAS-deficient cells. Using RT-PCR and caspase cleavage assays, we confirmed that this protein is not p130CAS and is responsible for maintaining v-Crk/Src signaling and migration in these. These findings suggest that focal adhesion targeting of v-Crk is essential in v-Crk-mediated cellular signaling and that v-Crk must form a complex with p130CAS or a p130CAS substitute to transduce signaling from the extracellular matrix.
Collapse
Affiliation(s)
- Myeong Gu Yeo
- National Research Laboratory (NRL), Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
7
|
Neurite outgrowth on a fibronectin isoform expressed during peripheral nerve regeneration is mediated by the interaction of paxillin with alpha4beta1 integrins. BMC Neurosci 2007; 8:44. [PMID: 17603879 PMCID: PMC1940015 DOI: 10.1186/1471-2202-8-44] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 06/29/2007] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The regeneration of peripheral nerve is associated with a change in the alternative splicing of the fibronectin primary gene transcript to re-express embryonic isoforms containing a binding site for alpha4beta1 integrins that promote neurite outgrowth. Here we use PC12 cells to examine the role of the interaction between paxillin and the alpha4 integrin cytoplasmic domain in neurite outgrowth. RESULTS Expression of alpha4 with mutations in the paxillin-binding domain reduced neurite outgrowth on recombinant embryonic fibronectin fragments relative to wild type alpha4. Over-expression of paxillin promoted neurite outgrowth while a mutant isoform lacking the LD4 domain implicated in the regulation of ARF and Rac GTPases was less effective. Optimal alpha4-mediated migration in leucocytes requires spatial regulation of alpha4 phosphorylation at Ser988, a post-translational modification that blocks paxillin binding to the integrin cytoplasmic domain. In keeping with this alpha4(S988D), which mimics phosphorylated alpha4, did not promote neurite outgrowth. However, alpha4 was not phosphorylated in the PC12 cells, and a non-phosphorylatable alpha4(S988A) mutant promoted neurite outgrowth indistinguishably from the wild type integrin. CONCLUSION We establish the importance of the alpha4 integrin-paxillin interaction in a model of axonal regeneration and highlight differing dependence on phosphorylation of alpha4 for extension of neuronal growth cones and migration of non-neural cells.
Collapse
|
8
|
Zhu Y, Wu R, Sangha N, Yoo C, Cho KR, Shedden KA, Katabuchi H, Lubman DM. Classifications of ovarian cancer tissues by proteomic patterns. Proteomics 2007; 6:5846-56. [PMID: 17068758 DOI: 10.1002/pmic.200600165] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ovarian cancer is a morphologically and biologically heterogeneous disease. The identification of type-specific protein markers for ovarian cancer would provide the basis for more tailored treatments, as well as clues for understanding the molecular mechanisms governing cancer progression. In the present study, we used a novel approach to classify 24 ovarian cancer tissue samples based on the proteomic pattern of each sample. The method involved fractionation according to pI using chromatofocusing with analytical columns in the first dimension followed by separation of the proteins in each pI fraction using nonporous RP HPLC, which was coupled to an ESI-TOF mass analyzer for molecular weight (MW) analysis. A 2-D mass map of the protein content of each type of ovarian cancer tissue samples based upon pI versus intact protein MW was generated. Using this method, the clear cell and serous ovarian carcinoma samples were histologically distinguished by principal component analysis and clustering analysis based on their protein expression profiles and subtype-specific biomarker candidates of ovarian cancers were identified, which could be further investigated for future clinical study.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/chemistry
- Adenocarcinoma, Clear Cell/diagnosis
- Adenocarcinoma, Clear Cell/pathology
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Chromatography, High Pressure Liquid
- Cystadenocarcinoma, Serous/chemistry
- Cystadenocarcinoma, Serous/diagnosis
- Cystadenocarcinoma, Serous/pathology
- Female
- Humans
- Immunohistochemistry
- Isoelectric Focusing
- Isoelectric Point
- Mass Spectrometry
- Middle Aged
- Molecular Weight
- Neoplasm Proteins/analysis
- Neoplasm Staging
- Ovarian Neoplasms/chemistry
- Ovarian Neoplasms/classification
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/pathology
- Proteome/analysis
- Proteomics/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Yi Zhu
- Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Klammt J, Barnikol-Oettler A, Kiess W. Mutational analysis of the interaction between insulin receptor and IGF-I receptor with c-Crk and Crk-L in a yeast two-hybrid system. Biochem Biophys Res Commun 2004; 325:183-90. [PMID: 15522217 DOI: 10.1016/j.bbrc.2004.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Indexed: 11/18/2022]
Abstract
The SH2/SH3 adapter proteins of the Crk family are potent signal transducers after receptor tyrosine kinase stimulation with insulin or IGF-1. We have employed a yeast two-hybrid approach and mutational analysis to dissect the capabilities of the insulin receptor and the IGF-I receptor to directly associate with Crk isoforms. Insulin receptor stably recruits full length Crk by association with its SH2 domain in an auto-phosphorylation dependent manner. In contrast, interaction of the IGF-I receptor with the Crk-IISH2 domain was only detectable when Crk-II was truncated in its C-terminal part, indicating the transient nature of this interaction. From these data it can be concluded that members of the insulin receptor family activate Crk proteins in a differential manner.
Collapse
Affiliation(s)
- Jürgen Klammt
- Hospital for Children and Adolescents, University of Leipzig, 04317 Leipzig, Oststrasse 21-25, Germany.
| | | | | |
Collapse
|
10
|
Huang C, Borchers CH, Schaller MD, Jacobson K. Phosphorylation of paxillin by p38MAPK is involved in the neurite extension of PC-12 cells. ACTA ACUST UNITED AC 2004; 164:593-602. [PMID: 14970194 PMCID: PMC2171993 DOI: 10.1083/jcb.200307081] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell adhesions play an important role in neurite extension. Paxillin, a focal adhesion adaptor protein involved in focal adhesion dynamics, has been demonstrated to be required for neurite outgrowth. However, the molecular mechanism by which paxillin regulates neurite outgrowth is unknown. Here, we show that paxillin is phosphorylated by p38MAPK in vitro and in nerve growth factor (NGF)–induced PC-12 cells. Ser 85 (Ser 83 for endogenous paxillin) is identified as one of major phosphorylation sites by phosphopeptide mapping and mass spectrometry. Moreover, expression of the Ser 85 → Ala mutant of paxillin (paxS85A) significantly inhibits NGF-induced neurite extension of PC-12 cells, whereas expression of wild-type (wt) paxillin does not influence neurite outgrowth. Further experiments indicate that cells expressing paxS85A exhibit small, clustered focal adhesions which are not normally seen in cells expressing wt paxillin. Although wt paxillin and paxS85A have the same ability to bind vinculin and focal adhesion kinase, wt paxillin more efficiently associates with Pyk2 than paxS85A. Thus, phosphorylation of paxillin is involved in NGF-induced neurite extension of PC-12 cells, probably through regulating focal adhesion organization.
Collapse
Affiliation(s)
- Cai Huang
- Department of Cell and Developmental Biology, University of North Carolina, 108 Taylor Hall, CB7090 Chapel Hill, NC 27599-7090, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Trk receptors are a family of three receptor tyrosine kinases, each of which can be activated by one or more of four neurotrophins-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4 (NT3 and NT4). Neurotrophin signaling through these receptors regulates cell survival, proliferation, the fate of neural precursors, axon and dendrite growth and patterning, and the expression and activity of functionally important proteins, such as ion channels and neurotransmitter receptors. In the adult nervous system, the Trk receptors regulate synaptic strength and plasticity. The cytoplasmic domains of Trk receptors contain several sites of tyrosine phosphorylation that recruit intermediates in intracellular signaling cascades. As a result, Trk receptor signaling activates several small G proteins, including Ras, Rap-1, and the Cdc-42-Rac-Rho family, as well as pathways regulated by MAP kinase, PI 3-kinase and phospholipase-C-gamma (PLC-gamma). Trk receptor activation has different consequences in different cells, and the specificity of downstream Trk receptor-mediated signaling is controlled through expression of intermediates in these signaling pathways and membrane trafficking that regulates localization of different signaling constituents. Perhaps the most fascinating aspect of Trk receptor-mediated signaling is its interplay with signaling promoted by the pan-neurotrophin receptor p75NTR. p75NTR activates a distinct set of signaling pathways within cells that are in some instances synergistic and in other instances antagonistic to those activated by Trk receptors. Several of these are proapoptotic but are suppressed by Trk receptor-initiated signaling. p75NTR also influences the conformations of Trk receptors; this modifies ligand-binding specificity and affinity with important developmental consequences.
Collapse
Affiliation(s)
- Eric J Huang
- Department of Pathology, University of California Veterans Administration Medical Center, San Francisco, California 94143, USA.
| | | |
Collapse
|
12
|
Khatib AM, Siegfried G, Chrétien M, Metrakos P, Seidah NG. Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1921-35. [PMID: 12057895 PMCID: PMC1850825 DOI: 10.1016/s0002-9440(10)61140-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mammalian subtilisin/kexin-like proprotein convertase (PC) family has been implicated in the activation of a wide spectrum of proteins. These proteins are usually synthesized as inactive precursors before their conversion to fully mature bioactive forms. A large majority of these active proteins such as matrix metalloproteases, growth factors, and adhesion molecules are crucial in the processes of cellular transformation, acquisition of the tumorigenic phenotype, and metastases formation. Inhibition of PCs significantly affects the malignant phenotype of various tumor cells. In addition to direct tumor cell proliferation and migration blockade, PC inhibitors can also be used to target tumor angiogenesis. In this Review article we discuss a number of recent findings on the clinical relevance of PCs in cancer patients, their implication in the regulation of multiple cellular functions that impact on the invasive/metastatic potential of cancer cells. Thus, PC inhibitors may constitute new promising agents for the treatment of multiple tumors and/or in adjuvant therapy to prevent recurrence.
Collapse
Affiliation(s)
- Abdel-Majid Khatib
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
13
|
Terfera DR, Brown MC, Turner CE. Epidermal growth factor stimulates serine/threonine phosphorylation of the focal adhesion protein paxillin in a MEK-dependent manner in normal rat kidney cells. J Cell Physiol 2002; 191:82-94. [PMID: 11920684 DOI: 10.1002/jcp.10082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor (EGF)-stimulated proliferation of renal epithelial cells plays an important role in the recovery of kidney tubule epithelia following exposure to insult. Numerous studies have demonstrated that tyrosine phosphorylation of the focal adhesion protein paxillin mediates in part the effects of growth factors on cell growth, migration, and organization of the actin-based cytoskeleton. The experiments in this report were designed to determine the effect of EGF on paxillin phosphorylation in normal rat kidney (NRK) epithelial cells. Interestingly, treatment of NRK cells with EGF stimulated paxillin serine/threonine phosphorylation, which caused a reduction in the mobility of paxillin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The EGF-stimulated mobility shift of paxillin was independent of an intact cytoskeleton, phosphatidylinositol 3-kinase (PI 3-kinase) activation, protein kinase C (PKC) activation, and cellular adhesion. However, inhibitors of the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase abrogated the EGF-stimulated change in paxillin mobility. In addition, the EGF-stimulated change in paxillin serine/threonine phosphorylation was not accompanied by a profound reorganization of the actin cytoskeleton. These results identify paxillin as a component EGF signaling in renal epithelial cells and implicate members of the MAP kinase pathway as critical regulators of paxillin serine/threonine phosphorylation.
Collapse
Affiliation(s)
- David R Terfera
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
14
|
Abstract
Crk family adaptors are widely expressed and mediate the timely formation of signal transduction protein complexes upon a variety of extracellular stimuli, including various growth and differentiation factors. Selective formation of multi-protein complexes by the Crk and Crk-like (CRKL) proteins depends on specific motifs recognized by their SH2 and SH3 domains. In the case of the first SH3 domains [SH3(1)] a P-x-x-P-x-K motif is crucial for highly selective binding, while the SH2 domains prefer motifs which conform to the consensus pY-x-x-P. Crk family proteins are involved in the relocalization and activation of several different effector proteins which include guanine nucleotide releasing proteins like C3G, protein kinases of the Abl- and GCK-families and small GTPases like Rap1 and Rac. Crk-type proteins have been found not only in vertebrates but also in flies and nematodes. Major insight into the function of Crk within organisms came from the genetic model organism C. elegans, where the Crk-homologue CED-2 regulates cell engulfment and phagocytosis. Other biological outcomes of the Crk-activated signal transduction cascades include the modulation of cell adhesion, cell migration and immune cell responses. Crk family adaptors also appear to play a role in mediating the action of human oncogenes like the leukaemia-inducing Bcr-Abl protein. This review summarizes some key findings and highlights recent insights and open questions.
Collapse
Affiliation(s)
- S M Feller
- Cell Signalling Laboratory, Imperial Cancer Research Fund, University of Oxford, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
15
|
Stam JC, Geerts WJ, Versteeg HH, Verkleij AJ, van Bergen en Henegouwen PM. The v-Crk oncogene enhances cell survival and induces activation of protein kinase B/Akt. J Biol Chem 2001; 276:25176-83. [PMID: 11323409 DOI: 10.1074/jbc.m009825200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The v-Crk oncogene encodes an adaptor protein containing an SH2 domain and an SH3 domain. v-Crk-transformed fibroblast cells display enhanced tyrosine phosphorylation levels, and the v-Crk protein localizes in focal adhesions, suggesting that transformation may be due to enhanced focal complex signaling. Here we investigated the mechanism of transformation and found that v-Crk-transformed NIH 3T3 cells display growth rates and serum requirements similar to control cells. However, v-Crk enhanced survival in conditions of serum starvation. Both an intact SH2 and SH3 domain are required; moreover, SH2 mutants displayed dominant interfering properties, enhancing cell death. Using other cell death-inducing stimuli, it appeared that v-Crk in general inhibits apoptosis and enhances cell survival. In search of the signaling pathways involved, we found that v-Crk-transformed cells show constitutively higher levels of phospho-protein kinase B (PKB)/Akt and PKB/Akt activity, especially in conditions of serum starvation. These data strongly suggest involvement of the phosphatidylinositol 3-kinase/PKB survival pathway in the v-Crk-induced protection against apoptosis. In accordance, inhibition of this pathway by wortmannin or LY924002 reduced protection against starvation-induced apoptosis. In addition to the phosphatidylinositol 3-kinase/PKB pathway, a MEK-dependent pathway and an unknown additional pathway are also implicated in resistance against apoptosis. Activation of survival pathways may be the most important function of v-Crk in its oncogenic properties.
Collapse
Affiliation(s)
- J C Stam
- Utrecht University, Utrecht Institute of Biomembranes, Molecular Cell Biology, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Kao S, Jaiswal RK, Kolch W, Landreth GE. Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem 2001; 276:18169-77. [PMID: 11278445 DOI: 10.1074/jbc.m008870200] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In PC12 cells, epidermal growth factor (EGF) transiently stimulates the mitogen-activated protein (MAP) kinases, ERK1 and ERK2, and provokes cellular proliferation. In contrast, nerve growth factor (NGF) stimulation leads to the sustained activation of the MAPKs and subsequently to neuronal differentiation. It has been shown that both the magnitude and longevity of MAPK activation governs the nature of the cellular response. The activations of MAPKs are dependent upon two distinct small G-proteins, Ras and Rap1, that link the growth factor receptors to the MAPK cascade by activating c-Raf and B-Raf, respectively. We found that Ras was transiently stimulated upon both EGF and NGF treatment of PC12 cells. However, EGF transiently activated Rap1, whereas NGF stimulated prolonged Rap1 activation. The activation of the ERKs was due almost exclusively (>90%) to the action of B-Raf. The transient activation of the MAPKs by EGF was a consequence of the formation of a short lived complex assembling on the EGF receptor itself, composed of Crk, C3G, Rap1, and B-Raf. In contrast, NGF stimulation of the cells resulted in the phosphorylation of FRS2. FRS2 scaffolded the assembly of a stable complex of Crk, C3G, Rap1, and B-Raf resulting in the prolonged activation of the MAPKs. Together, these data provide a signaling link between growth factor receptors and MAPK activation and a mechanistic explanation of the differential MAPK kinetics exhibited by these growth factors.
Collapse
Affiliation(s)
- S Kao
- Department of Neurosciences and the Alzheimer Research Laboratory, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Neurotrophins regulate development, maintenance, and function of vertebrate nervous systems. Neurotrophins activate two different classes of receptors, the Trk family of receptor tyrosine kinases and p75NTR, a member of the TNF receptor superfamily. Through these, neurotrophins activate many signaling pathways, including those mediated by ras and members of the cdc-42/ras/rho G protein families, and the MAP kinase, PI-3 kinase, and Jun kinase cascades. During development, limiting amounts of neurotrophins function as survival factors to ensure a match between the number of surviving neurons and the requirement for appropriate target innervation. They also regulate cell fate decisions, axon growth, dendrite pruning, the patterning of innervation and the expression of proteins crucial for normal neuronal function, such as neurotransmitters and ion channels. These proteins also regulate many aspects of neural function. In the mature nervous system, they control synaptic function and synaptic plasticity, while continuing to modulate neuronal survival.
Collapse
Affiliation(s)
- Eric J Huang
- Department of Pathology, University of California, San Francisco, California 94143; e-mail:
| | - Louis F Reichardt
- Department of Physiology, University of California, San Francisco, California 94143, and Howard Hughes Medical Institute, San Francisco, California 94143; e-mail:
| |
Collapse
|
18
|
Riordan SM, Lidder S, Williams R, Skouteris GG. The beta-subunit of the hepatocyte growth factor/scatter factor (HGF/SF) receptor phosphorylates and associates with CrkII: expression of CrkII enhances HGF/SF-induced mitogenesis. Biochem J 2000; 350 Pt 3:925-32. [PMID: 10970810 PMCID: PMC1221328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
CrkII, a 40 kDa adaptor possessing a Src homology (SH)2 domain followed by two SH3 domains, although not endowed with catalytic activity, participates in intracellular signalling, presumably by activating the Ras pathway. CrkII was found to be phosphorylated in response to hepatocyte growth factor/scatter factor (HGF/SF) and to associate with the beta-subunit of the HGF receptor (MET). CrkII associated with p(145betaMET) via its SH2 domain. Growth-factor-receptor-bound protein 2 (Grb2) co-immunoprecipitated with CrkII species. By transient transfection of A431 human epidermoid carcinoma cells with wild-type and dominant-negative Grb2 expression constructs lacking either the SH2 or SH3 domains, we have concluded that Grb2 does not contribute to the 'presentation' of CrkII to p(145betaMET). Overexpression of wild-type CrkII in A431 cells enhanced HGF/SF-induced proliferation, while a CrkII dominant-negative mutant lacking the SH2 domain prevented a similar proliferating response to HGF/SF. The effect of CrkII on HGF/SF-induced proliferation was also abolished in cells co-expressing CrkII and Son-of-sevenless lacking the guanine exchange domain, suggesting that CrkII is likely to induce cell proliferation partly via the Ras/mitogen-activated protein kinase route.
Collapse
Affiliation(s)
- S M Riordan
- Laboratory of Cell Biology, Institute of Hepatology, Department of Medicine, Royal Free and University College London Medical School, London WC1E 6HX, U.K
| | | | | | | |
Collapse
|
19
|
Escalante M, Courtney J, Chin WG, Teng KK, Kim JI, Fajardo JE, Mayer BJ, Hempstead BL, Birge RB. Phosphorylation of c-Crk II on the negative regulatory Tyr222 mediates nerve growth factor-induced cell spreading and morphogenesis. J Biol Chem 2000; 275:24787-97. [PMID: 10825157 DOI: 10.1074/jbc.m000711200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Crk family of adaptor proteins participate in diverse signaling pathways that regulate growth factor-induced proliferation, anchorage-dependent DNA synthesis, and cytoskeletal reorganization, important for cell adhesion and motility. Using kidney epithelial 293T cells for transient co-transfection studies and the nerve growth factor (NGF)-responsive PC12 cell line as a model system for neuronal morphogenesis, we demonstrate that the non-receptor tyrosine kinase c-Abl is an intermediary for NGF-inducible c-Crk II phosphorylation on the negative regulatory Tyr(222). Transient expression of a c-Crk II Tyr(222) point mutant (c-Crk Y222F) in 293T cells induces hyperphosphorylation of paxillin on Tyr(31) and enhances complex formation between c-Crk Y222F and paxillin as well as c-Crk Y222F and c-Abl, suggesting that c-Crk II Tyr(222) phosphorylation induces both the dissociation of the Crk SH2 domain from paxillin and the Crk SH3 domain from c-Abl. Interestingly, examination of the early kinetics of NGF stimulation in PC12 cells showed that c-Crk II Tyr(222) phosphorylation preceded paxillin Tyr(31) phosphorylation, followed by a transient initial dissociation of the c-Crk II paxillin complex. PC12 cells overexpressing c-Crk Y222F manifested a defect in cellular adhesion and neuritogenesis that led to detachment of cells from the extracellular matrix, thus demonstrating the biological significance of c-Crk II tyrosine phosphorylation in NGF-dependent morphogenesis. Whereas previous studies have shown that Crk SH2 binding to paxillin is critical for cell adhesion and migration, our data show that the phosphorylation cycle of c-Crk II determines its dynamic interaction with paxillin, thereby regulating turnover of multiprotein complexes, a critical aspect of cytoskeletal plasticity and actin dynamics.
Collapse
Affiliation(s)
- M Escalante
- Laboratory of Molecular Oncology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kashiwa A, Yoshida H, Lee S, Paladino T, Liu Y, Chen Q, Dargusch R, Schubert D, Kimura H. Isolation and characterization of novel presenilin binding protein. J Neurochem 2000; 75:109-16. [PMID: 10854253 DOI: 10.1046/j.1471-4159.2000.0750109.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Approximately 50% of familial Alzheimer's disease (AD) cases are linked to the presenilin (PS) gene. This suggests that an altered function of mutated PSs accounts for a fundamental process leading to AD. Here we identify a new PS binding protein, PBP, which is highly expressed in cerebral cortex and hippocampus. immunohistochemical studies and cell fractionation analysis show that PBP redistributes from cytoplasm to membranes in the presence of PS. In addition, PBP is deficient in the soluble fraction of sporadic AD brains.
Collapse
Affiliation(s)
- A Kashiwa
- Salk Institute for Biological Studies Department of Pathology, University of California, La Jolla, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Posern G, Saffrich R, Ansorge W, Feller SM. Rapid lamellipodia formation in nerve growth factor-stimulated PC12 cells is dependent on Rac and PI3K activity. J Cell Physiol 2000; 183:416-24. [PMID: 10797317 DOI: 10.1002/(sici)1097-4652(200006)183:3<416::aid-jcp15>3.0.co;2-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neuronal differentiation of PC12 cells is achieved by stimulation with nerve growth factor (NGF) but not by epidermal growth factor (EGF). However, features of differentiation such as neurite outgrowth are observable at the earliest after several hours. Using actin staining of the cells, we show here that NGF stimulation leads to lamellipodia formation within only 3 min at the periphery of the PC12 cells. EGF stimulation or microinjection of differentiation-inducing c-Crk I protein does not cause lamellipodia. The actin reorganization after NGF stimulation is blocked by microinjecting dominant negative Rac protein. The lamellipodia formation is also abolished by inhibitors of phosphatidylinositol 3-kinase, wortmannin and LY 294002 in a concentration-dependent manner. Phase-contrast time-lapse microscopy was used to analyze membrane dynamics in real time and to confirm the induction of lamellipodia by NGF and their inhibition by pretreatment with both wortmannin and LY 294002. The results indicate that NGF, but not EGF, leads to rapid lamellipodia formation in PC12 cells via phosphatidylinositol 3-kinase and the small GTPase Rac, thereby defining a novel role for these factors in early NGF signaling.
Collapse
Affiliation(s)
- G Posern
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Julius-Maximilians-University, Würzburg, Germany.
| | | | | | | |
Collapse
|
22
|
Ye K, Compton DA, Lai MM, Walensky LD, Snyder SH. Protein 4.1N binding to nuclear mitotic apparatus protein in PC12 cells mediates the antiproliferative actions of nerve growth factor. J Neurosci 1999; 19:10747-56. [PMID: 10594058 PMCID: PMC6784956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/1999] [Revised: 08/24/1999] [Accepted: 09/29/1999] [Indexed: 02/14/2023] Open
Abstract
Protein 4.1N is a neuronal selective isoform of the erythrocyte membrane cytoskeleton protein 4.1R. In the present study, we demonstrate an interaction between 4.1N and nuclear mitotic apparatus protein (NuMA), a nuclear protein required for mitosis. The binding involves the C-terminal domain of 4.1N. In PC12 cells treatment with nerve growth factor (NGF) elicits translocation of 4. 1N to the nucleus and promotes its association with NuMA. Specific targeting of 4.1N to the nucleus arrests PC12 cells at the G1 phase and produces an aberrant nuclear morphology. Inhibition of 4.1N nuclear translocation prevents the NGF-mediated arrest of cell division, which can be reversed by overexpression of 4.1N. Thus, nuclear 4.1N appears to mediate the antiproliferative actions of NGF by antagonizing the role of NuMA in mitosis.
Collapse
Affiliation(s)
- K Ye
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
23
|
Weinstein DE, Dobrenis K, Birge RB. Targeted expression of an oncogenic adaptor protein v-Crk potentiates axonal growth in dorsal root ganglia and motor neurons in vivo. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 116:29-39. [PMID: 10446344 DOI: 10.1016/s0165-3806(99)00072-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The ability of neurons to survive and to target axonal growth requires a coordinated series of cell extrinsic and intrinsic events. Previously, in a cellular model for neuronal differentiation, we showed that pheochromocytoma (PC12) cells expressing v-Crk, an oncogenic form of the SH2/SH3-containing c-Crk adaptor protein, potentiates axonal growth and prolongs nerve growth factor (NGF)-independent survival. In the present study, we have generated transgenic mice that express v-Crk in sensory, motor, and enteric neurons by placing v-crk under the control of the neuron-specific peripherin promoter. In contrast to wild-type (wt) mice, dorsal root ganglia (DRG) neurons explanted from post-natal day 1 transgenic mice demonstrated a reduced dependence on trophic factors for both survival and axonogenesis. v-Crk also caused an increase in the number of surviving spinal motor neurons (SMN), and interestingly, upon staining of sternomastoid muscle fibers with rhodamine conjugated alpha-bungarotoxin, many muscle fibers displayed an apparent increase in volume of motor end plates, and an increase in complexity of neuromuscular junctions (NMJ). Our data suggest that v-Crk may be involved in transducing extracellular signals to regulate cytoskeletal organization, and may act on an intrinsic determinant for axonal growth in a variety of neural types including sensory and motor neurons during development.
Collapse
Affiliation(s)
- D E Weinstein
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
24
|
Chen XQ, Tan I, Leung T, Lim L. The myotonic dystrophy kinase-related Cdc42-binding kinase is involved in the regulation of neurite outgrowth in PC12 cells. J Biol Chem 1999; 274:19901-5. [PMID: 10391936 DOI: 10.1074/jbc.274.28.19901] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myotonic dystrophy kinase-related Cdc42-binding kinase (MRCKalpha) has been implicated in the morphological activities of Cdc42 in nonneural cells. Both MRCKalpha and the kinase-related Rho-binding kinase (ROKalpha) are involved in nonmuscle myosin light-chain phosphorylation and associated actin cytoskeleton reorganization. We now show that in PC12 cells, overexpression of the kinase domain of MRCKalpha and ROKalpha resulted in retraction of neurites formed on nerve growth factor (NGF) treatment, as observed with RhoA. However, introduction of kinase-dead MRCKalpha did not result in NGF-independent neurite outgrowth as observed with dominant negative kinase-dead ROKalpha or the Rho inhibitor C3. Neurite outgrowth induced by NGF or kinase-dead ROKalpha was inhibited by dominant negative Cdc42(N17), Rac1(N17), and the Src homology 3 domain of c-Crk, indicating the participation of common downstream components. Neurite outgrowth induced by either agent was blocked by kinase-dead MRCKalpha lacking the p21-binding domain or by a minimal C-terminal regulatory region consisting of the cysteine-rich domain/pleckstrin homology domain plus a region with homology to citron. The latter region alone was an effective blocker of NGF-induced outgrowth. These results suggest that although ROKalpha is involved in neurite retraction promoted by RhoA, the related MRCKalpha is conversely involved in neurite outgrowth promoted by Cdc42 and Rac.
Collapse
Affiliation(s)
- X Q Chen
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
25
|
Buday L. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:187-204. [PMID: 10393272 DOI: 10.1016/s0304-4157(99)00005-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.
Collapse
Affiliation(s)
- L Buday
- Department of Medical Chemistry, Semmelweis University Medical School, 9 Puskin Street, 1088, Budapest, Hungary.
| |
Collapse
|
26
|
Kraemer R, Nguyen H, March KL, Hempstead B. NGF activates similar intracellular signaling pathways in vascular smooth muscle cells as PDGF-BB but elicits different biological responses. Arterioscler Thromb Vasc Biol 1999; 19:1041-50. [PMID: 10195934 DOI: 10.1161/01.atv.19.4.1041] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The signaling pathways that regulate smooth muscle cell migration and proliferation are incompletely understood. Smooth muscle cells express at least 3 families of receptor tyrosine kinases that mediate cell migration: platelet-derived growth factor (PDGF) receptors, the trk family of neurotrophin receptors, and insulin-like growth factor 1 receptor. The neurotrophin, nerve growth factor (NGF), and insulin-like growth factor 1 induce the migration but not the proliferation of smooth muscle cells, whereas PDGF-BB stimulates both responses. To determine whether distinct signaling pathways downstream of receptor tyrosine kinases specifically mediate smooth muscle cell migration or proliferation, the ligand-induced activation of different signaling pathways in smooth muscle cells was examined. NGF induces prolonged activation of the Shc/MAP kinase pathway and phospholipase Cgamma compared with PDGF-BB. The activation of phosphatidylinositol-3 kinase, however, was 10-fold greater in response to PDGF-BB compared with NGF. Insulin-like growth factor 1 activates only phosphatidylinositol-3 kinase. Pharmacological inhibitors of phosphatidylinositol-3 kinase, Wortmannin and LY294002, inhibit PDGF-BB and NGF-induced migration, whereas an inhibitor of MAP kinase kinase, PD98059, has no effect. Our results suggest that (1) different receptor tyrosine kinases use similar patterns of activation of signaling pathways to mediate distinct biological outcomes of cell migration and proliferation, (2) NGF activates signaling proteins in smooth muscle cells similar to those activated during NGF-induced neuronal differentiation, and (3) the combinatorial effects of different signaling pathways are important for the regulation of smooth muscle cell migration and proliferation. Further studies using mutant trk receptors will help to define the signal transduction pathways mediating NGF-induced smooth muscle cell migration.
Collapse
Affiliation(s)
- R Kraemer
- Department of Pathology, Cornell University Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
27
|
Sanders RJ, Mainiero F, Giancotti FG. The role of integrins in tumorigenesis and metastasis. Cancer Invest 1998; 16:329-44. [PMID: 9627681 DOI: 10.3109/07357909809084653] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- R J Sanders
- Department of Pediatrics, New York University School of Medicine, New York, USA
| | | | | |
Collapse
|
28
|
Takahashi T, Kawahara Y, Taniguchi T, Yokoyama M. Tyrosine phosphorylation and association of p130Cas and c-Crk II by ANG II in vascular smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H1059-65. [PMID: 9575907 DOI: 10.1152/ajpheart.1998.274.4.h1059] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In cultured vascular smooth muscle cells (VSMC), angiotensin II (ANG II) stimulated tyrosine phosphorylation of multiple proteins including a 130-kDa protein. This 130-kDa protein was identified as a Crk-associated substrate, p130Cas. ANG II-stimulated tyrosine phosphorylation of p130Cas was rapid, concentration dependent, and inhibited by the AT1-receptor antagonist CV-11974. Neither downregulation of protein kinase C by long exposure of cells to phorbol 12,13-dibutyrate nor blockade of Ca2+ mobilization by 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester had an effect on ANG II-stimulated tyrosine phosphorylation of p130Cas. Stimulation with ANG II enhanced the specific association of p130Cas with c-Crk II. The time course of the association of p130Cas and c-Crk II was similar to that of tyrosine phosphorylation of p130Cas. c-Crk II was also tyrosine phosphorylated in response to ANG II. These results indicate that ANG II induces tyrosine phosphorylation of p130Cas and c-Crk II and their specific association, suggesting a potential role of the p130Cas-c-Crk II complex in ANG II signal transduction in VSMC.
Collapse
Affiliation(s)
- T Takahashi
- Department of Internal Medicine, Kobe University School of Medicine, Japan
| | | | | | | |
Collapse
|
29
|
Ota S, Kizaka-Kondoh S, Hashimoto Y, Nishihara H, Nagashima K, Kurata T, Okayama H, Matsuda M. Constitutive association of EGF receptor with the CrkII-23 mutant that inhibits transformation of NRK cells by EGF and TGF-beta. Cell Signal 1998; 10:283-90. [PMID: 9617486 DOI: 10.1016/s0898-6568(97)00130-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crk belongs to the adapter proteins that participate in many signalling pathways from cell surface receptors. We have characterised the CrkII-23 mutant that inhibits the transformation of NRK cells induced by epidermal growth factor (EGF) and transforming growth factor (TGF)-beta. To study the biochemical difference, cDNAs of the wild-type CrkII and the CrkII-23 mutant were introduced stably into NIH 3T3 cells expressing EGF receptor (EGFR). Both CrkII and CrkII-23 were phosphorylated on tyrosine upon EGF simulation with similar time course and dose dependency. Whereas the wild-type CrkII bound to EGFR only after EGF stimulation, CrkII-23 bound to EGFR from before stimulation. Mutation in the Src homology (SH) 2 or amino-terminal SH3 domain did not abolish the binding of CrkII-23 to EGFR in the quiescent cells, suggesting that the binding is mediated by a novel mechanism. These CrkII-23-derived mutants, however, did not suppress transformation of NRK cells by EGF and TGF-beta. Hence, both the SH2 and amino-terminal SH3 domains are required to inhibit transformation of NRK cells. These results suggest that persistent signalling from CrkII-23 bound to EGFR suppresses transformation by EGF and TGF-beta in NRK23 cells.
Collapse
Affiliation(s)
- S Ota
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ishiki M, Sasaoka T, Ishihara H, Imamura T, Usui I, Takata Y, Kobayashi M. Evidence for functional roles of Crk-II in insulin and epidermal growth factor signaling in Rat-1 fibroblasts overexpressing insulin receptors. Endocrinology 1997; 138:4950-8. [PMID: 9348226 DOI: 10.1210/endo.138.11.5510] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We examined the potential role of Crk-II in insulin and epidermal growth factor (EGF) signaling in Rat-1 fibroblasts overexpressing insulin receptors. Crk is an SH2 and SH3 domain-containing adaptor protein that has been reported to associate with p130cas, paxillin, c-cbl, c-abl, Sos, and C3G in vitro. Insulin- and EGF-induced association of Crk-II with these molecules was assessed by immunoblotting of anti-Crk-II precipitates in Rat-1 fibroblasts overexpressing insulin receptors. Neither insulin nor EGF treatment induced Crk-II association with either Sos or C3G. Basal tyrosine phosphorylation of c-abl and its constitutive association with Crk-II were not further increased by insulin or EGF. p130cas and paxillin were heavily tyrosine phosphorylated in the basal state. Both insulin and EGF stimulated their dephosphorylation, followed by p130cas-Crk-II dissociation and paxillin-Crk-II association, although the magnitude of these effects was greater with insulin than with EGF. Interestingly, EGF, but not insulin, stimulated tyrosine phosphorylation of c-cbl and its association with Crk-II. To investigate the functional roles of Crk-II in mitogenesis and cytoskeletal rearrangement, we performed microinjection analysis. Cellular microinjection of anti-Crk-II antibody inhibited EGF-induced, but not insulin-induced, DNA synthesis. Insulin, but not EGF, stimulated cytoskeletal rearrangement in the cells, and microinjection of anti-Crk-II antibody effectively inhibited insulin-induced membrane ruffling, suggesting that Crk-II is involved in insulin-induced cytoskeletal rearrangement. These results indicate that Crk-II functions as a multifunctional adaptor molecule linking insulin and EGF receptors to their downstream signals. The presence of c-cbl-Crk-II association may partly determine the signal specificities initiated by insulin and EGF.
Collapse
Affiliation(s)
- M Ishiki
- First Department of Medicine, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Butler AA, Blakesley VA, Koval A, deJong R, Groffen J, LeRoith D. In vivo regulation of CrkII and CrkL proto-oncogenes in the uterus by insulin-like growth factor-I. Differential effects on tyrosine phosphorylation and association with paxillin. J Biol Chem 1997; 272:27660-4. [PMID: 9346905 DOI: 10.1074/jbc.272.44.27660] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Changes in CrkII and CrkL phosphorylation are associated with insulin-like growth factor receptor activation in cultured cells. We examined whether similar changes also occur following administration of recombinant human insulin-like growth factor-I to the intact animal. In female rats starved overnight, CrkL phosphorylation was significantly increased 12 min after insulin-like growth factor-I administration. Tyrosine phosphorylation of CrkII was not detectable in either control or treated animals. Paxillin, a 65-70-kDa phosphoprotein containing high affinity binding sites common for the Src homology 2 (SH2) domains of CrkII and CrkL, was observed in both CrkII and CrkL immunoprecipitates. Insulin-like growth factor-I treatment stimulated the association of CrkII with paxillin. In contrast, the same treatment resulted in the dissociation of the CrkL-paxillin complex. Similar effects of insulin-like growth factor-I treatment on the association of CrkL with tyrosine phosphorylated paxillin were observed in fibroblasts overexpressing CrkL. This study demonstrates that the activation of the insulin-like growth factor-I receptor induces changes in the tyrosine phosphorylation and protein-protein interactions of the Crk proteins in vivo. The different responses of CrkL and CrkII to insulin-like growth factor-I receptor activation suggest distinct roles for these two adapter proteins in signal transduction.
Collapse
Affiliation(s)
- A A Butler
- Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1770, USA
| | | | | | | | | | | |
Collapse
|
32
|
Erickson MR, Galletta BJ, Abmayr SM. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J Cell Biol 1997; 138:589-603. [PMID: 9245788 PMCID: PMC2141626 DOI: 10.1083/jcb.138.3.589] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/1997] [Revised: 05/08/1997] [Indexed: 02/04/2023] Open
Abstract
The Drosophila myoblast city (mbc) locus was previously identified on the basis of a defect in myoblast fusion (Rushton et al., 1995. Development [Camb.]. 121:1979-1988). We describe herein the isolation and characterization of the mbc gene. The mbc transcript and its encoded protein are expressed in a broad range of tissues, including somatic myoblasts, cardial cells, and visceral mesoderm. It is also expressed in the pole cells and in ectodermally derived tissues, including the epidermis. Consistent with this latter expression, mbc mutant embryos exhibit defects in dorsal closure and cytoskeletal organization in the migrating epidermis. Both the mesodermal and ectodermal defects are reminiscent of those induced by altered forms of Drac1 and suggest that mbc may function in the same pathway. MBC bears striking homology to human DOCK180, which interacts with the SH2-SH3 adapter protein Crk and may play a role in signal transduction from focal adhesions. Taken together, these results suggest the possibility that MBC is an intermediate in a signal transduction pathway from the rho/rac family of GTPases to events in the cytoskeleton and that this pathway may be used during myoblast fusion and dorsal closure.
Collapse
Affiliation(s)
- M R Erickson
- Department of Biochemistry and Molecular Biology and Center for Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
33
|
Blakesley VA, Beitner-Johnson D, Van Brocklyn JR, Rani S, Shen-Orr Z, Stannard BS, Spiegel S, LeRoith D. Sphingosine 1-phosphate stimulates tyrosine phosphorylation of Crk. J Biol Chem 1997; 272:16211-5. [PMID: 9195921 DOI: 10.1074/jbc.272.26.16211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The proto-oncogene molecule c-Crk plays a role in growth factor-induced activation of Ras. Sphingosine 1-phosphate (SPP), a metabolite of cellular sphingolipids, has previously been shown to play a role in growth factor receptor signaling (Olivera, A., and Spiegel, S. (1993) Nature 365, 557-560). SPP was found to strongly induce tyrosine phosphorylation of Crk, but not Shc, in NIH-3T3 parental, insulin-like growth factor-I receptor-overexpressing and Crk-overexpressing (3T3-Crk) fibroblasts. Sphingosine, a metabolic precursor of SPP, also produced a slight increase in tyrosine phosphorylation of Crk. In contrast, other sphingolipid metabolites including ceramide did not alter Crk tyrosine phosphorylation. Furthermore, Crk enhanced SPP-induced mitogenesis, as measured by SPP-stimulated [3H]thymidine incorporation in a manner proportional to the level of Crk expression in 3T3-Crk cells. This stimulation appears to be Ras-dependent, whereas SPP stimulation of MAP kinase activity is Ras-independent. These data indicate that SPP activates a tyrosine kinase that phosphorylates Crk and that Crk is a positive effector of SPP-induced mitogenesis.
Collapse
Affiliation(s)
- V A Blakesley
- Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Parrizas M, Blakesley VA, Beitner-Johnson D, Le Roith D. The proto-oncogene Crk-II enhances apoptosis by a Ras-dependent, Raf-1/MAP kinase-independent pathway. Biochem Biophys Res Commun 1997; 234:616-20. [PMID: 9175762 DOI: 10.1006/bbrc.1997.6641] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human embryonic kidney 293 cells and 293 cells overexpressing different amounts of the adaptor protein Crk-II (ranging from 3- to 10-fold higher levels than the parental cell line) were examined for their ability to undergo apoptosis when maintained in control and serum-free (SF) medium. Parental 293 cells undergo apoptosis only when deprived of serum for prolonged periods of time (24-48 h). On the other hand, 293 cells overexpressing different levels of Crk-II present detectable levels of apoptosis as measured by DNA fragmentation when grown in control medium, with a marked increase when they are deprived of serum for 12-48 h. To determine the pathways involved in Crk-II-induced apoptosis, Crk-II overexpressing cells were transiently transfected with a dominant-negative Ras construct (N17-Ras). Compared to cells transfected with control vectors, the cells overexpressing N17-Ras presented lower levels of apoptosis when maintained in SF-medium. On the other hand, transient transfection of a dominant-negative Raf-1 construct (K375W-Raf-1) did not decrease apoptosis; slightly increasing DNA fragmentation levels were seen. Similar results were obtained when the cells were incubated in the presence of a MEK1 inhibitor. The results presented here suggest that overexpression of Crk-II induces apoptosis via a Ras-dependent, Raf-1/MEK1/ERK-independent pathway.
Collapse
Affiliation(s)
- M Parrizas
- Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1770, USA
| | | | | | | |
Collapse
|
35
|
Rani CS, Wang F, Fuior E, Berger A, Wu J, Sturgill TW, Beitner-Johnson D, LeRoith D, Varticovski L, Spiegel S. Divergence in signal transduction pathways of platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors. Involvement of sphingosine 1-phosphate in PDGF but not EGF signaling. J Biol Chem 1997; 272:10777-83. [PMID: 9099730 DOI: 10.1074/jbc.272.16.10777] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Platelet-derived growth factor (PDGF) and serum, but not epidermal growth factor (EGF), stimulated sphingosine kinase activity in Swiss 3T3 fibroblasts and increased intracellular concentrations of sphingosine 1-phosphate (SPP), a sphingolipid second messenger (Olivera, A., and Spiegel, S. (1993) Nature 365, 557-560). We report herein that DL-threo-dihydrosphingosine (DHS), a competitive inhibitor of sphingosine kinase that prevents PDGF-induced SPP formation, specifically inhibited the activation of two cyclin-dependent kinases (p34(cdc2) kinase and Cdk2 kinase) induced by PDGF, but not by EGF. SPP reversed the inhibitory effects of DHS on PDGF-stimulated cyclin-dependent kinases and DNA synthesis, demonstrating that the DHS effects were mediated via inhibition of sphingosine kinase. DHS also markedly reduced PDGF-stimulated but not EGF-stimulated mitogen-activated protein kinase activity and DNA binding activity of activator protein-1. Examination of the early signaling events of PDGF action revealed that DHS did not affect PDGF-induced autophosphorylation of the growth factor receptor or phosphorylation of the SH2/SH3 adaptor protein Shc and its association with Grb2. This sphingosine kinase inhibitor did not abrogate activation of phosphatidylinositol 3-kinase by PDGF. In agreement, treatment with SPP had no effect on these responses but did, however, potently stimulate phosphorylation of Crk, another SH2/SH3 adaptor protein. Moreover, DHS inhibited PDGF-stimulated, but not EGF-stimulated, Crk phosphorylation. Thus, regulation of sphingosine kinase activity defines divergence in signal transduction pathways of PDGF and EGF receptors leading to mitogen-activated protein kinase activation.
Collapse
Affiliation(s)
- C S Rani
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, D. C. 20007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aoki N, Yamaguchi-Aoki Y, Ullrich A. The novel protein-tyrosine phosphatase PTP20 is a positive regulator of PC12 cell neuronal differentiation. J Biol Chem 1996; 271:29422-6. [PMID: 8910608 DOI: 10.1074/jbc.271.46.29422] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A novel cytoplasmic protein-tyrosine phosphatase (PTPase) designated PTP20 was isolated from a PC12 cDNA library and shown to positively regulate the differentiation process in PC12 cells. The PTP20 open reading frame of 453 amino acids contains a single tyrosine phosphatase catalytic domain and displays closest homology to members of the PTP-PEST protein-tyrosine phosphatase family. Transient expression of PTP20 in Rat-1 cells resulted in the expression of a 50-kDa protein which exhibited PTPase activity in vitro. Expression of the 2.3-kilobase PTP20 mRNA increased during differentiation of nerve growth factor (NGF)-stimulated PC12 cells. Consistent with this observation, stable overexpression of PTP20 in PC12 cells resulted in accelerated neurite formation following NGF treatment. These findings suggest a positive regulatory role of PTP20 in NGF-dependent neuronal differentiation of PC12 cells.
Collapse
Affiliation(s)
- N Aoki
- Department of Molecular Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, 82152 Martinsried, Germany
| | | | | |
Collapse
|
37
|
Okada S, Pessin JE. Interactions between Src homology (SH) 2/SH3 adapter proteins and the guanylnucleotide exchange factor SOS are differentially regulated by insulin and epidermal growth factor. J Biol Chem 1996; 271:25533-8. [PMID: 8810325 DOI: 10.1074/jbc.271.41.25533] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Co-immunoprecipitation of whole cell extracts demonstrated that the guanylnucleotide exchange factor SOS was associated with the small adapter proteins Grb2, CrkII, and Nck. In vitro binding indicated a similar binding affinity of SOS for all three adapter proteins but with a slightly lower Kd for Grb2 (approximately 2.5-fold) compared with Nck and CrkII. Insulin stimulation resulted in co-immunoprecipitation of tyrosine-phosphorylated IRS1 with Grb2 and to a lesser extent CrkII. Although Grb2 also associated with tyrosine-phosphorylated Shc, there was no detectable interaction of CrkII with Shc. In contrast, EGF stimulation resulted in the predominant co-immunoprecipitation of Grb2 with the EGF receptor, whereas CrkII primarily associated with an unidentified 120-130-kDa protein. Similar to the ability of insulin to induce the dissociation of the Grb2-SOS complex, there was a concomitant time-dependent dissociation of the CrkII-SOS and Nck-SOS complexes. However, EGF stimulation had no effect on the association state of the Grb2-SOS or the Nck-SOS complexes but did result in a time-dependent dissociation of the CrkII from SOS. Together, these data demonstrate that different cellular pools of SOS associate with different adapter proteins forming various signaling complexes, each undergoing distinct patterns of assembly/disassembly following growth factor stimulation.
Collapse
Affiliation(s)
- S Okada
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
38
|
Abstract
vgf is an inducible gene, highly sensitive to nerve growth factor (NGF) and remarkably upregulated in the "early-delayed" phase of response (within a few hours). It encodes a 617-amino acid polypeptide (VGF protein) bearing no significant homology with known sequences and restricted to certain peptide/amine-producing endocrine cells, and neurons (for example, adenohypophysial and adrenal medullary cells, or hypothalamic neuroendocrine neurons). VGF is stored and transported in secretory granules and processed to intermediate-small molecular weight products, which are preferentially released. Striking changes in both VGF mRNA and immunolocalization are found in physiological conditions (for example, estrous cycle) and in experimental models of stimulation affecting hypothalamic and other neurons. Functional roles of VGF are to be sought in secretory granule formation and regulation, and/or in the production of potentially bioactive peptides.
Collapse
Affiliation(s)
- G L Ferri
- Neuro and Endocrine Research, Department of Cytomorphology, University of Cagliari, Cagliari Italy; Oasi IRCCS, Troina, Italy
| | | |
Collapse
|
39
|
Matsuda M, Kurata T. Emerging components of the Crk oncogene product: the first identified adaptor protein. Cell Signal 1996; 8:335-40. [PMID: 8911681 DOI: 10.1016/0898-6568(96)00067-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
v-Crk, identified as an oncogene product of the CT10 retrovirus, became the first example of an adaptor protein. It consists mostly of the Src homology 2 (SH2) and Src homology 3 (SH3) domains. Two of the three major proteins bound to Crk SH2 have been identified as paxillin and p130Cas. Both paxillin and p130Cas are phosphorylated upon stimulation by integrin, suggesting that Crk transduces signals from integrin. The cloning of the complementary DNA of two major proteins bound to Crk SH3 was recently completed. Both cDNAs encoded novel proteins: C3G, a guanine nucleotide exchange protein for Rap1, and DOCK180, an SH3-containing protein of unknown function. The SH3 domain of Crk also binds to Sos, Abl, and Eps15. The variety of the proteins bound to Crk SH3 implies that Crk provides a set of effector proteins that are triggered together. Alternatively, other domains of the SH3-binding proteins enable Crk to specifically activate each of the SH3-binding proteins according to the particular form of stimulation.
Collapse
Affiliation(s)
- M Matsuda
- Department of Pathology, National Institute of Health, Tokyo, Japan
| | | |
Collapse
|
40
|
Matsuda M, Ota S, Tanimura R, Nakamura H, Matuoka K, Takenawa T, Nagashima K, Kurata T. Interaction between the amino-terminal SH3 domain of CRK and its natural target proteins. J Biol Chem 1996; 271:14468-72. [PMID: 8662907 DOI: 10.1074/jbc.271.24.14468] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CRK is a human homolog of chichen v-Crk, which is an adaptor protein. The SH2 domain of CRK binds to several tyrosine-phosphorylated proteins, including the epidermal growth factor receptor, p130(Cas), Shc, and paxillin. The SH3 domain, in turn, binds to cytosolic proteins of 135-145, 160, 180, and 220 kDa. We screened expression libraries by Far Western blotting, using CRK SH3 as a probe, and identified partial cDNA sequences of four distinct proteins, including C3G, DOCK180, EPS15, and clone ST12. The consensus sequence of the CRK SH3 binding sites as deduced from their amino acid sequences was Pro+3-Pro+2-X+1-Leu0-Pro-1-X-2-Lys-3. The interaction of the CRK SH3 domain with the DOCK180 peptide was examined with an optical biosensor, based on the principles of surface plasmon resonance. A low dissociation constant of the order of 10(-7) resulted from a high association rate constant (kassoc = 3 x 10(4)) and low dissociation rate constant (kdiss = 3 x 10(-3)). All CRK-binding proteins except clone ST12 also bound to another adaptor protein, Grb2. Mutational analysis revealed that glycine at position +1 of ST12 inhibited the binding to Grb2 while retaining the high affinity binding to CRK SH3. The result suggests that the amino acid at position +1 also contributes to the high affinity binding of the peptides to the SH3 domain of Grb2, but not to that of CRK.
Collapse
Affiliation(s)
- M Matsuda
- Department of Pathology, National Institute of Health, Toyama, Shinjuku-ku, Tokyo 162, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pollock JD, Rane SG. p21ras signaling is necessary but not sufficient to mediate neurotrophin induction of calcium channels in PC12 cells. J Biol Chem 1996; 271:8008-14. [PMID: 8626482 DOI: 10.1074/jbc.271.14.8008] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nerve growth factor and basic fibroblast growth factor bind to and activate receptor tyrosine kinases, causing sequential signaling via the p21ras/extracellular signal-regulated kinase pathway. The necessity and sufficiency of this signaling pathway in transducing neuronal differentiation have been tested in the PC12 cell model. Although necessary for morphological changes, the sufficiency of p21ras-mediated signaling in these events has come into question. We report that growth factor induction of voltage-gated calcium channels, a hallmark of physiological differentiation, also requires p21ras-mediated signaling, but cannot be driven by p21ras activation alone. Thus, constitutive expression of the dominant negative N17ras mutant blocks growth factor-induced increases in Omega-conotoxin GVIA-sensitive, nimodipine-sensitive, and Omega-conotoxin GVIA/nimodipine-resistant calcium currents, but it does not block sodium current induction. However, manipulations that produce sustained activation of the p21ras signaling pathway and the neurite extension characteristic of morphological differentiation fail to increase calcium channel current densities. These results indicate the existence of distinct signaling requirements for morphological and physiological differentiation and further emphasize the importance of p21ras-independent signaling pathways in growth factor-mediated neuronal development.
Collapse
Affiliation(s)
- J D Pollock
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
42
|
Ribon V, Saltiel AR. Nerve growth factor stimulates the tyrosine phosphorylation of endogenous Crk-II and augments its association with p130Cas in PC-12 cells. J Biol Chem 1996; 271:7375-80. [PMID: 8631760 DOI: 10.1074/jbc.271.13.7375] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cellular homologs of the v-Crk oncogene product consist primarily of Src homology region 2 (SH2) and 3 (SH3) domains. v-Crk overexpression causes cell transformation and elevation of tyrosine phosphorylation in fibroblasts and accelerates differentiation of PC-12 cells in response to nerve growth factor (NGF). To further explore the role of Crk in NGF-induced PC-12 cell differentiation, we found that both NGF and epidermal growth factor stimulate the tyrosine phosphorylation of endogenous Crk II. Moreover, hormone stimulation enhanced the specific association of Crk proteins with the tyrosine-phosphorylated p130Cas, the major phosphotyrosine-containing protein in cells transformed with v-Crk. This interaction is mediated by the SH2 domain of Crk and can be inhibited with a phosphopeptide containing the Crk-SH2 binding motif. Furthermore, the Crk-SH2 domain binds tyrosine-phosphorylated paxillin, a cytoskeletal protein, following treatment of PC-12 cells with NGF or epidermal growth factor. These data suggest that Crk functions in a number of signaling processes in PC-12 cells.
Collapse
Affiliation(s)
- V Ribon
- Department of Physiology, University of Michigan School of Medicine, Ann Arbor, 48109, USA
| | | |
Collapse
|
43
|
Abstract
Biological responses to neurotrophins appear to be mediated by multiple signalling pathways. These emanate from, and are regulated by, the contributions of both Trk and p75 receptors. Early events in Trk signalling are becoming more clearly defined and point to cooperate interaction of both Ras-dependent and Ras-independent pathways. Work over the past year has clarified the steps by which Trk receptor occupation leads to Ras activation and has highlighted the required roles of Ras and extracellular signal regulated kinases in certain neurotrophin responses, including neurite outgrowth. Pharmacologic and mutagenesis studies have additionally supported the importance of the phosphatidylinositol-3' kinase and SNT protein pathways in neurotrophin signalling. Although many findings point to clear involvement for p75 in neurotrophin signalling, the molecular mechanisms by which these occur are just beginning to be identified. Recent studies indicate that p75 dramatically influences Trk activity and ligand interactions, and may mediate signals through the ceramide second-messenger pathway.
Collapse
Affiliation(s)
- L A Greene
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | |
Collapse
|
44
|
Wiley LM, Adamson ED, Tsark EC. Epidermal growth factor receptor function in early mammalian development. Bioessays 1995; 17:839-46. [PMID: 7487966 DOI: 10.1002/bies.950171005] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We review here the data indicating a role for epidermal growth factor receptor (EGF receptor) signalling in early mouse development. Embryonic development of the metazoan embryo generally begins with the formation of a cystic structure and epithelial layers that subsequently form anlagen of the definitive body parts and organs. For the mammalian embryo, this cystic structure is a blastocyst whose wall consists of trophectoderm, the first epithelium to develop during mammalian embryogenesis. The onset of expression and function of EGF receptors is coincident with the onset of trophectoderm development. Modulating EGF receptor expression and function modulates trophectoderm differentiation, leading to the hypothesis that functional EGF receptors participate in the induction of trophectoderm development and perhaps of other embryonic epithelial derivatives such as nervous tissues.
Collapse
Affiliation(s)
- L M Wiley
- Department of Obstetrics and Gynecology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
45
|
Yao H, Labudda K, Rim C, Capodieci P, Loda M, Stork PJ. Cyclic adenosine monophosphate can convert epidermal growth factor into a differentiating factor in neuronal cells. J Biol Chem 1995; 270:20748-53. [PMID: 7657657 DOI: 10.1074/jbc.270.35.20748] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The rat pheochromocytoma (PC12) cell line is a model for studying the mechanism of growth factor action. Both epidermal growth factor and nerve growth factor stimulate mitogen-activated protein (MAP) kinase in these cells. Recent data suggest that the transient activation of MAP kinase may trigger proliferation, whereas sustained activation triggers differentiation in these cells. We have tested this model by asking whether agents that stimulate MAP kinase without inducing differentiation can act additively to trigger differentiation. Neither forskolin nor epidermal growth factor can stimulate differentiation, yet both activate MAP kinase in these cells. Together, their actions on MAP kinase are synergistic. Cells treated with both agents differentiate, measured morphologically and by the induction of neural-specific genes. We propose that cellular responses to growth factor action are dependent not only on the activation of growth factor receptors by specific growth factors but on synchronous signals that may elevate MAP kinase levels within the same cells.
Collapse
Affiliation(s)
- H Yao
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | |
Collapse
|
46
|
Teng KK, Lander H, Fajardo JE, Hanafusa H, Hempstead BL, Birge RB. v-Crk modulation of growth factor-induced PC12 cell differentiation involves the Src homology 2 domain of v-Crk and sustained activation of the Ras/mitogen-activated protein kinase pathway. J Biol Chem 1995; 270:20677-85. [PMID: 7657647 DOI: 10.1074/jbc.270.35.20677] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nerve growth factor (NGF) and epidermal growth factor (EGF) elicit contrasting actions on PC12 pheochromocytoma cells; NGF causes neuronal differentiation, and EGF induces proliferation. However, ectopic expression of the Src homology 2 (SH2) and SH3-containing oncogenic adaptor protein v-Crk in PC12 cells results in EGF-inducible neuronal differentiation (Hempstead, B. L., Birge, R. B., Fajardo, J. E., Glassman, R., Mahadeo, D., Kraemer, R., and Hanafusa, H. (1994) Mol. Cell. Biol. 14, 1964-1971). Here we show that v-Crk complexes with both the tyrosine-phosphorylated EGF receptor and the Ras guanine nucleotide exchange factor SOS in PC12 cells and is involved in an pathway analogous to that of Grb2. Expression of v-Crk results in an enhanced and sustained activation of Ras and mitogen-activated protein (MAP) kinase following EGF or NGF stimulation, implying that v-Crk can couple divergent tyrosine kinase pathways to Ras. To investigate the causal relationship between EGF receptor binding, MAP kinase activation, and neurite outgrowth, we stably expressed two v-Crk SH2 point mutants, v-Crk(R273N) and v-Crk(H294R) in PC12 cells. Mutations within the SH2 domain of v-Crk block binding of v-Crk to the tyrosine phosphorylated EGF receptor, compromise v-Crk's ability to cause EGF-dependent neurite outgrowth, and act in a dominant negative manner for NGF-induced neurite outgrowth. However, the kinetics of MAP kinase activation in EGF- or NGF-treated v-Crk-(R273N)PC12 cells was comparable with that in v-CrkPC12 cells. These data are consistent with a model in which v-Crk regulates the strength of a tyrosine kinase signal leading to prolonged activation of Ras and MAP kinase. However, the experiments with the SH2 mutants suggest that sustained activation, by itself, may not be sufficient to switch the fate of v-CrkPC12 cells from proliferation toward differentiation.
Collapse
Affiliation(s)
- K K Teng
- Department of Medicine, New York Hospital, Cornell University Medical College, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
47
|
Donovan MJ, Miranda RC, Kraemer R, McCaffrey TA, Tessarollo L, Mahadeo D, Sharif S, Kaplan DR, Tsoulfas P, Parada L. Neurotrophin and neurotrophin receptors in vascular smooth muscle cells. Regulation of expression in response to injury. THE AMERICAN JOURNAL OF PATHOLOGY 1995; 147:309-24. [PMID: 7639328 PMCID: PMC1869811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The neurotrophins, a family of related polypeptide growth factors including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)-3 and NT-4/5 promote the survival and differentiation of distinctive sets of embryonic neurons. Here we define a new functional role for neurotrophins, as autocrine or local paracrine mediators of vascular smooth muscle cell migration. We have identified neurotrophins, and their cognate receptors, the trk tyrosine kinases, in human and rat vascular smooth muscle cells in vivo. In vitro, cultured human smooth muscle cells express BDNF; NT-3; and trk A, B, and C. Similarly, rat smooth muscle cells expressed all three trk receptors as well as all four neurotrophins. Moreover, NGF induces cultured human smooth muscle cell migration at subnanomolar concentrations. In the rat aortic balloon deendothelialization model of vascular injury, the expression of NGF, BNDF, and their receptors trk A and trk B increased dramatically in the area of injury within 3 days and persisted during the formation of the neointima. In human coronary atherosclerotic lesions, BDNF, NT-3, and NT-4/5, and the trk B and trk C receptors could be demonstrated in smooth muscle cells. These findings suggest that neurotrophins play an important role in regulating the response of vascular smooth muscle cells to injury.
Collapse
Affiliation(s)
- M J Donovan
- Department of Pathology, Children's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wu CF, Howard BD. K252a-potentiation of EGF-induced neurite outgrowth from PC12 cells is not mimicked or blocked by other protein kinase activators or inhibitors. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 86:217-26. [PMID: 7656414 DOI: 10.1016/0165-3806(95)00028-c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Epidermal growth factor (EGF) has recently been shown to cause certain strains of PC12 cells to extend short neurites. This EGF-induced differentiation of PC12 was found to be potentiated by the protein kinase inhibitor, K252a, in that PC12 cells treated with both EGF and K252a extended long branched neurites similar to those induced by nerve growth factor (NGF). As reported here no other protein kinase inhibitor or activator mimicked or blocked the effect of K252a on EGF-induced PC12 differentiation. Cyclic adenosine 3',5'-monophosphate (cAMP) also potentiated EGF-induced neurite outgrowth from PC12 cells, but the mechanism of this potentiation was different from that of K252a. Cells that had been exposed to EGF and then stripped of their neurons extended neurites again when retreated with EGF in the absence of RNA synthesis or when treated with NGF in the absence of RNA synthesis. Thus EGF can prime PC12 cells for either EGF or for NGF, a finding that further suggests that EGF and NGF use similar signaling pathways to induced neuronal differentiation of PC12.
Collapse
Affiliation(s)
- C F Wu
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles 90024, USA
| | | |
Collapse
|
49
|
Beitner-Johnson D, LeRoith D. Insulin-like growth factor-I stimulates tyrosine phosphorylation of endogenous c-Crk. J Biol Chem 1995; 270:5187-90. [PMID: 7534289 DOI: 10.1074/jbc.270.10.5187] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Crk, a cellular homolog of v-crk, is an SH2 and SH3 domain-containing adaptor protein related to Grb2 and Nck, two proteins which have been shown to be involved in growth factor signal transduction. Crk proteins have recently been found to associate with two guanine nucleotide releasing proteins, mSos and C3G, and thus appear to lie on the Ras pathway. We investigated whether Crk is a target for the insulin-like growth factor I (IGF-I) receptor tyrosine kinase. We show that IGF-I stimulates tyrosine phosphorylation of Crk II via stimulation of endogenous IGF-I receptors in both 293 cells and NIH-3T3 cells. IGF-I stimulated tyrosine phosphorylation of Crk II in a dose- and time-dependent manner. In 293 cells, which express both IGF-I and insulin receptors, insulin also induced a dose-dependent tyrosine phosphorylation of Crk II, but with somewhat reduced sensitivity, compared to IGF-I. In NIH 3T3 cells, IGF-I also stimulated tyrosine phosphorylation of a 45- kDa protein which co-immunoprecipitated with Crk II. These findings indicate that Crk II is an endogenous substrate of the IGF-I receptor tyrosine kinase and provide the first demonstration that a mitogenic growth factor induces tyrosine phosphorylation of endogenous c-Crk.
Collapse
Affiliation(s)
- D Beitner-Johnson
- Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1770
| | | |
Collapse
|
50
|
Sawasdikosol S, Ravichandran KS, Lee KK, Chang JH, Burakoff SJ. Crk interacts with tyrosine-phosphorylated p116 upon T cell activation. J Biol Chem 1995; 270:2893-6. [PMID: 7531694 DOI: 10.1074/jbc.270.7.2893] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Products of the crk oncogene are expressed in all tissues. Crk proteins are composed exclusively of Src homology 2 (SH2) and Src homology 3 (SH3) domains, and they have been implicated in intracellular signaling. For example, they participate as mediators of Ras activation during nerve growth factor stimulation of PC12 pheochromocytoma cells. We examined the role of Crk proteins during T cell receptor-mediated signaling and observed that Crk proteins specifically interact, via their SH2 domains, with a tyrosine-phosphorylated 116-kDa protein upon T cell activation. p116 may be related to the recently cloned fibroblast p130cas and/or p120-Cbl. In addition, we observed that GST-Crk fusion proteins and Crk-L bind, most likely via their SH3 domain, to C3G, a Ras guanine nucleotide exchange factor. Thus, the interaction of Crk with p116 and C3G strongly implicates Crk as a mediator of T cell receptor signaling, possibly involved in Ras activation.
Collapse
Affiliation(s)
- S Sawasdikosol
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | |
Collapse
|